B1 Patent specification

Transcription

B1 Patent specification
Europaisches Patentamt
J
European Patent Office
Office europeen des brevets
EUROPEAN
©
00 Publication number:
PATENT
© Date of publication of patent specification: 30.10.91
@ Application number: 86850433.3
©
0 267
348
B1
SPECIFICATION
Int. Cl.5: C09D 5/08, E 0 4 C 5 / 0 1 ,
C04B 32/02, C04B 3 8 / 0 2
(§) Date of filing: 11.12.86
Anti-corrosive composition for iron and steel surfaces and the use thereof for protecting the
reinforcing steel bars of autoclaved lightweight concrete.
© Proprietor: INTERNATIONELLA SIPOREX AB
Stromgatan 11 Box 21053
S-200 21 Malmo(SE)
© Date of publication of application:
18.05.88 Bulletin 88/20
© Publication of the grant of the patent:
30.10.91 Bulletin 91/44
@ Inventor: Ikunaga, Takahisa
5-18, 6-Chome, Seya
Seya-Ku Yokohama(JP)
Inventor: Nakatsumi, Maho
85-1, Nakaechi
Atsugi-Shi Kanagawa-Ken(JP)
® Designated Contracting States:
BE DE FR GB IT SE
© References cited:
DE-A- 1 771 509
FR-A- 2 261 326
CHEMICAL ABSTRACTS, vol. 84, no. 12, 22nd
March 1976, page 96, abstract no. 75844w,
Columbus, Ohio, US; & JP-A-75 59 413
(NIPPON STEEL CORP.) 22-05-1975
CD
00
Representative: Lindestrom, Lennart et al
STENHAGEN PATENTBYRA AB Box 17 709
S-118 93 Stockholm(SE)
CHEMICAL ABSTRACTS, vol. 91, no. 20, November 1979, pages 289-290, abstract no.
162246r, Columbus, Ohio, US; & JP-A-79 47
723 (YAMAUCHI RUBBER INDUSTRY CO.
LTD) 14-04-1979
CO
to
CM
CL
LU
Note: Within nine months from the publication of the mention of the grant of the European patent, any person
may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition
shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee
has been paid (Art. 99(1 ) European patent convention).
Rank Xerox (UK) Business Services
EP 0 267 348 B1
Description
5
70
75
20
25
30
35
40
45
50
The present invention relates to a method for protecting the reinforcing bars of autoclaved light-weight
aerated concrete, that is, light-weight concrete obtained by incorporating a gas-developing agent such as
aluminium powder in the light-weight concrete raw mixture to cause the latter to expand after casting and
so-called foamed light-weight concrete, that is, light-weight concrete obtained by foaming the raw material
mixture before casting it. The invention is also concerned with a composition for the reinforcing steel bars of
autoclaved light-weight aerated concrete (abbreviated as ALC hereinafter). That type of light-weight concrete
has usually a specific gravity of 0,4 to 1,2.
Description of the prior art
ALC is preferably produced by mixing silicious raw materials and calcarious raw materials with water,
incorporating the resulting mix with aluminium metal powder and other additives to make a slurry, pouring
the slurry in a mould containing reinforcing steel bars, permitting the slurry to expand and to become halfplastic, cutting the half-plastic concrete into a desired shape using a piano wire or the like, and finally curing
the cut concrete with steam in an autoclave.
ALC thus produced is a building material which is light in weight and superior in heat insulation and
durability. However, it has a disadvantage that it contains pores accounting for about 80 % of its volume
and the pores permit moisture and corrosive substance to migrate through ALC so that to corrode the
reinforcing steel bars.
For anti-corrosion, it has been a common practice to apply a proper anti-corrosive mixture to reinforcing
steel bars. Conventional anti-corrosive materials are divided into three groups. (1) One which contains
cement as the major component, (2) One which contains asphalt as the major component, (3) One which
contains resin emulsion or latex as the major component.
