Formulaire de Probabilités et Statistiques

Transcription

Formulaire de Probabilités et Statistiques
Formulaire de Probabilités et Statistiques
AD+JS
1
Rappels de combinatoire
Arrangements avec répétitions Nombre d’applications d’un ensemble à k éléments dans
un ensemble à n éléments :
nk
Arrangements (sans répétitions)
Akn =
Permutations
Nombre d’arrangements de k objets choisis parmi n:
n!
= n(n − 1) · · · (n − k + 1)
(n − k)!
Nombre de permutations de n objets :
Ann = n!
Combinaisons (sans répétitions) Nombre de combinaisons de k objets choisis parmi n
(ou nombre de sous-ensembles à k éléments dans un ensemble à n éléments):
n
n!
n(n − 1) · · · (n − k + 1)
k
=
Cn =
=
(coefficient binomial)
k
(n − k)!k!
k(k − 1) · · · 1
Combinaisons avec répétitions Nombre de répartitions de n boules indiscernables dans
k urnes discernables:
(n + k − 1)!
k−1
n
Cn+k−1
= Cn+k−1
=
n!(k − 1)!
Coefficients multinomiaux Nombre de répartitions de n boules discernables dans k urnes
discernables avec n1 boules dans la 1ère urne, n2 boules dans la 2ème urne, . . ., nk boules dans
la kème urne:
n!
n
nk
n1 n2
=
Cn Cn−n1 · · · Cn−n1 −···−nk−1 =
(coefficient multinomial)
n1 , . . . , nk
n1 !n2 ! · · · nk !
1
Propriétés élémentaires des coefficients binomiaux
k
Cnk−1 + Cnk = Cn+1
k
Cn+m
=
(x + y)n =
(1 − x)−n =
2
k
X
j=0
n
X
k=0
∞
X
(triangle de Pascal)
j
Cm
Cnk−j
(formule de Vandermonde )
Cnk xk y n−k
(formule du binôme)
k
Cn+k−1
xk
(série géométrique généralisée )
k=0
Probabilités élémentaires
Modelè probabiliste L’ensemble fondamental Ω est l’ensemble des résultats possibles d’une
expérience. Un événement A est un sous-ensemble de Ω. Une distribution de probabilités P
sur Ω associe à tout événement A un nombre P (A), tel que 0 ≤ P (A) ≤ 1, appelé probabilité
de A.
Ci-dessous, soient A, B, A1 , A2 , . . ., An des événements. On note Ac le complémentaire
de A dans Ω.
Une partition de Ω (un système complet d’événements) {Bi }ni=1 a les propriétés que l’union
des événements est Ω et qu’ils sont disjoints deux á deux:
n
[
Bi = Ω,
i=1
Bj ∩ Bj = ∅,
i 6= j.
Propriétés élémentaires de P
P (Ω) = 1
P (Ac ) = 1 − P (A)
P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
Formule d’inclusion-exclusion à n termes
!
n
n
X
X
[
(−1)k+1
Ai =
P
i=1
k=1
1≤i1 <···<ik ≤n
P (Ai1 ∩ · · · ∩ Aik )
Événements indépendants A et B sont indépendants ssi
P (A ∩ B) = P (A)P (B)
Événements indépendants deux à deux
P (Ai ∩ Aj ) = P (Ai )P (Aj )
i 6= j
Événements totalement indépendants
P (Ai1 ∩ · · · ∩ Aik ) = P (Ai1 ) · · · P (Aik ) 1 ≤ i1 < · · · < ik ≤ n, k = 1, . . . , n
2
Probabilités conditionnelles Si A est un événement quelconque et si l’événement B vérifie
P (B) > 0 alors la probabilité conditionnelle de A sachant B est
P (A | B) =
P (A ∩ B)
.
P (B)
Conditionnement multiple
P (A1 ∩ A2 ∩ · · · ∩ An ) = P (A1 )P (A2 | A1 ) · · · P (An | A1 ∩ A2 ∩ · · · ∩ An−1 )
Formule des probabilités totales Soit (Bi )1≤i≤n une partition de Ω, avec P (Bi ) > 0, ∀i.
