References – 314 –

Transcription

References – 314 –
References
Books referred to by abbreviation
BLR
S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3. Folge, Vol. 21, Springer-Verlag, 1990.
EGA
A. Grothendieck, J. Dieudonné, Eléments de Géométrie Algébrique, Publ. Math. de l’I.H.E.S. 4,
8, 11, 17, 20, 24, 28, 32 (1960–67); Chap. 1 republished as Die Grundlehren der mathematischen
Wissenschaften 166, Springer-Verlag, Berlin, 1971.
FGA
A. Grothendieck, Fondements de Géométrie Algébrique, Séminaire Bourbaki, Exp. 190, 195, 212,
221, 232, 236, ???
SGA1
A. Grothendieck et al., Revêtements étales et groupe fondamental, Lecture Notes in Math. 224,
Springer-Verlag, Berlin, 1971.
SGA3
M. Demazure et al., Schémas en groupes, Lecture Notes in Math. 151, 152, 153, Springer-Verlag,
Berlin, 1970.
HAG
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, NewYork,
1977.
MAV
D. Mumford, Abelian Varieties, Oxford University Press, Oxford, 1970.
GIT
D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory (3rd enlarged ed.), Ergebnisse
der Mathematik und ihrer Grenzgebiete 34, Springer-Verlag, Berlin, 1994.
Other references
A. Altman, S. Kleiman
1. Introduction to Grothendieck duality, Lecture Notes in Math. 146, Springer-Verlag, Berlin, 1970.
S. Anantharaman
1. Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1 Bull. Soc. Math.
France, Mémoire 33 (1973), 5–79.
A. Andreotti
1. On a theorem of Torelli, Amer. J. Math. 80 (1958), 801–828.
A. Andreotti, A.L. Mayer
1. On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Pisa 21 (1967), 189–238.
M.F. Atiyah, I.G. Macdonald
1. Introduction to commutative algebra, Addison-Wesley, Reading MA, 1969.
F. Bardelli, C. Ciliberto, A. Verra
1. Curves of minimal genus on a general abelian variety, Compos. Math. 96 (1995), 115–147.
W. Barth
1. ??
A. Beauville
1. Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, in:
Algebraic Geometry (Tokyo/Kyoto 1982), Lecture Notes in Math. 1016, Springer-Verlag, Berlin, 1983,
pp. 238–260.
2. Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), 647–651.
3. Le problème de Torelli, Séminaire Bourbaki, Exp. ??, ??; in: Astérisque 145–146 (1987), 7–20.
P. Berthelot
1. Cohomologie cristalline des schémas de caractéristique p > 0, Lecture Notes in Math. 407, Springer-Verlag,
Berlin, 1974.
– 314 –
P. Berthelot, A. Ogus
1. Notes on crystalline cohomology, Mathematical Notes 21, Princeton University Press, Princeton, NJ, 1978.
S. Bloch
1. Algebraic cycles and K-theory, Adv. Math. 61 (1986), 267–304.
2. Some elementary theorems about algebraic cycles on Abelian varieties, Invent. Math. 37 (1976), 215–228.
E. Bombieri
1. Counting points on curves over finite fields (d’après S.A. Stepanov) Séminaire Bourbaki, Exp. 430 (1972/73),
pp. 234–241. Lecture Notes in Math., Vol. 383, Springer, Berlin, 1974.
A. Borel
1. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts,
Ann. of Math. 57 (1953), 115–207. (= Œuvres, ??)
A. Borel, J-P. Serre
1. Le th’eorème de Riemann-Roch, d’après Grothendieck, Bull. Soc. Math. France 86 (1958), 97–136.
N. Bourbaki
1. Algèbre, (data to be supplied)
2. Algèbre Commutative, (data to be supplied)
A. Collino
1. A new proof of the Ran-Matsusaka criterion for Jacobians, Proc. A.M.S. 92 (1984), 329–331.
2. A simple proof of the theorem of Torelli based on Torelli’s approach, Proc. A.M.S. 100 (1987), 16–20.
B. Conrad
1. Grothendieck duality and base change, Lecture Notes in Math. 1750, Springer, 2000.
C.W. Curtis, I. Reiner
1. Representation theory of finite groups and associative algebras, Pure and Applied Mathematics 11, John
Wiley & Sons, Inc., 1962.
