Utilisation de la spectrophotométrie UV

Transcription

Utilisation de la spectrophotométrie UV
GEPMO
Groupe d'Etude sur la Pollution des Eaux par les M atières Organiques
NNoottee TTeecchhnniiqquuee NN°°44 –– M
Maarrss 22000088
Utilisation de la spectrophotométrie UV-Visible pour
la mesure en routine des teneurs en MO et en Nitrate
des eaux de surface
Note rédigée par Patrice Petitjean (Ingénieur d'étude au CNRS) en collaboration avec
Gérard Gruau (Directeur de Recherche au CNRS,
Responsable scientifique du GEPMO) et Bérangère Hénnache
(Animatrice du Bassin Versant du Frémur)
1. Introduction
Les teneurs en matières organiques (MO) et en nitrate font partie du panel réglementaire de
paramètres définissant le bon état écologique d'une ressource en eau, ou son caractère conforme si
celle -ci est utilisée pour la production d'eau potable. A ce titre, ces deux paramètres sont intégrés aux
suivis réguliers effectués pour contrôler la qualité de l'eau, tant au niveau des prises d'eau qu'à
l'intérieur de leurs bassins versants (BV) d'alimentation. Ils sont aussi utilisés pour évaluer l'impact des
mesures de protection/restauration de la qualité de l'eau prises sur les BV (limitation des apports de MO
et de nitrate d'origine agricole, par exemple).
Ces utilisations souffrent toutefois d'un handicap important lié au coût des analyses, lequel conduit
souvent les responsables des suivis à limiter la fréquence des analyses en un point donné et/ou à
limiter le nombre de points de suivi au sein d'un BV. Il s'ensuit des diagnostics imprécis (maillage
insuffisant du territoire ne permettant pas de localiser efficacement les zones contributrices dans les BV;
fréquence de mesure inadaptée conduisant au calcul de concentrations moyennes annuelles
imprécises) et un manque de réactivité dans les suivis, notamment en cas de pollution ponctuelle
(indétectable par l'approche des suivis "calendaires" à date fixe) et/ou de modifications rapides des
caractéristiques d'un BV (mise en place d'aménagements, restauration du réseau bocager,…).
La présente note a pour objet de palier à ce handicap en testant la possibilité de réaliser des
dosages justes et précis des teneurs en MO et en nitrate à l'aide d'un spectrophotomètre UV-visible de
"terrain*", sans préparation autre qu'une filtration. A travers ce test, nous évaluons la possibilité que les
structures opérationnelles en charge de la qualité de l'eau puissent s'équiper d'un tel instrument, leur
permettant de réaliser par elles-mêmes, et à moindre coût, tous les compléments d'analyse nécessaires
à l'établissement de diagnostics précis de la qualité de l'eau et au suivi dans le temps de l'évolution de
cette même qualité.
*Le qualificatif "terrain" est utilisé ici pour désigner un spectrophotomètre compact et peu coûteux, et ne nécessitant pas de
compétences et/ou de moyens particuliers pour être mis en œuvre. Il ne s'agit pas d'un équipement de "terrain" au sens
propre du terme, les mesures se faisant en intérieur.
2. Appareillage
Le prix d’un spectophotomètre UV-Visible de "terrain" au sens défini dans cette note est de l’ordre
de 4000 €. A ce prix s’ajoute un coût de maintenance de l’ordre de 1000 € pour changer la lampe tous
les 4 à 5 ans. Ce délai peut être plus ou moins long suivant la fréquence d'utilisation de l’appareil.
Nous donnons ci-dessous la description de trois équipements du commerce vendus par les
sociétés Grosseron, Bioblock et Serlabo Technologies. Cette description n’est pas exhaustive. Il existe
d’autres modèles d'un niveau équivalent de coûts et de performances. Notons aussi que les prix
communiqués sont des prix catalogue s 2007 et 2008, et sont donc susceptibles d’évoluer.
