Early Automated CPR Devices

Transcription

Early Automated CPR Devices
Réanimation cardio-respiratoire et
planches à massage automatiques
Patrice Gosselin, MD, FRCPC
Résident en soins intensifs
Stéphane Delisle, Ph.D., RRT
& les chercheurs du groupe CAVIAR
Conflits d’intérêts
• Intérêt dans la ventilation
• Intérêt dans la réanimation
• Financé par le fond de « Soutien au démarrage de
projets en collaboration » du CIUSSS MCQ avec UQTR
• Air Liquide France
– Contribution $
– Ventilateur Monnal T-60
– J.-C. Richard, M. Rigollot
• Schiller AG
– Contribution $
• …et j’aurai peut-être besoin de vous bientôt
Plan
•
•
•
•
•
•
•
RCR et ventilation
Historique
Concepts de la RCR
Recommandations de l’AHA
Les planches à massage
Le modèle CAVIAR
Conclusion
LIGNES DIRECTRICES
Lignes directrices de la RCR
• Therefore, rescue breaths are less important than
chest compressions during the first few minutes of
resuscitation from witnessed VF
• In theory…oxygen supplied by passive delivery is
likely to be sufficient …with a patent upper airway
• At this time there is insufficient evidence to support
the removal of ventilations from CPR
Neumar et al.: 2010 American Heart Association Guidelines for
Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
et Update 2015 dans Circulation 2015;132[suppl 2]:S444–S464
Débat sur la ventilation
•
Saturation maintenue les 1ères 4 minutes sans ventilation
Chandra NC et al. Circulation 1994
•
Désaturation rapide et ↓ ROSC si pas de ventilation après no flow
Dorph E et al. Resuscitation 2004
•
Installation acidose respiratoire
Idris and Banner, Resuscitation 1994
•
ROSC et meilleure survie si ventilation après ACR suite à asphyxie
Robert A et al. Circulation 2000
•
Autres bénéfices physiologiques de la ventilation
Idris HA et al. Circulation 1994
•
Ventilation passive du MCE = 60ml max très précocémment
Deakin C et al. Resuscitation 2007
•
Pas de différence sur mortalité MCE continu vs 30:2 en OHCA
Nichol et al. NEJM 2015
RCR: HISTORIQUE
Petit historique…
• Importance de la ventilation dans la réanimation
connue depuis des années…
– Première description dans l’ancien testament!
Kings 4:32–37
When Elisha came into the house, he saw the child
lying dead on his bed. So he went in and shut the
door behind the two of them and prayed to the LORD.
Then he went up and lay on the child, putting
his mouth on his mouth, his eyes on his eyes, and his hands on his
hands. And as he stretched himself upon him, the flesh of the child
became warm. Then he got up again and walked once back and forth in
the house, and went up and stretched himself upon him. The child
sneezed seven times, and the child opened his eyes. Then he summoned
Gehazi and said, “Call this Shunammite.” So he called her. And when she
came to him, he said, “Pick up your son.” She came and fell at his feet,
bowing to the ground. Then she picked up her son and went out.
• 1744: Description chez un mineur de charbon
• 1796: Démonstration que l’air expiré est
sécuritaire
• 1950: Étude de Safar et Elam: obstruction des
voies respiratoires par la langue et le palais mou
chez les personnes inconscientes
– Techniques de ventilation pré-1950 inefficaces
– Adoption du chin-lift et jaw-thrust
Markus Figl, Linda E. Pelinka, Walter Mauritz
Franz Koenig and Friedrich Maass
Resuscitation, Volume 70, Issue 1, 2006, 6–9
http://dx.doi.org/10.1016/j.resuscitation.2006.05.004
William B. Kouwenhoven
Demonstration of the technique of closed-chest cardiac massage.
Jonas A. Cooper et al. Circulation. 2006;114:2839-2849
Reproduced from Kouwenhoven et al., with permission.