Alors pour tout événement A,
P (A) = P (A | B1 )P (B1 ) + P (A | B2 )P (B2 ) + · · · + P (A | Bn )P (Bn ).
Formule de Bayes Soit {Bi }ni=1 une partition de Ω, avec P (Bi ) > 0, ∀i. Alors pour tout
événement A de probabilité non nulle
P (A | Bi )P (Bi )
.
P (A | B1 )P (B1 ) + P (A | B2 )P (B2 ) + · · · + P (A | Bn )P (Bn )
P (Bi | A) =
3
Variables aléatoires réelles
Variables discrètes Une variable aléatoire réelle X est une fonction X : Ω → E ou E est un
sous-ensemble de nombres réels. Si E est discrèt, alors X est appelé variable aléatoire discrète.
Dans ce cas la distribution de probabilités de X est la donnée des nombres : P (X = xk ). La
fonction fX (x) = P (X = x) est appelée fonction de masse.
Fonction de répartition FX (t) = P (X ≤ t)
Quantile Pour une probabilité 0 < p < 1, la p quantile de FX est xp = inf{x : FX (x) ≥ p}.
Très souvent on a FX (xp ) = p.
Variables continues
s’écrit sous la forme
X est une variable aléatoire continue si sa fonction de répartition
FX (x) =
Zx
fX (t)dt,
donc
fX (x) =
dFX (x)
,
dx
−∞
où fX (x) est une fonction non négative, appelée densité de X.
Couples de variables aléatoires On considère des événements relatifs à deux variables
aléatoires X et Y .
3
Fonction de répartition conjointe
(X, Y ) conjointement continu
FX,Y (x, y) =
Zx
−∞
et fX,Y (x, y) =
∂2
∂x∂y FX,Y
ds
Zy
FX,Y (x, y) = P (X ≤ x, Y ≤ y). Pour un couple
dy fX,Y (s, t) =
−∞
Zy Zx
fX,Y (s, t) dsdt
−∞ −∞
(x, y).
Fonction de répartition marginale
un couple (X, Y ) conjointement continu
FX (x) =
FX (x) = P (X ≤ x) = limy→∞ FX,Y (x, y). Pour
Zx
fX (s) ds
−∞
où fX (x) est la densité marginale de X donnée par fX (x) =
R∞
fX,Y (x, y)dy.
−∞
Variables aléatoires indépendantes Deux variables aléatoires X et Y sont indépendantes
si pour tous ensembles A et B,
P (X ∈ A et Y ∈ B) = P (X ∈ A) P (Y ∈ B).
En particulier:
FX,Y (x, y) = FX (x) FY (y).
Dans le cas de deux variables discrètes
P (X = xk et Y = yl ) = P (X = xk ) P (Y = yl ),
∀xk , yl ∈ IR,
et dans le cas de deux variables continues
fX,Y (x, y) = fX (x) fY (y),
∀x, y ∈ IR.
Loi de probabilité d’une fonction de variables aléatoires
Changement de variables à une dimension Si X est une variable aléatoire continue
de densité fX (x) et si Y = g(X) pour une fonction g réelle et inversible, on a
Z
FY (y) =
fX (x)dx.
g −1 (−∞,y)
Si g(x) est strictement monotone et continûment dérivable, alors la variable aléatoire Y = g(X)
est une variable aléatoire continue, avec densité
−1 (
fX (g−1 (y)) d g dy (y) , si y = g(x) pour un x quelconque,
fY (y) =
0,
si y 6= g(x) pour tout x.
