Chapitre 2

Transcription

Chapitre 2
Chapitre II
Structures de poutres
II - Structures de poutres
Au cours de ces deux à trois dernières décennies, les outils d'analyse disponibles pour
l'ingénieur se sont modifiés et accrus, surtout ceux utilisant les méthodes numériques
informatisées pour la modélisation géométrique et la simulation du comportement. [7]
Argyris publie en 1955 une approche unifiée de la méthode des forces et des
déplacements. En 1956, Turner et Clough publient une présentation systématique de la
méthode des déplacements.
Des éléments de membrane, de coque, de volume sont ensuite développés et des
ouvrages de référence édités: Zienkiewicz (1967), Gallagher (1975), Bathe et Wilson
(1976), Dhatt et Touzot (1984), Hugues (1987), Batozet Dhatt (1990, 1992).
Dans le domaine de calcul des structures discrétisées, ce sont les mécaniciens qui ont
utilisé en premier les méthodes matricielles, et plus particulièrement la Méthode des
Eléments Finis (M.E.F.), pour l'analyse d'assemblages de poutres.
A - Treillis plan de barres
Dans ce qui suit, ne sont mises en évidence que les notions importantes utiles à la
compréhension du reste de l'exposé. Se reporter à l'annexe ïï pour les autres détails.
1 - Exemple
Soit une structure plane constituée de 2 barres articulées à leurs extrémités équilibrant
un effort extérieur d'origine non précisée. Les deux éléments finis sont les deux barres
connectées entre elles et au support par l'intermédiaire "d'objets" appelés nœuds.
Ici, on peut imaginer ces nœuds comme des axes connectant les éléments. Les efforts
extérieurs connus sont appliqués sur ces nœuds et les liaisons imposées le sont aussi au
niveau des nœuds.
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
Chapitre II
Structures de poutres
L'étude statique en élasticité linéaire consiste, connaissant les caractéristiques des
éléments-barres (matériau, section) et la géométrie de la structure, à calculer :
- les déplacements des nœuds non liés au support;
- les efforts de liaison exercés par le support sur les nœuds concernés;
- les contraintes dans les barres.
2 - Matrice de rigidité
Un élément est caractérisé par une matrice de rigidité (ou de raideur) reliant les efforts
exercés par les nœuds (ici i et j) aux déplacements de ces nœuds. [8]
Base locale à l'élément
/\
T\y
K N I /E.S.L
isL
1
V^
\
"Nil
Ti
N]
^
•"'"/'.
UJ
uU/^
'/^
Vl
Xy
/FXj
FYi
t//
\^
Y
'
yv-x
»A
[E.S/L
0
0
0
x
Vi
0
0
0
Y
Lx
-,
0
vi
r-
FHeJ
- -.r- -,
Fe=K e .U e
\*\*Ï\W
e = Fdu noeud sur
^
UXi
Lx
t
5=*. = S- "<! . S-
-E.S/L o E.S/L o ^ L
Tj
/,f
/>Û
,'</^
UYif^^
FXi
t
0 -E.S/L 0~| fui] r-
0
=
Base globale à la structure
/v
ïi\^'
V
(f - n - 2)
'
fr-n-i,
'' élément e : barre i - j
Pour effectuer des opérations matricielles, un changement de base est effectué afin
que la relation précédente soit exprimée en base globale. Chaque sous-matrice devient :
KJ:^ Rjj.Kjj.Rjj
IJ
IJ
R:: =
u
IJ
L-sina
cosa
J
~—- = —-——-— . —LFHeJ LKJ' I K JjJL U Jj
Fp = Kp.Up
(r-II-2)
Pour cette structure plane, a est l'angle entre l'axe X (global) et l'axe x (local).
3 - Assemblage
A l'équilibre du nœud 1 de la structure précédente, correspond l'équation matricielle :
Fext->i - F^ + F^
et donc : F^ = F, = [^ + K^j.U, -h KÎ2.U2 + K*3.U3
Ces relations, pour tous les nœuds, correspondent à l'opération d'assemblage :
F,
F2 =
F
L. 3J
L
K^ + K^
K12
K21
if ii
K22
31
K13
if ii
33
U-j
- U2 <r> F = K.U : pour la structure complète, (r-n-3)
§e
J LU3>
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés. II-2
Chapitre II
Structures de poutres
4 - Résolution
On remarque qu'il y a autant d'équations que d'inconnues, sachant que dans U, les
inconnues de déplacements sont: Uxi et UY1 et dans F, celles d'efforts sont: FX2, FY2,
FX3, FY3.
