Reactive Extrusion

Transcription

Reactive Extrusion
Philippe Cassagnau
L’extrusion
L
extrusion réactive au service du recyclage
Université de St Etienne
INSA de Lyon
Université de Lyon 1
Oyonnax/PEP, juillet 2012
• Reactive Extrusion: To perform chemical reactions
during continuous extrusion of polymers and/or
polymerizable monomers
• Other terms:
– Reactive Compounding:
p
g also includes batch mixingg
– Reactive Processing: also includes RIM (reaction
injection molding)
• Extruder: co-rotating twin screw extruder
Advantages
g / Drawbacks
Reactive Extrusion
ADVANTAGES
•
•
•
•
•
•
•
•
Continuous process - Productivity
No solvents necessary – Low cost
Good mixing and transport of high viscosity media
Few viscosity or torque limitations
Chemical modification and compounding in a single step
Possibility to add liquids, solids, gas
e ova of
o side
s de products
p oducts by degassing
degass g
Removal
Adjustment of residence and reaction time by modular screw
profile
DRAWBACKS
• Limited number of chemical reactions accessible
– Fast kinetics – very limited residence time (<60s)
– High
g conversion and selectivity
y necessaryy
– No exothermal reactions (poor heat transfer) specially at
large diameters extruders
• E
Extruder
d is
i an expensive
i “black
“bl k box”
b ” Academic point of view!!
– Few sampling possibilities
– Online analytics limited
– Free volume of a 58 mm diameter is 4.5 l !
– Scaling up sometimes an issue !
Reaction type
yp
Description
p
Bulk polymerization
Synthesis of high molecular weight (linear, branched,
crosslinked) polymer from its monomer
Grafting reaction
Functionalization
Formation of grafted polymers by reaction between the
polymer and functional monomers
Functionalization or modification of functional groups
Controlled
degradation
g degradation
g
of high
g molecular
Controlled molecular weight
polymer (Ex: PP)
Reactive blending
Fabrication of compatibilized polymer blends (reaction at
the interface)
Fabrication of polymer blends by in situ polymerization of
one of the two phases (Ex: TPV)
Nano-structuration of polymer blends by grafting and
polymerization
BULK POLYMERIZATION BY REACTIVE EXTRUSION
P l dditi
Polyaddition:
P l
Polyurethanes
th
Living Polymerization: -Caprolactone
Polymerization
RO
OR
Ti
RO
O
RO
RO
OR
RO
Ti
O
RO
C
O
RO
O
RO
Ti
RO
C
C
O
O
Radical: MMA polymerization
Anionic polymerisation: lactam
polymerization
O
O
R
N
OR
C
H
+
n
O
N
C
O
Base
O
O
R
N
n
N
C
H
Aktivator
Polycondensation: Polyetherimides (PEI)
O
O
C H3
O
O
O
O
C H3
O
O
+
NH2
O
-2 H 2 O
Condensation of Bisphenol A-dianhydride with
diamines to Polyetherimides:
O
N
N H2
O
CH3
O
O
CH3
N
O
n
Grafting reactions
Introduction of functional groups onto non polar
polymers (polyolefin)
Free
Radical
Initiator
Base
P l
Polymer
Melt
Mix
Graft
Monomer
Vent
React
Devol
Extrude
Grafted
Polymer
Mélange de Polymères
Vue schématique et globale des mécanismes de mélange à ll'état
état fondu
Différentes étapes
1. Eléments de fluide de taille macroscopiques (mm)
2 Etirage
2.
Eti
d
de ces élé
éléments
t sous forme
f
de
d nappes fondues
f d
3. Rupture de ces nappes sous forme de fibres Rupture causée par des
4. Rupture de ces fibres sous forme de gouttes instabilités de Rayleigh
8
Développement de la morphologie
Un cas dd’école:
école: Mélange PP/EVA (80/20)
Fusion des
polymères
Réticulation de l’EVA
Mélange non réactif
Equilibre dynamique: Coalescence
Rupture
Réticulation
Voir TPV
9
Compatibilisation réactive/mélanges réactifs
Principe
Le copolymère n
n'est
est pas ajouté,
ajouté il est formé grâce à une réaction chimique
pendant l'étape de mélange (mélange réactif)
Polymère A
Polymère B
C
Copolymère
l è AB
+
Suivant que la fonction réactive est portée sur la chaîne ou en bout de chaîne et suivant le
nombre de fonctions par chaîne on produit différents types de copolymères (à blocs,
blocs
segmentés, greffés, en peigne).
Avantage
• La réaction chimique ne peut avoir lieu qu'à l'interface donc le copolymère va s'y trouver (au
moins initialement)
• Pas
P de
d nécessité
é
ité de
d faire
f i diffuser
diff
l copolymère
le
l è
Inconvénient
• Nécessité d'utiliser des polymères réactifs (au mieux une faible proportion) qui sont chers.
• Le processus d'extraction du copolymère par le cisaillement n'est pas forcément supprimé.
10
Réactions usuelles en compatibilisation réactive
Amine
O
O
A
+
H2N
O
B
N
A
O
O
C li Anhydride
Cyclic
A h d id
A
Epoxy
OH
O
O
+
HO
O
B
Acide
B
A
O
B
THE REACTIVE EXTRUSION PROCESS
A Relevant and Valuable Technology for Polymer Materials
Fillers
Plasticizers
Additives
Formulations
Bulk Polymerization
Grafting &
Functionalization
Blending
g&
Reactive Blending
In situ Filler
Modification
Materials
Shaping
Devolatization
Many Advantages :
-Improve the selectivity of the reactions
-NO viscosity limitations
- Devolatization
D
l ti ti
-Avoid the formation of undesired products
-Implement process control
-NO organic Solvents/GREEN PROCESS
Some Drawbacks :
-Short
Sh t residence
id
ti
times
Number of chemical reaction limited
- Scaling up sometimes an issue
REACTIVE PROCESSING
Chemistryy
From COPERION web site
P
Process
Towards Reactive Extrusion Modeling
FLOW
HEAT TRANSFER
• Residence times
ff
• Mixing effect
• Melt flow behavior
• Convection
• Dissipation
2