4
Changement de variables à deux dimension Si (X1 , X2 ) sont deux variables aléatoires
conjointement continues de densité fX1 ,X2 (x1 , x2 ) et si (Y1 , Y2 ) = (g1 (x1 , x2 ), g2 (x1 , x2 )) pour
une fonction g = (g1 , g2 ) inversible, on a
ZZ
FY1 ,Y2 (y1 , y2 ) =
fX1 ,X2 (x1 , x2 ) dx1 dx2
g1 (x1 , x2 ) ≤ y1
g2 (x1 , x2 ) ≤ y2
En particulier, si g(x) est une bijection continûment dérivable avec son inverse noté par h =
(h1 , h2 ), alors le couple aléatoire (Y1 , Y2 ) est conjointement continu, avec densité
fY1 ,Y2 (y1 , y2 ) = fX1 ,X2 (h1 (y1 , y2 ), h2 (y1 , y2 )) |J(y1 , y2 )|
où |J(y1 , y2 )| est le jacobien de h, et
J(y1 , y2 ) =
4
∂h1 ∂h2
∂y1 ∂y2
−
∂h1 ∂h2
∂y2 ∂y1 .
Espérance mathématique
Définition
Soit X une variable aléatoire. On désigne par
Z
E[X] = xdFX (x)
l’espérance mathématique de X, definie quand E(|X|) < ∞.
Espérance d’une fonction de variables
aléatoires Soit g une fonction réelle. L’espérance
R
de g(X) se calcul par E[g(X)] = g(x)dFX (x). En particulier,
pour une variable discrète
pour une variable continue
E[g(X)] =
P
E[g(X)] =
k∈K
R∞
g(xk )P (X = xk )
g(x)fX (x) dx
−∞
pour un couple (X, Y ) E[g(X, Y )] =
R∞ R∞
g(x, y)fX,Y (x, y) dxdy
−∞ −∞
Propriétés de l’espérance
Espérance d’une constante
E[c] = c pour toute constante c réelle
Linéarité E[a + bX + cY ] = a + bE[X] + cE[Y ] pour tous réels a, b, c
Positivité
E[X] ≥ 0 si X ≥ 0
Variance et covariance Soient X et Y variables aléatoires telles que E(X 2 ), E(Y 2 ) < +∞.
On définit les quantités suivantes:
5
Variance de X
Var[X] = E[(X − E[X])2 ] = E[X 2 ] − E[X]2 = E[X 2 ] − E[X]2
Covariance de X et Y
Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ]
Coefficient de corrélation de X et Y
Corr[X, Y ] = √
Variance et covariance — propriétés:
(Bi-)Linéarité de la covariance
Cov[X,Y ]
√
Var[X] Var[Y ]
Var[X] = Cov[X, X], et Var[X] ≥ 0.
Pour a, b, c réels,
Cov[a + bX1 + cX2 , Y ] = bCov[X1 , Y ] + cCov[X2 , Y ].
Variance et covariance
Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ]
Homogénéité de la variance
Pour tout a réel, Var[aX] = a2 Var[X].
Transformée de Laplace et moments Soit X une variable aléatoire et t ∈ IR. On appelle
transformée de Laplace (ou la fonction génératrice des moments) la fonction définie par
LX (t)(≡ MX (t)) = E[etX ],
si elle est finie.
Moment d’ordre k Pour tout entier positif k, le moment d’ordre k est E[X k ].
Moment centré d’ordre k Pour tout entier positif k, le moment centré d’ordre k est
E[(X − E[X])k ]. En particulier, si k = 2, on a Var[X].
Transformée de Laplace et moments E[X k ] =
Quelques inégalités classiques
Inégalité de Cauchy–Schwarz
|E[XY ]| ≤
p
dk
L (t) .
dtk X
t=0
E[X 2 ] ·
p
E[Y 2 ]
Inégalité de Jensen Si g est une fonction convexe, i.e. pour t ∈ [0, 1]: g(t x+(1−t) y) ≤
t g(x) + (1 − t) g(y), alors
g(E[X]) ≤ E[g(X)]
6
Inégalité de Markov
Si X ≥ 0 et si a > 0, alors
P (X ≥ a) ≤ E[X]/a.
Inégalité de Bienaymé–Chebychev
Pour tout a > 0, on a
P (|X − E[X]| ≥ a) ≤ Var[X]/a2 .