Les déplacements sont calculés en premier, d'où la désignation : "méthode des déplacements".
La connaissance de tous les déplacements permet le calcul des efforts de liaison puis
le calcul des contraintes dans chaque élément.
Remarque
Les matrices K et Ke sont symétriques et, moyennant une numérotation appropriée des
nœuds, K prend la forme d'une "matrice-bande".
B - Ossature plane de poutres
Dans ce qui suit, ne sont mises en évidence que les notions jugées utiles pour la suite
de l'exposé. Se reporter à l'annexe n pour d'autres détails.
1 - Matrice de rigidité
Comme précédemment et pour tous les éléments suivants, elle relie les efforts exercés
par les nœuds sur l'élément considéré aux déplacements de ces nœuds.
Pour une poutre droite, qui se différencie de l'élément précédent par le fait que les
nœuds peuvent transmettre des moments aux extrémités, la matrice de raideur fait aussi
intervenir le moment quadratique I [8].
$
^
n\5
/
J^V
^/Mj
s'
N i X " ! - , E> S' !
Ti *
.^\
Ml
"V
N <-» effort Normal
T <-> effort Tranchant
.
'-"~~~/^ ^
U
>K&i
s'
J
U
> /XX^L
vi^ i
V
(f-II-3)
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
II-3
2 - Fonctions d'interpolation
En négligeant l'influence de l'effort tranchant, la matrice précédente peut être obtenue
en utilisant les formules de Bresse. Une autre méthode consiste à utiliser des fonctions
d'interpolation sur les déplacements [3] :
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
Chapitre II
Structures de poutres
b - Matrice de raideur
Les fonctions précédentes, polynômes d'Herm/fe, permettent le calcul de la matrice de
raideur en considérant l'égalité :
f J(^- + ^).dx = f "U. K e . De
-
EU* X
EI.vlxx = Mf
ES.u,x = N
EU. O
où f,x = -jp
(Jj\
(r-II-6)
où : u,x = Ni ,x . ui + N2,x . uj
v,xx = N3,xx . vi + N4,xx . 0i + N5,xx . vj + Ne.xx . 9j
En tenant compte de l'influence de l'effort tranchant T, cette matrice devient :
'ES
-ES
L
_
K e - ^g-g
R
L
12.EI
6.EI
3
2
L .(1 + À) L .(1 + X)
6.EI
El. (4 +A.)
2
L .(1 + À)
L.Q + À)
ES
L
-12. El
6.EI
3
L .(1 + À) L2.(1 + X)
-6.E.I
EI.(2-X)
2
L .(1 + X)
L(1 + X).
~
, _ 12.E.I
âsTÎJ
}
L
-12.E.I
3
L .(1 + À)
6.E.I
2
L .(1 + À)
-6.E.I
12.E.I
2
-6.E.I
3
L .(1 + À) L2.(1 + À)
-6.E.I
EL (4 + À)
2
L .(1 + À)
L(1 + À)
L .(1 + À)
EL (2-À)
L(1 + X)
3 - Charges en travée
Après assemblage, le système linéaire à résoudre (F=K.U) ne fait intervenir que les
efforts extérieurs (forces et moments) appliqués sur les nœuds. Toute charge agissant sur
une poutre doit donc être préalablement décomposée en efforts équivalents imposés aux
nœuds.
Pour une charge répartie - p(x) suivant l'axe de la poutre, q(x) dans une direction
perpendiculaire - et en utilisant le théorème des travaux virtuels, les efforts équivalents
Ni, fi, Mi, Nj, fj, Mj sont calculés avec les égalités :
TN3]
f
/ \ */ \ _i
F~-
A-
"•
A-If
Jq(x).v(x).dx = [vi 61 vj 8jj.Jq.
N4
N5
fti"
r^.