Copyright © American Heart Association, Inc. All rights reserved.
RCR: CONCEPTS
• Une bonne proportion des ACR à l’hôpital
ne sont pas des TV/FV…
• Durée moyenne entre ACR et massage =
4-5 minutes!
• 17 minutes avant l’intubation
Question en suspens
•
Techniques développées sur des patients anesthésiés avec circulation normale
– Définitivement pas le cas en ACR
•
Besoins en oxygénation et ventilation altérés en ACR
– Le débit (cardiaque et pulmonaire) maintenu par un bon massage ≠ débit normal
•
Bas débit = organes cibles ischémiques
– extraction O2 ↑
– Accumulation CO2
– Gaz sanguin = reflet des conditions
tissulaires?
•
As a result, the goals of oxygenation and ventilation during CPR
have not been established, and
interpretation of arterial blood
gases is not clear. Therefore, it is
difficult to evaluate current
techniques.
oxygenation:ventilation
Débat sur la ventilation
•
Saturation maintenue les 1ères 4 minutes sans ventilation
Chandra NC et al. Circulation 1994
•
Désaturation rapide et ↓ ROSC si pas de ventilation après no flow
Dorph E et al. Resuscitation 2004
•
Installation acidose respiratoire
Idris and Banner, Resuscitation 1994
•
ROSC et meilleure survie si ventilation après ACR suite à asphyxie
Robert A et al. Circulation 2000
•
Autres bénéfices physiologiques de la ventilation
Idris HA et al. Circulation 1994
•
Ventilation passive du MCE = 60ml max très précocémment
Deakin C et al. Resuscitation 2007
•
Pas de différence sur mortalité MCE continu vs 30:2 en OHCA
Nichol et al. NEJM 2015
Pompe cardiaque
La circulation est
générée par la
compression des
B
cavités cardiaques
entre le sternum et
la colonne vertébrale
Jeux de pressions
Rudikoff et al. Circulation 1980
22
Questionnement sur cette théorie
• Pression veineuse intra-thoracique = Pression
aortique au cours du MCE
McKenzie et al. Lancet 1964
• RCR impossible sur patients avec un
flail chest
Weisfeldt et al. Circulation 1986
• « Cough CPR »
Criley et al. JAMA 1976
23
Pompe Intra-Thoracique
•
•
•
Valve d’entrée = valve pulmonaire
Chambre de compression = vascularisation pulmonaire + OG + VG
Valve de sortie = Valve aortique
Shaw et al. Resuscitation 1997
Techniques et mécanismes de massage cardiaque
Jonas A. Cooper et al. Circulation. 2006;114:2839-2849
Copyright © American Heart Association, Inc. All rights reserved.
Stratégies d’augmentation du débit
Débit =
fréquence X volume
Pompe cardiaque
↑ Fréquence de
compression
↑ Force de
compression
↑ Volume comprimé
↑Temps
compression/décompression
Pompe thoracique
Schleien et al. Anesthesiology 1989
26
Amélioration de la systole
• Contention abdominale
Harris et al. Anesthesiology 1967
• Compression + ventilation simultanée
Chandra et al. Am J Cardio. 1981
• Compression pneumatique sous-diaphragmatique
Lilja et al. Ann Emerg Med 1981
• Veste pneumatique
Beattie et al. J Appl Physiol 1991
Amélioration de la diastole
• Compression abdominale alternée
(Mateer et al. Am J Emerg Med 1985)
• Compression-décompression active
– Hémodynamique chez l’homme (Rivers et al. Circulation 1995)
– Survie chez l’homme (Plaisance et al. NEJM 1999)
• Valve d’impédance inspiratoire
– Hémodynamisme chez l’homme (Plaisance et al. Circulation 2000)
– Survie chez l’homme (Aufderheide et al. CCM 2005)
• Association CDA + VII
– Survie chez l’homme
(Wolcke et al. Circulation 2003; Plaisance et al. CCM 2005)
Landmark paper
• But de la RCR:
– Garder un débit sanguin
au cerveau/organes
– Du sang oxygéné?