5
Variables aléatoires — Lois usuelles
5.1
Lois discrètes
Nom
Paramètres
P (X = k)
E[X]
Var[X]
LX (t)
Bernoulli
0≤p≤1
p1−k pk
k = 0, 1
p
p(1 − p)
pet + 1 − p
∀t
Binomiale
n
0≤p≤1
Cnk pk (1 − p)n−k
k ∈ {0, 1, . . . , n}
np
np(1 − p)
pet + 1 − p
∀t
Géométrique
0<p≤1
p(1 − p)k−1
pour k ∈ {1, 2, . . .}
1
p
1−p
p2
n ∈ {2, 3, . . .}
n−1 n
Ck−1
p (1 − p)k−n
n
p
Hyper-
n, N1 , N2
k ·C n−k
CN
N2
1
n
CN
+N
N1 ·n
N1 +N2
géométrique
n ≤ N 1 + N2
0 ≤ k ≤ min(n, N1 )
nN1 N2 (N1 +N2 )
(N1 +N2 )2 (N1 +N2 −1)
Poisson
λ>0
e−λ λk!
k ∈ {0, 1, . . .}
λ
λ
Binomiale
négative
0≤p≤1
si
k ∈ {n, n + 1, . . .}
1
2
k
7
n·
1−p
p2
si
n
pet
1−(1−p)et
(1 − p)et <
pet
1−(1−p)et
(1 − p)et
t
eλ(e −1)
∀t
n
1
<1
5.2
Lois continues
Nom
Paramètres
Densité f (x)
E[X]
Var[X]
LX (t)
Uniforme
a<b
1/(b − a)
si x ∈ [a, b] (0 sinon)
a+b
2
(b−a)2
12
etb −eta
t(b−a)
λe−λx
pour x > 0 (0 sinon)
1
λ
1
λ2
λn xn−1 e−λx
Γ(n)
n
λ
n
λ2
µ
σ2
0
1
ν−2
pour tout x
si ν ≥ 2
si ν ≥ 3
xν/2−1 e−x/2
2ν/2 Γ(ν/2)
ν
2ν
Exponentielle
λ>0
λ > 0, n ≥ 1
Gamma
Gaussienne
ν≥1
(tν )
ν≥1
Chi deux
(χ2ν )
5.3
pour x > 0 (0 sinon)
√ 1
e−
2πσ2
µ ∈ IR, σ 2 > 0
Student
∀t 6= 0
(x−µ)2
2σ2
pour tout x
√
ν+1
Γ( 2 )
ν
πΓ( 2 )(1+x2 )(ν+1)/2
pour x > 0 (0 sinon)
λ
λ−t
∀t ∈] − ∞; λ[
λ n
)
( λ−t
si t < λ
exp(µt −
∀t
σ2 2
2 t )
ν
(1 − 2t)− 2
si t < 21
Théorèmes limites
Loi hypergéométrique vers une loi binomiale Soit (Xm ) une suite de variables hypergéométriques de paramètres N1 (m), N2 (m) et n, avec
N1 (m)
N1 (m)+N2 (m) −→ p. Alors pour chaque valeur 0 ≤ k ≤ n:
m→∞
P (Xm = k) −→ Cnk pk (1 − p)n−k .
m→∞
Loi binomiale vers une loi de Poisson Soit Xn une variable aléatoire binomiale de
paramètres (n, p). Si n → ∞ et p → 0 tel que np → λ, alors pour tout entier nonnégatif
k
k
P (Xn = k) −→ e−λ λk! .
n→∞
Loi géométrique vers une loi exponentielle Soit T une variable aléatoire géometrique
de paramètre p. Si n → ∞ et p → 0 tel que n · p → λ > 0, alors pour tout t réel positif, on a
P (T /n > t) −→ e−λt .
n→∞
8
Loi binomiale vers une loi gaussienne
paramètres (n, p).