Spectrophotomètre UV-Visible modèle IC 6305 (Prix 2007 HT : 3708 €)
Réf : S050002
Fournisseur : Grosseron
37 Bd François Mitterand BP 395
44819 St Herblain
Tel 02 40 92 07 09
Fax 02 40 92 07 10
www.grosseron.com
Caractéristiques techniques
Longueur d’onde 198 à 1000 nm
Spectrophotomètre UV visible 6305
Bande passante +/-3 nm pour 6305
Résolution optique 7 nm
Affichage à cristaux liquide simultané
Longueur d'onde et mesure
Livré avec un portoir de cuve 10 mm et lot de 100 cuves plastique s
Unité de mesure : absorbance, transmission et concentration
Gamme de mesure :
Transmission 0 à 200% +/-0,1 %
Absorbance -3,000 à 1,999 +/-0,001 A
Concentration 0 à 999,9 et 1000 à 9999
RS232 et sortie analogique
Matériel supplémentaire nécessaire
Cuves en quartz suprasil (pour UV)
Ref 0613050
Prix 2007 HT (par 2) : 147.25 €
Coût maintenance à prévoir
Changement de lampes (1 fois tous les 107 heures d’utilisation)
Lampe Xénon
Ref M050001
Prix 2007 HT: 1002 €
Spectrophotomètre UV-Visible modèle 1240 Shimadzu (Prix HT 4190 €)
Ref W17881
Fournisseur : Fisher Scientific Bioblock
Parc d’Innovation BP 50111
67403 Illkirch cedex
Tel 03 88 67 14 14
Fax 03 88 67 11 68
www.bioblock.com
Caractéristiques techniques
Gamme spectrale 190 à 1100 nm, bande passante 5 nm
Ecran graphique, 5 vitesses balayage de spectre, détection 20 pics et vallées
Mesure en absorbance, % transmission et concentration
Calcul de concentration avec facteur ou courbe d'étalonnage (1 à 10 standards)
Lecteur carte pour programmation et archivage de méthodes et mesures
Interfaces RS232 pour transfert des données vers PC ou imprimante
Matériel supplémentaire nécessaire
Cuves en quartz suprasil (pour UV)
Ref W12036 - Prix 2007 HT (par 2) : 149.00 € (ou commande chez Grosseron )
Coût maintenance à prévoir
Changement de lampes (1 fois tous les 107 heures d’utilisation)
Lampe Xénon (commande chez Grosseron )
Ref M050001
Prix 2007 HT: 1002 €
Spectrophotomètre UV-Visible Libra S12 (Prix 2008 HT 3652 €)
Ref BC80211510
Fournisseur : Serlabo Technologies
ZAC Aigues Fraîches II – Bat C
1914 Route d'Avignon
Entraigues sur la Sorgue
Tel 04 20 23 77 20
Tel 03 88 67 14 14
Fax 03 88 67 11 68
www.serlabo.com
Caractéristiques techniques
Gamme spectrale 190 à 999 nm, bande passante 5 nm
Vitesse de balayage de 500 nm
Exactitude: ± 2nm
Précision: ± 2nm
Bruit: ± 1mAbs
Dérive: <0.002Abs/h
Détecteur: Diode Silicone
Sources lumineuses: Lampes deutérium et tungstène-halogène
Dimension: L300mm/P400mm/H190mm
Mode de mesure Abs, T%, Concentration, Multi longueur d'onde, Cinétique, Balayage Spectrale…
Sortie analogique: 100 mV/1 Abs
Sortie informatique: RS232 Série
Matériel supplémentaire nécessaire
Cuves en quartz trajet optique 10 mm
Ref HE100QS10- Prix 2008 HT: 96 €
Coût maintenance à prévoir
Changement de lampes (1 fois tous les 107 heures d’utilisation)
Prix 2008 HT: 634 € (UV) et 37 € (Visible)
3. Dosage de la MO et du nitrate par spectrophotométrie UV
3.a. Dosage de la MO
La teneur en MO d'une eau peut être approchée en mesurant son absorbance UV ou densité
optique (DO) à 254 nm et en utilisant le rapport de proportionnalité existant entre cette grandeur et les
différents indicateurs utilisés pour estimées la teneur en MO des eaux (Carbone Organique Dissous ou
COD; Carbone organique total ou COT; oxydabilité au KMnO4).