P. Deligne
1. Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. de l’I.H.E.S. 35
(1968), 107–126.
2. Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969), 238–243.
3. La conjecture de Weil. I. Publ. Math. de l’I.H.E.S. 43 (1974), 273–307.
4. ?? in: Galois groups over Q. (NOG AANVULLEN)
P. Deligne, L. Illusie
1. Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math. 29 (1987), 247–270.
P. Deligne, J.S. Milne
1. Tannakian categories, In: Hodge cycles, motives and Shimura varieties, P. Deligne et al., eds., Lecture
Notes in Math. 900 (1981), pp. 101–228.
M. Demazure, P. Gabriel
1. Groupes Algébriques, Tome I, Masson & Cie, Paris/North-Holland, Amsterdam, 1970.
C. Deninger, J. Murre
1. Motivic decomposition of abelian schemes and the Fourier transform, J. reine angew. Math. 422 (1991),
201–219.
M. Deuring
1. Über die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hamburg 14
(1941), 197–272.
2. Algebren (Zweite korrigierte Auflage), Ergebnisse der Mathematik und ihrer Grenzgebiete, 1. Folge (???),
Vol. 41, Springer-Verlag, 1968.
J. Dieudonné
1. Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p > 0. VII., Math. Ann. 134 (1957),
114–133.
2. Course de géométrie algébrique ?? (data to be supplied)
G. Faltings, C-L. Chai
1. Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 22,
Springer-Verlag, 1990.
– 315 –
W. Fulton
1. Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 2, Springer-Verlag,
1984.
J. Giraud
1. Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften179, Springer-Verlag,
Berlin-New York, 1971.
G. van der Geer, M. van der Vlugt
1. Kloosterman Sums and the p-torsion of Certain Jacobians,
G.H. Hardy, E.M. Wright
1. An introduction to the theory of numbers (5th ed.), Oxford Science Publications, Clarendon Press, Oxford,
1979.
R. Hartshorne
1. Residues and duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
T. Honda
1. Isogeny classes of abelian varieties over finite fields, Journ. Math. Soc. Japan 20 (1968), 83–95.
E. Howe
1. Principally polarized ordinary abelian varieties over finite fields, Trans. A.M.S. 347 (1995), 2361–2401.
2. Isogeny classes of ableina varieties with no principal polarisations, in: Moduli of abelian varieties, Faber,
van der Geer, Oort (eds.), Progress in Math. 195, Birkhäuser Verlag, Basel, 2001.
Y. Ihara
1. Some remarks on the number of points of algebraic curves over finite fields, J. Fac. Sci. Tokyo 28 (1982),
721–724.
L. Illusie
1. Report on crystalline cohomology, in: Algebraic geometry (Arcata 1974), Procedings of Symposia in Pure
Mathematics 29, AMS, Providence, RI, 1975, pp. 459–478.
2. Cohomologie cristalline (d’après P. Berthelot), Séminaire Bourbaki, Exp. 456, in: Lecture Notes in Math.
514, Springer, Berlin, 1976, pp. 53–60.
3. Cohomologie de de Rham et cohomologie étale p-adique (d’après G. Faltings, J.-M. Fontaine et al.),
Séminaire Bourbaki, Exp. 726, in: Astérisque 189–190 (1990), pp. 325–374.
4. Crystalline cohomology, in: Motives (Seattle, WA, 1991), Procedings of Symposia in Pure Mathematics 55(1), AMS, Providence, RI, 1994, pp. 43–70.
N. Jacobson
1. The theory of rings, Mathematical Surveys 2, American Math. Soc., New York, 1943.
T. Katsura, K. Ueno
1. On elliptic surfaces in characteristic p, Math. Ann. 272 (1985), pp. 291–330.
N.M. Katz
1. An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields, in: Mathematical
developments arising from Hilbert problems (Northern Illinois Univ., De Kalb, Ill., 1974), Procedings of
Symposia in Pure Mathematics 28, AMS, Providence, R.I., 1976, pp. 275–305.