Théorème de Moivre-Laplace
Si n → ∞ et k ∼ np, alors
P (Xn = k) ∼ √
Théorème central limite
Soit Xn une variable aléatoire binomiale de
1
2πnp(1−p)
(k−np)2
− 2np(1−p)
e
Si n → ∞,alors pour tout t réel
√1
n→∞ 2π
p
P (Xn ≤ np + np(1 − p) · t) −→
6
Zt
e−
x2
2 dx
−∞
Variables indépendantes et théorèmes limites
Indépendance de plusieurs variables aléatoires Les variables aléatoires X1 , . . . , Xn sont
indépendantes si et seulement si elles vérifient l’une des conditions équivalentes suivantes:
(i) Les fonctions de répartition respectives FX , FX1 , . . . , FXn de
X = (X1 , . . . , Xn ), X1 , . . . , Xn vérifient pour tous xi réels , i = 1, . . . , n:
FX (x1 , . . . , xn ) = FX1 (x1 )FX2 (x2 ) · · · FXn (xn ).
(ii) Pour toutes fonctions g1 , . . . , gn , on a
E[g1 (X1 ) · · · gn (Xn )] = E[g1 (X1 )] · · · E[gn (Xn )]
Une ensemble de variables X1 , . . . , Xn indepéndantes et identiquement distribuées (iid) est
iid
iid
appelé un échantillon aléatoire. On note, par exemple X1 , . . . , Xn ∼ F , ou X1 , . . . , Xn ∼ f .
Cas particuliers de (ii) Si X1 , . . . , Xn sont des variables aléatoires indépendantes:
E[X1 · · · Xn ] = E[X1 ] · · · E[Xn ],
Indépendance et covariance
LX1 +···+Xn (t) = LX1 (t) · · · LXn (t)
Si X1 , . . . , Xn sont indépendantes, alors
Cov[Xi , Xj ] = 0,
∀i 6= j.
Maximum et minimum de variables aléatoires indépendantes Soient
Mn = max(X1 , . . . , Xn )
et mn = min(X1 , . . . , Xn ).
Mn et mn ont pour fonctions de répartition respectives
FMn (x) = FX1 (x) · · · FXn (x)
Fmn (x) = 1 − (1 − FX1 (x)) · · · (1 − FXn (x))
9
iid
Théorèmes limites pour les valeurs extrêmes de variables iid Soit X1 , . . . , Xn , . . . ∼ F ,
et soient τ, η > 0, et (xn )n≥1 , (yn )n≥1 deux suites de nombres réels vérifiant
lim n[1 − F (xn )] = τ,
lim nF (yn ) = η.
n→∞
n→∞
Alors
P (Mn ≤ xn ) −→ e−τ ,
P (mn > xn ) −→ e−η .
n→∞
n→∞
iid
Statistique d’ordre et vecteur des rangs Soient X1 , . . . , Xn ∼ f , ceci étant une fonction
de densité. Les variables ordonnées X(1) ≤ X(2) ≤ · · · ≤ X(n) sont appelées statistique d’ordre
associé à X1 , . . . , Xn . On appelle Rj le rang de la valeur Xj et (R1 , . . . , Rn ) le vecteur des rangs
associé à X1 , . . . , Xn . Alors le vecteur des rangs et la statistique d’ordre sont indépendantes
et (R1 , . . . , Rn ) a une distribution uniforme dans l’ensemble des permutations de {1, . . . n}. La
statistique d’ordre a pour densité
fX(1) ,...,X(n) (x1 , . . . , xn ) = n!f (x1 ) . . . f (xn ),
x1 ≤ · · · ≤ xn ,
et 0 sinon.
Sommes de variables indépendantes Soient X1 , . . . , Xn des variables aléatoires indépendantes
et Sn = X1 + · · · + Xn .
Somme de deux variables indépendantes discrètes
X
(1)
(2)
P (S2 = y) =
P (X1 = xj )P (X2 = xk )
(1)
(2)
(j,k):y=xj +xk
Somme de deux variables indépendantes continues
est donnée par la convolution de fX1 et fX2 , i.e.
fS2 (y) = fX1
La densité fS2 de S2 = X1 +X2
+∞
Z
fX1 (y − x)fX2 (x)dx
∗ fX2 (y) =
−∞
Somme de n variables indépendantes continues La densité fSn de Sn = X1 + . . . +
Xn est donnée par la convolution des densités fXj : fSn = fX1 ∗ . . . ∗ fXn .
