Repérage et vecteurs

Transcription

Repérage et vecteurs
Repérage et vecteurs
Chapitre 10 page 241
Introduction :
Rappels pour démarrer :
Page 241
I-Egalité de vecteurs
1- Détermination d'un vecteur.
Un vecteur non nul est déterminé par :
- sa direction ;
- son sens ;
- sa longueur ou norme.
Exemple :
→ →
AB et CD n'ont pas la même direction : ils ne
peuvent donc pas avoir le même sens.
→ →
AB et FE ont la même direction mais pas le
même sens.
→ →
AB et GH ont la même direction et le même
sens.
→
A est l'origine et B est l'extrémité du vecteur AB
Vocabulaire
2- Vecteurs égaux.
Propriété 1 :
Si →
AB = →
CD alors
B
le quadrilatère ABDC est un parallélogramme.
A
C
Propriété 2 :
Si le quadrilatère ABCD est un parallélogramme alors
→
→;
AB = 
DC
→
AD = 
BC→;
→
→
BA = 
CD
→
DA = 
CB→
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
D
→
3- Notation u : Représentant d’un vecteur.
Quelles égalités pouvez-vous écrire?

→= 
AB→= 
CD
EF→
r r r
On pose alors : →
u =AB=CD= EF
→
u
→ → →
→
AB , CD et EF sont appelés des représentants du vecteur u
→
→
la norme du vecteur u est notée  u 
Notation
→
→
→
→
Si AB est un représentant du vecteur u , alors || u ||= || AB || = AB
II. Somme de vecteurs (addition vectorielle).
1- Relation de Chasles
a-activité.
Tracer :
→
→
• Les vecteurs
EF→
et FG tels que→
:
→
→
EF = u
et
FG = v
→
• Le vecteur EG
→
→
→
Le vecteur EG est la somme des vecteurs EF et FG
On a :
→
→
→
→
→
EG = EF + FG = u + v
b-Relation de Chasles.
→ → →
AB + BC = AC
2- Règle du parallélogramme
a-activité.
Tracer :
• Les vecteurs AB et AD tels que :
AB = u
et
AD = v
• Le parallèlogramme ABCD ;
• Le vecteur AC .
Le vecteur AC est la somme des vecteurs AB et
AD , on a :
AC = AB + AD = u + v
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
b-règle du parallélogramme.
→ → →
AB + AC = AD
3- L'addition vectorielle est commutative.
→
→
u
v
→
u
→
v
→
v
Pour tous vecteurs →
u et →
v,
→
u
o o o o
u+v=v+u
III.Vecteur nul- Vecteur opposé- Différence de vecteurs.
1- Vecteur nul
Tout vecteur ayant son extrémité confondue avec son origine est appelé vecteur nul.
→
Il est noté : 0
Propriétés :
• Sa norme est nulle, sa direction et son sens ne sont pas définis.
→
• →
AA = →
BB = →
MM = 0 quels que soient les points A, B et M.
2- Opposé d'un vecteur
→
→
→ →
→
D'après la relation de Chasles, AB + BA = AA = 0 ; posons →
u = AB
On écrit que :