La figure 1 présente des exemples de corrélations linéaires obtenues entre ces différents
paramètres dans le cas d'eaux de surface bretonnes. La figure montre que des corrélations linéaires
sont obtenues entre l'absorbance UV et chacun des trois indicateurs précités. Ainsi, la teneur en MO
d'une eau peut être estimée à partir de la simple mesure de l'absorbance UV à 254 nm, moyennant la
détermination préalable du rapport de proportionnalité existant entre cette mesure et l'indicateur retenu
(phase dite de calibration).
On notera que la plus grande dispersion observée dans le cas de l'oxydabilité au KMnO4 est liée à
l'erreur relativement plus importante commise sur la mesure de ce paramètre. On notera également que
les pentes des corrélations peuvent varier d'une masse d'eau à l'autre (voir cas du rapport DO/COD),
d'où la nécessité de procéder à une calibration pour chaque nouvelle masse d'eau suivie .
Remarque concernant le choix de l'indicateur, la préparation des échantillons et la réalisation
des calibrations
L'indicateur réglementaire actuellement en vigueur en France pour estimer la teneur en MO des
eaux brutes est le COT. Ceci étant et comme l'ont démontré les études réalisées en Bretagne par le
GEPMO, cet indicateur ne dose en fait que les MO dissoutes. En outre, la réglementation européenne
préconise le COD comme indicateur pour définir le bon état écologique des eaux. Nous préconisons
donc d'utiliser le COD comme indicateur "MO" de calibration, étant entendu que cet indicateur dose le
même compartiment que l'indicateur COT et qu'il est appelé à devenir également l'indicateur de
référence pour la France. Ce choix impose de filtrer les échantillons avant analyse, soit à 0.45 microns,
soit à 0.22 microns.
Concernant l'étalonnage du rapport de proportionnalité existant entre absorbance UV à 254 nm et
teneur en COD, plusieurs précautions doivent être prises. Tout d'abord, l'étalonnage doit intégrer des
périodes de crue et d'inter-crue, de manière à recouper la gamme de variation des teneurs en MO de la
ressource considérée. Une façon de garantir cette représentativité est d'étaler la période d'étalonnage
sur une année hydrologique complète.
Deuxièmement, les mesures de l'absorbances UV et des indicateurs que l'on cherche à atteindre
via cette mesure doivent être faites rigoureusement sur les mêmes échantillons.
Troisièmement, le nombre de mesures doit être suffisant pour minimiser l'erreur sur le rapport
absorbance/concentration. Ce nombre est relativement faible: une quinzaine d'échantillons peuvent
suffire moyennant l'intégration dans la série d'épisodes pluvieux et de périodes d'inter-crue (voir note
technique N°3).
Quatrièmement, il faut prendre en compte le fait que la pente des droites de corrélation peut varier
entre les périodes d'étiage et le reste de l'année hydrologique, du fait d'un changement de composition
des matières organiques. Une double calibration (en étiage et hors étiage) peut ainsi être parfois
nécessaire.
Enfin, et dans le cas d'un basculement à la seule mesure de l'absorbance UV comme indicateur de
la teneur en MO d'une eau, il faudra prévoir d'inclure périodiquement des mesures de la concentration
en COT, COD ou en oxydabilité au KMnO4, et ce afin à vérifier que la pente de(s) corrélation(s)
utilisé(s) pour estimer la valeur de ces indicateurs à partir de la mesure de l'absorbance UV n'a pas
changé depuis la phase initiale d'étalonnage (stabilité dans le temps de la calibration).