Théorèmes de stabilité
Loi binomiale Soient Sm et Sn deux variables aléatoires binomiales indépendantes de
paramètres (m, p) et (n, p). Alors Sm + Sn suit une loi binomiale de paramètres (m + n, p).
Loi de Poisson Soient X1 et X2 deux variables aléatoires de Poisson indépendantes de
paramètres λ1 et λ2 . Alors X1 + X2 suit une loi Poisson de paramètres λ1 + λ2 .
Loi normale Soient X1 , . . . , Xn des variables aléatoires indépendantes avec Xj ∼ N (µj , σj2 ),
et soient a, b1 , . . . , bn des constantes. Alors la combinaison linéaire
a + b1 X1 + · · · + bn Xn ∼ N (a + b1 µ1 + · · · + bn µn , b21 σ12 + · · · + b2n σn2 ).
10
Lois des grands nombres Soit X1 , . . . , Xn , . . . une suite de variables aléatoires réelles iid
de moyenne µ et variance σ 2 . Alors, la moyenne empirique Sn /n = (X1 + · · · + Xn )/n converge
converge en probabilité vers µ (loi faible). La moyenne empirique converge aussi presque
sûrement vers E[X], i.e. la probabilité de l’événement “ Sn /n converge vers E[X] ” est égale
1 (loi forte).
Théorème central limite Soit X1 , . . . , Xn , . . .une suite de variables aléatoires réelles iid de
moyenne µ et variance σ 2 . La suite des sommes partielles centrées et réduites
Zn =
X1 +···+X
√n −nE[X]
σ n
converge en distribution vers une variable N (0, 1) (normale standard):
Z z
2
1
√
P (Zn ≤ z) −→ 2π
e−y /2 dy = Φ(z), ∀z ∈ IR.
n→∞
−∞
11
Distribution normale standard Φ(z)
Φ ( z)
z
Pour z < 0 on utilise symmetrie: P (Z ≤ z) = Φ(z) = 1 − Φ(−z), z ∈ IR.
z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
0
.50000
.53983
.57926
.61791
.65542
.69146
.72575
.75804
.78814
.81594
.84134
.86433
.88493
.90320
.91924
.93319
.94520
.95543
.96407
.97128
.97725
.98214
.98610
.98928
.99180
.99379
.99534
.99653
.99744
.99813
.99865
.99903
.99931
.99952
.99966
.99977
.99984
.99989
.99993
.99995
1
.50399
.54380
.58317
.62172
.65910
.69497
.72907
.76115
.79103
.81859
.84375
.86650
.88686
.90490
.92073
.93448
.94630
.95637
.96485
.97193
.97778
.98257
.98645
.98956
.99202
.99396
.99547
.99664
.99752
.99819
.99869
.99906
.99934
.99953
.99968
.99978
.99985
.99990
.99993
.99995
2
.50798
.54776
.58706
.62552
.66276
.69847
.73237
.76424
.79389
.82121
.84614
.86864
.88877
.90658
.92220
.93574
.94738
.95728
.96562
.97257
.97831
.98300
.98679
.98983
.99224
.99413
.99560
.99674
.99760
.99825
.99874
.99910
.99936
.99955
.99969
.99978
.99985
.99990
.99993
.99996
3
.51197
.55172
.59095
.62930
.66640
.70194
.73565
.76730
.79673
.82381
.84850
.87076
.89065
.90824
.92364
.93699
.94845
.95818
.96638
.97320
.97882
.98341
.98713
.99010
.99245
.99430
.99573
.99683
.99767
.99831
.99878
.99913
.99938
.99957
.99970
.99979
.99986
.99990
.99994
.99996
4
.51595
