Références bibliographiques - BICTEL/e ULg

Transcription

Références bibliographiques - BICTEL/e ULg
Références bibliographiques
REFERENCES BIBLIOGRAPHIQUES
[1]
M. Feinberg, B. Boulanger, W. Dewe, Ph. Hubert, New advances in method
validation and measurement uncertainty aimed at improving the quality of
chemical data, Analytical and Bioanalytical chemistry, 2004, 380, 502 – 514.
[2]
P. Lantéri, R. Longeray, Chimiométrie: le mariage réussi entre les sciences
analytiques et l’informatique, Analusis, 1996, 24, M17 – M27.
[3]
J. Goupy, Stratégie de recherche – Définition et objectifs in La méthode des plans
d’expériences, Dunod, Paris, France, 1996, Chapitre 1, 1 – 8.
[4]
J. Goupy, Plans factoriels à deux niveaux : 2k in La méthode des plans
d’expériences, Dunod, Paris, France, 1996, Chapitre 1, 9 – 40.
[5]
A. Albert, Analyses statistiques multivariées , Edition de l’ULg, Liège, 2006.
[6]
G. Sado, M.-C. Sado, De l’expérimentation à l’assurance de qualité in Les plans
d’expériences, AFNOR, Paris, France, 1991.
[7]
L. Fotsing, Développement et validation de méthodes de dosage des différents
constituants de formulations polyvitaminées par électrophorèse capillaire, Thèse
présentée en vue de l’obtention du grade de Docteur en Sciences Pharmaceutiques,
Université de Liège, 1998 – 1999.
[8]
P. Chiap, Association de la dialyse à la chromatographie liquide pour le dosage
automatisé de médicaments dans le plasma, Thèse présentée en vue de l’obtention du
grade de Docteur en Sciences Pharmaceutiques, Université de Liège, 1999 – 2000.
[9]
A.-C.
Servais,
Séparation
et
dosage
de
substances
médicamenteuses
par
électrophorèse capillaire en milieux non aqueux : influence de l’utilisation
simultanée d’une cyclodextrine et d’un agent d’appariement d’ions, Thèse
présentée en vue de l’obtention du grade de Docteur en Sciences Pharmaceutiques,
Université de Liège, 2004 – 2005.
[10]
B. Govaerts, L. Simar, Planification expérimentale, Eli-Lilly, Mont-Saint-Guibert,
Belgique, 1996.
[11]
M. Feinberg, Optimisation de la réponse in La validation des méthodes d’analyse –
Une approche chimiométrique de l’assurance qualité du laboratoire, Masson, Paris,
France, 1996, Chapitre 17, 251 – 271.
[12]
P.
Chiap,
B.
Boulanger,
L
Fotsing,
Ph.
Hubert,
J.
Crommen,
Liquid
chromatographic analysis of local anesthesic in human plasma after preparations by
286
Références bibliographiques
on-line dialysis. Optimization by use of experimental design, Chromatographia, 2001,
53, 678 – 686.
[13]
P. J. Schoenmakers in Optimization of chromatographic selectivity, Elsevier,
Amsterdam, The Netherlands, 1986.
[14]
J. P. Bounine, G. Guiochon, L’optimisation multiparamètres assistée par l’ordinateur
en chromatographie liquide, Analusis, 1984, 12 (4), 175 – 193.
[15]
P.F. Vanbel, B.L. Tilquin, P.J. Schoenmakers, Criteria for developing rugged highperformance liquid chromatographic methods, J. Chromatogr. A, 1995, 697, 3 – 16.
[16]
P.F. Vanbel, B.L. Tilquin, P.J. Schoenmakers, Criteria for optimizing the
separation of target analytes in complex chromatograms, Chemometrics and
Intelligent Laboratory Systems, 1996, 35, 67 – 86.
[17]
P.F. Vanbel, Development of flexible and efficient strategies for optimizing
chromatographic separation, J. Pharm. Biomed. Appl., 1999, 21 (3), 603 – 610.
[18]
A.C.J.H. Drouen, H.A.H. Billiet, P.J. Schoenmakers, L. de Galan, An improved
optimization procedure for the selection of mixed mobile phase in reversed phase
liquid chromatography, Chromatographia, 1982, 16, 48 – 52.
[19]
W. Dewé, R.D. Marini, P. Chiap, Ph. Hubert, J. Crommen, B. Boulanger,
Development of response models for optimising HPLC methods, Chemometrics and
Intelligent Laboratory Systems, 2004, 74, 263 – 268.
[20]
S.N. Deming, Mutliple-criteria optimization, J. Chromatogr. A, 1991, 550, 15 – 25.
[21]
A. K. Smilde, A. Knevelman, P. M. J. Coenegracht, Introduction of multicriteria decision making in optimization procedures for high-performance liquid
chromatographic separations, J. Chromatogr., 1986, 369, 1 – 10.
[22]
M.M.W.B. Hendriks, J.H. De Boer, A.K. Smilde, D.A. Doornbos, Multicriteria
decision making, Chemometrics and Intelligent Laboratory System, 1992, 16, 175 –
191.
[23]
D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong and P.J. Lewi in
Handbook of Chemometrics and Qualimetrics, Part A, Elsevier Science B.V.,
Amsterdam, The Netherlands, 1997.
[24]
E.C. Harrington, The desirability function, Ind. Qual. Control, 1965, 21, 494 – 498.
[25]
G. Derringer, R. Suich, Simultaneous optimization of several response variables,
Journal of Quality Technology, 1980, 12 (4) 214 – 219.
287
Références bibliographiques
[26]
B.
Bourguignon,
D.L.
Massart,
Simultaneous
optimization
of
several
chromatographic performance goals using Derringer's desirability function, J.
Chromatogr., 1991, 586, 11 – 20.
[27]
R. D. Marini, P. Chiap, W. Dewé, B. Boulanger, Ph. Hubert, J. Crommen, LC method
for the simultaneous determination of R-timolol and other closely related impurities in
S-timolol maleate: Optimization by use of an experimental design, J. Sep. Sci., 2003,
26, 809 – 817.
[28]
Y. Guillaume, C. Guinchard, Method to study the separation of eight phydroxybenzoic esters by gas chromatography, J. Chromatogr. A, 1996, 727, 93 – 99.
[29]
M. Jimidar, B. Bourguignon, D. L. Massart, Application of Derringer's desirability
function for the selection of optimum separation conditions in capillary zone
electrophoresis, J. Chromatogr. A, 1996, 740, 109 – 117.
[30]
P. F. de Aguiar, Y. Vander Heyden, D. L. Massart, Study of different criteria for the
selection of a rugged optimum in high performance liquid chromatography
optimisation, Anal. Chim. Acta, 1997, 348, 223 – 235.
[31]
A. Ceccato, B. Boulanger, P. Chiap, Ph. Hubert, J. Crommen, Simultaneous
determination of methylphenobarbital enantiomers and phenobarbital in human plasma
by on-line coupling of an achiral precolumn to a chiral liquid chromatographic
column, J. Chromatogr. A, 1998, 819, 143 – 153.
[32]
R. Gotti, S. Furlanetto, V. Andrisano, V. Cavrini, S. Pinzauti, Design of experiments
for capillary electrophoretic enantioresolution of salbutamol using dermatan sulphate,
J. Chromatogr. A, 2000, 875, 411 – 422.
[33]
Y.L. Loukas, S. Sabbah, G.K.E. Scriba, Method development and validation for the
chiral separation of peptides in the presence of cyclodextrins using capillary
electrophoresis and experimental design, J. Chromatogr. A, 2001, 931, 141 – 152.
[34]
E. Van Gyseghem, M. Jimidar, R. Sneyers, D. Redlich, E. Verhoeven, D. L.
Massart, Y. Vander Heyden, Selection of reversed-phase liquid chromatographic
columns with diverse selectivity towards the potential separation of impurities in
drugs, J. Chromatogr. A, 2004, 1042, 69 – 80.
