Campus Monterrey

Commentaires

Transcription

Campus Monterrey
Tabla de Integrales
Z
1.
Z
4.
Z
7.
un du =
1
un+1 + C , n 6= −1
n+1
Z
2.
Z
sec2 (u) du = tan(u) + C
8.
15.
1.
3.
5.
Z p
Z p
Z
Z
3.
du
u
1
= arctan
a2 + u2
a
a
Z p
1.
csc2 (u) du = − cot(u) + C
9.
sec(u) tan(u) du = sec(u) + C
Z
tan(u) du = − ln |sec(u)| + C
11.
cos(u) du = sin(u) + C
Z
cot(u) du = ln |sen(u)| + C
12.
Z
sec(u) du = ln |sec(u) + tan(u)| + C
Z
6.
Z
csc(u) cot(u) du = − csc(u) + C
eu du = eu + C
Z
sin(u) du = − cos(u) + C
5.
Z
13.
3.
Z
1
au + C
a du =
ln(a)
u
Z
10.
Z
1
du = ln(u) + C
u
csc(u) du = ln |csc(u) − cot(u)| + C
14.
Z
+C
16.
a2 + u2 du =
p
up 2
a2
a + u2 +
ln u + a2 + u2 + C
2
2
2.
a2 − u2 du =
u
up 2
a2
arcsin
a − u2 +
+C
2
2
a
4.
u2 − a2 du =
p
up 2
a2 u − a2 −
ln u + u2 − a2 + C
2
2
6.
u ea u du =
1
(a u − 1) ea u + C + C
a2
ea u sin (b u) du =
Z
du
1
u + a
ln =
+C
a2 − u2
2a
u−a
ea u
(a sin(b u) − b cos(b u)) + C
a2 + b2
17.
du
1
u − a
ln =
+C
u2 − a2
2a
u+a
Z
p
du
√
= ln u + a2 + u2 + C
2
2
a +u
Z
u
du
√
= arcsin
a
a2 − u2
Z
+C
p
du
√
= ln u + u2 − a2 + C
u2 − a2
Z
ln(u) du = u ln(u) − u + C
2.
Z
4.
(c) Departamento de Matemáticas. ITESM, Campus Monterrey
1
ea u cos (b u) du =
ea u
(a cos(b u) + b sin(b u)) + C
a2 + b2

Documents pareils

MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R

MATH 141 Fundamental Theorem of Calculus (FTC) Let f : [a, b] → R If the functions y = f (x) and y = g(x) are differentiable at x and a and b are constants, then: 1. Dx [af (x) + bg(x)] = af 0 (x) + bg 0 (x) 2. Dx [f (x) · g(x)] = f 0 (x) · g(x) + f (x) · g 0 (x)

Plus en détail

Diff and Integ Rules Final

Diff and Integ Rules Final  csc u cot u du   csc u  C  tan u du  ln sec u  C   ln cos u  C  cot u du   ln csc u  C  ln sin u  C  sec u du  ln sec u  tan u  C   ln sec u  tan u  C  csc u du   ln csc...

Plus en détail

Calculus I Integration: A Very Short Summary Definition

Calculus I Integration: A Very Short Summary Definition + C for r 6= −1 r+1 Z Z du = u−1 du = ln |u| + C for r = −1 u Z au au du = +C ln a Z eu du = eu + C Z cos u du = sin u + C Z sin u du = − cos u + C Z sec2 u du = tan u + C Z sec u tan u du = sec u ...

Plus en détail

Recall from Math 141 Integration Basics Fundamental Theorem of

Recall from Math 141 Integration Basics Fundamental Theorem of 1 du u6=0 1 Dx loga |u| = 0 < a 6= 1 u ln a dx du Dx sin u = cos u

Plus en détail