spain 97 - Eurocontrol

Transcription

spain 97 - Eurocontrol
EUROPEAN ORGANISATION
FOR THE SAFETY OF AIR NAVIGATION
EUROCONTROL
EUROCONTROL EXPERIMENTAL CENTRE
SPAIN 97
REAL-TIME SIMULATION
EEC Report No. 328
EEC Task: S16
EATCHIP Task: SIM-S-E1
Issued: March 1998
The information contained in this document is the property of the EUROCONTROL Agency and no part should be reproduced
in any form without the Agency’s permission.
The views expressed herein do not necessarily reflect the official views or policy of the Agency.
REPORT DOCUMENTATION PAGE
Reference:
EEC Report No. 328
Security Classification:
Unclassified
Originator:
EEC - RTO
(Real-Time Simulations Operations)
Originator (Corporate Author) Name/Location:
EUROCONTROL Experimental Centre
B.P.15
F - 91222 Brétigny-sur-Orge CEDEX
FRANCE
Telephone : +33 (0)1 69 88 75 00
Sponsor:
Aeropuertos Españoles y Navegación
Aérea (AENA)
Sponsor (Contract Authority) Name/Location:
Jefe Departamento Espacio Aérea
Juan Ignacio Luca de Tena, 14
28027 Madrid
Tel : +34 (9)1 321 3324
TITLE:
SPAIN 97 REAL-TIME SIMULATION
Authors : Roger Lane
Andy Harvey
EATCHIP Task
Specification
SIM-S-E1
Date
Pages
Figures
Tables
Appendix
References
03/98
x + 40
24
4
4
2
EEC Task No.
S16
Task No. Sponsor
-
Period
1997
Distribution Statement:
(a) Controlled by:
Head of RTO
(b) Special Limitations: None
(c) Copy to NTIS:
YES / NO
Descriptors (keywords): Air Traffic Control Centre (ACC), Route inversion, UN869 and UN871,
helice, sectorisation, and Controller workload.
Abstract: The SPAIN97 (S16) Real Time Simulation examined new traffic flows within Madrid and
Sevilla airspace (in particular the inversion of the Air Traffic Service (ATS) routes UN869/UN871), and
studied new sectorisation and co-ordination procedures for the Madrid Air traffic Control Centre (ACC)
and Sevilla ACC.
This document has been collated by mechanical means. Should there be missing pages, please report to:
EUROCONTROL Experimental Centre
Publications Office
B.P. 15
91222 - BRETIGNY-SUR-ORGE CEDEX
France
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
SUMM ARY
The SPAIN97 Simulation was requested by AENA to study the effects of
inverting the routes UN869 and UN871. The Simulation was run for three
weeks at the Eurocontrol Experimental Centre at Brétigny, France. Controllers
from Madrid, Sevilla, Bordeaux and Barcelona were involved in the Simulation.
The routes UN869 and UN871 currently span from the Canary Islands to Poland
and the proposed inversion is part of the ARN plan to improve the flow of
traffic in central Europe. A section of the routes crosses the Casablanca FIR,
however, the simulation assumed that the inversion would not apply in
Casablanca airspace. Therefore, the routes needed to crossover before the
Casablanca FIR so that the traffic used the existing entry/exit points.
The results of the simulation showed that the route inversion generally
improved the flow of traffic in the Sevilla FIR. However, the crossover of traffic
(the preferred crossover point was via ‘MGA’) did cause several problems and
the introduction of an additional sector was necessary in order to handle the
forecast traffic flow.
In Madrid airspace the inversion caused no major problems using the
sectorisation planned for 1998. A vertical sector split was tested in the
Castejon sector, and the most suitable division was FL305. It is recommended
that co-ordination procedures are published between the Castejon upper/lower
and adjacent sectors, prior to the operational introduction of the sector split.
Tests were made using SOVAR as the only exit point to the northeast into
Bordeaux airspace, with the traffic levels at +30%. Despite varying the Madrid
departure routes, it was agreed that integrating three busy routes into one exit
point caused severe difficulties, and further studies should be carried out to
resolve the problem at the Madrid /Bordeaux interface.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age v
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
ACKNOWLEDGEMENTS
I would like to thank all the people at the EEC, AENA and CRNA Sud-Ouest who
were involved with the SPAIN 97 project, for their help and professionalism during
the preparation and execution of the Simulation.
Several new software changes were introduced for the Simulation, and I would like to
commend the work done by Jose Seixo and Anthony Inard and their respective
teams, who spent many additional hours working on the system to ensure the
success of the Simulation.
Finally, I would like to pass on my thanks to Peter Eriksen for his assistance during
the project, which included much of the initial planning, and preparation work.