[35]
D. Mangelings, C. Perrin, D. L. Massart, M. Maftouh, S. Eeltink, W. Th. Kok, P. J.
Schoenmakers, Y. Vander Heyden, Optimisation of the chlorthalidone chiral
separation by capillary electrochromatography using an achiral stationary phase and
cyclodextrin in the mobile phase, Anal. Chim. Acta, 2004, 509, 11 – 19.
288
Références bibliographiques
[36]
E. Van Gyseghem, M. Jimidar, R. Sneyers, D. Redlich, E. Verhoeven, D.L.
Massart, Y. Vander Heyden, Orthogonality and similarity within silica-based
reversed-phased chromatographic systems, J. Chromatogr. A, 2005, 1074, 117 – 131.
[37]
F. Safa, M.R. Hadjmohammadi, Simultaneous optimization of the resolution and
analysis time in micellar liquid chromatography of phenyl thiohydantoin amino acids
using Derringer's desirability function, J. Chromatogr. A, 2005, 1078, 42 – 50.
[38]
J. Caporal-Gauthier, J.M. Nivet, P. Algranti, M. Guilloteau, M. Histe, M.
Lallier, J.J. N’guyen-Huu, R. Russoto, Guide de validation analytique, Rapport d’une
commission SFSTP, I Méthodologie, S.T.P. Pharma Pratiques, 1992, 2 (4) 205 – 226.
[39]
Notes explicative III/844/87-FR – Commission des Communautés Européennes,
Groupe de travail du Comité des spécialités pharmaceutiques, août 1989.
[40]
Text on validation of analytical procedures: definitions and terminology (Q2A),
Tripartite International Conference on Harmonization (ICH) text, ICH Tech
coordination, Londres, 1994.
[41]
Text on validation of analytical procedures: methodology (Q2B), Tripartite
International Conference on Harmonization (ICH) text, ICH Tech coordination,
Londres, 1995.
[42]
J. Vessman, Selectivity or specificity? Validation of analytical methods from the
perspective of an analytical chemist in the pharmaceutical industry, J. Pharm. Biomed.
Anal., 1996, 14, 867 – 869.
[43]
Eurachem guide, The fitness for purpose of analytical methods, A laboratory guide to
method validation and related topics, 1st Edition UK, 1998.
[44]
Food and Drug Administration: International Conference on Harmonization:
Guideline on validation of analytical procedures: Definitions and terminology, Fed.
Regist., 1995, 60, 11260 – 11262.
[45]
Food and Drug Administration: International Conference on Harmonization:
Guideline on validation of analytical procedures: Methodology, Fed. Regist., 1997, 62,
27463 – 27467.
[46]
E. Chapuzet, N. Mercier, S Bervoas-Martin, B. Boulanger, P. Chevalier, P.
Chiap, D. Granjean, Ph. Hubert, P. Lagorce, M. Lallier, M.C. Laparra, M.
Laurentie, J.C. Nivet, Méthodes chromatographiques de dosage dans les milieux
biologiques: stratégie de validation, S.T.P. Pharma Pratiques, 1997, 7 (3), 169 – 194.
[47]
Ph. Hubert, P. Chiap, J. Crommen, B. Boulanger, E. Chapuzet, N. Mercier, S.
Bervoas-Martin, P. Chevalier, D. Grandjean, P. Lagorce, M. Lallier, M. C.
289
Références bibliographiques
Laparra, M. Laurentie, J. C. Nivet, The SFSTP guide on the validation of
chromatographic methods for drug bioanalysis: from the Washington Conference to
the laboratory, Anal. Chim. Acta, 1999, 391, 135 – 148.
[48]
M. Feinberg, N. Raguènès, Development and application of a standardized
validation procedure for food chemistry laboratories, Anal. Chim. Acta, 1999, 391, 239
– 252
[49]
J. Ermer, Validation in pharmaceutical analysis. Part I: An integrated approach, J.
Pharm. Biomed. Anal., 2001, 24, 755 – 767.
[50]
Ph. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A.
Compagnon, W. Dewé, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G.
Muzard, C. Nivet, L. Valat, Validation des procédures analytiques quantitatives,
Harmonisation des démarches, S.T.P. Pharma Pratiques, 2003, 13 (3), 101 – 138.
[51]
B. Boulanger, P. Chiap, W. Dewé, J. Crommen, Ph. Hubert, An analysis of the
SFSTP guide on validation of chromatographic bioanalytical methods: progresses and
limitations, J. Pharm. Biomed. Anal., 2003, 32, 753 – 765.
[52]
ISO/IEC Standards 5725-2, Accuracy (trueness and precision) of measurement
methods and results, ISO Geneva, 1994.
[53]
H. Fabre, K.D. Altria, Validating CE methods for pharmaceutical analysis, LC GE
Europe, CE currents, May 2001, 1 – 5 (www.lcgceurope.com).
[54]
R. D. Marini, P. Chiap, B. Boulanger, E. Rozet, S. Rudaz, J. Crommen, Ph.
Hubert, LC method for the determination of R-timolol in S-timolol maleate:
Validation of its ability to quantify and uncertainty assessment, Talanta, 2006, 68,
1166 – 1175.
[55]
R. Mee, Estimation of the percentage of a normal distribution lying outside a specified
interval, Commun. Statist. Theor. Meth., 17 (1988) 1465 – 1479.
[56]
ICH Harmonised Tripartite Guideline prepared within the Third International
Conference on Harmonisation of Technical Requirements for the Registration of
Pharmaceuticals for Human Use (ICH), Text on Validation of Analytical Procedures:
Methodology, 1994.
[57]
D. Dadgar, P.E. Burnett, M.G. Choc, K. Gallicano, J.W. Hooper, Application issues in
bioanalytical method validation, sample analysis and data reporting, J. Pharm.
Biomed. Anal., 1995, 14, 89 – 97.
290
Références bibliographiques
[58]
Y. Vander Heyden, A. Nijhuis, J. Smeyers-Verbeke, B.G.M. Vandeginste, D.L.
Massart, Guidance for robustness/ruggedness tests in method validation, J. Pharm.
Biomed. Anal., 2001, 24, 723 – 753.
[59]
H.
Fabre,
Robustness
testing
in
liquid
chromatography
and
capillary
electrophoresis, J. Pharm. Biomed. Anal., 1996, 14, 1125 – 1132.
[60]
United States Pharmacopeia, 24th Edition, National Formulary 18, United States
Pharmacopeial Convention, 2002, Rockville, USA.
[61]
M. Jimidar, W. Van Ael, M. De Smet, P. Cockaerts, Method validation and
robustness testing for enantioselective CE method, LC GC, 2002, 15 (4) 230 – 242.
[62]
W. Dewé, P. Chiap, Robustesse des méthodes analytiques, Développement,
validation et vérification. Cefira, France, Octobre 2001.
[63]
E. Hund, Y. Vander Heyden, D.L. Massart, J. Smeyers-Verbeke, Derivation of
system suitability test limits from a robustness test on an LC assay with complex
antibiotic samples, J. Pharm. Biomed. Anal., 2002, 30, 1197 – 1206.
[64]
E. Hund, Y. Vander Heyden, M. Haustein, D.L. Massart, J. Smeyers-Verbeke,
Robustness testing of a reversed-phase high-performance liquid chromatographic
assay: comparison of fractional and asymmetrical factorial designs, J. Chromatogr. A,
2000, 874, 167 – 185.
[65]
E. Hund, Y. Vander Heyden, M. Haustein, D.L. Massart, J. Smeyers-Verbeke,
Comparison of several criteria to decide on the significance of effects in a
robustness test with an asymmetrical factorial design, Anal. Chim. Acta, 2000, 404,
257 – 271.