• PPC = facteur de ROSC
le + important
• Ventilation excessive est
nuisible
– perte de PPC par trop de
temps à ventiler
– ↑ P intrathoracique et
↓ remplissage VD
= ↓ CO
Pression de perfusion
coronarienne
Pression oreillette
droite
(POD)
Pression
Aortique
(PAo)
PPC = PAo - POD
(Durant la phase de relaxation)
PPC et ROSC
90%
79%
% of patients w/ ROSC
80%
70%
60%
46%
50%
40%
30%
20%
10%
0%
0%
<15
15-25
>25
CPP (mm Hg)
n=44
n=28
n=14
Paradis NA et al. JAMA. 1990;263:1106-1113
PPC et PbrO2
RCR & TRUCS WEIRD
Le coup de poing précordial
• However, 2 larger case series found that
the precordial thump was ineffective in 79
(98.8%) of 80 cases and in 153 (98.7%) of
155 cases of malignant ventricular
arrhythmias.
• Case reports and case series have
documented complications associated
with precordial thump including sternal
fracture, osteomyelitis, stroke, and
triggering of malignant arrhythmias in
adults and children.
Rêve brisé…
• The precordial thump should not be used for
unwitnessed out-of-hospital cardiac arrest
(Class III, LOE C).
• The precordial thump may be considered for
patients with witnessed, monitored, unstable
ventricular tachycardia including pulseless VT
if a defibrillator is not immediately ready for
use (Class IIb, LOE C), but it should not delay
CPR and shock delivery.
• There is insufficient evidence to recommend
for or against the use of the precordial
thump for witnessed onset of asystole.
Percussion pacing
• Percussion (eg, fist) pacing refers to the use of
regular, rhythmic and forceful percussion of the chest
with the rescuer's fist in an attempt to pace the
myocardium. There is little evidence supporting fist
or percussion pacing in cardiac arrest based on 6
single-patient case reports
Compression abdominale alternée
Le Lifestick
37
37
Compression abdominale
alternée
• Evidence from 1 prospective randomized clinical study of
adults in cardiac arrest demonstrated no improvement in
survival to hospital discharge with use of PTACD-CPR during
out-of-hospital cardiac arrest. There is insufficient evidence to
recommend for or against the use of this device.
LES QUALITÉS D’UNE BONNE RCR
Une RCR de qualité
• Components of high-quality CPR include:
– Ensuring chest compressions of adequate rate
– Ensuring chest compressions of adequate depth
– Allowing full chest recoil between compressions
– Minimizing interruptions in chest compressions
– Avoiding excessive ventilation
2015 American Heart Association Guidelines Update for Cardiopulmonary
Resuscitation and Emergency Cardiovascular Care
RCR: FRÉQUENCE
Lignes directrices de la RCR
• These 2010 AHA Guidelines for CPR and ECC
recommend compressions at a rate of at least
100/min.
• There is insufficient evidence to recommend the
routine use of high-frequency chest compressions for
cardiac arrest. However, high-frequency chest
compressions may be considered by adequately
trained rescue personnel as an alternative (Class IIb,
LOE C).
Figure 2
Chest Compression Rates and Survival Following Outof-Hospital Cardiac Arrest*.
Idris, Ahamed; Guffey, Danielle; Pepe, Paul; Brown,
Siobhan; Brooks, Steven; Callaway, Clifton; MD, PhD;
Christenson, Jim; Davis, Daniel; Daya, Mohamud; Gray,
Randal; BS, MA; Ed, NREMT-P; Kudenchuk, Peter; Larsen,
Jonathan; Lin, Steve; Menegazzi, James; Sheehan, Kellie;
Sopko, George; MD, MPH; Stiell, Ian; MD, MSc; Nichol,
Graham; Aufderheide, Tom
Critical Care Medicine. 43(4):840-848, April 2015.