2. Slope filtration of F -crystals, in: Journeées de Géométrie Algébrique de Rennes (I), Astérisque 63 (1979),
113–164.
N.M. Katz, B. Mazur
1. Arithmetic Moduli of Elliptic Curves, Annals of Mathematics Studies 108, Princeton University Press,
Princeton, 1985.
S. Keel, S. Mori
1. Quotients by groupoids, Ann. of Math. 145 (1997), pp. 193–213.
G. Kempf
1. On the geometry of a theorem of Riemann, Ann. of Math. 98 (1973), 178–185.
S. Kleiman
1. Algebraic cycles and the Weil conjectures, in: Dix exposés sur la cohomologie des schémas. Amsterdam
1968.
– 316 –
F. Klein
1. Geschichte der Mathematik im 19. Jahrhundert, (data to be supplied)
M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol
1. The book of involutions, AMS Colloquium Publications 44. AMS, Providence, RI, 1998.
J. Kollár
1. Quotient spaces modulo algebraic groups, Ann. of Math. 145 (1997), pp. 33–79.
R.E. Kottwitz
1. Points on some Shimura varieties over finite fields, J.A.M.S. 5 (1992), pp. 373–444.
K. Künnemann
1. On the Chow motive of an abelian scheme, in: Motives (Seattle, WA, 1991), Procedings of Symposia in
Pure Mathematics 55(1), AMS, Providence, RI, 1994, pp. 189–205.
T.Y. Lam
1. A first course in noncommutative rings, Graduate Texts in Mathematics 131, Springer-Verlag, New York,
2001.
S. Lang
1. Abelian varieties, Interscience tracts in pure and applied math. 7, Interscience Publ., New York, 1959.
2. Introduction to modular forms (corrected reprint), Die Grundlehren der mathematischen Wissenschaften222, Springer-Verlag, 1995.
H. Lange, Ch. Birkenhake
1. Complex abelian varieties, Die Grundlehren der mathematischen Wissenschaften 302, Springer-Verlag,
1992.
G. Laumon, L. Moret-Bailly
1. Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 39, Springer-Verlag,
2000.
Yu.I. Manin
1. Correspondences, motives and monoidal transforms, Mat. Sborn. 77 (1970), 475–507.
W.S. Massey
1. Algebraic topology: an introduction, Graduate Texts in Mathematics 56, Springer-Verlag, 1967.
H. Matsumura
1. Commutative ring theory, Cambridge studies in advanced mathematics 8, Cambridge University Press,
Cambridge, 1986.
H. Matsumura, F. Oort
1. Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1–25.
T. Matsusaka
1. On a theorem of Torelli, Amer. J. Math. 80 (1958), 784–800.
A. Mattuck, A. Mayer
1. The Riemann-Roch theorem for algebraic curves, Ann. Scuola Norm. Pisa 17 (1963), 223–237.
W. Messing
1. The crystals associated to Barsotti-Tate groups: with applications to abelian schemes Lecture Notes in
Math. 264, Springer-Verlag, Berlin, 1972.
2. Short sketch of Deligne’s proof of the hard Lefschetz theorem, in: Algebraic geometry (Arcata 1974),
Procedings of Symposia in Pure Mathematics 29, AMS, Providence, RI, 1975, pp. 563–580.
N. Mestrano, S. Ramanan
1. Poincaré bundles for families of curves, J. reine angew. Math. 362 (1985), 169–178.
J.S. Milne
1. Abelian varieties, In: Artihmetic Geometry, G. Cornell and J.H. Silverman, eds., Springer-Verlag, New
York, 1986, pp. 103–150.
2. Jacobian varieties, In: Artihmetic Geometry, G. Cornell and J.H. Silverman, eds., Springer-Verlag, New
York, 1986, pp. 167–212.