[66]
C. Perrin, H. Fabre, M. Maftouh, D. L. Massart, Y. Vander Heyden, Robustness
testing of chiral separations by capillary electrophoresis using highly-sulfated
cyclodextrins, J. Chromatogr. A, 2003, 1007, 165 – 177.
[67]
R.D. Marini, B. Boulanger, Y. Vander Heyden, P. Chiap, J. Crommen, Ph.
Hubert, Uncertainty assessment from robustness testing applied on an LC assay for Rtimolol and other related substances in S-timolol maleate, Anal. Chim. Acta, 2004,
531, 131 – 140.
[68]
G. Box, W. Hunter, J. Hunter, Statistics for experimenters, an introduction to
design, data analysis and model building, Wiley, New York, 1978, 306 – 418.
[69]
E. Morgan, Chemometrics: experimental design in Analytical chemistry by open
learning, Wiley, Chichester, 1991, 118 – 188.
291
Références bibliographiques
[70]
Y. Vander Heyden, D.L. Massart, Review of the use of robustness and ruggedness in
analytical chemistry in A. Smilde, J. de Boer and M. Hendriks (Eds.) Robustness of
analytical methods and pharmaceutical technological products, Elsevier, Amsterdam,
1996, 79 – 147.
[71]
R.L. Plackett, J.P. Burman, The design of optimum multifactorial experiments,
Biometrika, 1946, 33, 305 – 325.
[72]
Ph. Lowthian, M. Thompson, R. Wood, Use of proficiency tests to assess the
comparative performance of analytical methods: the determination of fat in
foodstuffs, Analyst, 1996, 121, 977 – 982.
[73]
E. Hund, D.L. Massart, J. Smeyers-Verbeke, Interlaboratory studies in analytical
chemistry, Anal. Chim. Acta, 2000, 423, 145 – 165.
[74]
International Union of Pure and Applied Chemistry (IUPAC), Analytical Chemistry
Division, Commission on General Aspects of Analytical Chemistry (V.1), Project
27/87: Nomenclature for Interlaboratory Studies, Fourth Draft, April 1991.
[75]
E. A. Maier, Ph. Quevauviller and B. Griepink, Interlaboratory studies as a tool for
many purposes: proficiency testing, learning exercises, quality control and
certification of matrix materials, Anal. Chim. Acta, 1993, 283, 590 – 599.
[76]
M. Feinberg, Basics of interlaboratory studies – the trends in the new ISO-5725
standard edition, Trac - Trends in Anal. Chem., 1995, 14, 450 – 457.
[77]
ISO/IEC Standards 5725-4, Accuracy (trueness and precision) of measurement
methods and results – Part 4: Basic methods for the determination of the trueness of a
standard measurement method, Sections 1-6, ISO Geneva, 1994.
[78]
J. Vial, A. Jardy, Interlaboratory studies: the best way to estimate the characteristic of
dispersion of an HPLC method and powerful tool for analytical transfers,
Chromatographia, 2001, 53, 141 – S148
[79]
Y. Vander Heyden, J. Saevels, E. Roets, J. Hoogmartens, D. Decolin, M. G.
Quaglia, W. Van den Bossche, R. Leemans, O. Smeets, F. Van de Vaart, B.
Mason, G. C. Taylor, W. Underberg, A. Bult, P. Chiap, J. Crommen, J. De Beer, S. H.
Hansen, D. L. Massart, Interlaboratory studies on two high-performance liquid
chromatographic assays for tylosin (tartrate), J. Chromatogr. A, 1999, 830, 3 – 28.
[80]
ISO/IEC Guide 43/1 (E), Proficiency testing by interlaboratory comparisons: Part 1:
development and operation of proficiency testing schemes, ISO Geneva, 1997.
[81]
ISO Guide 35, (E), Certification of reference materials – general and statistical
principles, ISO, Geneva, 1989.
292
Références bibliographiques
[82]
International Standards Organization, General Requirements for the Competence of
Calibration and Testing Laboratories, ISO/IEC Guide 17025, ISO, Geneva, 1999.
[83]
E.
A.
Maier,
Certified
reference
materials
for
the
quality
control
of
measurements in environmental monitoring, Trends in Anal. Chem., 1991, 10 (10),
340 – 347.
[84]
P. Dehouck, Y. Vander Heyden, J. Smeyers-Verbeke, D. L. Massart, J. Crommen, Ph.
Hubert, R. D. Marini, O.S.N.M. Smeets, G. Decristoforo, W. Van de Wauw, J. De
Beer, M. G. Quaglia, C. Stella, J.-L. Veuthey, O. Estevenon, A. Van Schepdael, E.
Roets, J. Hoogmartens, Determination of uncertainty in analytical measurements:
Collaborative study of the analysis of phenoxymethylpenicillin, Anal. Chim. Acta,
2003, 481, 261 – 272.
[85]
W.J. Youden, E.H. Steiner, Statistical techniques for the collaborative tests in
Statistical manual of the association of official analytical chemists, The Association of
Official Analytical Chemists, Arlington, 1975.
[86]
K.D. Altria, R.C. Harden, M. Hart, J. Hevizi, P.A. Hailey, J.V. Makwana, M.J.
Portsmouth, Inter-company cross-validation exercise on capillary electrophoresis,
J.
Chromatogr., 1993, 641, 147 – 153.
[87]
K.D. Altria, N.G. Clayton, R.C. Harden, J.V. Makwana, M.J. Portsmouth, Intercompany cross validation exercise on capillary electrophoresis, Chromatographia,
1995, 40, 47 – 50.
[88]
B. Mopper, C.J. Sciacchitano, Capillary electrophoresis for regulatory analysis: Is it
ready? J. Cap. Electr., 1997, 2, 73 – 76.
[89]
R. D. Marini, C. Groom, F. R. Doucet, J. Hawari, Y. Bitar, U. Holzgrabe, R. Gotti, J.
Schappler, S. Rudaz, J.-L. Veuthey, R. Mol, G. W. Somsen, G. J. De Jong, Ph. Thi
Thanh Ha, J. Zhang, A. Van Schepdael, J. Hoogmartens, W. Briône, A. Ceccato, B.
Boulanger, D. Mangelings, Y. Vander Heyden, W. Van Ael, I. Jimidar, M. Pedrini,
A.-C. Servais, M. Fillet, J. Crommen, E. Rozet, Ph. Hubert, Interlaboratory study of a
NACE method for the determination of R-timolol content in S-timolol maleate:
Assessment of uncertainty, Electrophoresis, 2006, Sous presse.
[90]
R.
Wood,
Food
analysis
–
past,
present
and
future,
Valid
Analytical
Measurement Bulletin, National Measurement System, 2005, Issue 32, 4 – 7.
[91]
S. L. R. Ellison, M. Rosslein, A. Williams, Guide EURACHEM / CITAC
« Quantifier l’Incertitude dans les Mesures Analytiques », 2ème Edition, 2000.
[92]
V. J. Barwick, S. L. R. Ellison, LGC Report, Reference LGC/VAM/1998/052,
293
Références bibliographiques
1998.
[93]
M. Burns, Current practice in the assessment and control of measurement
uncertainty in bio-analytical chemistry, Trac - Trends in Anal. Chem., 2004, Vol. 23,
393 – 398.
[94]
P. Pestiaux, F. Chebana, Ph. Dutot, F. Espinoux, Measurement uncertainty
evaluation in oil industry laboratories : The only reasonable way to do it, XXIIth
International Metrology Congress 20 -23rd June 2005, Lyon, France.
[95]
NF X 07 001, “International vocabulary of basic and general terms in metrology
(VIM)”, 1993.
[96]
L.A. Currie, Nomenclature in evaluation of analytical methods including detection
and quantification capabilities (IUPAC Recommendations 1995), Anal. Chim. Acta,
1999, 391, 105 – 126.