DOI: 10.1097/CCM.0000000000000824
Figure 2 . Chest compression rate versus chest
compression depth. The stacked bar graph shows the
distribution of three categories of chest compression
depth (gray, 38-51 mm indicated in white, and > 51 mm
indicated in black) across five categories of chest
compression rates (= 140 chest compressions/min) (n =
6,399; chi-square test, p < 0.0001).
Copyright © by 2015 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
Published by Lippincott Williams & Wilkins, Inc.
5
Figure 3
Chest Compression Rates and Survival Following Outof-Hospital Cardiac Arrest*.
Idris, Ahamed; Guffey, Danielle; Pepe, Paul; Brown,
Siobhan; Brooks, Steven; Callaway, Clifton; MD, PhD;
Christenson, Jim; Davis, Daniel; Daya, Mohamud; Gray,
Randal; BS, MA; Ed, NREMT-P; Kudenchuk, Peter; Larsen,
Jonathan; Lin, Steve; Menegazzi, James; Sheehan, Kellie;
Sopko, George; MD, MPH; Stiell, Ian; MD, MSc; Nichol,
Graham; Aufderheide, Tom
Critical Care Medicine. 43(4):840-848, April 2015.
DOI: 10.1097/CCM.0000000000000824
Figure 3 . Cubic spline curves of the interaction between
chest compression rates and the active (solid gray line)
versus sham (solid black line) impedance threshold
device (ITD) and the probability of survival to hospital
discharge (A) and the probability of functionally
favorable survival (survival with a modified Rankin score
[mRS] B) after adjustment for sex, age, bystander
cardiopulmonary resuscitation (CPR), arrest location,
study site, first emergency medical services rhythm,
witnessed status, and quality of CPR (chest compression
fraction and depth) for survival (p = 0.09, n = 4,170) and
for functionally favorable survival (p = 0.036, n = 4,170).
Copyright © by 2015 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
Published by Lippincott Williams & Wilkins, Inc.
7
Relationship Between Chest Compression Rates
and Outcomes From Cardiac Arrest
Ahamed H. Idris et al. Circulation. 2012;125:3004-3012
Copyright © American Heart Association, Inc. All rights reserved.
Adjusted cubic spline of the relationship between chest compression
rates and the probability of survival to hospital discharge.
Ahamed H. Idris et al. Circulation. 2012;125:3004-3012
Copyright © American Heart Association, Inc. All rights reserved.
RCR: PROFONDEUR
Profondeur des compressions
“Performing CPR without measuring the effects
is like flying an airplane without an altimeter”
Dr. Max Harry Weil at the Fourth Wolf Creek
Conference, April 1996
Moniteur de compression
• Permet de suivre
l’efficacité du
massage en
temps réel
• Enregistrement
des données
What is the role of chest compression depth during outof-hospital cardiac arrest resuscitation?*.
Stiell, Ian; Brown, Siobhan; Christenson, James; Cheskes,
Sheldon; Nichol, Graham; Powell, Judy; Bigham, Blair;
Morrison, Laurie; Larsen, Jonathan; Hess, Erik;
Vaillancourt, Christian; Davis, Daniel; Callaway, Clifton
Critical Care Medicine. 40(4):1192-1198, April 2012.
DOI: 10.1097/CCM.0b013e31823bc8bb
ROSC, survie et
profondeur des
compressions
Figure 2 . A-C, Plots of outcomes vs. average compression
depth. ROSC, return of spontaneous circulation.
© 2012 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins. Published by Lippincott Williams
& Wilkins, Inc.
6
What is the role of chest compression depth during outof-hospital cardiac arrest resuscitation?*.
Stiell, Ian; Brown, Siobhan; Christenson, James; Cheskes,
Sheldon; Nichol, Graham; Powell, Judy; Bigham, Blair;
Morrison, Laurie; Larsen, Jonathan; Hess, Erik;
Vaillancourt, Christian; Davis, Daniel; Callaway, Clifton
Critical Care Medicine. 40(4):1192-1198, April 2012.