BA→= – 
AB→= – →
u
On dit que : le vecteur →
BA est l'opposé du vecteur →
AB
le vecteur – →
u est l'opposé du vecteur →
u
Propriétés :
deux vecteurs opposés ( non nuls ) ont la même direction, la même norme
et sont de sens contraire.
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
3- Différence de deux vecteurs
On note →
u – →
v le vecteur somme →
u + (– →
v )
Pour construire le vecteur →
u – →
v il faut donc commencer par représenter le vecteur
–→
v (opposé de →
v ) puis construire la somme →
u + (– →
v )
IV. Produit d’un vecteur par un nombre réel
Exemples : Soit →
u un vecteur non nul :
3
u
2
2u
u
♦ Le vecteur 2→
u est le vecteur :
3
♦ Le vecteur – →
u est le vecteur :
2
• de même direction que le vecteur →
u
‚ de même sens que le vecteur →
u
• de même direction que le vecteur →
u
‚ de sens opposé au vecteur →
u
3
car – est négatif,
2
3
ƒ de longueur  →
u 
2
car une longueur est positive.
car 2 est positif,
ƒ de longueur 2 →
u 
Remarques :
pour tous vecteurs →
u et →
v pour tous nombres réels k et k',
0→
u = 0
k (→
u +→
v ) = k→
u + k→
v
k→
0 = 0
(k + k')→
u =k→
u + k' →
u
→
→
V. Colinéarité de deux vecteurs
1- Définition
o
o
• Deux vecteurs non nuls u et v sont dits colinéaires s'ils ont la même direction.
→
u
→
v
• Par définition, →
0 est colinéaire à tout vecteur.
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
2- Propriétés
• Si les vecteurs non nuls →
u et →
v sont colinéaires alors il existe un nombre réel k tel que :
→
u = k→
v
‚ S'il existe un nombre réel k tel que →
u = k..→
v alors →
u et →
v sont colinéaires.
Exemples
v
u
v
v
u
u
→
u = – 2→
v
k=–2
1
→
u = →
v
2
1
k=
2
Il n'existe pas de
nombre k tel que →
u =
k→
v
VI. Application de la colinéarité.
1- Parallélisme de deux droites
Soient (A, B) et (C, D) deux couples de points distincts.
Pour prouver que les droites (AB) et (CD) sont parallèles,
il suffit de démontrer que les vecteurs →
AB et →
CD sont
B
A
C
colinéaires,
c'est-à-dire qu'il existe un nombre k tel que :
→
AB = k →
CD
D
2- Alignement de points.
Soient A, B et C trois points distincts.
Pour prouver que les points A, B et C sont alignés,
il suffit de démontrer, en utilisant la colinéarité, que
les droites (AB) et (AC) sont parallèles - ou bien (AB)
et (BC), ou encore (AC) et (BC) -
C
B
A
3- Caractérisation du milieu I d'un segment [AB]
Propriété :
I milieu du segment [AB] se traduit vectoriellement par la relation de colinéarité
→
1
→
AI = →
AB ou par →
AI = →
IB ou encore par →
AI + →
BI = 0
2
A
I
B
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
4- Activité.
1
•
Comprendre le cours :
→
a) Dans le repère (O ; u ) ci-dessous, placer les points M et N d’abscisse 4 et –3.
Exprimer en fonction de u les vecteurs suivants :
OM = …..
ON = …..
MN = ……
→
→
→
→
→
u
b) Compléter les caractéristiques des vecteurs :
vecteur
direction
→
sens
→
OM
longueur
→
celle de u
→
4 || u ||
celui de u
→
ON
→
MN
b) Compléter les phrases :
Il existe un réel x tel que OM = x.ON, car ces deux vecteurs sont ………………….
→
→
Le signe de x est …………………….. , car …………………………………………..
De plus, OM = 4 et ON = 3 donc on obtient la valeur du réel x : …………..
→
→
d) De même , il existe un réel y tel que MN = y.ON. Déterminer y.
………………………………………………………………………………………….
2
En utilisant le quadrillage ci-dessous, placer les points M, N et P définis par les relations :
2
3
AM = 3 v BN = u et
CP = - v.
3
2
a) Comme les vecteurs BK et u sont ………….., il existe un réel x tel que BK = x.u. On
→
→

→
→

→
→

→
→

→
obtient x = ………………………
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002

→
→

→

→
b) De la même façon, on écrit BL = u + y.v. On obtient y = ………………………..
v→
→
u
Relier chaque situation vectorielle à la situation géométrique qui lui correspond.
3
Relation vectorielle
→
a) MR =
b)
1 →
MS
2
→
3 →
RS = MT
4
→
1 → →
c) MS = ( MR + MT )
2
→
→
d) RM = k RS , k ∈ [ 0 ; 1 ]
e)
→
→
RT = - SM
situation géométrique
1- S est le milieu de [ RT ]
2- RSTM est un trapèze
3- RTSM est un parallélogramme
4- P ∈ [RS ]
5- R est le milieu de [ MS ]
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
Schéma des situations
VI Propriétés élémentaires dans un repère..
1- Propriétés des vecteurs dans une repère (O, →
i ;→
j )
a-exemple.
→
→
→
M (2 ; 6) signifie que OM = 3 i + 2 j .
→  3 
On note OM  2 
 