[97]
BIPM, CEI, FICC, ISO, OIML, UICPA, UIPPA, Guide pour l’expression de
l’incertitude de mesure, ISO, Genève 1995.
[98]
V. J. Barwick, S. L. R. Ellison, VAM Project 3.2.1. Development and
Harmonisation of Measurement Uncertainty Principles, Part (d): Protocol for
uncertainty
evaluation
form
validation
data,
LGC
Report
N°
LGC/VAM/1998/088, 2000.
[99]
European Co-operation for Accreditation, Lignes directrices d’EA pour l’expression
de l’incertitude des résultats d’essai quantitatifs, EA-4/16, Secrétariat, Cofrac, Paris
Avril 2004.
[100] M. Valcárel, A. Ríos, Reliability of analytical information in the XXIst century,
Analytica Chimica Acta, 1999, 400, 425 – 432.
[101] H. van der Voet, J.A. (Hans) van Rhijn, H. J. van de Wiel, Inter-laboratory, time, and
fitness-for-purpose aspects of effective validation, Analytica Chimica Acta, 1999, 391,
159 – 171.
[102] P. Dehouck, Uncertainty determination in Pharmaceutical Analysis, Thèse
présentée en vue de l’obtention du grade de Docteur en Sciences Pharmaceutiques,
Katholieke Universiteit Leuven, 2004.
[103] E. Hund, D. L. Massart, J. Smeyers-Verbecke, Operational definitions of uncertainty,
Trac - Trends in Anal. Chem., 2001, Vol. 20 (8), 394 – 406.
[104] M. Thompson, Towards a unified model of errors in analytical measurement, Analyst,
2000, 125, 2020 – 2025.
294
Références bibliographiques
[105] SSTC/DWTC Project NM/12/23, Norms and Guidelines for the Practical Estimation
of Uncertainty in Analytical Measurements, Final report, July 2003, Services
Scientifique, Technique et Culturel du Premier Ministre Belge.
[106] K.
D.
Altria,
Overview
of
capillary
electrophoresis
and
capillary
electrochromatography, J. Chromatogr. A, 1999, 856, 443 – 463.
[107] M.-F. Drefuss, P.J.-P. Cardot, Métrologie et analyse du medicament, Analusis, 1999,
27 (6), 499 – 503.
[108] M. Deleuil, Introduction au procédé d’échantillonnage, Analusis, 1999, 27 (6), 504 –
511.
[109] V. J. Barwick, Sources of uncertainty in gas chromatography and high-performance
liquid chromatography, J. Chromatogr. A, 1999, 849, 13 – 33.
[110] B. X. Mayer, How to increase precision in capillary electrophoresis, J. Chromatogr. A,
2001, 907, 21 – 37.
[111] B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty
of NIST Measurement Results, NIST Technical Note 1297, National Institute of
Standards and Technology, Gaithersburg, MD, 1994.
[112] Ellison, V. J. Barwick, Using validation data for ISO measurement uncertainty
estimation - Part 1. Principles of an approach using cause and effect analysis, Analyst,
1998, 123, 1387 – 1392.
[113] A. Maroto, R. Boqué, J. Riu, Evaluating uncertainty in routine analysis, Trac Trends in Anal. Chem., 1999, 18, 577 – 584.
[114] G. Bagur, M. Sánchez-Viñas, D. Gázquez, M. Ortega, R. Romero, Estimation of the
uncertainty associated with the standard addition methodology when a matrix effect is
detected, Talanta, 2005, 66, 1168 – 1174.
[115] E. Hund, D.L. Massart, J. Smeyers-Verbeke, Comparison of different approaches to
estimate the uncertainty of a liquid chromatographic assay, Anal. Chim. Acta, 2003,
480, 39 – 52.
[116] A. Maroto, J. Riu, R. Boqué, Estimating uncertainties of analytical results using
information from the validation process, Anal. Chim. Acta, 1999, 391, 173 – 185.
[117] A. Díaz, L. Vázquez, F. Ventura, M.T. Galceran, Estimation of measurement
uncertainty for the determination of nonylphenol in water using solid-phase
extraction and solid-phase microextraction procedures, Anal. Chim. Acta, 2004, 506,
71 – 80.
295
Références bibliographiques
[118] J.
O.
De
Beer,
P.
Baten,
C.
Nsengyumva
and
J.
Smeyers-Verbeke,
Measurement uncertainty from validation and duplicate analysis results in
HPLC analysis of multivitamin preparations and nutrients with different galenic
forms, J. Pharm. Biomed. Anal., 2003, 32, 767 – 811.
[119] A. Gustavo González, M. Ángeles Herrador and Agustín G. Asuero, Practical digest
for evaluating the uncertainty of analytical assays from validation data according to
the LGC/VAM protocol, Talanta, 2005, 65, 1022 – 1030.
[120] G.T. Wernimont, Use of Statistics to Develop and Evaluate Analytical Methods,
Association of American Chemistry, Arlington, VA, 1985.
[121] Analytical Method Committee, Uncertainty of measurement: implications of its use in
analytical science, Analyst, 1995, 120 (9), 2303 – 2308.
[122] ISO/TS 21748, Lignes directrices relatives à l’utilisation d’estimations de la
répétabilité, de la reproductibilité et de la justesse dans l’évaluation de l’incertitude de
mesure, Traduction de la version en anglais de 2003, Spécification Technique ISO,
Geneva 2004.
[123] ISO/IEC Standards 5725-1, Accuracy (trueness and precision) of measurement
methods and results, Part 1: General principles and definitions, ISO Geneva, 1994.
[124] ISO/IEC Standards 5725-3, Accuracy (trueness and precision) of measurement
methods and results, Part 3: General principles and definitions, ISO Geneva, 1994.
[125] S. Kuttatharmmakul, D. L. Massart, J. Smeyers-Verbeke, Comparison of alternative
measurement methods, Anal. Chim. Acta, 1999, 391, 203 – 225.
[126] B. A. Rofman, S. F. Kulaga, M. A. Gabriel, B. Thiyagarajan, J. F. Nancarrow, W. B.
Abrams, Multiclinic evaluation of timolol in the treatment of mild-to-moderate
essential hypertension, Hypertension 1980, 2, 643 – 648.
[127] J. A. Franciosa, E. D. Freis, J. Conway, Antihypertensive and hemodynamic properties
of the new beta adrenergic blocking agent timolol, Circulation 1973, 48, 118 – 124.
[128] W. H. Frishman, C. D. Furberg, W. T. Friedewald, β-adrenergic blockade for
survivors of acute myocardial infarction, N. Eng. J. Med. 1984, 310, 830 – 37.
[129] The International Collaborative Study Group, Reduction of infarct size with the early
use of timolol in acute myocardial infarction, N. Eng. J. Med. 1984, 310, 9 –15.
[130] D.J. Mazzo, A.E. Loper, Timolol maleate in Analytical Profiles of Drug Substances,
1987, 16, 641 – 692.
296
Références bibliographiques
[131] K. Dickstein, R. Hapnes, T. Aarsland, Comparison of aqueous and gellan ophtalmic
timolol with placebo on the 24-hour heart rate response in patients on treatment for
glaucoma, Am. J. Ophtalmol., 2001, 132, 626 – 631.
[132] W. P. Boger, The treatment of glaucoma: role of β-blocking agents, Drugs 1979, 18,
25 – 32.
[133] Sifavitor s.p.a., - Casaletto Lodigiano, Italy, Certificat d’analyse.
[134] Direction Européenne de la qualité du médicament (DEQM), Conseil de l’Europe,
Strasbourg, France, Certificat d’analyse.
[135] S. P. Kulkarni, P. D. Amin, Stability indicating HPTLC determination of timolol
maleate as bulk drug and in pharmaceutical preparations, J. Pharm. Biomed. Anal.,
2000, 23, 983 – 987.