J.W. Milnor, J.C. Moore
1. On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
– 317 –
F. Morel, V. Voevodsky
1. A1 -homotopy theory of schemes (NOG AANVULLEN)
L. Moret-Bailly
1. Familles de courbes et de variétés abéliennes sur P1 ; I: Descente des polarisations, II: Exemples, In:
Séminaire sur les pinceaux de courbes de genre au moins deux, L. Szpiro, ed., Astérisque 86 (1981), 109–124
& 125–140.
2. Pinceaux de variétés abéliennes, Astérisque 129 (1985).
S. Mukai
1. Duality between D(X) and D(X̂) with its applications to Picard sheaves, Nagoya Math. J. 81 (1981),
153–175.
D. Mumford
1. On the equations defining abelian varieties, I–III, Invent. Math. 1 (1966), 287–354, 3 (1967), 75–135 &
215–244.
2. Lectures on curves on an algebraic surface, Annals of mathematics studies 59, Princeton University Press,
Princeton NJ, 1966.
3. Curves and their Jacobians, The university of Michigan press, Ann Arbvor MI, 1975.
4. (with several collaborators) Tata lectures on theta, I–III, Progress in Math. 28, 43, 97, Birkhäuser, Boston
MA, 1983, 1984, 1991.
J.P. Murre
1. On contravariant functors from the category of preschemes over a field into the category of abelian groups,
Publ. Math. de l’I.H.E.S. 23 (1964), 5–43.
M. Nagata
1. Some questions on rational actions of groups, In: Algebraic Geometry, S.S. Abhyankar et al., eds., Oxford
University Press, 1969, pp. 323–334.
J. Neukirch
1. Algebraic Number Theory (Translated from the 1992 German original), Die Grundlehren der mathematischen Wissenschaften 322, Springer, 1999.
T. Oda
1. The first de Rham cohomology group and Dieudonné modules, Ann. scient. Éc. Norm. Sup. (4) 2 (1969),
63–135.
J. Oesterlé
1. Dégénérescence de la suite spectrale de Hodge vers de Rham, Séminaire Bourbaki, Exp. 673 (data to be
supplied)
F. Oort
1. Sur le schéma de Picard, Bull. Soc. Math. France 90 (1962), 1–14.
2. Algebraic group schemes in characteristic zero are reduced, Invent. Math. 2 (1966), 79–80.
3. Commutative group schemes, Lecture Notes in Math. 15, Springer-Verlag, Berlin, 1966.
R.S. Pierce
1. Associative Algebras Graduate Texts in Mathematics88, Springer-Verlag, New York, 1982.
??. Pontryagin
1. Akd. Nauk USSR 1 (1935), 433–437 (DATA TO BE SUPPLIED)
2. C.R. Paris 200 (1935), 1277–1280.) (DATA TO BE SUPPLIED)
M. Raynaud
1. Sur le passage au quotient par un groupoı̈de plate C. R. Acad. Sc. Paris (Série I, Math.) 265 (1967),
384–387.
2. Passage au quotient par une relation d’équivalence plate, In: Proceedings of a conference on local fields,
T.A. Springer, ed., Springer-Verlag, Berlin, 1967, pp. 78–85.
3. Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math. 119,
Springer-Verlag, Berlin-New York, 1970.
I. Reiner
1. Maximal orders (Corrected reprint of the 1975 original), London Math. Soc. Monographs (New Series) 28,
The Clarendon Press, Oxford University Press, Oxford, 2003.
– 318 –
J.J. Rotman
1. An introduction to algebraic topology, Graduate Texts in Mathematics 119, Springer-Verlag, 1988.
R. Schoof
1. Nonsingular plane cubic curves over finite fields J. Combin. Theory Ser. A 46 (1987), 183–211.
E. Selmer
1. The Diophantine equation ax3 + by 3 + cz 3 = 0 Acta Math. 85 (1951), 203–362.
J-P.
1.
2.
3.
4.
Serre
Quelques propriétés des variétés abéliennes en caractéristique p, Amer. J. Math. 80 (1958), 715–739.
Corps Locaux (data to be supplied)
Resumé des Cours de 1964–65 Annuaire du Collège de France. Oeuvres II, p. 272.