DOI: 10.1097/CCM.0b013e31823bc8bb
Table 4 . Univariate comparison of clinical characteristics
of patients who did and did not survive to hospital
discharge
© 2012 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins. Published by Lippincott Williams
& Wilkins, Inc.
7
What Is the Optimal Chest Compression Depth During
Out-of-Hospital Cardiac Arrest Resuscitation of Adult Patients?
Ian G. Stiell et al. Circulation. 2014;130:1962-1970
Copyright © American Heart Association, Inc. All rights reserved.
Lignes directrice de la RCR
•
There is consistent evidence that achieving compression depth of approximately 5
cm is associated with greater likelihood of favorable outcomes compared with
shallower compressions.
•
In the largest study to date (n=9136), the optimal compression depth with regard
to survival occurred within the range of 41 to 55 mm (4.1 to 5.5 cm, or 1.61 to 2.2
inches).
•
Less evidence is available about whether there is an upper threshold beyond
which compressions may be too deep. During manual CPR, injuries are more
common when compression depth is greater than 6 cm (2.4 inches) than when it is
between 5 and 6 cm (2 and 2.4 inches).
•
Importantly, chest compressions performed by professional rescuers are more
likely to be too shallow (ie, less than 40 mm [4 cm] or 1.6 inches) and less likely to
exceed 55 mm (5.5 cm or 2.2 inches)
RCR: INTERRUPTIONS
Risques associés à l’interruption des compressions
Ventilation / Fatigue / Analyses du rythme
Survival to hospital discharge and duration of longest overall pause (black), longest
perishock pause (light gray), and longest nonshock pause (dark gray).
Tom F. Brouwer et al. Circulation. 2015;132:1030-1037
Copyright © American Heart Association, Inc. All rights reserved.
Défis du RCR: Qualité
Défis du RCR: Qualité
Rythme lent
0,281
Pas assez profond
0,374
Fréquence ventilatoire trop élevée 0,609
0%
10%
20%
30%
40%
Rate
Abella BS et al. JAMA. 2005;293:305-310.
50%
Depth
60%
70%
Ven la on
80%
90%
100%
RCR: LES PLANCHES À MASSAGE
AUTOMATIQUES
• There are four main needs for mechanical ECC:
1.
2.
3.
4.
For the scientific study of CPR to provide consistent levels of support
according to a protocol.
To optimise CPR performance based on the present standards for
ECC.
To perform CPR using new protocols, optimised for machine
resuscitation.
To provide basic life support (BLS), and allow the rescuer to
concentrate on advanced life support (ALS) and start post
resuscitative brain-oriented protective therapy
Fig. 1. Thumper gas powered.
Lars Wik
Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation
Resuscitation, Volume 47, Issue 1, 2000, 7–25
http://dx.doi.org/10.1016/S0300-9572(00)00190-8
Fig. 4. Iron Heart gas powered.
Lars Wik
Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation
Resuscitation, Volume 47, Issue 1, 2000, 7–25
http://dx.doi.org/10.1016/S0300-9572(00)00190-8
Fig. 5. Beck–Rand electricity powered.
Lars Wik
Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation
Resuscitation, Volume 47, Issue 1, 2000, 7–25
http://dx.doi.org/10.1016/S0300-9572(00)00190-8
Fig. 6. Vest cardiopulmonary resuscitation gas powered.
Lars Wik
Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation
Resuscitation, Volume 47, Issue 1, 2000, 7–25
http://dx.doi.org/10.1016/S0300-9572(00)00190-8
Fig. 9. Rentsch Cardiac Press.