0,7
Léguer
0,6
Absorbance (254 nm)
Absorbance (254 nm)
0,7
0,5
0,4
0,3
0,2
y = 0,0374 x
2
0,1
R = 0,93
Léguer
0,6
0,5
0,4
0,3
0,2
y = 0,0242 x
2
0,1
R = 0,69
0,0
0,0
0
5
10
15
20
0
10
20
30
Oxydabilité (mg/L)
COT (mg/L)
Absorbance (254 nm)
0,8
Léguer
0,7
Rivière
0,6
Elorn (29)
Léguer (22)
0,5
Min Ran (22)
Scorff (56)
0,4
0,3
Frémur (35)
0,2
y = 0,0298 x
0,1
R = 0,93
Yar (22)
Rance (35)
2
Couesnon (35)
0,0
0
5
10
15
20
Nombre de
mesures
Pente
(UV/COD)
R
200
80
0.0338
0.0325
0.93
0.92
2
83
0.0304
0.94
198
71
0.0349
0.0416
0.84
0.93
72
0.0385
0.96
156
312
0.0266
0.0298
0.82
0.93
25
COD (mg/L)
Figure 1. Résultats illustrant l'existence de corrélations linéaires entre la teneur en MO d'une eau exprimée par les
indicateurs COD, COT et oxydabilité et l'absorbance UV à 254 nm. Une fois réalisée, de telles calibrations permettent
ensuite d'estimer la teneur en matières organiques des eaux par simple mesure de l'absorbance UV à 254 nm.
Des informations complémentaires peuvent être obtenues en consultant les fiches techniques
téléchargeables sur le site internet du GEPMO (http://www.bretagne-environnement.org/site/matiereorganique/).
3.b. Dosage du nitrate
Comme pour la MO, il est possible d'estimer la teneur en nitrate d'une eau par mesure de
l'absorbance UV à 220 nm. Comme pour la MO, également, la méthode demande une calibration
préalable du rapport de proportionnalité existant entre absorbance UV à 220 nm et teneur en nitrate.
Cette calibration s'effectue en procédant à l'analyse conjointe de l'absorbance UV à 220 nm et de la
teneur en nitrate (par chromatographie ionique, par exemple) sur quelques échantillons témoins,
représentatifs de la masse d'eau suivie. La linéarité de la gamme est assurée jusqu’à des teneurs en
nitrates de 45 mg/L. Au-delà, des dilutions par de l'eau pure, sans nitrate, doivent être effectuées.
On notera qu'il est possible d’améliorer la linéarité des étalonnages en corrigeant d’une mesure UV
(254 nm) correspondant à la contribution de la MO sur le pic d'absorbance à 220 nm.
4. Résultats d'une étude test réalisée sur le bassin versant du Frémur
Afin d'évaluer les potentialités de la spectrophotométrie UV en tant qu'outil apte à déterminer de
manière fiable et peu coûteuse les teneurs en MO et en nitrate des eaux, une étude a été réalisée sur le
bassin versant (BV) du Frémur. Les objectifs de cette étude étaient les suivants:
1) Comparer les valeurs d'absorbance obtenues par un spectrophotomètre de "terrain" et par un
spectrophotomètre de laboratoire;
2) Vérifier l'existence d'une corrélation linéaire entre la mesure d'absorbance fournie par un
spectrophotomètre de "terrain" et les teneurs en COD et en nitrate des échantillons;
déterminer la qualité statistique des corrélations;
3) Evaluer les erreurs commises sur le calcul des teneurs en MO et en nitrate par utilisation des
droites de calibrations obtenues, dans le cas d'une analyse ponctuelle et dans celui d'une
valeur moyenne;
4) Vérifier que la mise en œuvre d'un spectrophotomètre de "terrain" ne nécessite ni
compétences ni matériels spécifiques.
Le spectrophotomètre de terrain testé est le modèle Libra S12, commercialisé par la société
Serlabo Technologies. Ce spectrophotomètre a été mis en œuvre par B. Hennache, animatrice du BV
du Frémur.
Concernant les échantillons, plusieurs campagnes ont été effectuées aux points de suivis habituels
de la qualité des eaux du BV, certaines en périodes de crue, d'autres en périodes d'inter-crue. Tous les
échantillons ont été filtrés directement sur le terrain à l'aide de filtre en acétate de cellulose d'une taille
nominale de pores de 0.2 microns. Les échantillons ont été ensuite divisés en 4 fractions:
1)
Une fraction dont l'absorbance UV a été mesurée à l'aide du spectrophotomètre de "terrain"
testé, avec B. Hennache, animatrice du BV du Frémur, comme opératrice;
2)
Une fraction dont l'absorbance UV a été mesurée au laboratoire de Géochimie de l'UMR
CNRS 6118 Géosciences Rennes à l'aide d'un spectrophotomètre UVIKON XS par P.
