(Microsoft PowerPoint - expos\351-restitutionSENSO.ppt)

Transcription

(Microsoft PowerPoint - expos\351-restitutionSENSO.ppt)
Quality of NDT measurements
and accuracy
of concrete physical properties
Denys BREYSSE, Mathilde LARGET,
Zoubir Mehdi SBARTAI, Jean-François LATASTE (Univ. Bordeaux)
Jean-Paul BALAYSSAC (Univ. Toulouse)
NDT – CE 2009, Nantes, 30th june-3rd july 2009
1. Challenge of non destructive techniques and difficulties
Provide an estimate of material indicators
enabling to reassess the structure, to check safety or reliability
Indicators of interest are : strength, modulus, porosity, water content, chloride
content, carbonation depth...
Estimates means : average values with level of confidence, c.o.v., characteristic
values
(reliability analysis need c.o.v., but they often lack real reliable data)
NDT – CE 2009, Nantes, 30th june-3rd july 2009
To analyse measurements means:
To estimate the values of required indicators from the measurements
(observables)
accounting for
- all potential influent factors (bias)
- effects of variability and uncertainty
NDT – CE 2009, Nantes, 30th june-3rd july 2009
2. Assessing variability at various scales
What has been done in the laboratory AND on site
At a local scale
Point repeatability
Local repeatability
(within specimen)
Variance V1
Variance V2
NDT – CE 2009, Nantes, 30th june-3rd july 2009
V1
Point repeatability evaluation
V2
V2i
Local repeatability
measurement (within sample,
inside « homogeneous area »
V2j
V2k
V3
NDT – CE 2009, Nantes, 30th june-3rd july 2009
Global
variability
(between
specimens,
between
areas)
Spatial variability of properties (indicators X / observables Y)
Ym(x) = Yref + Yglob(x) + Yloc + εY
Var (Ym(x)) = Var (Yref) + Var(Y)glob(x) + Var(Yloc) + Var (εY)
V1
=0
V2
V3
NDT – CE 2009, Nantes, 30th june-3rd july 2009
3. Calibration of models between indicators and observables
Data and results come from a huge experimental program (ANR-SENSO)
implying :
- five research teams,
- laboratory and on-site programs,
- many different techniques (about 50 observables)
Strategy was defined such as to :
- build an extensive database (material indicators / NDT observables)
- quantify variability at various scales
- calibrate Y = fM (X) models for all indicators
- study quality of measurements, enabling selection of « best observables »
- analyse complementarity of observables
- develop data fusion for helping assessment
NDT – CE 2009, Nantes, 30th june-3rd july 2009
quantify variability at various scales
Obs 36/54(Bordeaux)
6
cv V1
cv V2
5
cv V3
4
3
2
1
0
LABO
Saint-Nazaire
Bordeaux
on site
Selection of « best » observables
- accuracy : low V1
- sensitivity : a priori, the highest sensitivity, the better… but can be different
Suppose
Y1 = a + b Sr + c Esat
Y2 = a’ + b’ Sr + c’ Esat
when combination is considered, what
imports is maximizing [ b c’ – b’ c ]
NDT – CE 2009, Nantes, 30th june-3rd july 2009
4. Assessment of variability and of its consequences
Models have been calibrated – let us assume they are EXACT (no model error)
Y1 = 1128 + 4.87 Sr + 26.4 10-3 Esat
Y2 = 2644 + 8.77 Sr + 39.1 10-3 Esat
Y3 = 1.94 – 0.015 Sr + 0.053 10-3 Esat
Y4 = 0.541 – 0.0016 Sr + 0.0014 10-3 Esat
Y5 = 0.956 + 0.00379 Sr - 0.0032 10-3 Esat
Yi = ai + bi Sr + ci Esat
If one assumes Sr is known (controlled)
Esat = fMOD-1 (Yi)
quality of estimation depends
on n (test number) and
on variance of measurement (V2 or V3)
minimal number of tests for a given confidence and accuracy
n (kα/2 / ci ∆E(Esat))² . V
NDT – CE 2009, Nantes, 30th june-3rd july 2009
Determination of Esat
acoustic waves
&
&
resistivity
&
radar
&
#$ ' #
"#
∆%$
∆
$$
!
But… do not forget model error ! (think to « calibration »)
Bilinear regressions have been chosen
ai, bi and ci have some statistical uncertainty :