[136] M. Eichelbaum and A.G. Gross, Stereochemical aspects of drug and disposition in
Advances in drug research, vol. 28, Academic Press Limited, Londres, Angleterre,
1996, 1 – 64.
[137] K.M. Rentsch, The importance of stereoselective determination of drugs in the clinical
laboratory, J. Biochem. Biophys. Methods, 2002, 54, 1 – 9.
[138] A.R. Cushny, Biological relations of optically isomeric substances, Baillière, Tindall
& Cox, Londres, Angleterre, 1926.
[139] G. Blaschke, H.P. Kraft, K. Fickentscher, F. Kölher, Chromatographic separation of
racemic thalidomide and teratogenic activity of its enantiomers (author's translation),
Arzneimittel Forschung, 1979, 29, 1640 – 1642.
[140] G. Blaschke, H.P. Kraft, H. Markgraf, Chromatographische Racemattrennung des
Thalidomids und anderer Glutarimid- Derivate, Chem. Ber., 1980, 113, 2318 – 2322.
[141] A Ceccato, Séparation énantiomérique de médicaments par chromatographie liquide
haute performance au moyen de phases stationnaires chirales, Thèse présentée en vue
de l’obtention du grade de Docteur en Sciences Pharmaceutiques, Université de Liège,
1997 – 1998.
[142] S. Mason, The origin of chirality in nature, Trends Pharmacol. Sci., 1986, 7, 20 – 23.
[143] P. A. Lehmann, Stereoisomerism and drug action, Trends Pharmacol. Sci., 1986, 7,
281 – 285.
[144] E. J. Ariëns, Stereoselectivity in the action of drugs, Pharmacology & Toxicology,
1989, 64, 319 – 320.
[145] D. F. Smith, The stereoselectivity of drug action, Pharmacology & Toxicology, 1989,
65, 321 – 331.
297
Références bibliographiques
[146] F. Jamali, R. Mehvar, F.M. Pasutto, Enantioselective aspects of drug action and
disposition: Therapeutic Pitfalls, J. Pharmaceut. Sci., 1989, 78, 695 – 715.
[147] B. Waldeck, Three-dimensional pharmacology, a subject ranging from ignorance to
overstatements, Pharmacology & Toxicology, 2003, 93, 203 – 210.
[148] W. H. De Camp, the FDA perspective on the development of stereoisomers, Chirality,
1989, 1, 2 – 6.
[149] N. R. Srinivas, R. H. Barbhaiya, K.K. Midha, Enantiomeric drug development: Issues,
considerations, and regulatory requirements, J. Pharmaceut. Sci., 2001, 90, 1205 –
1215.
[150] J.A. Tobert, V.J. Cirillo, G. Hitzenberg, I. James, J. Pryor, T. Cook, A. Buntinx, I.B.
Holmes, P.M. Lutterbeck, Enhancement of uricosuric properties of indacrinone by
manipulation of the enantiomer ratio, Clin. Pharmacol. Ther., 1981, 29, 344 – 350.
[151] E. H. Blaine, G.M. Fanelli, J.D. Irvin, J.A. Tobert, R.O. Davies, Enantiomers of
indacrinone: A new approach to producing an isouricemic diuretic, Clin. Exp.
Hypertens. [A], 1982, 4, 161 – 176.
[152] P.H. Vlasses, H.H. Rotmensch, B.N. Swanson, J.D. Irvin, C.L. Johnson, R.K.
Ferguson, Indacrinone: natriuretic and uricosuric effects of various ratios of
enantiomers in healthy men, Pharmacotherapy, 1984, 4, 272 – 277.
[153] A.K. Jain, R. Michael, J.R. Ryan, F.G. McMahon, Antihypertensive and biochemical
effects of indacrinone enantiomers, Pharmacotherapy, 1984, 4, 278 – 283.
[154] B. Feibush, N. Grinberg, The History of Enantiomeric Resolution in Chromatographic
Chiral Separations, édité par M. Zief et L.J. Crane, Chromatographic Sciences Series,
Vol. 40, M. Dekker, New York, 1988.
[155] W. H. De Camp, Chiral drugs: the FDA perspective on manufacturing and control, J.
Pharm. Biomed. Anal., 1993, 11, 1167 – 1172.
[156] E. L. Eliel, S. H. Wilen, Stéréochimie des composés organiques, Editions Lavoisier,
Paris, France, 1996.
[157] S. Allenmark in Chromatographic enantioseparation, methods and applications, 2ème
édition, Ellis Horwood, Chichester, 1991.
[158] M. Lämmerhofer, Chiral separations by capillary electromigration techniques in
nonaqueous media: I. Enantioselective nonaqueous capillary electrophoresis, J.
Chromatogr. A, 2005, 1068, 3 – 30.
298
Références bibliographiques
[159] M. Lämmerhofer, Chiral separations by capillary electromigration techniques in
nonaqueous media: II. Enantioselective nonaqueous capillary electrochromatography,
J. Chromatogr. A, 2005, 1068, 31 – 57.
[160] J. Hermansson, Direct liquid chromatographic resolution of racemic drugs using α1acid glycoprotein as the chiral stationary phase, J. Chromatogr., 1983, 269, 71 – 80.
[161] J. Hermansson, Enantiomeric separation of drugs and related compounds based on
their interaction with α1-acid glycoprotein, Trends in Anal. Chem., 1989, 8, 251 – 259.
[162] T. Miwa, T. Miyakawa, M. K. Y. Miyake, Application of an ovomucoid-conjugated
column for the optical resolution of some pharmaceutically important compounds, J.
Chromatogr., 1987, 408, 316 – 322.
[163] I. Marle, P. Erlandsson, L. Hansson, R. Isaksson, C. Pettersson, G. Pettersson,
Separation of enantiomers using cellulase (CBH I) silica as a chiral stationary phase, J.
Chromatogr., 1991, 586, 233 – 248.
[164] I. Marle, S. Jönsson, R. Isaksson, C. Pettersson, G. Pettersson, Chiral stationary phases
based on intact and fragmented cellobiohydrolase I immobilized on silica, J.
Chromatogr., 1993, 648, 333 – 347.
[165] E. Domenici, C. Bertucci, P. Salvadori, S. Motellier, I.W. Wainer, Immobilized serum
albumin: rapid HPLC probe of stereoselective protein-binding interactions, Chirality,
1990, 2, 263 – 268.
[166] S. Allenmark, B. Bomgren, H. Borén, Direct liquid chromatographic separation of
enantiomers on immobilized protein stationary phases: III. Optical resolution of a
series of N-aroyl
D,L-amino
acids by high-performance liquid chromatography on
bovine serum albumin covalently bound to silica, J. Chromatogr., 1983, 264, 63 – 68.
[167] A. Ceccato, Ph. Hubert, J. Crommen, Direct liquid chromatographic enantioseparation
of sotalol and other β-blockers using an α1-acid glycoprotein-based chiral stationary
phase, J Chromatogr. A, 1997, 760, 193 – 203.
[168] A. Ceccato, Ph. Hubert, P. de Tullio, J.-F. Liégeois, A. Felikidis, J. Géczy, J.
Crommen, Enantiomeric separation of pirlindole by liquid chromatography using
different types of chiral stationary phases, J. Pharm. Biomed. Anal., 1998, 18,
605 – 614.
[169] A. Berthod, T. Ling Xiao, Y. Liu, W. S. Jenks, D. W. Armstrong, Separation of chiral
sulfoxides by liquid chromatography using macrocyclic glycopeptide chiral stationary
phases, J. Chromatogr. A, 2002, 955, 53 – 69.
299
Références bibliographiques
[170] Z. Bosáková, I. Klouková, E. Tesaová, Study of the stability of promethazine
enantiomers by liquid chromatography using a vancomycin-bonded chiral stationary
phase, J. Chromatogr. B: Analytical Technologies in the Biomedical and Life Sciences,
2002, 770, 63 – 69.