Complex Multiplication. In: Algebraic Number Theory, J.W.S. Cassels, A. Fröhlich, Eds. Academic Press
London 1967.
5. Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini. C. R. Acad. Sc. Paris (Série
I, Math.) 296 (1983), no. 9, 397–402.
E. Selmer
1. The Diophantine equation ax3 + by 3 + cz 3 = 0, Acta Math. 85 (1951), 203–362.
A.M. Shermenev
1. The motive of an abelian variety, Funct. Anal. 8 (1974), 55–61.
G. Shimura, Y. Taniyama
1. Complex multiplication of abelian varieties and its applications to number theory, Publ. of the Math. Soc.
of Japan 6, The Math. Soc. of Japan, Tokyo, 1961.
A. Silverberg, Yu.G. Zarhin
1. Polarizations on abelian varieties, Math. Proc. Cambridge Philos. Soc. 133 (2002), 223–233.
J.H. Silverman
1. The arithmetic of elliptic curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986.
2. Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151, Springer-Verlag,
New York, 1994.
J. Tate
1. Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144.
2. The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.
3. Finite flat group schemes, In: Modular forms and Fermat’s last theorem, G. Cornell et al, eds., SpringerVerlag, New York, 1997, pp. 121–154.
J. Tate, F. Oort
1. Group schemes of prime order, Ann. Sci. École Norm. Sup. 3 (1970), 1–21.
D. Toledo
1. Projective varieties with non-residually finite fundamental group, Publ. Math. de l’I.H.E.S. 77 (1993),
103–119.
R. Torelli
1. Sulle serie algebriche semplicemente infinite di gruppi di punti appartenenti a una curva algebrica, Rend.
Circ. Mat. Palermo 37 (1914), ??.
A. van de Ven
1. On the embedding of abelian varieties in projective space, Annali di Matematica pura ed applicata (4), 103
(1975), 127–129.
S.G. Vladuts, V.G. Drinfeld
1. Number of points of an algebraic curve, Funct. Analysis 17 (1983), 68–69.
W.C. Waterhouse
1. Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4), 2 (1969), 521–560.
2. Introduction to affine group schemes, Graduate Texts in Mathematics 66, Springer-Verlag, New York,
1979.
W.C. Waterhouse, J.S. Milne
1. Abelian varieties over finite fields, In: Procedings of Symposia in Pure Mathematics 20, ??? (eds.), Amer.
Math. Soc., Providence, R.I., 1971, pp. 53–64.
– 319 –
A. Weil
1. Zum Beweis des Torellischen Satzes, Nachrichten der Akademie der Wissenschaften in Göttingen, Math.Phys. Klasse, 2 (1957), 33–53.
2. Sur les courbes algébriques et les variétés qui s’en déduisent, (data to be supplied)
3. Variétés abéliennes et courbes algébriques, (data to be supplied)
4. Number of solutions of equations over finite fields, Bull. A.M.S. 55 (1949), 497–508.
5. On the projective embedding of abelian varieties, (data to be supplied)
T. Zink
1. Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik 68, Teubner, Leipzig,
1984.