Lars Wik
Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation
Resuscitation, Volume 47, Issue 1, 2000, 7–25
http://dx.doi.org/10.1016/S0300-9572(00)00190-8
RCR: LE MODÈLE DES CORPS THIEL
Objectif du projet
• Comprendre les interactions
Ventilation ↔ Pression Intra-Thoracique
lors du massage cardiaque externe (MCE) chez
un modèle humain
• Corps Thiel = modèle d’exploration physiologique
Roos Eisma* and Tracey Wilkinson; From “Silent Teachers” to Models
PLoS Biol. 2014 Oct; 12(10): e1001971.
Méthode
•
•
•
•
Sujets
Âge
Cause du décès
1M
74
Alzheimer
2F
76
Infarctus myocarde
3F
81
Insuffisance rénale
4M
83
MVAS
IET 7,5 F
Installation ballon oesophagien
RX poumons
Ventilation/recrutement
PEEP 15 x 30 min
6 cc/kg
Mécanique respiratoire du Thiel
• Compliance moyenne autour de 40-42
– Idem a celles observées en ACR
– Reproductible dans le temps
THIEL
# 1/2/3/4
T 45 min
T 90 min
T 135 min
PEEP
(cmH2O)
10.0 ± 0.0
9.3 ± 0.9
9.5 ± 0.9
Resistance
(cmH2O/L/sec)
Respiratory
systems
Compliance
(mL/cmH2O)
CW
Compliance
(mL/cmH2O)
Closing P
(cmH2O)
10.5 ± 0.5
38.3 ± 3.9
137.0 ± 16.9
7.3 ± 3.3
11.3 ± 0.4
41.8 ± 5.8
11.8 ± 0.4
44.5 ± 9.3
MCE manuel et ventilation à Ambu
Paw cmH2O
60
40
20
0
Pit cmH2O
50
30
10
0
RCR 30:2
tests in Thiel human cadavers
CPV et LUCAS
Mesures lors MCE (Autopulse)
et ventilation
Flow
Paw
Pit
Lucas 2 versus Autopulse
Tests sur corps Thiel
Pit moy.
(cm H2O)
90
80
70
60
thiel1
Thiel2
50
Thiel3
Thiel4
40
Thiel5
30
Manuel
20
10
0
ZOLL
Autopulse
LUCAS
Lucas 2
Apport du modèle
• Permet
– Intubation et ventilation
– Mesure de compliance/résistance
– Mesure de Poeso (et donc de Pit)
• Corrélable avec un sujet humain en ACR,
(l’hémodynamie en moins)
– Tester différentes stratégies en ACR
– De manière systématique et répétée
– Comparer l’effet de différentes techniques de massage
cardiaque sur la physiologie pulmonaire
• Limites
– Oedème des tissus, affaissement du thorax, etc..
Entre les deux, mon cœur balance
Pompe cardiaque
Compresses only
Compresse
Compresses
only
the heart
the heartle coeur
Principalement
Pompe thoracique
Compresses the
Compresses
Compresse
entire
chestmuch
of the chest
entièrement
le thorax
Lund University Cardiac Assist System
Vidéo Lucas
Compression-décompression active
l’ancêtre du LUCAS
Compression-décompression
active
• The application of external negative suction during the
decompression phase of CPR creates negative intrathoracic
pressure and thus potentially enhances venous return to
the heart. When used, the device is positioned at
midsternum on the chest.
• Results from the use of ACD-CPR have been mixed. In
several studies ACD-CPR improved ROSC and short-term
survival compared with conventional CPR. Of these studies,
3 showed improvement in neurologically intact survival. In
contrast, 1 Cochrane meta-analysis of 10 studies involving
both in-hospital arrest (826 patients) and out-of-hospital
arrest (4162 patients) and several other controlled trials
comparing ACD-CPR to conventional CPR showed no
difference in ROSC or survival.
Fig. 9. The coronary perfusion pressure obtained during manual CPR vs. LUCAS-CPR in pigs (Group I). The coarse line shows the
mean value. S.E.M. (thin line) is shown only on one side for the sake of clarity. n=6 in both groups.