The anti-corrosive mixture of the first group is most widely used because it is inexpensive, it produces
good bond to both ALC and steel bars (simply referred as "bond" hereinafter), and it is moderately
satisfactory in anti-corrosiveness. On the other hand, it has some disadvantages. For example, it is limited
in pot life; it is liable to the variation of cement quality; it permits water to migrate; it forms an anti-corrosive
coating poor in flexibility; and it is not easily applied to reinforcing steel bars thinner than 5 mm in diameter
which are used for thin ALC panels, because of its poor flexibility. The anti-corrosive mixture of the second
group covers generally the deficiency of the one of the first group. However, it is still very poor in bond.
The anti-corrosive mixture of the third group has an advantage of having a long pot life and stable
quality. However, it greatly varies in flexibility, bond and anti-corrosive performance depending on the type
of emulsion or latex and mixing ratio of emulsion or latex and other additives. According to information
disclosed so far, the anti-corrosive mixture of the third group is composed of a synthetic rubber,
thermoplastic resin or thermosetting resin, and inorganic powder; a rubber latex, silica powder and lime; or
a styrene-butadiene rubber latex and an inorganic substance such as kaolin and slaked lime. This anticorrosive mixture has the following disadvantages. It costs more than conventional ones containing cement
as the major component although it provides thinner coating for anti-corrosion, because it contains resin or
latex in a comparatively large portion. It provides not always sufficient bond and flexibility, and its another
disadvantage is formation of cracks in the relatively thicker part of coating. Therefore it is difficult to apply
this anti-corrosive mixture of certain composition commonly both to reinforcing steel bars thicker than 5 mm
for thick panels and to steel bars or nets of for instance 1 - 3 mm in thickness for thin panels, since in
general the thicker the bars are, the thicker the coating may be.
In addition to the above-mentioned three groups of anti-corrosive mixtures, there are many known anticorrosive mixtures containing a resin emulsion or latex and cement as the major component. Cement used
in combination with a resin emulsion or latex inevitably shortens the pot life. On the other hand, there is
disclosed a method of forming an anti-corrosive coating by applying different kinds of anti-corrosive coating
in two layers, but this method has a disadvantage of making the process complex.
Summary of the invention
55
Accordingly, it is an object of the present invention to provide an anti-corrosive mixture for reinforcing
steel bars of ALC which is free of the above-mentioned disadvantages.
The gist of the present invention resides in an anti-corrosive mixture for reinforcing steel bars of ALC
which comprises (a) a component composed of 5 to 25 % by weight (solid basis) of one or more kinds of
aqueous emulsion or latices of styrene resin and 5 to 15 % by weight (solid basis) of aqueous emulsion of
EP 0 267 348 B1
5
10
75
20
25
30
35
40
45
50
asphalt, and (b) a component composed of 60 to 90 % by weight of at least one kind of inorganic powder
selected from the group consisting of silica stone, silica sand, granite, andesite, shale, kaolin, feldspar, talc,
mica, fly ash, slag, iron oxide and graphite. The inorganic powder may also contain 1 to 10 % by weight of
limestone powder.
Although the invention is especially concerned with the provision of an anti-corrosive protective layer on
reinforcing bars for the ALC it has also proved generally applicable for anti-corrosive protection of steel and
iron surfaces. An object of the invention is therefore to provide an anti-corrosive mixture for such surfaces.
Detailed description of the invention
One of the raw materials of the anti-corrosive mixtures of this invention is an aqueous emulsion or
aqueous latex of styrene resin. Examples of the styrene resin include polystyrene, styrene-butadiene
styrene-acrylonitrile resin, styrene rubber, polybutadiene-styrene and acrylonitrile-butadiene-styrene resin.
Another raw material is an aqueous emulsion of asphalt which is commercially available. These two
emulsions are used together to make a component. The mixing ratio is 5 to 25 % by weight (solid basis) for
the aqueous emulsion of styrene resin and 5 to 15 % by weight (solid basis) for the aqueous emulsion of
asphalt. With the emulsion of styrene resin less than 5 % by weight, the resulting anti-corrosive mixture is
very poor in anti-corrosive performance; with the emulsion of styrene resin more than 25 % by weight, the
resulting anti-corrosive mixture is poor in bond and also in anti-corrosiveness.
Similarly, with the amount of asphalt emulsion less than 5 % by weight (solid basis), the resulting anticorrosive mixture is poor in anti-corrosiveness and with the amount of asphalt emulsion more than 15 % by
weight (solid basis), the resulting anti-corrosive mixture is poor in bond.