W
REACTION
• Reaction kinetics
Homogeneous conditions?
•
H t off reaction
Heat
ti
SCALE-UP
• Reactive extrusion modeling
Reactive extrusion modeling
What do we need ?
Flow modeling along the twin screw extruder
Kinetic equations  = f (t,
(t T,...)
T )  = f (t,
(t T,...)
T )
 = f (
Change in rheological beha
behavior
ior with
ith reaction e
extent
tent
0,015
FLOW
+ coupling
p g
Q=10 kg/h
0,01
HEAT TRANSFER
• Residence time
• Mixing effect
• Melt flow behavior
• Convection
• Dissipation
E(t)
Q=6 kg/h
REACTION
0,005
Q=3 kg/h
• Reaction kinetics
• Heat of reaction
Q=1 kg/h
0
0
200
400
600
Time (s)
800
1000
1200
LUDOVIC Software
New Trends in Reactive Processing
High Shear Extruder: N:1200 rpm
REACTIVE EXTRUSION IN IMP/AXELONE-CAMPUS
IMP – Polymer Materials Engineering Lab. Head UMR: Prof. Ph Cassagnau philippe.cassagnau@univ‐lyon1.fr
3 IMP locations
and 2 subsub-locations
INSA Lyon, Villeurbanne
Prof. Etienne FLEURY etienne.fleury@insa‐lyon.fr
INSA‐Oynnax
With specific processing equipments
Université Claude Bernard Lyon 1
Université
Claude Bernard Lyon 1
POLYTECH – Villeurbanne
Prof. Philippe CASSAGNAU
Université Jean Monnet, Saint‐Etienne Prof. Christian CARROT CARROT@univ‐st‐etienne.fr
Institut Joliot Curie ENS Lyon
Hôtel à Projets
Chemistry‐Physic‐ Biology
SCIENTIFIC POLICY & OBJECTIVES
From Molecules and Nano-Objects to (Nano)structured Materials
& Applications by Considering Polymer Chemistries, Processes,
and Modeling
Example : Sustainable approaches for designing and use of polymers
Polymerization
Processes
Polymer Processing
Molecules and
Nano--Objects
Nano
Polymer
Ch i t
Chemistry
M
Monomers
and d
polymers from
renewable resources
Bulk,, UV, ,
Bulk, UV, solid state … polymerizations
Robust chemistries
Click chemistry
Reactive extrusion
Applications
Nanostructures
Multiscale
morphologies
Solvent‐free
Solvent‐
processes
Energy saving
Reactive extrusion Closed mold
curing (RTM)
Polymers for Energy
Consideration of
LCA approaches
Interfaces Blends
Biosourced polymerbased materials
Recycling
Membranes
Biosourced polymerbased materials
Recycling
Reversible materials
IMP Collaborative Projects & Budget 2012
75 projects are running
 220 persons

Documents pareils