f.i., for Y2 = 2644 + 8.77 Sr + 39.1 10-3 Esat
(+/-290) (+/-1.45)
(+/- 10 10-3)
and r² = 0.65
NDT – CE 2009, Nantes, 30th june-3rd july 2009
&
Assessing condition combining several observables
4,5
6000
4
5000
4000
3000
3,5
4-4,5
3
3,5-4
2,5
3-3,5
2
2,5-3
1,5
2-2,5
2000
1000
0-1000
Esat
20
0
40
60
100
Sr
Esat
Y2 = velocity of compression waves
0-0,5
40
20
0
Sr
10000
1000-2000
10000
80
16667
2000-3000
23333,33333
Y3 = log(electrical resistivity)
porosité (%)
20
15
Case of
porosity/saturation
10
5
Re 2
Ra 1
US 3c
US 6
Ra 7c
Re 7
saturation (%)
0
0
10
20
30
NDT – CE 2009, Nantes, 30th june-3rd july 2009
40
50
60
70
80
1-1,5
0,5-1
60
23333
3000-4000
0
43333
4000-5000
80
0
30000
5000-6000 36666,66667
1,5-2
100
0,5
36667
50000
1
90
100
Assessing condition – problems with variability
porosité (%)
20
15
10
5
Re 2
Ra 1
US 3c
US 6
Ra 7c
Re 7
saturation (%)
0
0
10
20
30
40
50
60
70
80
90
100
Specimen A
Specimen B
porosité (%)
Specimen C
porosité (%)
20
20
15
15
10
10
5
Re 2
Ra 1
US 3c
US 6
Ra 7c
Re 7
5
saturation (%)
0
0
10
20
30
40
50
60
70
80
90
100
Re 2
Ra 1
US 3c
US 6
Ra 7c
Re 7
saturation (%)
0
0
NDT – CE 2009, Nantes, 30th june-3rd july 2009
10
20
30
40
50
60
70
80
90
100
Et maintenant, un dépouillement « en direct »
Les données (salle du 3ème étage) – moyenne sur les 3 dalles
- Vitesse US transmission : 4746 m/s +/- 20 m/s
- (log) Résistivité quadripole 5 cm (Ω.m) : 1,77 +/- 0,005
- (log) Résistivité quadripole 10 cm (Ω.m) : 1,81 +/- 0,005
- (log) Résistivité Wenner (Ω.m) : 1,90 +/- 0,01
- capacité (GE) : - 483,4 +/- 8
- amplitude radar : 0,38 +/- 0,01
NDT – CE 2009, Nantes, 30th june-3rd july 2009
Avertissement !
Les résultats qui suivent font l’objet d’une « manipulation »
NDT – CE 2009, Nantes, 30th june-3rd july 2009
Sr - porosité
30
p
Esat
25
20
15
10
5
Re 2
Ra 1
Re 1
Re 7
Ca 1
US 6
Sr
0
20
40
60
80
100
Parfaite cohérence des mesures entre elles
Parfaite complémentarité
Bonne capacité prédictive… mais
NDT – CE 2009, Nantes, 30th june-3rd july 2009
Résultat obtenu
avec l’exploitation immédiate
des relations de corrélations
et des mesures
30
30
p
Esat
25
25
20
20
15
15
10
5
Re 2
Ra 1
Re 1
Re 7
Ca 1
US 6
p
Esat
10
5
Sr
0
Re 2
Ra 1
Re 1
Re 7
Ca 1
US 6
Sr
0
20
70
120
Résultat immédiat absurde
20
40
60
80
nécessité d’une calibration
NDT – CE 2009, Nantes, 30th june-3rd july 2009
100
Avec la même calibration
40000
Esat (Mpa)
35000
30000
25000
Re 2
Ra 1
Re 1
Re 7
Ca 1
US 6
20000
15000
Estimation Sr-Rc
10000
5000
Sr
90
0
20
40
60
80
Estimation Sr-module d’Young
Rcsat (MPa)
100
100
80
70
Re 2
Ra 1
60
Re 1
Re 7
Ca 1
US 6
50
40
30
20
10
Sr
0
20
40
60
80
Besoin d’essais semi-destructifs
NDT – CE 2009, Nantes, 30th june-3rd july 2009
100
Conclusions
ANR-SENSO très vaste Base de Données
Méthodologie pour analyser les conséquences de l’hétérogénéité à différentes
échelles
Mesure de différentes variances (ponctuelle, locale, globale)
des indicateurs
vers la variabilité
Le CND permet, après calibration, d’estimer les propriétés du matériau et sa
variabilité, et de quantifier la précision de l’estimation.
L’estimation de la résistance mécanique requiert de recourir à quelques mesures
semi-destructives (rebond, arrachement…)
Ces techniques ouvrent de larges portes pour les calculs de fiabilité des structures
Le point principal demeure la question de la calibration des modèles. Elle a été
conduite au laboratoire (et son utilité vient d’être illustrée) et sur site.
NDT – CE 2009, Nantes, 30th june-3rd july 2009
30
p
25
20
15
10
5
US 3a
US 3c
US 1'
IE 1 d
Ra 1
Re 1
Re 2
Ca 1
US 6
Re 7
0
20
30
40
50
60
70
80
NDT – CE 2009, Nantes, 30th june-3rd july 2009
90
Sr
100
30
p
US 3a
US 1'
IE 1 d
Re 2
Re 7
25
20
US 8
US 11
Ra 1
Ca 1
US 3c
US 1
Re 1
US 6
15
10
5
Sr
0
20
40
60
80
100
120
NDT – CE 2009, Nantes, 30th june-3rd july 2009
140

Documents pareils