With the amount of the inorganic powder less than 60 % by weight, the resulting anti-corrosive mixture
is poor in bond; and with the amount of the inorganic powder more than 90 % by weight, the resulting anticorrosive mixture is poor in anti-corrosiveness.
The inorganic powder is not specifically limited so long as it is substantially stable at the autoclaving.
The inorganic powders are at least one kind of inorganic powder selected from the group consisting of silica
stone, silica sand, granite, andesite, shale, kaolin, feldspar, talc, mica, fly ash, slag, iron oxide and graphite.
The inorganic powder may contain limestone powder.
If the inorganic powder is incorporated with 1 to 10 % by weight of limestone powder, the resulting anticorrosive mixture provides a coating having a smooth surface and a uniform thickness, which contributes to
preventing segregation of the inorganic powder and formation of pin hole, and as a result contribute to
enhancement of anti-corrosiveness.
If the amount of limestone powder is less than 1 % by weight, no effect is produced, and if it is more
than 10 % by weight, the resulting anti-corrosive mixture is poor in anti-corrosiveness.
In addition, when the inorganic powder is incorporated with a small amount of commonly used inorganic
or organic inhibitor, the resulting anti-corrosive mixture is improved in anti-corrosiveness.
The anti-corrosive mixture for reinforcing steel bars of this invention can be used in the original
condition or after dilution with water to a proper consistence. Reinforcing steel bars (2 mm or 5,5 mm in
diameter) are dipped in the anti-corrosive mixture in the form of slurry, followed by drying. Repeating this
step twice forms a coating having a thickness of about 200 urn on the average. The coating does not crack
°
when the coated bar is bent 45 .
The treated reinforcing steel bars exhibit good bond and anti-corrosiveness. The test is carried out as
follows: The treated steel bars are set in a mould, an ordinary raw mix for ALC is poured into the mould and
allowed to become half-plastic. After succeeding autoclaving, the ALC is cut in such a way that the steel
bars are contained in it. Bond is evaluated by pushing-out method, and anti-corrosiveness is examined
according to JIS A 5416.
In this test, the bond was 20 to 26 kg/cm2, which is sufficiently higher than the desired value of 15
kg/cm2; and the rust area (anti-corrosiveness) was 0 to 1,0 %, which is much smaller than the maximum
permissible value 5 % in JIS A 5416.
The invention is now described in more detail with reference to the following examples.
EXAMPLE 1
55
Five kinds of anti-corrosive mixtures were prepared by mixing the ingredients for 30 minutes according
to the following formulations:
(a) 3 to 25 % by weight (solid basis) of aqueous latex of high-styrene SBR ("CROSLENE SPX-1 ", a
product of Takeda Chemical Industries Co., Ltd.) containing 70 wt% of polymerized styrene in the solid
EP 0 267 348 B1
and 45 wt% of solid in the latex.
(b) 3 to 20 % by weight (solid basis) of aqueous asphalt emulsion ("FLINTKOTE" No.5",a product of
Shell Petrochemical Co., Ltd) containing 55 % of solid.
(c) 70 to 80 % by weight of silica stone powder made by Tokai Kogyo Co., Ltd.
5
(d) 0,5 % by weight of dispersing agent ("MIGHTY 150R", a product of Kao Co., Ltd.)
(e) 0,1 % by weight of anti-foaming agent ("ANTI-FROTH", a product of Daiichi Kogyo Seiyaku Co.,
Ltd.)
(f) 10 % by weight of additional water based on the sum of solid.
(g) Slaked lime powder (reagent grade, class 1) in an amount sufficient to adjust the slurry to pH 12,5.
In the thus prepared anti-corrosive mixture were dipped reinforcing steel bars 5,5 mm in diameter,
10
followed by drying with hot air at 80 °C. The dipping and drying processes were repeated. Thus an anticorrosive coating having an average thickness of 200 u.m was formed on the reinforcing steel bars.