→
j
→
i
→
b-Coordonnées du vecteur AB
→ → → → →
Puisque AB = AO + OB = OB – OA ,
→
les coordonnées du vecteur AB sont :
→ xB – xA 
AB  y – y 
 B A
c-Coordonnées du milieu I d'un segment [AB]
→ →
→ → → →
→ → →
Puisque AI = IB , on a AO + OI = IO + OB et encore 2 OI = OA + OB
 2xI = xA + xB
Par suite  2y = y + y
A
B
. I
Les coordonnées du milieu I de [AB] sont donc :
xA + xB yA + yB

I 
2
2 

2- Propriétés des vecteurs dans un repère Orthonormal
a- Orthogonalité
On dit que 2 vecteurs non nuls sont orthogonaux lorsqu'ils définissent des directions
orthogonales, c'est à dire que les droites supports des représentants de ces vecteurs sont
perpendiculaires. On note alors →
u ⊥→
v
→
→
On dit que ( O ; i ; j ) est un repère orthonormal lorsque
→
i ⊥→
j et  →
i = →
j  = 1
b-Calcul de la norme d'un vecteur
→x
→
La norme du vecteur u  y  est :  u  = x² + y²
 
♦ Calcul de la distance entre deux points
→ xB – xA 
Comme AB  y – y , la distance entre les points A et
 B A
B est obtenue à partir de : AB² = (xB – xA)² + (yB – yA)²
:
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
Repérage et vecteurs
Chapitre 10 page 241
Introduction :Rappels pour démarrer :
I-Egalité de vecteurs
1- Détermination d'un vecteur.
2- Vecteurs égaux.
→
3- Notation u : Représentant d’un vecteur.
4-Activités.
( Page 241 )
b-Calcul de la norme d'un vecteur
II. Somme de vecteurs (addition vectorielle).
1-Relation de Chasles
a-activité.
b-Relation de Chasles.
2-Règle du parallélogramme
a-activité.
b-règle du parallélogramme.
3- l'addition vectorielle est communtative.
4-Activités.
III.Vecteur nul- Vecteur opposé- Différence de
vecteurs.
1- Vecteur nul
2- Opposé d'un vecteur
3- Différence de deux vecteurs
IV. Produit d’un vecteur par un nombre réel.
V. Colinéarité de deux vecteurs
1- Définition
2- Propriétés
VI. Application de la colinéarité.
1- Parallélisme de deux droites
2- Alignement de points.
3- Caractérisation du milieu I d'un segment [AB]
4- Activité.
VI Propriétés élémentaires dans un repère..
1-Propriétés des vecteurs dans une repère (O, →
i ;→
j )
a-exemple.
b-Coordonnées du vecteur
c-Coordonnées du milieu I d'un segment [AB]
2- Propriétés des vecteurs dans un repère Orthonormal
a-Orthogonalité
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002
TD
OUVERTURE : VECTEURS ET FORCES
1 n La péniche
Une péniche dont le gouvernail a été endommagé est tirée par deux remorqueurs de puissances différentes, repérés sur le
→
dessin par les points R1 et R2 et disposés comme sur la figure ci-dessous. La longueur des flèches représentant les vecteurs F1
→
et F2 est proportionnelle à la force de traction de chacun des remorqueurs.
Dans quelle direction cette péniche va-t-elle se déplacer ?
F1
R1
P
R2
F
2
→
Tout se passe comme si le point P était soumis à la traction F d'un câble unique avec
→ → →
F = F1 + F2
2 n L'entraînement de rugby
Au cours d'une séance d'entraînement de rugby, afin de faire travailler la puissance des jambes, l'entraîneur propose l'exercice
suivant : un des joueurs J1 est retenu à l'aide de deux cordes par deux autres joueurs J2 et J3 et doit s'efforcer d'avancer.
Déterminer, dans chacun des
trois cas, si J1 avance ou
recule.
Dans chacun des cas ci-dessus,
→ →
F2 et F3 sont les forces
auxquelles J2 et J3 soumettent J1,
→
qui, lui, tire avec une force F1 .
On admet que l'intensité de ces
forces est proportionnelle à la
norme des vecteurs représentés
Mme Lucotte-Le Visage
Lycée Polyvalent Privé ISM-La Providence
Repérage et vecteurs 2001-2002