[171] K. H. Ekborg-Ott, X. Wang, D. W. Armstrong, Effect of Selector Coverage and
Mobile Phase Composition on Enantiomeric Separations with Ristocetin A Chiral
Stationary Phases, Microchemical Journal, 1999, 62, 26 – 49.
[172] C. Rosini, P. Altemura, D. Pini, C. Bertucci, G. Zullino, P. Salvadori, Cinchona
alkaloids for preparing new, easily accessible chiral stationary phases : II. Resolution
of binaphthol derivatives on silica-supported quinine, J. Chromatogr. A, 1985, 348, 79
– 87.
[173] A. Mandl, L. Nicoletti, M. Lämmerhofer, W. Lindner, Quinine- versus carbamoylated
quinine-based chiral anion exchangers: A comparison regarding enantioselectivity for
N-protected amino acids and other chiral acids, J. Chromatogr. A, 1999, 858, 1 – 11.
[174] A. Ceccato, B. Toussaint, P. Chiap, Ph. Hubert, J. Crommen, Enantioselective
determination of oxprenolol in human plasma using dialysis coupled on-line to
reversed-phase chiral liquid chromatography, J. Pharm. Biomed. Anal., 1997, 15, 1365
– 1374.
[175] G. Félix, T. Zhang, Chiral packing materials for high-performance liquid
chromatographic
resolution
of
enantiomers
based
on
substituted
branched
polysaccharides coated on silica gel, J. Chromatogr. A, 1993, 639, 141 – 149.
[176] Y. Okamoto, Y. Kaida, R. Aburatani, K. Hatada, Optical resolution of amino acid
derivatives by high-performance liquid chromatography on tris(phenylcarbamate)s of
cellulose and amylase, J. Chromatogr. A, 1989, 477, 367 – 376.
[177] Y. Kaida, Y. Okamoto, Optical resolution by high-performance liquid chromatography
on benzylcarbamates of cellulose and amylase, J. Chromatogr. A, 1993, 641, 267 –
278.
[178] Y. Okamoto, Y. Kaida, Resolution by high-performance liquid chromatography using
polysaccharide carbamates and benzoates as chiral stationary phases, J. Chromatogr.
A, 1994, 666, 403 – 419.
[179] E. Yashima, H. Fukaya, Y. Okamoto, 3,5-Dimethylphenylcarbamates of cellulose and
amylose regioselectively bonded to silica gel as chiral stationary phases for highperformance liquid chr, J. Chromatogr. A, 1994, 677, 11 – 19.
300
Références bibliographiques
[180] B.
Chankvetadze,
E.
Yashima,
Y.
Okamoto,
Dimethyl-,
dichloro-
and
chloromethylphenylcarbamates of amylose as chiral stationary phases for highperformance liquid chromatography, J. Chromatogr. A, 1995, 694, 101 – 109.
[181] J. Whatley, Enantiomeric separation by packed column chiral supercritical fluid
chromatography, J. Chromatogr. A, 1995, 697, 251 - 255.
[182] M. S. Villeneuve, R. J. Anderegg, Analytical supercritical fluid chromatography using
fully automated column and modifier selection valves for the rapid development of
chiral separations, J. Chromatogr. A, 1998, 826, 217 – 225.
[183] B. Chankvetadze, L. Chankvetadze, S. Sidamonidze, E. Kasashima, E. Yashima and
Y. Okamoto, 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of
cellulose and amylose as chiral stationary phases for high-performance liquid
chromatographic enantioseparation, J. Chromatogr. A, 1997, 787, 67 – 77.
[184] Y. Okamoto, J. Noguchi, E. Yashima, Enantioseparation on 3,5-dichloro- and 3,5dimethylphenylcarbamates of polysaccharides as chiral stationary phases for highperformance liquid chromatography, Reactive and Functional Polymers, 1998, 37, 183
– 188.
[185] M. Girod, B. Chankvetadze, G. Blaschke, Enantioseparations in non-aqueous capillary
electrochromatography using polysaccharide type chiral stationary phases, J.
Chromatogr. A, 2000, 887, 439 – 455.
[186] M. Liu, S-L. Da, Y.-Q. Feng, L.-S. Li, Study on the preparation method and
performance of a new β-cyclodextrin bonded silica stationary phase for liquid
chromatography, Anal. Chim. Acta, 2005, 533, 89 – 95.
[187] X. Han, T. Yao, Y. Liu, R. C. Larock, D. W. Armstrong, Separation of chiral furan
derivatives by liquid chromatography using cyclodextrin-based chiral stationary
phases, J. Chromatogr. A, 2005, 1063, 111 – 120.
[188] D.W. Armstrong, T. J. Ward, R .D. Armstrong, T. E. Beesley, Separation of drug
stereoisomers by the formation of beta-cyclodextrin inclusion complexes, Science,
1968, 232, 1132 – 1135.
[189] N. Thuaud, B. Sebille, Structural factors affecting the enantiomeric separation of
barbiturates and thiobarbiturates with a chiral side-chain by various β-cyclodextrin
supports. Effects of the presence of hydroxypropyl substituents on the chiral selector,
J. Chromatogr. A, 1994, 685, 15 – 20.
[190] J. Zulkowski, R. Nowakowski, J. Liq. Chromatogr. 1989, 12, 1545 – 1569.
301
Références bibliographiques
[191] W.A. Koning, D. Ichein, T. Runge, B. Pfaffenberg, P. Ludwig and H. Huhnerfuss, Gas
chromatographic
enantiomer
separation
of
agrochemicals
using
modified
cyclodextrins, J. High Resolut. Chromatogr. 14 (1991), p. 530 – 536.
[192] B. Blessington, N. Crabb, J. O'Sullivan., Chiral high-performance liquid
chromatographic
studies
of
2-(4-chloro-2-methylphenoxy)propanoic
acid,
J.
Chromatogr. 1987, 396, 177 – 182.
[193] B. Chankvetadze, M. Saito, E. Yashima, Y. Okamoto, Enantioseparation using
selected polysaccharides as chiral buffer additives in capillary electrophoresis, J.
Chromatogr. A, 1997, 773, 331 – 338.
[194] V. Piette, M. Fillet, W. Lindner, J. Crommen, Non-aqueous capillary electrophoretic
enantioseparation of N-derivatized amino acids using cinchona alkaloids and
derivatives as chiral counter-ions, J. Chromatogr. A, 2000, 875, 353 – 360.
[195] E. De Lorenzi, G. Massolini, Riboflavin binding proteins as chiral selectors in HPLC
and CE, Pharmaceutical Science & Technology Today, 1999, 2, 352 – 364.
[196] J. Haginaka, Enantiomer separation of drugs by capillary electrophoresis using
proteins as chiral selectors, J. Chromatogr. A, 2000, 875, 235 – 254.
[197] M. C. Millot, Separation of drug enantiomers by liquid chromatography and capillary
electrophoresis, using immobilized proteins as chiral selectors, J. Chromatogr. B,
2003, 797, 131 – 159.
[198] Y. Tanaka, S. Terabe, Recent advances in enantiomer separations by affinity capillary
electrophoresis using proteins and peptides, J. Biochem. Biophysic. Meth., 2001, 48,
103 – 116.
[199] S. Fanali, Identification of chiral drug isomers by capillary electrophoresis, J.
Chromatogr. A, 1996, 735, 77 – 121.
[200] K. D. Altria, M. A. Kelly, B. J. Clark, Current applications in the analysis of
pharmaceuticals by capillary electrophoresis. II, TrAC Trends in Anal. Chem., 1998,
17, 214 – 226.
[201] T. J. Ward, A. B. Farris III, Chiral separations using the macrocyclic antibiotics: a
review, J. Chromatogr. A, 2001, 906, 73 – 89.