After the coated reinforcing steel bars were fixed in a mould, ALC having a specific gravity of 0,5 was
produced in the usual way. A specimen of dimensions of 4 x 4 x 16 cm was cut out of the ALC in such a
15 way that the reinforcing bar is located in the center of cross section and parallel to the longitudinal direction
of the prismatic specimen. This specimen was examined for bond by the pushing-out method and for anticorrosiveness according to JIS A 5416.
The anti-corrosive mixture was also examined for pot life by storing it in two ways for 1 month. That is,
the anti-corrosive mixture was allowed to stand in a sealed container; and also it was stored with partial
20 renewal by removing 10 % of stored mixture and replenishing 10 % of fresh anti-corrosive mixture every
day. After storage for the prescribed period, the viscosity change, gelation, and settling were observed. The
stored anti-corrosive mixture was examined for bond and anti-corrosiveness by preparing reinformed ALC
samples.
The coated reinforcing steel bars not embedded in ALC were also cured in an autoclave and then bent
25 45° to observe if crack occurs.
The results are shown in Table 1 in comparison with Comparative Examples.
Note to the table.
30
Pot life:
O
35
40
45
A
X
Flexibility:
O
X
55
: No crack occurs when the bar is bent 45° .
°
: Crack occurs when the bar is bent 45 .
Bond (Value obtained by dividing the maximum load of pushing-out by the surface area of the reinforcing
steel bar):
O
A
X
50
: No change occurs after storage for 1 month or more, or slight settling occurs but it is easily
dispersed again by agitation.
: Gelation occurs after storage for 10 to 30 days, or settling occurs and it can not be dispersed
again by agitation.
: Gelation occurs after storage for less than 10 days, or settling occurs and it can not be dispersed
again by agitation.
: greater than 20 kg/cm2
: 15 to 20 kg/cm2
: less than 15 kg/cmz
Anti-corrosiveness:
@
: Rusted area less than 0,5 %
O
: Rusted area less than 2,0 %
X
: Rusted area greater than 2,0 %
It is noted from Table 1 that good results were produced in all the tests in Example 1; and those in tests
in Comparative Example were found unsatisfactory in almost all the requirements.
EP 0 267 348 B1
EXAMPLE 2
5
w
75
20
25
An anti-corrosive mixture was prepared in the same manner as in Example 1, except that the amount of
the aqueous latex and asphalt emulsion were changed and the silicastone powder was replaced by kaolin
powder as follows:
(a) 15 % by weight (solid basis) of mixed aqueous latex composed of an aqueous latex (50 wt % solid)
of polystyrene resin and an aqueous latex (50 wt % solid) of SBR resin containing 50 wt % of
polymerized styrene.
(b) 10 % by weight (solid basis) of aqueous asphalt emulsion.
(c) 75 % by weight of kaolin powder (reagent grade, class 1)
The resulting anti-corrosive mixture was examined for its performance in the same manner as in
Example 1 by coating reinforcing steel bars of 2 mm in diameter. It produced good results, meeting all the
requirements.
EXAMPLE 3
Four anti-corrosive mixtures were prepared in the same manner as in Example 1, with following
exceptions.
(a) 5 to 40 % by weight (solid basis) of mixed aqueous emulsion composed of styrene-acrylonitrile
emulsion, polystyrene emulsion and asphalt emulsion in the ratio of 1:1:1 by weight (solid basis).
(b) The remainder of the solid is silicastone powder.
(c) The pH adjusting agent is not added.
The resulting anti-corrosive mixtures were examined for bond and anti-corrosiveness in the same
manner as in Example 1. The results are shown in Table 2.
It is noted from Table 2 that the upper limit of silicastone powder is 90 % by weight, and the best
results are obtained with about 80 % by weight.
EXAMPLE 4
30
35
40
45
50
55
Five anti-corrosive mixtures were prepared in the same manner as in Example 1, with following
exceptions.
(a) 20 % of the emulsion mixture of the same formulation as in Example 3.
(b) The inorganic substance is limestone powder and feldspar fine powder.
The resulting anti-corrosive mixtures were examined for bond and anti-corrosiveness in the same
manner as in Example 1, except that the coating thickness was 150 u.m. The results are shown in Table 3.
It is noted from Table 3 that a proper amount of limestone powder as a portion of the inorganic powder
improved the anti-corrosiveness. However, an excess amount of limestone powder produces a contrary
result as in Test No. 5.