.55567
.59483
.63307
.67003
.70540
.73891
.77035
.79955
.82639
.85083
.87286
.89251
.90988
.92507
.93822
.94950
.95907
.96712
.97381
.97932
.98382
.98745
.99036
.99266
.99446
.99585
.99693
.99774
.99836
.99882
.99916
.99940
.99958
.99971
.99980
.99986
.99991
.99994
.99996
12
5
.51994
.55962
.59871
.63683
.67364
.70884
.74215
.77337
.80234
.82894
.85314
.87493
.89435
.91149
.92647
.93943
.95053
.95994
.96784
.97441
.97982
.98422
.98778
.99061
.99286
.99461
.99598
.99702
.99781
.99841
.99886
.99918
.99942
.99960
.99972
.99981
.99987
.99991
.99994
.99996
6
.52392
.56356
.60257
.64058
.67724
.71226
.74537
.77637
.80511
.83147
.85543
.87698
.89617
.91309
.92786
.94062
.95154
.96080
.96856
.97500
.98030
.98461
.98809
.99086
.99305
.99477
.99609
.99711
.99788
.99846
.99889
.99921
.99944
.99961
.99973
.99981
.99987
.99992
.99994
.99996
7
.52790
.56750
.60642
.64431
.68082
.71566
.74857
.77935
.80785
.83398
.85769
.87900
.89796
.91466
.92922
.94179
.95254
.96164
.96926
.97558
.98077
.98500
.98840
.99111
.99324
.99492
.99621
.99720
.99795
.99851
.99893
.99924
.99946
.99962
.99974
.99982
.99988
.99992
.99995
.99996
8
.53188
.57142
.61026
.64803
.68439
.71904
.75175
.78230
.81057
.83646
.85993
.88100
.89973
.91621
.93056
.94295
.95352
.96246
.96995
.97615
.98124
.98537
.98870
.99134
.99343
.99506
.99632
.99728
.99801
.99856
.99896
.99926
.99948
.99964
.99975
.99983
.99988
.99992
.99995
.99997
9
.53586
.57535
.61409
.65173
.68793
.72240
.75490
.78524
.81327
.83891
.86214
.88298
.90147
.91774
.93189
.94408
.95449
.96327
.97062
.97670
.98169
.98574
.98899
.99158
.99361
.99520
.99643
.99736
.99807
.99861
.99900
.99929
.99950
.99965
.99976
.99983
.99989
.99992
.99995
.99997
Distribution χ2ν
p
χ2ν(p)
Des quantiles χ2ν (p) pour la distribution en khi-carré à ν degrés de liberté.
ν
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
50
60
70
.005
0
.0100
.0717
.207
.412
.676
.989
1.34
1.73
2.16
2.60
3.07
3.57
4.07
4.60
5.14
5.70
6.26
6.84
7.43
8.03
8.64
9.26
9.89
10.5
11.2
11.8
12.5
13.1
13.8
20.7
28.0
35.5
43.3
.01
.0002
.0201
.115
.297
.554
.872
1.24
1.65
2.09
2.56
3.05
3.57
4.11
4.66
5.23
5.81
6.41
7.01
7.63
8.26
8.90
9.54
10.2
10.9
11.5
12.2
12.9
13.6
14.3
15.0
22.2
29.7
37.5
45.4
.025
.010
.0506
.216
.484
.831
1.24
1.69
2.18
2.70
3.25
3.82
4.40
5.01
5.63
6.26
6.91
7.56
8.23
8.91
9.59
10.3
11.0
11.7
12.4
13.1
13.8
14.6
15.3
16.0
16.8
24.4
32.4
40.5
48.8
.05
.0039
.103
.352
.711
1.15
1.64
2.17
2.73
3.33
3.94
4.57
5.23
5.89
6.57
7.26
7.96
8.67
9.39
10.1
10.9
11.6
12.3
13.1
13.8
14.6
15.4
16.2
16.9
17.7
18.5
26.5
34.8
43.2
51.7
.10
.0158
.211
.584
1.06
1.61
2.20
2.83
3.49
4.17
4.87
5.58
6.30
7.04
7.79
8.55
9.31
10.1
10.9
11.7
12.4
13.2
14.0