[202] M. Fillet, Séparation énantiomérique de médicaments par électrophorèse capillaire
à
l’aide de cyclodextrines, Thèse présentée en vue de l’obtention du grade de Docteur en
Sciences Pharmaceutiques, Université de Liège, 1997 – 1998.
302
Références bibliographiques
[203] J. Snopek, I. Jelínek, E. Smolková-Keulemansová, Use of cyclodextrins in
isotachophoresis : IV. The influence of cyclodextrins on the chiral resolution of
ephedrine alkaloid enantiomers, J. Chromatogr. A, 1988, 438, 211 – 218.
[204] M. Fillet, I. Bechet, Ph. Hubert, J. Crommen, Resolution improvement by use of
carboxymethyl-β-cyclodextrin as chiral additive for the enantiomeric separation of
basic drugs by capillary electrophoresis, J. Pharm. Biomed. Anal., 1996, 14, 1107 –
1114.
[205] M. Fillet, L. Fotsing, J. Crommen, Enantioseparation of uncharged compounds by
capillary electrophoresis using mixtures of anionic and neutral β-cyclodextrin
derivatives, J. Chromatogr. A, 1998, 817, 113 – 119.
[206] M. Fillet, Ph. Hubert, J. Crommen, Enantiomeric separations of drugs using
mixtures of charged and neutral cyclodextrins, J. Chromatogr. A, 2000, 875, 123 –
134.
[207] A. M. Abushoffa, M. Fillet, Ph. Hubert, J. Crommen, Prediction of selectivity for
enantiomeric separations of uncharged compounds by capillary electrophoresis
involving dual cyclodextrin systems, J. Chromatogr. A, 2002, 948, 321 – 329.
[208] A. M. Abushoffa, M. Fillet, A.-C. Servais, Ph. Hubert, J. Crommen, Enhancement of
selectivity and resolution in the separation of uncharged compounds using mixtures of
oppositely charged cyclodextrins in capillary electrophoresis, Electrophoresis, 2003,
24, 343 – 350.
[209] Pharmacopée Européenne, 5ème édition, 2004, Conseil de l’Europe, Strasbourg,
France.
[210] J. Crommen, “Capillary electrophoresis”, Comett Euro training course, Montpellier,
September 14-17, 1993
[211] C.L. Copper, J. B. Davis, R.O. Cole, M.J. Sepaniak, Separations of derivatized aminoacid enantiomers by cyclodextrin-modified capillary electrophoresis: mechanistic and
molecular modelling studies, Electrophoresis, 1994, 15, 785 – 792.
[212] D. Belder, G. Schomburg, Chiral separations of basic and acidic compounds in
modified capillaries using cyclodextrin-modified capillary zone electrophoresis, J.
Chromatogr., 1994, 666, 351 – 365.
[213] I.Z. Atamna, H.J. Issaq, G.M. Muschik, G.M. Janimi, Optimization of resolution in
capillary zone electrophoresis: combined effect of applied voltage and buffer
concentration, J. Chromatogr., 1991, 588, 315 – 320.
303
Références bibliographiques
[214] H. Poppe, Overloading and interaction phenomena in electrophoretic separations,
Anal. Chem., 1992, 64, 1908 – 1919.
[215] H. Y. Aboul-Enein, M. R. Islam, Direct separation and optimization of timolol
enantiomers on a cellulose tris-3,5-dimethylphenylcarbamate high-performance liquid
chromatographic chiral stationary phase, J. Chromatogr. A, 1990, 511, 109 – 114.
[216] B. Toussaint, B. Streel, A. Ceccato, Ph. Hubert, J. Crommen, Determination of the
enantiomers of 3-tert.-butylamino-1,2-propanediol by high-performance liquid
chromatography using mass spectrometric detection, J Chromatogr. A, 2000, 896,
201 – 107.
[217] G. M. Hanna, C. A. Lau-Cam, Determination of the optical purity of timolol maleate
by proton nuclear-magnetic-resonance spectroscopy with a chiral Pr(III) shift-reagent,
J. Pharm. Biomed. Anal., 1995, 13, 1313 – 1319.
[218] P. M. Lacroix, R. W. Sears, B. A. Dawson, D. B. Black, Canadian Bureau of Drug
Research, Report N°.94/1 (E) (1994).
[219] P. M. Lacroix, R. W. Sears, B. A. Dawson, D. B. Black, HPLC and NMR methods for
the quantitation of the (R)-enantiomer in (-)-(S)-timolol maleate drug raw-materials,
Chirality, 1994, 6, 484 – 491.
[220] G.M. Hanna, Nonequivalence behavior studies for the direct determination of
enantiomeric purity and absolute configuration of timolol by NMR, Pharmazie 2004,
59, 923 – 928.
[221] M. X. Huo, Determination of related substances in timolol maleate and its eye drops
by reversed-phase ion-pair HPLC, Yaowu Fenxi Zazhi, 2000, 20, 181 – 184.
[222] D. J. Mazzo, P. A. Snyder, High-performance liquid chromatography of timolol and
potential degradates on dynamically modified silica, J. Chromatogr., 1988, 438, 85 –
92.
[223] T. V. Olah, J. D. Gilbert, A. Barrish, Determination of the β-adrenergic blocker
timolol in plasma by liquid chromatography—atmospheric pressure chemical
ionization mass spectrometry, J. Pharm. Biomed. Anal., 1993, 11, 157 – 163.
[224] D. J. Mazzo, Simultaneous determination of maleic acid and timolol by highperformance liquid chromatography, J. Chromatogr., 1984, 299, 503 – 507.
[225] K. Kubota, H. Nakamura, E. Koyama, T. Yamada, K. Kikuchi, T. Ishizaki, J.
Chromatogr. Biomed. Appl., 1990, 533, 255 – 263.
[226] M. S. Lennard, S. Parkin, J. Chromatogr. Biomed. Appl., 1985, 338, 249 – 252.
[227] Manuel d’instruction pour Chiralcel OD-H, Daicel Chemical Industries, LTD.
304
Références bibliographiques
[228] G.E.P. Box, D.W. Behnken, Some new three level designs, Technometrics, 1960, 2,
455 – 476.
[229] B. Boulanger, Notes de cours intitulé « Plans d’expériences et stratégies
d’optimisation des méthodes analytiques », année académique 2000 – 2001.
[230] F.H. Walters, H. Qui, The use of a Box-Behnken three factor design to study the paper
chromatographic separation of several amino acid hydroxamates, Analytical Letter,
1992, 25, 1131 – 1142.
[231] R. Ragonese, M. Macka, J. Hughes, P. Petocz, The use of the Box-Behnken
experimental design in the optimisation and robustness testing of a capillary
electrophoresis method for the analysis of ethambutol hydrochloride in pharmaceutical
formulation, J. Pharm. Biomed. Appl., 2002, 27, 995 – 1007.
[232] J. Miller, Chromatography in Concepts and Contrasts, John Wiley and Sons, New
York, 1988.
[233] D. Hoffman, R. Kringle, Two-sided tolerance intervals for balanced and unbalanced
random effects models, Journal of Biopharmaceutical Statistics, 2005, 15, 283 – 293.
[234] United States Pharmacopoeia XXII, general information <1225>, The United States
Pharmacopoeia Inc., Rockville, MD, USA, p.1710, 1990.
[235] ICH: Q2B Validation of Analytical Procedures: Methodology, Guidance for Industry,
November 1996.
[236] L. Cuadros-Rodríguez, A. M. García-Campaña, E. Almansa-López, F. J. EgeGonzález, M. L. Castro Cano, A. G. Frenich, J. L. Martínez-Vidal, Anal. Chim. Acta
478 (2003) 281.
[237] Food and Drug Administration: International Conference on Harmonization: guideline
on validation of analytical procedures: definitions and terminology, Fed. Regist., 1995,
60, 11260 – 11262.