As mentioned anove, the anti-corrosive mixture of this invention has many advantages. It can be applied
to reinforcing steel bars of any size. It produces a sufficient anti-corrosive effect with a coating thickness of
150 to 200 urn. It has a long pot life. It causes no safety and hygiene problems because of absence of
noxious organic solvents. It is less expensive than the conventional ones.
EP 0 267 348 B1
X
O
O
O
O
x
o
o
o
o
<
O
x
10
»
w
sj
i_
-*->
oo
0)
f—
75
20
25
M
—
oo
.a
^
—
—
o
M
30
o
1
35
—
| |
O
Ci_
40
<N
c
o
—
w
£
o
45
rt
00
o
X
O
@
-a
o
CO
o
00
o
t_
o
a
O
I
c:
■<
■<
!_
0)
-a
O
n.
0)
c
_O
CO
rt
u
—
in
C5
o
O3
o
CO
rt
J3
o
CO
o
00
&«
3
.
5
c
o
'
1/5
O
-
O
cm
3
O
«r
c2
OT
—
S
o
- :c
-*->
W
0)
0)
o
CO
-j
i
o
o
O
c3
a.
00
0)
-a
o
Q.
<u
o
CO
<u
§
in
co
in
o
in
—•
in
«M
—
M
CO
in
CD
CO
-^
CN O
<*
rt
Claims
50
55
A method for the manufacture of reinforced steamcured light-weight aerated concrete, comprising
preparing an aqueous expandable and solidifiable slurry comprising one or more hydraulic binders and
one or more silica-containing materials, inserting reinforcing steel bars into a mould, casting the slurry
in said mould, permitting the cast body to expand and to solidify, optionally cutting up the solidified
body into smaller pieces and then steam curing the cast body or smaller pieces, if any, said reinforcing
steel bars having been treated with an anti-corrosive composition which comprises (a) a mixture of 5 to
25% by weight (solid basis) of one or more kinds of aqueous emulsions or aqueous latices of styrene
resin and 5 to 15% by weight (solid basis) of an aqueous emulsion of asphalt and (b) 60 to 90% by
EP 0 267 348 B1
weight of at least one kind of inorganic powder selected from the group consisting of silica stone, silica
sand, granite, andesite, shale, kaolin, feldspar, talc, mica, fly ash, slag, iron oxide and graphite.
2.
A method as claimed in Claim 1, wherein the aqueous latex of styrene resin is a mixture of an aqueous
latex of polystyrene resin and an aqueous latex of styrene-butadiene resin.
3.
A method as claimed in Claim 1, wherein the aqueous latex of styrene resin is an aqueous latex of high
styrene SBR containing 65 to 75% by weight of styrene, or an aqueous latex of styrene-butadiene
modified and cured with an unsaturated carboxylic acid.
4.
A method as claimed in Claim 1, wherein the anti-corrosive mixture comprises (a) a mixture composed
of 5 to 25% by weight (solid basis) of one or more kinds of aqueous emulsions or aqueous latices of
styrene resin and 5 to 15% by weight (solid basis) of aqueous emulsion of asphalt, and (b) 60 to 90%
by weight of at least one kind of inorganic powder selected from the group consisting of silica stone,
silica sand, granite, andesite, shale, kaolin, feldspar, talc, mica, fly ash, slag, iron oxide and graphite,
including 1 to 10% by weight of lime-stone.
5.
A method as claimed in Claim 1, wherein the aqueous latex of styrene resin is a mixture of an aqueous
latex of polystyrene resin and an aqueous latex of styrene-butadiene resin.
6.
A method as claimed in Claim 4, wherein the aqueous latex of styrene resin is an aqueous latex of high
styrene SBR containing 65 to 75% by weight of styrene, or an aqueous latex of styrene butadiene
modified and cured with an unsaturated carboxylic acid.
7.
An anti-corrosive mixture for iron or steel surfaces of the reinforcing bars used for the manufacture of
autoclaved light-weight concrete according to any of claims 1 - 6, which comprises (a) a mixture of 5 to
25 % by weight (solid basis) of one or more kinds of aqueous emulsions or aqueous latices of styrene
resin and 5 to 15 % by weight (solid basis) of aqueous emulsion of asphalt, and (b) 60 to 90 % by
weight of at least one kind of inorganic powder selected from the group consisting of silica stone, silica
sand, granite, andesite, shale, kaolin, feldspar, talc, mica, fly ash, slag, iron oxide and graphite.
