Un mod`ele d`âge virtuel avec intensité de défaillance en baignoire.

Transcription

Un mod`ele d`âge virtuel avec intensité de défaillance en baignoire.
FIMA 2006
DIJOUX
Un modèle d’âge virtuel avec
intensité de défaillance en baignoire.
Yann DIJOUX
Institut National Polytechnique de Grenoble
Laboratoire LMC
BP 53 - 38 041 Grenoble Cedex 9 France
1 of 19
FIMA 2006
DIJOUX
Contexte
– Etude de systèmes réparables soumis à des maintenances correctives (CM, réparations)
suite à des défaillances (pannes).
– Présence d’une période de rôdage des sytèmes.
Motivations
– Données EDF où les premiers instants de panne avaient du être tronqués pour poursuivre
l’ étude.
– Modèles de réparation imparfaite uniquement adaptés à des systèmes simplement dégradables.
Objectif
Présenter un modèle de réparation imparfaite adapté à des systèmes présentant une période
de jeunesse.
2 of 19
FIMA 2006
DIJOUX
Plan
1. Modèles classiques de maintenance imparfaite.
• Modélisation du processus de défaillances.
• Modèles classiques : ABAO, AGAN, modèles d’âge virtuels.
• Limites des modèles usuels pour des intensités de défaillance non croissantes.
2. Un modèle d’âge virtuel avec intensité de défaillance en baignoire.
• Principe des intensités en baignoire.
• Définition du modèle.
• Caractéristiques principales du modèle.
• Allongement de la durée de vie.
• Une méthode d’estimation.
3. Conclusion et perspectives.
3 of 19
FIMA 2006
DIJOUX
Notations
Nt
6
•
4
•
3
•
2
1
•
X1
• ⊂
0 T1
X2
X3
X4
⊂
⊂
⊂
-
T2 T3
T4
– les instants de défaillance : {Ti}i≥1
– les durées inter-défaillances : Xi = Ti − Ti−1, i ≥ 1
– le processus de comptage des défaillances : {Nt}t≥0, Nt = nombre de pannes avant
l’instant t
• Une CM a lieu après chaque défaillance.
• On ne prend pas en compte les durées des réparations.
• On ne peut pas observer deux défaillances au même instant.
4 of 19
FIMA 2006
DIJOUX
Modélisation du processus des défaillance
l’intensité de défaillance : λt
1
λt = lim P (Nt+dt − Nt = 1|Ht)
dt→0 dt
where Ht est l’histoire du processus à l’instant t.
Processus auto-excité : Ht = σ ({Ns}0≤s≤t).
⇒ λt définit entièrement le processus des défaillances.
Avant la première panne, l’intensité de défaillance est une fonction déterministe et continue
du temps λ(t), appelée intensité initiale, taux de hasard de T1
la fonction de vraisemblance
La fonction de vraisemblance associée à l’observation de n défaillances sur l’intervalle [0, t]
s’écrit :
Lt(θ) =
n
hY
i=1
i
Ã
λti (i − 1; t1, . . . , ti−1) exp −
n Z ti
X
i=1
ti−1
!
λu(i − 1; t1, . . . , ti−1) du
5 of 19
FIMA 2006
DIJOUX
Modèles classiques
Le modèle de réparation minimale ou modèle As Bad As Old (ABAO)
• Chaque maintenance remet le sytème en marche dans l’état exact où il était juste avant
la défaillance.
• Le processus de défaillance correspond alors à un processus de Poisson non homogène
(NHPP).
λt = λ(t)
Le modèle de réparation parfaite ou modèle As Good As New (AGAN)
• Chaque maintenance remet le sytème à neuf.
• Le processus de défaillance correspond alors à un processus de renouvellement (RP).
λt = λ(t − TNt )
²
¯
±
°
La réalité se situe entre les modèles ABAO et AGAN
6 of 19
FIMA 2006
DIJOUX
Les modèles d’âge virtuel
Après la ième panne, le système se comporte comme un système neuf ayant survécu un
âge Ai.