-*
^,
^.-i
Mi
.dx = [vi 6i vj 9jJ. ^
|_N6J
LMJ_
(r-II-8)
I
• f
I
/ \ ^/ \ j •
r^-
^-i f
r~
I"" '*» ""
"°i
N1
r/s.
/S.T fSli
Jp(x).u(x).dx = [u. uj].Jp|N2J.dx = [u. uj].
n-5
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
Chapitre II
Structures de poutres
4 - Résolutions
Rappel : toutes les formulations précédentes correspondent à des petits déplacements.
a • Statique
Comme pour les treillis plans, et après sommation des efforts équivalents dus aux
charges en travée aux efforts directement imposés aux nœuds, le système à résoudre est
de la forme : F = K „ U .
Des calculs de diagrammes de moment de flexion, d'effort tranchant, d'effort normal et
de déplacement de la ligne moyenne sont ensuite effectués pour chaque poutre.
b - Dynamique : vibrations libres
Les polynômes Nï(x) donnent les coefficients de la matrice masse-consistante en
exprimant l'énergie cinétique (inertie de rotation de section droite négligée [3]) :
L
_
f J P .S.((U,t) 2 +(V,t) 2 ).dX = -l. 'Ùe . Me . Ùe
(r-II-9)
0
La recherche des modes propres (valeurs et vecteurs propres) s'effectue en résolvant
le système : M . Ù + K. U = 0.
Les déformées modales sont ensuite tracées en utilisant les fonctions Ni(x).
c - Dynamique : vibrations forcées
Avec amortissement, la formulation matricielle devient : M . Ù + C . Ù + K . U = F(t)
La résolution peut se faire par superposition modale (voir annexe H) ou intégration
directe pas à pas [2].
Cette expression sera reprise lors de l'exposé sur la méthode de "dynamique explicite".
d - Bifurcation d'équilibre
A ce type d'étude, correspondent aussi les désignations: "stabilité initiale" ou "flambage
classique" [7]. Cela consiste à rechercher des valeurs et vecteurs propres.
Pour le mode n: [K + A,n.Kg].Qn = 0
où Kg = Kg(P): matrice géométrique.
Il y a instabilité suivant le mode n si le chargement P servant à calculer Kg est
multiplié par A,n.
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
il - 6
Chapitre II
Structures de poutres
5 - Matrice géométrique
Avant une utilisation ultérieure systématique lors d'un calcul dans le domaine élastique
mais en non-linéarité géométrique, la notion de matrice "géométrique" est développée ici
de manière simple, physiquement interprétable. [6]
En tenant compte de l'influence du déplacement transversal (v), la déformation suivant
une direction parallèle à la ligne moyenne a pour expression :
devi
e = u,x-y.0,x+f(v,x)
2
oùv,x=~
-L-
3X
I
^
J3y
dx
-j^l—-!>
j
I
dx
<MI-S>
.
Avec:JJy.ds = 0 et JJy2-dS = 1, l'énergie de déformation devient, limitée à cet ordre :
Z
£
L
L
0
0
iJJjE.a.dv = iJJJe.E.^^^
La dernière intégrale, en considérant un effort normal N=E.S.(u,x) constant, donne :
fui"
vi
f o l
N3,x
L
L M4 v
fN.J(v,x)2.dx=f[ui vi 6i uj vj 9j]. N.J
o
o
Qi
' .[0 N3,x N4,x 0 N5,x N6,x].dx .
0
uj
N5,x
vj
LN6'XJ
~0
0
i.^.dx^.'ûe.^.ûe; ^-^.°0
jLei
0
36
0
3.L
^ f
0
0
0
3.L
-L
0 "
3.L
l '30L ^ <-n-.o,
0 -36 -3.L 0
2
0
-36
36
-3.L
0 -3.L 4.L2
Nota : La variation de longueur de la poutre est négligée.
Cette matrice qui, ici, ne fait intervenir que l'effort normal, est proportionnelle au
chargement P et est aussi appelée : "matrice de rigidité due aux contraintes initiales". Un
développement de cette notion sera proposé dans le chapitre "non-linéarité géométrique".
A un chargement À.P sur une structure, va correspondre: w = ^.A,2.1U . [K +À.Kg]. U;
Pour certaines valeurs de À, la matrice entre crochets n'est plus inversible et une
instabilité apparaît.