8.
An anti-corrosive mixture as set forth in Claim 7, wherein the aqueous latex of styrene resin is a mixture
of an aqueous latex of polystyrene resin and an aqueous latex of styrene-butadien resin.
35
9.
An anti-corrosive mixture as set forth in Claim 7, wherein the aqueous latex of styrene resin is an
aqueous latex of high styrene SBR containing 65 to 75% by weight of styrene, or an aqueous latex of
styrene-butadiene modified and cured with an unsaturated carboxylic acid.
40
10. An anti-corrosive mixture as claimed in Claims 7 - 9, wherein the inorganic powder includes 1 to 10 %
by weight of lime stone.
5
w
75
20
25
30
11. An anti-corrisive mixture, as set forth in Claim 4, wherein the aqueous latex of styrene resin is a mixture
of an aqueous latex of polystyrene resin and an aqueous latex of styrene-butadiene resin.
45
50
55
12. An anti-corrosive mixture, as set forth in Claim 4, wherein the aqueous latex of styrene resin is an
aqueous latex of high styrene SBR containing 65 to 75% by weight of styrene, or an aqueous latex of
styrene butadiene modified and cured with an unsaturated carboxylic acid.
Revendications
1.
Un procede de fabrication de beton alveolaire leger vulcanise a la vapeur, renforce, comprenant les
operations consistant a preparer une suspension aqueuse expansible et solidifiable comprenant un ou
plusieurs Hants hydrauliques et une ou plusieurs matieres contenant de la silice, introduire des barres
de renforcement en acier dans un moule, couler la suspension dans ledit moule, permettre au corps
coule de se dilater et de se solidifier, facultativement decouper le corps solidifie en morceaux plus
petits, puis faire durcir a la vapeur le corps coule ou, le cas echeant, les morceaux plus petits, lesdites
barres de renforcement en acier ayant ete traitees par une composition anti-corrosive qui comprend (a)
un melange de 5 a 25% en poids (sur une base solide) d'une ou plusieurs sortes d'emulsions
8
EP 0 267 348 B1
5
10
75
aqueuses ou de latex aqueux de resine de styrene et de 5 a 15% en poids (sur une base solide) d'une
emulsion aqueuse d'asphalte et (b) 60 a 90% en poids d'au moins une sorte de poudre minerale
choisie dans le groupe constitue par la roche siliceuse, le sable siliceux, le granit, I'andesite, le schiste,
le kaolin, le feldspath, le talc, le mica, la cendre volante, la scorie, I'oxyde de fer et le graphite.
2.
Un precede comme revendique a la revendication 1, dans lequel le latex aqueux de resine de styrene
est un melange d'un latex aqueux de resine de polystyrene et d'un latex aqueux de resine styrenebutadiene.
3.
Un procede comme revendique a la revendication 1, dans lequel le latex aqueux de resine de styrene
est un latex aqueux de SBR a teneur elevee en styrene, contenant 65 a 75% en poids de styrene, ou
un latex aqueux de styrene-butadiene modifie et durci avec un acide carboxylique insature.
4.
Un procede code revendique a la revendication 1, dans lequel le melange anti-corrosif comprend (a) un
melange compose de 5 a 25% en poids (sur une base solide) d'une ou plusieurs sortes d'emulsions
aqueuses ou de latex aqueux de resine de styrene et de 5 a 15% en poids (sur une base solide) d'une
emulsion aqueuse d'asphalte, et (b) 60 a 90% en poids d'au moins une sorte de poudre minerale
choisie dans le groupe constitue par la roche siliceuse, le sable siliceux, le granit, I'andesite, le schiste,
le kaolin, le feldspath, le talc, le mica, la cendre volante, la scorie, I'oxyde de fer et le graphite,
comprenant 1 a 10% en poids de calcaire.
5.
