MTH1001 Calculus 1 CHASTAINGT - Knowledge

Transcription

MTH1001 Calculus 1 CHASTAINGT - Knowledge
```BACHELOR EAI
SYLLABUS FALL 2011
CODE DU COURS
NOM DU COURS / COURSE NAME
CALCULUS I
MTH1001
Crédits / Credits
EAI Credits 4 / ECTS Credits 8
Face à face / Contact Hours
Travail individuel et/ou de groupe /
Personal &/or Team Work
Evaluation / Evaluation
52.5h
225h
7.5h
Charge de travail / Student workload
Langue d’enseignement / Teaching
Language
English
Pré-requis / Prerequisite
French Scientific Baccalaureate
Période d’enseignement / Teaching
period
Responsable du cours / Course
Coordinator
Fall 2011 - Wednesday 1:00pm - 4:00pm and Friday 1:00pm-2:30pm
Audrey DALMASSO, PhD.
[email protected]
Intervenant(s) / Instructor(s)
Bruno Chastaingt, PhD.
Evaluateur(s) / Evaluator(s)
Bruno Chastaingt
Description du cours / Course
description
This course is the first math course taken by all engineering and science majors. . A quick review of algebra
and trigonometry and the idea of limits lead to the study of derivatives and its applications. A final link is made
between anti-derivatives and definite integrals.
[email protected]
•Connaissances / Knowledge and Understanding (subject specific)
Résultats d’apprentissage / Learning
Outcomes
Review of high school algebra and trigonometry.
Logarithmic, exponential, inverse trigonometric functions.
Limits and continuity.
Derivatives as rate of change.
Techniques of differentiation, Chain Rule.
Differentials, related rates.
Implicit differentiation.
Derivative of logarithmic, exponential, inverse trigonometric functions.
L’hôpital’s Rule and indeterminate forms.
Analysis of functions (variation, relative extrema, concavity).
Absolute maxima, minima and applications.
Newton’s method, Mean Value Theorem.
Antidifferentiation.
Riemann sums and the definite integral.
The First and the Second Fundamental Theorems of Calculus.
Rectilinear motion.
Logarithms defined as an integral.
Matrices: properties of matrices, Determinants, Inverse of a square matrix.
Cours inscrit dans le process
Assurance of Learning AACSB
No
• Devoir surveillé (DS) / Written examination
Evaluation des étudiants / Student
Assessment
3 midterm tests
Final exam
30%
• Contrôle continu
Quizzes
Homeworks
15%
10%
Cours / Lectures
Méthodes d’enseignement / Teaching
Methods
%
45% (3 x 15%)
SYLLABUS FALL 2011
07/09/11
09/09/11
14/09/11
16/09/11
21/09/11
Plan de cours / Course plan
23/09/11
28/09/11
30/09/11
05/10/11
07/10/11
12/10/11
14/10/11
19/10/11
21/10/11
26/10/11
28/10/11
02/11/11
04/11/11
09/11/11
3h
Chapter 0: Before Calculus.
1h30
Chapter 0: Before Calculus
3h
Chapter 1: Limits and Continuity
1h30
Chapter 1: Limits and Continuity
3h
Chapter 1: Limits and Continuity
1h30
Chapter 2: The derivatives
3h
Chapter 2: The derivatives
1h30
3h
Chapter 2: The derivatives
1h30
Chapter 2: The derivatives
3h
Chapter 3: Topics in differentiation
1h30
Chapter 3: Topics in differentiation
3h
Chapter 3: Topics in differentiation
1h30
Chapter 3: Topics in differentiation
3h
3h
2/12/11
Chapter 4: The derivative in graphing and applications
Chapter 5: Integration
3h
Chapter 5: Integration
1h30
23/11/11 3h
30/11/11
Midterm n°2
1h30
16/11/11 3h
25/11/11
Chapter 4: The derivative in graphing and applications
1h30
11/11/11 1h30
18/11/11
Midterm n°1
No course
Chapter 6: Applications of the definite integrals
Chapter 6: Applications of the definite integrals
Matrices
1h30
Midterm n°3
3h
Matrices
1h30
Matrices
Final Exam
SYLLABUS FALL 2011
Obligatoire pour le module /
Required for the course
Bibliographie / References
Site(s) web / Web sites
Thomas’ Calculus (12th Ed.), George B.
Thomas, Maurice D. Weir, Joel R. Hass
None
None
CAMPUS
SOPHIA
Nombre et
durée des CM
52.5h
Nombre et
durée des TD
Modalités de délivrance du cours
(Par campus si différent)
Optionnelle pour le module /
Recommended references
Autres
(ex : coaching
projets,
distance
learning, etc.)
weekly
Préciser les
spécificités de
programmation
(TD en journée
complète,
spécifique des
séances)
CAMPUS
LILLE
CAMPUS
PARIS
CAMPUS
CHINE
CAMPUS US
```

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

syllabus spring 2012 - Knowledge

16.6: Applications of surface integrals , flux. 16.7: The divergence theorem. 16.8: Stokes’ theorem.

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail

Plus en détail