∀i ≥ 0, ∀t ≥ 0P (Xi+1 > t|X1, ..Xi) = P (X1 > Ai + t|X1 > Ai) =
S(Ai + t)
S(Ai)
où S est la fonction de survie associée à X1.
λt = λ(t − TNt + ANt )
Les Ai sont appelés âge effectifs. A0 = 0.
• ABAO : Ai = Ti
• AGAN : Ai = 0
• Le modèle de réduction arithmétique de l’âge (ARA1) :
Ai = (1 − ρ)Ti
ρ est appelé facteur d’amélioration ou efficacité de maintenance :
7 of 19
FIMA 2006
DIJOUX
Le modèle de Brown-Proschan
Principe : les réparations sont soit parfaites (AGAN) avec une probabilité p, soit minimales (ABAO) avec une probabilité 1-p.
Modélisation
(
Zi = 1 : ième réparation AGAN
iid
,
Z
Ã
B(p)
i
ème
Zi = 0 : i
réparation ABAO
⇒ L’âge virtuel du système est le temps écoulé depuis la dernière réparation parfaite.
Intensité de défaillance
Nt Y
Nt
X
λt = λ(t − TNt +
( (1 − Zk ))Xj )
j=1 k=j
8 of 19
FIMA 2006
DIJOUX
Cas classique : l’intensité initiale est croissante
6
0.7
0.6
5
0.5
4
0.4
3
0.3
2
0.2
1
0
0.1
0
5
Fig. 1 – modèle
10
15
20
25
30
35
0
40
BP et intensité croissante(p = 0.5)
Fig. 2 –
0
5
10
15
20
25
modèle ARA et intensité croissante(ρ =
0.5)
Principe des modèles :
Ai ≤ Ai−1 + Xi
⇒ Comme le système intrinsèquement se dégrade, les réparations sont efficaces
9 of 19
FIMA 2006
DIJOUX
Lorsque l’intensité initiale est décroissante
0.014
0.018
0.016
0.012
0.014
0.01
0.012
0.008
0.01
0.008
0.006
0.006
0.004
0.004
0.002
0.002
0
Fig. 3 –
0
5
10
15
20
25
0
30
modèle BP et intensité décroissante(p =
0.5)
0
2
Fig. 4 – modèle
4
6
8
10
12
14
16
18
20
ARA et intensité décroissante(ρ =
0.5)
Le système s’améliore au cours du temps.
⇒ Le neuf est pire que le vieux.
⇒ Les réparations sont nuisibles.
²
Il faut adapter les modèles usuels pour prendre en compte des intensités non croissantes.
±
10 of 19
¯
°
FIMA 2006
DIJOUX
Les intensités en baignoire
6
5
4
3
Periode de jeunesse
Periode d’usure
2
1
Vie utile
0
0
5
10
15
20
25
tJ
Fig. 5 –
30
35
40
tV
Exemple de courbe en baignoire
– Période de jeunesse :[0; tJ ] : Système en rôdage : λ décroissant.
– Période de vie utile :]tJ ; tV [ : λ constant.
– Période d’usure du système :[tV ; ∞[ : λ croissant.
– Continuité de l’intensité en tJ et tV .
11 of 19
FIMA 2006
DIJOUX
Le modèle : l’intensité initiale
– λ, αJ , αV ≥ 0

 λ + αJ βJ (tJ − t)βJ −1 si t ≤ tJ
si tJ < t < tV
λ(t) = λ

λ + αV βV (t − tV )βV −1 si tV ≤ t
– βV > 1
– βJ > 1
• λ : Fréquence des pannes durant la période de vie utile.
• βV : Interprétation classique en terme de PLP.
• βJ : Interprétation inhabituelle.
12 of 19
FIMA 2006
DIJOUX
Le modèle : l’efficacité de la maintenance
– Période de jeunesse : CM ABAO :
Ai = Ti
– Durant la vie utile et période d’usure : CM ARA1 :
Ai = Ai−1 + (1 − ρ)Xi
– Première maintenance pendant la vie utile : effet ARA1 uniquement sur le temps écoulé
depuis tJ :
Ai = tJ + (1 − ρ)(Ti − tJ )
(1 − ρ)(Ti − tJ )
ABAO
..