Un procede comme revendique a la revendication 1, dans lequel le latex aqueux de resine de styrene
est un melange d'un latex aqueux de resine de polystyrene et d'un latex aqueux de resine de styrenebutadiene.
6.
Un procede comme revendique a la revendication 4, dans lequel le latex aqueux de resine de styrene
est un latex aqueux de SBR a teneur elevee en styrene, contenant 65 a 75% en poids de styrene, ou
un latex aqueux de styrene-butadiene modifie et durci par un acide carboxylique insature.
7.
Un melange anti-corrosif pour des surfaces de fer ou d'acier des barres de renforcement utilisees pour
la fabrication de beton leger autoclave conforme a I'une des revendications 1-6, qui comprend (a) un
melange de 5 a 25% en poids (sur une base solide) d'une ou plusieurs sortes d'emulsions aqueuses
ou de latex aqueux de resine de styrene et de 5 a 15% en poids (sur une base solide) d'une emulsion
aqueuse d'asphalte, et (b) 60 a 90% en poids d'au moins une sorte de poudre minerale choisie dans le
groupe constitue par la roche siliceuse, le sable siliceux, le granit, I'andesite, le schiste, le kaolin, le
feidspath, le talc, le mica, la cendre volante, la scorie, I'oxyde de fer et le graphite.
8.
Un melange anti-corrosif comme enonce a la revendication 7, dans lequel le latex aqueux de resine de
styrene est un melange d'un latex aqueux de resine de polystyrene et d'un latex aqueux de resine de
styrene-butadiene.
9.
Un melange anti-corrosif comme enonce a la revendication 7, dans lequel le latex aqueux de resine de
styrene est un latex aqueux de SBR a teneur elevee en styrene, contenant 65 a 75% en poids de
styrene, ou un latex aqueux de styrene-butadiene modifie et durci par un acide carboxylique insature.
20
25
30
35
40
45
so
55
10. Un melange anti-corrosif comme revendique aux revendications 7-9, dans lequel la poudre minerale
comprend 1 a 10% en poids de calcaire.
11. Un melange anti-corrosif comme enonce a la revendication 4, dans lequel le latex aqueux de resine de
styrene est un melange d'un latex aqueux de resine de polystyrene et d'un latex aqueux de resine de
styrene-butadiene.
12. Un melange anti-corrosif comme enonce a la revendication 4, dans lequel le latex aqueux de resine de
styrene est un latex aqueux de SBR a teneur elevee en styrene, contenant 65 a 75% en poids de
styrene, ou un latex aqueux de styrene-butadiene modifie et durci par un acide carboxylique insature.
Patentanspruche
EP 0 267 348 B1
1.
Verfahren zur Herstellung von bewahrtem dampfbehandeltem lufthaltigem Leichtbeton, bei dem ein
wassriger ausdehnbarer und verfestigbarer Brei mit einem Oder mehreren hydraulischen Bindemitteln
und einem oder mehrerer silikathaltigen Materialien verwendet wird, Stabstahlbewahrungen in eine
Form eingesetzt werden, der Brei in die Form gegossen wird, um dem gegossenen Korper zu
ermoglichen sich auszudehnen und zu erharten, wobei man wahlweise den erharteten Korper in
kleinere Stucke schneiden kann und diesen oder die kleineren Stucke dann Dampf behandelt, wenn die
Stabstahlbewehrung mit einer korrosionsschutzenden Zusammensetzung behandelt worden ist, die aus
(a) einem Gewicht von 5 bis 25 Gewichtsprozent (Feststoffbasis) einer oder mehrerer Arten wassriger
Emulsionen oder wassrigem Styrolharzlatex, 5 bis 15 Gewichtsprozent (Feststoffbasis) wassriger
Asphaltemulsion und aus (b) aus 60 bis 90 Gewichtsprozent mindestens einer Sorte anorganischen
Pulvers besteht, das aus Silikatstein, Silikatsand, Granit, Andesit, Schieferton, Kaorin, Feldspat, Kalk,
Glimmer, Flugasche, Schlacke, Eisenoxyd und Graphit zusammengesetzt ist.
2.
Verfahren nach Anspruch 1, bei dem der wassrige Styrolharzlatex eine Mischung aus wassrigem
Polystyrolharzlatex und wassrigem Styrol-Butadienharz-Latex ist.