Petitjean, ingénieur chimiste CNRS;
3)
Une fraction dont la teneur en COD a été mesurée à l'aide d'un COT-mètre Shimadzu TOC
5050A au laboratoire de Géochimie de l'UMR CNRS 6118 Géosciences Rennes;
4)
Une fraction dont la teneur en NO3 a été mesurée laboratoire de Géochimie de l'UMR CNRS
6118 Géosciences Rennes à l'aide d'une chromatographie Ionique Dionex X120.
4.1. Résultats: cas de la MO
4.1.a. Calibration du spectrophotomètre de "terrain"
La figure 2 compare les mesures d'absorbance UV 254 réalisées par B. Hennache à l'aide du
spectrophotomètre de "terrain" Libra S12 et celle faites au laboratoire par P. Petitjean. Une corrélation
linéaire de très bonne qualité est obtenue démontrant le caractère juste et précis du spectrophotomètre
de "terrain" testé. La figure 3, quant à elle, compare les valeurs d'absorbance UV254 obtenus par B.
Hennache aux teneurs en COD des échantillons. Une corrélation linéaire de très bonne qualité est
également obtenue, confirmant l'existence d'un rapport de proportionnalité relativement constant dans
les eaux du Frémur entre teneur en COD et absorbance UV254.
Absorbance (Spectro Terrain)
0,8
0,7
Y = 0.95X
R 2 = 0.996
0,6
0,5
0,4
0,3
0,2
0,1
0,0
0,0
0,2
0,4
0,6
0,8
Absorbance (Spectro Labo)
Figure 2. Comparaison des valeurs d'absorbance UV254 mesurées à l'aide du spectrophotomètre de " terrain"
Libra S12 avec celles obtenues au laboratoire
25
COD (mg/L)
20
Y = 31.8X
R 2 = 0.95
15
10
5
0
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Absorbance (Spectro Terrain)
Figure 3. Diagramme montrant l'existence d'une corrélation linéaire entre teneur en COD et absorbance UV254
pour les échantillons du Frémur analysés
4.1.b. Erreur estimée sur la concentration en COD
Afin d'estimer l'erreur engendrée sur l'estimation de la teneur en COD par la variation du rapport
[absorbance UV]/[COD] nous avons comparé les teneurs en COD mesurées pour la série d'échantillons
analysés avec les teneurs en COD estimées en multipliant l'absorbance UV par la pente de la
corrélation présentée dans la figure 3. Cette comparaison montre que pour 75% des échantillons,
l'erreur est égale ou inférieure à ±10%. L'erreur est considérablement réduite si l'on considère la
concentration moyenne en COD. En effet, la concentration moyenne calculée à partir des
concentrations mesurées est de 8.8 mg/L, contre 8.6 mg/L à partir des concentrations calculées, soit
une erreur réduite à ±2.5%. Ceci confirme un résultat déjà mis en avant dans une note antérieure
(GEPMO, Note technique N°3, 2007), à savoir que l'estimation de la teneur en COD à partir de la
mesure de l'absorbance UV est une méthode très compétitive en termes de justesse et de précision
lorsqu'il s'agit de déterminer des concentrations moyennes, types "concentrations moyennes
annuelles".
4.2. Résultats: cas des nitrates
4.2.a. Calibration du spectrophotomètre de "terrain"
La figure 3 compare les mesures d'absorbance UV220 réalisées par B. Hennache à l'aide du
spectrophotomètre de "terrain" Libra S12 et celle faites au laboratoire par P. Petitjean. Une corrélation
linéaire de relativement bonne qualité est obtenue démontrant le caractère également juste et précis du
spectrophotomètre de "terrain" testé à cette longueur d'onde. Les valeurs d'absorbance UV220-254
obtenus par B. Hennache sont comparées aux teneurs en nitrate des échantillons mesurées par
chromatographie ionique dans la figure 5. Une corrélation linéaire de relativement bonne qualité est làaussi obtenue, démontrant qu'il est possible d'estimer les concentrations en nitrate des eaux analysées
à partir de la mesure de l'absorbance UV 220-254.