[238] J. Van Loco, M. Elskens, C. Croux, H. Beernaert, Linearity of calibration curves: use
and misuse of the correlation coefficient, Accred. Qual. Assur., 2002, 7, 281 – 285.
[239] D.B. Hibbert, Further comments on the (miss-)use of r for testing the linearity of
calibration functions, Accred. Qual. Assur., 2005, 10, 300 – 301.
[240] Miller and Miller, Statistics and Chemometrics for Analytical Chemistry, 4th ed.,
Prentice Hall, pp 127 – 130.
[241] A.G. Gonzalez, A.G. Asuero, Computational program for validating methods,
Fresenius J. Anal. Chem., 1993, 346, 885 – 887.
305
Références bibliographiques
[242] Food and Drug Administration, Process Analytical Technology (PAT) Initiative, 2004,
http://www.fda.gov/cder/OPS/PAT.htm
[243] ICH Topic Q2B Validation of analytical procedures: Methodology. Step 4,
consensus guideline, the International Conference on Harmonization of Technical
Requirements for registration of Pharmaceuticals for human use, November 6, 1996.
[244] Y. Vander Heyden, K. Luypaert, C. Hartman, D.L. Massart, J. Hoogmartens, J. de
Beer, Ruggedness tests on the high-performance liquid chromatography assay of the
United States Pharmacopeia XXII for tetracycline hydrochloride. A comparison of
experimental designs and statistical interpretations, Anal. Chim. Acta, 1995, 312, 245
–262.
[245] P. Dehouck, Y. Vander Heyden, J. Smeyers-Verbeke, D.L. Massart, R.D. Marini, P.
Chiap, Ph. Hubert, J. Crommen, W. Van de Wauw,J. De Beer, R. Cox, G. Mathieu,
J.C. Reepmeyer, B. Voigt, O. Estevenon, A. Nicolas, A. Van Schepdael, E. Adams, J.
Hoogmartens, Interlaboratory study of a liquid chromatography method for
erythromycin: determination of uncertainty J. Chromatogr. A, 2003, 1010, 63 – 74.
[246] F.E.
Grubbs,
Procedures
for
detecting
outlying
observations
in
samples,
Technometrics, 1969, 11, 1 – 21.
[247] P.C. Kelly, Outlier detection in collaborative studies, J. Assoc. Off. Anal. Chem., 1990,
73, 58 – 64.
[248] R. H. Albert, Outliers in collaborative studies: coping with uncertainty, J. Assoc. Off.
Anal. Chem., 1986, 69, 429 – 432.
[249] A. Rizzi, Fundamental aspects of chiral separations by capillary electrophoresis,
Electrophoresis, 2001, 22, 3079 – 3106.
[250] J.B. Vincent, G. Vigh, Nonaqueous capillary electrophoretic separation of enantiomers
using the single-isomer heptakis(2,3-diacetyl-6-sulfato)-beta-cyclodextrin as chiral
resolving agent, J. Chromatogr. A, 1998, 816, 233 – 241.
[251] M. Tacker, P. Glukhovskiy, H. Cai, G. Vigh, Nonaqueous capillary electrophoretic
separation
of
basic
enantiomers
using
heptakis(2,3-dimethyl-6-sulfato)-beta-
cyclodextrin , Electrophoresis, ,1999, 20, 2794 – 2798.
[252] W. Zhu, G. Vigh, Enantiomer separations by nonaqueous capillary electrophoresis
using octakis(2,3-diacetyl-6-sulfato)-gamma-cyclodextrin, J. Chromatogr. A, 2000,
892, 499 – 507.
306
Références bibliographiques
[253] M.B. Busby, O. Maldonado, G. Vigh, Nonaqueous capillary electrophoretic separation
of basic enantiomers using octakis(2,3-O-dimethyl-6-O-sulfo)-gamma-cyclodextrin, a
new, single-isomer chiral resolving agent, Electrophoresis, 2002, 23, 456 – 461.
[254] A.-C. Servais, M. Fillet, A.M. Abushoffa, P. Hubert, J. Crommen, Synergistic effects
of ion-pairing in the enantiomeric separation of basic compounds with cyclodextrin
derivatives in nonaqueous capillary electrophoresis, Electrophoresis, 2003, 24, 363 –
369.
[255] A.-C. Servais, M. Fillet, P. Chiap, W. Dewé, Ph. Hubert, J. Crommen, Enantiomeric
separation of basic compounds usin heptakis(2,3-di-O-methyl-6-O-sulfo)-betacyclodextrin in combination with potassium camphorsulfonate in nonaqueous capillary
electrophoresis: Optimization by means of an experimental design, Electrophoresis,
2004, 25, 2701 – 2710.
[256] A. Aumatell, R. J. Wells, D. K. Y. Wong, Enantiomeric differentiation of a wide-range
of pharmacologically active substances by capillary electrophoresis using modified
beta-cyclodextrins, J. Chromatogr. A, 1994, 686, 293 – 307.
[257] A. Aumatell, R. J. Wells, Enantiomeric differentiation of a wide-range of
pharmacologically active substances by cyclodextrin-modified micellar electrokinetic
capillary chromatography using a bile-salt, J. Chromatogr. A, 1994, 688, 329 – 337.
[258] K. D. Altria, Improved performance in capillary electrophoresis using internal
standards, LC GC Europe, 2002, 15, 588 – 594.
[259] H.-Y. Liu, W.-H. Ding, Determination of homologues of quaternary ammonium
surfactants by capillary electrophoresis using indirect UV detection, J. Chromatogr. A,
2004, 1025, 303 – 312.
[260] Ph. Hubert, J.-J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.-A.
Compagnon, W. Dewé, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G.
Muzard, C. Nivet, L. Valat, Harmonization of strategies for the validation of
quantitative analytical procedures - A SFSTP proposal - part I, J. Pharm. Biomed.
Anal., 2004, 36, 579 – 586.
[261] J. M. Bland, D. G. Altman, Statistical methods for assessing agreement between two
methods of clinical measurement, The Lancet, 1986, 307 – 310.
[262] H. Petersen, D. Stöckl, O. Blaabjerg, B. Pedersen, E. Birkemose, L. Thienpont, J. F.
Lassen, J. Kjeldsen, Graphical interpretation of analytical data from comparison of a
field method with a Reference Method by use of difference plots, Clinical Chemistry,
1997, 43, 2039 – 2046.
307
Références bibliographiques
[263] C. Perrin, H. Fabre, D.L. Massart, Y. Vander Heyden, Influence of peak measurement
parameters on the quality of chiral electrophoretic separations, Electrophoresis, 2003,
24, 2469 – 2480.
[264] K. D. Altria, N. G. Clayton, R. C. Harden, J. V. Makwana, M. J. Portsmouth, An intercompany cross-validation exercise on capillary electrophoresis testing of dose
uniformity of paracetamol content in formulations, Chromatographia 1995, 40, 47 –
50.
[265] A. Amini, B. Wiersma, D. Westerlund, U. Paulsen-Sörman, Determination of the
enantiomeric purity of S-ropivacaine by capillary electrophoresis with methyl-betacyclodextrin as chiral selector using conventional and complete filling techniques
Eur. J. Pharm. Sc. 1999, 9, 17 – 24.
[266] B. X. Mayer, M. Müller, K. Altria, Long-term analyses with capillary electrophoresis,
LC GC Europe, 2001, 14, 19 – 26.
[267] F.E. Satterthwaite, An approximate distribution of estimates of variance components,
Biometrics Bull, 1946, 2, 110 – 114.
[268] S.R. Searle, G. Casella, C.E. McCulloch in Variance components, Wiley, New-York,
1992.
[269] W. Horwitz, L.R. Kamps and K.W. Boyer, Quality assurance in the analysis of foods
for trace constituents, J. Assoc. off. Anal. Chem. 1980, 63, 1344 – 1354.
308