3.
Verfahren nach Anspruch 1, bei dem der wassrige Styrolharzlatex ein Latex aus Hoch-Styrol SBR ist,
der zu 65 bis 75 Gewichtsprozent aus Styrol besteht, oder ein wassriger Latex auf Styrol-Butadien ist,
der mit ungesattigter Karbonsaure behandelt und modifiziert ist.
4.
Verfahren nach Anspruch 1, bei dem die korrosionsschutzende Mischung aus (a) einer Mischung
bestehend aus 5 bis 25 Gewichtsprozent (Feststoffbasis) einer oder mehrer Arten wassriger Emulsionen oder wassrigem Styrolharzlatex und 5 bis 15 Gewichtsprozent (Feststoffbasis) wassriger Asphaltemulsionen, und (b) aus 60 bis 90 Gewichtsprozent mindestens einer Sorte anorganischen Pulvers
zusammengesetzt ist, das aus Silikatstein, Silikatsand, Granit, Andesit, Schieferton, Kaolin, Feldspat,
Kalk, Glimmer, Flugasche, Eisenoxyd, Graphit und 1 bis 10 Gewichtsprozenten Kalkstein besteht.
5.
Verfahren nach Anspruch 1, bei dem der wassrige Styrolharzlatex eine Mischung aus wassrigen
Polystyrolharzlatex und wassrigem Styrol-Butadienharz-Latex ist.
6.
Verfahren nach Anspruch 4, bei dem der wassrige Styrolharzlatex ein Latex aus Hoch-Styrol SBR ist,
der zu 65 bis 75 Gewichtsprozent aus Styrol besteht, oder ein wassriger Latex aus Styrol-Butadien ist,
der mit ungesattigter Karbonsaure modifiziert und behandelt ist.
7.
Korrosionsschutzende Zusammensetzung fur Eisen- und Stahloberflachen von Stabstahlbewehrungen,
die fur die Herstellung von autoklaviertem Leichtbeton benutzt werden, nach einem der Anspruche 1
bis 6, die aus einer Mischung (a) von 5 bis 25 Gewichtsprozent (Feststoffbasis) einer oder mehrerer
Arten wassriger Emulsion oder wassrigem Styrolharzlatex und 5 bis 15 Gewichtsprozent
(Feststoffbasis) wassriger Asphaltemulsion, und (b) aus 60 bis 90 Gewichtsprozenten mindestens einer
Sorte anorganischen Pulvers besteht, das aus Silikatstein, Silikatsand, Granit, Andesit, Schieferton,
Kaolin, Feldspat, Talg, Glimmer, Flugasche, Schlacke, Eisenoxyd und Graphit besteht.
8.
Korrosionsschutzende Mischung nach Anspruch 7, in der der wassrige Styrolharzlatex eine Mischung
aus wassrigem Polystyrolharzlatex und wassrigem Styrol-Budadienharz-Latex ist.
9.
Korrosionsschutzende Mischung nach Anspruch 7, in der der wassrige Styrolharzlatex ein Latex aus
Hoch-Styrol SBR ist, der zu 65 bis 75 Gewichtsprozent aus Styrol besteht, Oder ein wassriger Latex
aus Styrol-Butadien ist, der mit ungesattigter Karbonsaure modifiziert und behandelt ist.
5
w
15
20
25
30
35
40
45
50
55
10. Korrosionsschutzende Mischung nach Anspruch 7 bis 9, bei der das anorganische Pulver 1 bis 10
Gewichtsprozent Kalkstein enthalt.
11. Korrosionsschutzende Mischung nach Anspruch 4, bei der der wassrige Styrolharzlatex eine Mischung
aus wassrigem Polystyrolharzlatex und wassrigem Styrol-Butadienharz-Latex ist.
12. Korrosionsschutzende Mischung nach Anspruch 4, bei der der wassrige Styrolharzlatex ein Latex aus
Hoch-Styrol SBR ist, der zu 65 bis 75 Gewichtsprozent aus Styrol besteht, oder ein wassriger Latex
aus Styrol-Butadien ist, der mit ungesattigter Karbonsaure modifiziert und behandelt ist.
10

Documents pareils