..
..
..
..
..
..
..
..
..
..
..
ABAO
Ti−1
..
..
..
..
..
..
..
..
..
..
..
..
..
tJ
ARA
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ai
..
..
..
..
..
..
..
..
..
..
..
..
..
..
-
ARA
Ti
(Ai−1 )
13 of 19
FIMA 2006
DIJOUX
Impact du paramètre ρ
– ρ = 0 ⇒ ∀i, Ai = Ti ⇒ Réparations minimales (ABAO)
– ρ = 1 ⇒ Ti > tJ , Ai = tJ ⇒ Réparations optimales
20
18
ρ=0
16
14
12
ρ=0.3
10
8
ρ=0.7
6
4
2
0
ρ=1
0
t
J
Fig. 6 –
20
tV
40
60
80
100
120
Exemples de trajectoires pour différentes valeurs de ρ
14 of 19
FIMA 2006
DIJOUX
Propriétés du modèle
Ages effectifs :
∀i ≥ 1; Ai =
½
Ti
si Ti ≤ tJ
Ti − ρ(Ti − tJ ) si Ti > tJ
L’intensité de défaillance :
λt =
½
λ(t)
si TNt− ≤ tJ
λ(t − ρ(TNt− − tJ )) si TNt− > tJ
15 of 19
FIMA 2006
DIJOUX
Intensité d’usure minimale
Définition : Support minsup de l’intensité de défaillance :
λt ≥ λmin(t) p.s.
∀² > 0 P (λt < λmin(t) + ²) > 0
Calcul :
λmin(t) =
½
λ(t)
si t ≤ tJ
λ(t − ρ(t − tJ )) si t ≥ tJ
2.6
2.4
2.2
2
λmin(t)
1.8
λ
t
1.6
1.4
1.2
1
75
Propriété : λTi+ = λmin(Ti)
80
85
90
95
100
16 of 19
FIMA 2006
DIJOUX
Allongement de la durée de vie utile
Fin de vie utile effective : Advient lorsqu’une réparation ne remet plus le système
dans les meilleures conditions (λ constant) :
tv − ρtJ
τV = Inf {t > tJ ; λmin(t) > λ} =
1−ρ
Allongement de la vie utile :
τV − tJ =
ρ
(tV − tJ )
1−ρ
– ρ = 0 ⇒ Aucun allongement.
– ρ = 0.5 ⇒ Durée de vie utile doublée.
– ρ = 0.9 ⇒ Durée de vie utile décuplée.
– ρ = 1 ⇒ Durée de vie utile prolongée indéfiniment.
17 of 19
FIMA 2006
DIJOUX
Méthodes d’estimation
Principe : Estimer l’ensemble des paramètres (θ) du modèle :
θ = (αJ , βJ , αV , βV , λ, tJ , tV , ρ)
Maximum de Vraisemblance : Estimation conjointe des paramètres trop coûteuse.
Méthode alternative : A partir des instants de défaillance T1, .., Tn :
Pour chaque couple (i; j) i < j :
– Approcher les instants tJ et tV par les instants de défaillance Ti et Tj .
– Estimer λ à partir des données de vie utile.
– Ayant estimé λ, estimer séparément les paramètres relatifs à la période de jeunesse et à
la période d’usure.
Enfin, conserver les résultats pour les paramètres maximisant la vraisemblance.
⇒ Méthode très rapide mais necessitant un nombre non négligeable de données.
18 of 19
FIMA 2006
DIJOUX
Conclusions et perspectives
Conclusions
• Mise en évidence des limites des modèles classiques pour des intensités en baignoire.
• Présentation d’un modèle d’âge virtuel avec intensité de défaillance en baignoire.
• Développement des propriétés du modèle dont l’une exprimant la possibilité d’allongement de vie utile des sytèmes.
• Mise en place d’une méthode d’estimation efficace .
Perspectives
• Confronter ce modèles à des données réelles.
• Proposer un modèle d’âge virtuel en période de jeunesse plus efficace.
19 of 19