14.8
15.7
16.5
17.3
18.1
18.9
19.8
20.6
29.1
37.7
46.5
55.3
.25
.102
.575
1.21
1.92
2.67
3.45
4.25
5.07
5.90
6.74
7.58
8.44
9.30
10.2
11.0
11.9
12.8
13.7
14.6
15.5
16.3
17.2
18.1
19.0
19.9
20.8
21.7
22.7
23.6
24.5
33.7
42.9
52.3
61.7
.50
.455
1.39
2.37
3.36
4.35
5.35
6.35
7.34
8.34
9.34
10.3
11.3
12.3
13.3
14.3
15.3
16.3
17.3
18.3
19.3
20.3
21.3
22.3
23.3
24.3
25.3
26.3
27.3
28.3
29.3
39.3
49.3
59.3
69.3
13
.75
1.32
2.77
4.11
5.39
6.63
7.84
9.04
10.2
11.4
12.5
13.7
14.8
16.0
17.1
18.2
19.4
20.5
21.6
22.7
23.8
24.9
26.0
27.1
28.2
29.3
30.4
31.5
32.6
33.7
34.8
45.6
56.3
67.0
77.6
.90
2.71
4.61
6.25
7.78
9.24
10.6
12.0
13.4
14.7
16.0
17.3
18.5
19.8
21.1
22.3
23.5
24.8
26.0
27.2
28.4
29.6
30.8
32.0
33.2
34.4
35.6
36.7
37.9
39.1
40.3
51.8
63.2
74.4
85.5
.95
3.84
5.99
7.81
9.49
11.1
12.6
14.1
15.5
16.9
18.3
19.7
21.0
22.4
23.7
25.0
26.3
27.6
28.9
30.1
31.4
32.7
33.9
35.2
36.4
37.7
38.9
40.1
41.3
42.6
43.8
55.8
67.5
79.1
90.5
.975
5.02
7.38
9.35
11.1
12.8
14.4
16.0
17.5
19.0
20.5
21.9
23.3
24.7
26.1
27.5
28.8
30.2
31.5
32.9
34.2
35.5
36.8
38.1
39.4
40.6
41.9
43.2
44.5
45.7
47.0
59.3
71.4
83.3
95.0
.99
6.63
9.21
11.3
13.3
15.1
16.8
18.5
20.1
21.7
23.2
24.7
26.2
27.7
29.1
30.6
32.0
33.4
34.8
36.2
37.6
38.9
40.3
41.6
43.0
44.3
45.6
47.0
48.3
49.6
50.9
63.7
76.2
88.4
100.
.995
7.88
10.6
12.8
14.9
16.7
18.5
20.3
22.0
23.6
25.2
26.8
28.3
29.8
31.3
32.8
34.3
35.7
37.2
38.6
40.0
41.4
42.8
44.2
45.6
46.9
48.3
49.6
51.0
52.3
53.7
66.8
79.5
92.0
104.
.999
10.8
13.8
16.3
18.5
20.5
22.5
24.3
26.1
27.9
29.6
31.3
32.9
34.5
36.1
37.7
39.3
40.8
42.3
43.8
45.3
46.8
48.3
49.7
51.2
52.6
54.1
55.5
56.9
58.3
59.7
73.4
86.7
99.6
112.
Distribution tν de Student
p
tν(p)
Des quantiles tν (p) pour la distribution t de Student à ν degrés de liberté.
Pour p < 0 on utilise la symmétrie: tν (p) = −tν (1 − p).
ν
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
50
100
∞
.75
1.000
.8165
.7649
.7407
.7267
.7176
.7111
.7064
.7027
.6998
.6974
.6955
.6938
.6924
.6912
.6901
.6892
.6884
.6876
.6870
.6864
.6858
.6853
.6848
.6844
.6840
.6837
.6834
.6830
.6828
.6807
.6794
.6770
.6745
.9
3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372
1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
1.315
1.314
1.313
1.311
1.310
1.303
1.299
1.290
1.282
.95
6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
1.684
1.676
1.660
1.645
14
.975
12.71
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.021
2.009
1.984
1.960
.99
31.82
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764
2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
2.423
2.403
2.364
2.326
.995
63.66
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
2.704
2.678
2.626
2.576

Documents pareils