Stig Steen, Qiuming Liao, Leif Pierre, Audrius Paskevicius, Trygve Sjöberg
Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation
Resuscitation, Volume 55, Issue 3, 2002, 285–299
http://dx.doi.org/10.1016/S0300-9572(02)00271-X
Fig. 3. Cortical cerebral blood flow during cardiopulmonary resuscitation measured by continuous Laser-Doppler flowmetry. The
blood flow, mean ± S.E.M. is presented as a fraction of the baseline flow value in the group treated with the LUCAS device (n = 7)
vs....
Sten Rubertsson, Rolf Karlsten
Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to
standard external compressions during experimental cardiopulmonary resuscitation ☆
Resuscitation, Volume 65, Issue 3, 2005, 357–363
http://dx.doi.org/10.1016/j.resuscitation.2004.12.006
Fig. 4. End-tidal CO2, mean ± S.E.M., during cardiopulmonary resuscitation in the group treated with the LUCAS device (n = 7) vs.
standardised manual compressions (n = 7).
Sten Rubertsson, Rolf Karlsten
Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to
standard external compressions during experimental cardiopulmonary resuscitation ☆
Resuscitation, Volume 65, Issue 3, 2005, 357–363
http://dx.doi.org/10.1016/j.resuscitation.2004.12.006
From: Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary
Resuscitation in Out-of-Hospital Cardiac Arrest: The LINC Randomized Trial
JAMA. 2014;311(1):53-61. doi:10.1001/jama.2013.282538
“CPR with this mechanical
device using the presented
algorithm can be delivered
without major complications
but did not result in
improved outcomes
compared with manual
chest compressions.”
Volume 385, Issue 9972, 14–20 March 2015, Pages 947–955
4471 patients
Randomisation
par ambulance
AutoPulse® LDB RCR
Fréquence de 80 compressions/min
Profondeur de 20-30% de la circonférence thoracique
Vidéo Autopulse
Veste circonférentielle
l’ancêtre de l’Autopulse
Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation
Wik, L.: Resuscitation, Volume 47, Issue 1, 2000, 7–25
Fig. 2. Phasic vascular pressure traces during manual and A-CPR in two patients (A, B) reproduced from digital recordings. Record
A shows one of the largest changes observed in aortic pressure and the diastolic aortic and right atrial pressure difference (coro...
Sergio Timerman, Luis Francisco Cardoso, Jose A.F. Ramires, Henry Halperin
Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest
Resuscitation, Volume 61, Issue 3, 2004, 273–280
http://dx.doi.org/10.1016/j.resuscitation.2004.01.025
Coronary Perfusion Pressure (CPP) mmHg
RÉSULTATS: La perfusion de pression coronarionenne (CPP) générée par
l’Autopulse, était 33% plus élevée que le massage manuel
*p=0.015
25
20
20
15
15
10
5
0
Manual CPR
Timerman S et al. Resuscitation. 2004;61:273-280.
AutoPulse
PPC diminue
rapidement lorsque
les compressions
avec AutoPulse
arrête
PPC revient après
plusieurs
compressions avec
AutoPulse
AutoPulse
Timerman S et al. Resuscitation. 2004;61:273-280.