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
II-7
Chapitre II
Structures de poutres
C - Compléments
1 - Résumé des principales notions
- nœuds et éléments;
- fonctions d'interpolation (Hermite)]
- matrice de rigidité (base locale ou globale);
- assemblage;
- efforts équivalents;
- méthode des déplacements;
- matrice de raideur géométrique.
2 - Bibliographie du chapitre II
Pour ce qui concerne plus particulièrement le calcul par éléments finis d'assemblages
de poutres, des renseignements supplémentaires peuvent être trouvés dans les ouvrages
suivants :
[1]
BATOZ, J.L, DHATT, G., Modélisation des structures par éléments finis - Poutres et
plaques, Volume. 2, Hermès, Paris, 1990, 483 pages.
[2] CAPRA, A., DAVIDOVICI, V., Calcul dynamique des structures en zone sismique,
Eyrolles, Paris, 1982,164 pages.
[3] COFFIGNAL, G., Mécanique des vibrations, Cours polycopié ENSAM, Paris, 1983,
144 pages.
[4] DUBIGEON, S., Mécanique des milieux continus, Tome 3, Eléments finis, polycopié
ENSM, Nantes, 1985, 88 pages
[5] DHATT, G., TOUZOT, G., Une présentation de la méthode des éléments finis,
Maloine, 1984, 450 pages.
[6] GACHON, H., Mécanique des structures à barres, Fascicule 3, Cours polycopié,
ENSAM, Paris, 1986, 165 pages.
[7] IMBERT, J.F., Analyse des structures par
finis, Editions CEPADUES,
Toulouse, 1991, 505 pages.
18] MASSONNET, C.,
G.,
R.f MULLER, R.,
G.,
Calculs des structures sur ordinateur Tome 2 , Eyrolles, Paris, 1972, 275
[9] ROCKEY, K.C., EVANS, H.R., GRIFFITHS, D.W., NETHERCOT, D.A.,
Introduction à la
des
finis, Eyrolles, Paris, 1979, 228 pages.
[10] WANG, PC», Calcul des structures par les
numériques et matricielles,
Dunod, Paris, 1969, 435 pages.
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés. II-8
Chapitre II
Structures de poutres
D - Exemple
L'exemple traité dans ce qui suit permet de mettre en évidence l'influence du nombre
de poutres dans le cas d'une structure de forme « circulaire ».
1 - Données
a - Modélisation géométrique
La structure présente une double svmétrie et seot discrétisations sont étudiées :
ainsi que 4 x 12 et 4 x 36 poutres dont les figures ne sont pas données ici.
b - Données numériques
Le rayon de la structure "circulaire" ainsi formée est égal = 3 m.
Les liaisons sont constituées d'une articulation en C et d'un appui horizontal en A où
agit un effort vertical F = 1000 daN.
La section des poutres est rectangulaire - b = 81 cm, h = 4 cm - ce qui conduit à une
section de 324 cm2 et à un moment quadratique I = 432 cm4 (I = IGZ autour d'un axe
normal au plan de la figure).
Le matériau a pour caractéristiques : E = 2000000 daN/cm2 et v = 0,3.
II-9
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
Chapitre II
Structures de poutres
<s^
2 - Résultats
a - Valeurs numériques
Elles concernent le déplacement vertical du point A, wA, et sont comparées à la valeur
R3 fn 2^\
wt, calculée par la théorie des poutres où wt = F — —— =» wt = 4,649 cm.
E.I \4
nj
Dans ce qui suit, seule la flexion est prise en compte; on notera M le moment de flexion
et MDle moment en D
M
a
f
^
*
•
a A = a D + J a,s.ds ou a,s = —- etics: o = 0
E.I
ccA=0
DA
=>f(-MD+-.R(1-cos9)).R.de = 0=>M D =-.R —2
2
n
o
i .'
•
.
i *t
A-
i *
-A
i i
4
f . «2 r^
i/x
F
.R
Lénergie de déformation s écrit : U = —— jM^.RdG = ——
f 7l
Cette équation donne l'expression de VA précisée précédemment.
il -10
© [F.SABOURIN E.SALLE], [2000], INSA de Lyon, tous droits réservés.
2
1
F. VA
= —~ (r-n-ii)

Documents pareils