1,9
Y = 0,81X
R 2 = 0.91
Spectro Terrain
1,7
1,4
1,2
0,9
0,7
0,4
0,4
0,7
0,9
1,2
1,4
1,7
1,9
2,2
2,4
Absorbance UV 220 (Spectro Labo)
Figure 4. Comparaison des valeurs d'absorbance UV220 mesurées à l'aide du spectrophotomètre de " terrain" Libra S12
avec celles obtenues au laboratoire
45
40
Y = 28.7X - 10.4
R 2 = 0.95
NO3 (mg/L)
35
30
25
20
15
10
5
0
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
Absorbance (220-254; Spectro Terrain)
Figure 5. Diagramme montrant l'existence d'une corrélation linéaire entre teneur en NO3 et absorbance UV220-254 pour
les échantillons du Frémur analysés.
4.1.b. Erreur estimée sur la concentration en Nitrate
Afin d'estimer l'erreur engendrée sur l'estimation de la teneur en nitrate par la variation du rapport
[absorbance UV]/[NO3] nous avons comparé les teneurs en nitrate mesurées pour la série d'échantillons
analysés avec les teneurs en nitrate estimées en multipliant l'absorbance UV par la pente de la
corrélation présentée dans la figure 5. Cette comparaison montre que pour 50% des échantillons,
l'erreur est égale ou inférieure à ±10%. Comme dans le cas du COD, l'erreur est considérablement
réduite si l'on considère la concentration moyenne en nitrate. En effet, la concentration moyenne
calculée à partir des concentrations mesurées est identique à celle obtenue à partir des concentrations
calculées (19.5 mg/L dans les deux cas). La conclusion que l'on peut émettre ici est donc la même que
pour le COD, à savoir que l'absorbance UV est une méthode très compétitive en termes de justesse et
de précision lorsqu'il s'agit de déterminer des concentrations moyennes en nitrate, types
"concentrations moyennes annuelles".
5. Conclusions
Les tests présentés dans cette note montrent qu'il est possible de déterminer de manière juste et
précise la teneur en MO et en nitrate des eaux de surface par mesure de l'absorbance UV à 254 nm et
à 220 nm à l'aide d'un spectrophotomètre de "terrain", et par un opérateur non aguerri aux techniques
d'analyse chimique.
Les mesures ne nécessitent pas d'autres préparations qu'une filtration préalable des échantillons
(pas d'ajout de réactifs), et sont donc d'une mise en œuvre très simple . La seule contrainte est la
nécessité de disposer d'une calibration préalable des facteurs de proportionnalité existant entre
absorbance UV et teneurs en MO et en nitrate, et donc de disposer d'analyses conjointes sur une série
d'échantillons des absorbances UV à 220 nm et 254 nm et des teneurs en nitrate et en COD (ou COT).
Vue la justesse et la précision des résultats présentés plus haut (notamment sur des paramètres
de type "moyenne annuelle", et vue également les coûts modérés en investissement * et la facilité de
mise en œuvre d'un spectrophotomètre, la technique de dosage des MO et du nitrate par
spectrophotométrie UV nous parait être de nature à permettre à des structures de "terrain" de type
"animation de bassin versant" de s'équiper en un matériel leur permettant de gagner une grande
autonomie en matière de suivis qualité de l'eau, et par exemple de procéder, si besoin, à des
densifications possible s des suivis dans le temps et dans l'espace et ce pour des coûts réduits.
Le GEPMO est prêt à assurer une assistance technique à toute structure qui décidera de
s'équiper.
6. Bibliographie
Note Technique N° 3 du GEPMO. Analyse de l'erreur engendrée par la fréquence d'échantillonnage
sur la concentration moyenne annuelle en matière organique des masses d'eau: application aux points
de suivi qualité d'eau 11F (station DIREN de mesure des débits) et 5F (aval de la retenue de Bois-Joli)
du bassin versant du Frémur, Décembre 2007, 7p.
*Pour information, le coût en analyses facturé par un laboratoire pour une BV équipé de 10 points de mesure et procédant à
des analyses une fois par mois en chaque point des teneurs en MO et en nitrate est de l'ordre de 4000€. Ce chiffre est à
comparer aux 5000€ d'investissement que représente l'achat d'un spectrophotomètre de "terrain" du type de celui testé dans
cette étude.