Manual CPR
AutoPulse
From: Manual Chest Compression vs Use of an Automated Chest Compression Device During
Resuscitation Following Out-of-Hospital Cardiac Arrest: A Randomized Trial
JAMA. 2006;295(22):2620-2628. doi:10.1001/jama.295.22.2620
Volume 85, Issue 6, June 2014, Pages 741–748
RCR: LE VERDICT SUR LES PLANCHES
ROSC
Survie de l’évènement initial ad hôpital
Survie ad sortie hôpital ou 30 jours
Survie avec mRS 0-3
Remarques sur les planches
• Les principales remarques que l’on puisse faire sont :
– le délai de pose des machines à masser doit sûrement être précoce
– la durée de pose doit être la plus courte possible
– les protocoles d’investigation clinique ne doivent pas modifier les indications
de prise en charge et de réanimation des patients
• Ont une place réelle dans la prise en charge des patients en ACR
– Efficacité au moins équivalente à celle du massage cardiaque manuel
– Qualité reste constante au fil du temps et permet ainsi une durée de massage
prolongée
– Libère du personnel soignant qui peut s’acquérir d’autres tâches
– De plus en plus légers et autonomes, permettant leur utilisation à la fois en
pré- et en intrahospitalier
P. Plaisance · N. Segal · C. Fulleda: Massage cardiaque externe automatisé
Réanimation (2012) 21:S384-S390 DOI 10.1007/s13546-011-0428-7
LUCAS 2
•
•
•
The evidence does not demonstrate a benefit with the use of mechanical piston
devices for chest compressions versus manual chest compressions in patients with
cardiac arrest.
Manual chest compressions remain the standard of care for the treatment of
cardiac arrest, but mechanical piston devices may be a reasonable alternative for
use by properly trained personnel (Class IIb, LOE B-R).
The use of mechanical piston devices may be considered in specific settings where
the delivery of high-quality manual compressions may be challenging or dangerous
for the provider (eg, limited rescuers available, prolonged CPR, during hypothermic
cardiac arrest, in a moving ambulance, in the angiography suite, during
preparation for extracorporeal CPR [ECPR]), provided that rescuers strictly limit
interruptions in CPR during deployment and removal of the devices (Class IIb, LOE
C-EO).
Part 6: Alternative Techniques and Ancillary Devices for Cardiopulmonary Resuscitation
2015 American Heart Association Guidelines Update for Cardiopulmonary
Resuscitation and Emergency Cardiovascular Care
Steven C. Brooks, Chair; Monique L. Anderson; Eric Bruder; Mohamud R. Daya;
Alan Gaffney; Charles W. Otto; Adam J. Singer; Ravi R. Thiagarajan; Andrew H. Travers
Autopulse
•
•
•
The evidence does not demonstrate a benefit with the use of LDB-CPR for chest
compressions versus manual chest compressions in patients with cardiac arrest.
Manual chest compressions remain the standard of care for the treatment of
cardiac arrest, but LDB-CPR may be a reasonable alternative for use by properly
trained personnel (Class IIb, LOE B-R).
The use of LDB-CPR may be considered in specific settings where the delivery of
high-quality manual compressions may be challenging or dangerous for the
provider (eg, limited rescuers available, prolonged CPR, during hypothermic
cardiac arrest, in a moving ambulance, in the angiography suite, during
preparation for ECPR), provided that rescuers strictly limit interruptions in CPR
during deployment and removal of the devices (Class IIb, LOE C-EO).
Part 6: Alternative Techniques and Ancillary Devices for Cardiopulmonary Resuscitation
2015 American Heart Association Guidelines Update for Cardiopulmonary
Resuscitation and Emergency Cardiovascular Care
Steven C. Brooks, Chair; Monique L. Anderson; Eric Bruder; Mohamud R. Daya;
Alan Gaffney; Charles W. Otto; Adam J. Singer; Ravi R. Thiagarajan; Andrew H. Travers
CONCLUSIONS
• La RCR de qualité:
–
–
–
–
–
Fréquence > 100/min
Profondeur 4-5 cm
Minimiser les interruptions
Décompression complète
Ventilation???
• Pompe cardiaque VS pompe thoracique
• Importance de la PPC et comment la générer
– Systole VS diastole
• Planches de massage automatiques
– Avantages
•
•
•
•
Standardisation des compressions
Épargne du personnel
Génération de pressions plus élevées
Bénéfice de survie?
– Inconvénients
• Délai de mise en place
• Timing de l’initiation?
• Affaissement du thorax
• Recommandations « soft » pour les situations
spéciales
• Une paire de bras vaut autant que auto tu auras!
Merci!