– 320 –
Index
F -crystal, see crystal
F -isocrystal, see isocrystal
fixed point scheme, 71
flex point, 82
Frobenius, 76–80
arithmetic, 310
characteristic polynomial of, 266
geometric, 265
isogeny, 76
iterated, 80
2-torsion
of an elliptic curve, 81
3-torsion
of an elliptic curve, 82
Abel’s Theorem, 223–224
abelian varieties up to isogeny
category of, 181
abelian variety
definition, 6
over C, 75–76
arithmetic Frobenius, 310
G-torsor, 174
Gauss map, 221
geometric Frobenius, 265
geometric line bundle, 1
geometric vector bundle, 1
group
definition, 5
group variety
definition, 6
Brauer equivalence, 309
Brauer group, 309
canonical involution, 190, 311
Cartier duality
of Frobenius and Verschiebung, 79
central simple algebra, 309
characteristic polynomial of Frobenius, 266
complex abelian variety, 75–76
complex torus, 75
conjugate
q-Weil numbers, 289
crystal, 246–262
definition of, 247
effective, 247
isogeny, 247
crystalline cohomology, 251
cyclic algebra, 310
Hard Lefschetz Theorem, 271
Hasse-Weil bound, 273
Hasse-Weil Theorem, 266
Hasse-Weil-Serre bound, 273
height
of a σ a -F -crystal, 248
hermitian form, 312
Hodge Index Theorem, 271
Hodge numbers
of a crystal, 250
homomorphism
definition, 13
of abelian varieties, 12–14
degree
of a central simple algebra, 309
of a divisor, 8
of a line bundle, 219
divisibility
of X(k), 74
divisor
degree, 8
effective, 8
linear equivalence, 8
on a curve, 8
principal, 8
divisor class group, 8
effective
σ a -F -crystal, 247
σ a -F -isocrystal, 248
effective divisor, 8
effective relative Cartier divisor, see relative Cartier
divisor
elliptic curve, 9
even theta characteristic, 228
exponential map, 75
index
of a central simple algebra, 309
involution, 311
canonical, 190, 311
of the first kind, 311
of the second kind, 311
positive, 313
irreducible
module, 308
isoclinic, 254
isocrystal, 246–262
definition of, 247
effective, 248
isogenous abelian varieties, 75, 80
– 321 –
isogeny, 72–80
definition, 72
degree, 72, 73
equivalence relation, 75
Frobenius, 76
multiplication by n, 74
of σ a -F -crystals, 247
purely inseparable, 73–74
quasi-, 181
separable, 73–74
Verschiebung, 80
iterated Frobenius, 80, 265
iterated Verschiebung, 80
Jacobi’s Inversion Theorem, 224
Jacobian
definition of, 91, 219
Kummer variety, 178
lattice, 75
Lefschetz trace formula, 271, 272
left translation, 6
line bundle
anti-symmetric, 21
definition of, 1
geometric, 1
symmetric, 21, 178, 209
totally symmetric, 178
linear equivalence of divisors, 8
morphism
purely inseparable, 73
multiplication by n, 74
Newton polygon
of a crystal or isocrystal, 257
Newton slopes, 257
nondegenerate
hermitian form, 312
normalized symmetry, 178
odd theta characteristic, 228
opposite ring, 308
ordinary
elliptic curve, 81–82
ordinary abelian variety, 262
p-rank, 80–81
period
of a central simple algebra, 309
Poincaré bundle, 224
polynomial ring
skew, 245
positive involution, 313
positivity
of the Rosati involution, 271
prime
of a number field, 2
principal divisor, 8
purely inseparable morphism, 73
q-Weil number, 289
conjugate, 289
quasi-isogeny, 181
reduced characteristic polynomial, 311
reduced norm, 311
reduced trace, 311
relative Cartier divisor, 222–223
Riemann hypothesis
for varieties over a finite field, 270
Riemann-Roch
for curves, 9
right translation, 6
Rigidity lemma, 12
semilinear map, 245
semisimple
module, 308
ring, 308
σ a -F -crystal, see crystal
σ a -F -isocrystal, see isocrystal
simple
module, 308
ring, 308
skew polynomial ring, 245
slope decomposition, 256
splitting field, 309
supersingular
elliptic curve, 81–83
supersingular abelian variety, 262
symmetric line bundle, 21, 178, 209
symmetric power, 77, 221
symmetric tensors, 76, 79
symmetrizer map, 76
theta characteristic, 228
even, 228
odd, 228
theta divisor
definition of, 225–230
torsion points, 74–75, 80–86
density of, 83–86
torsor, 174
trivial, 175
totally symmetric line bundle, 178
translation, 6
variety, 1
vector bundle
definition of, 1
geometric, 1
Verschiebung, 76–80
definition, 78
isogeny, 80
iterated, 80
– 322 –
Weierstrass equation, 81
Weil number, see q-Weil number
Weil conjectures, 270
for a curve, 273
for an abelian variety, 266–271
Zeta function, see also Weil conjectures
definition of, 268
of an abelian variety over a finite field, 269
– 323 –