Roger Lane
S16 Project Manager
Figure 1. The S16 Simulation Operations Room
P age v i
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
CONTENTS
ANNEXES ....................................................................................................................viii
REFERENCES .............................................................................................................viii
LIST OF ABBREVIATIONS AND ACRONYMS ............................................................ix
EXPLANATION OF TERMS ..........................................................................................ix
1. INTRODUCTION..........................................................................1
2. SIMULATION OBJECTIVES........................................................1
2.1 GENERAL OBJECTIVES .........................................................................................1
2.2 SPECIFIC OBJECTIVES ..........................................................................................1
3. THE SPAIN 97 (S16) REAL-TIME SIMULATION ........................2
3.1 THE SIMULATION ENVIRONMENT ........................................................................2
3.2 SECTOR TYPES.......................................................................................................3
3.2.1 Measured Sectors ................................................................................................3
3.2.2 Feed Sectors ........................................................................................................4
3.3 ORGANISATIONS ....................................................................................................5
3.3.1 Organisation 1 ......................................................................................................5
3.3.2 Organisation 2 ......................................................................................................5
3.3.3 Organisation 3 ......................................................................................................5
3.3.4 Organisation 4 ......................................................................................................5
3.3.5 Organisation 5 ......................................................................................................6
3.3.6 Organisation 6 ......................................................................................................6
3.4 TRAFFIC SAMPLES.................................................................................................6
3.4.1 Creation of traffic samples....................................................................................6
3.4.2 Sector capacities ..................................................................................................6
3.4.3 Traffic distribution .................................................................................................7
3.5 OPERATIONAL PROCEDURES ..............................................................................9
3.5.1 Radar Display.......................................................................................................9
3.5.2 Short Term Conflict Alert (STCA) .......................................................................10
3.6 CONSTRAINTS OF THE SIMULATOR .................................................................10
4. RESULTS ..................................................................................11
4.1 ANALYSIS ..............................................................................................................11
4.1.1 Subjective Results..............................................................................................11
4.1.2 Objective Results ...............................................................................................11
4.1.3 Analysis of the loss of separation .......................................................................11
4.2 SPECIFIC OBJECTIVE 1........................................................................................13
4.2.1 Madrid ................................................................................................................13
4.2.2 Sevilla.................................................................................................................15
4.2.3 Conflicts and STCA ............................................................................................16
EEC Task - S16 SPAIN 97
EEC Report Nº 328
Page vii
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.3 SPECIFIC OBJECTIVE 2........................................................................................17
4.3.1 Madrid ................................................................................................................17
4.4 SPECIFIC OBJECTIVE 3........................................................................................20
4.4.1 Controllers choice of helice ................................................................................20
4.5 SPECIFIC OBJECTIVE 4........................................................................................22
4.5.1 Madrid ................................................................................................................22
4.5.2 Sevilla.................................................................................................................24
4.5.3 Modification to the BALN/MART sector boundary ..............................................28
4.5.4 Study of vertically split sectorisation in Sevilla airspace (Organisation 6) ..........29
4.6 SPECIFIC OBJECTIVE 5........................................................................................31
4.6.1 Madrid ................................................................................................................31
4.6.2 Sevilla.................................................................................................................31
5. CONCLUSIONS.........................................................................32
5.1 SPECIFIC OBJECTIVE 1........................................................................................32
5.2 SPECIFIC OBJECTIVE 2........................................................................................32
5.3 SPECIFIC OBJECTIVE 3........................................................................................32
5.4 SPECIFIC OBJECTIVE 4........................................................................................33
5.5 SPECIFIC OBJECTIVE 5........................................................................................33
6. RECOMMENDATIONS ..............................................................34
TRADUCTION EN LANGUE FRANçAISE...................................................................35
ANNEXES
ANNEX A
MAPS OF SIMULATION AIRSPACE
ANNEX B
SIMULATION PARTICIPANTS
ANNEX C
EXERCISE TIMETABLE
ANNEX D
OPERATIONS ROOM LAYOUT
REFERENCES
Reference 1
AIP SPAIN
Reference 2
Facility Specification S16 SPAIN 97
EEC Internal Document
Authors: R. Lane, A. Harvey and J. Seixo
Page viii
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
LIST OF ABBREVIATIONS AND ACRONYMS
ACC
AENA
ARN
ATC
ATS
CFL
EEC
FIR
FL
HMI
ICAO
ISA
MS
ORG
R/T
SID
UIR
Air Traffic Control Centre
Aeropuertos Españoles y Navegación Aérea
AirNav Route Network
Air Traffic Control
Air Traffic Service Route
Cleared Flight Level
EUROCONTROL Experimental Centre
Flight Information Region
Flight Level
Human Machine Interface
International Civil Aviation Organisation
Instantaneous Self Assessment
Microsoft
Organisation
Radio Telephony
Standard Instrument Departure
Upper Flight Information Region
EXPLANATION OF TERMS
Unless specific reference is made, the phrase ‘controller workload’, can refer to
either the Executive controller or the Planning controller.
In Madrid and Sevilla airspace there are many beacons which have the same name
as the sectors in which they appear. To avoid confusion in this report, they shall be
written in the following way.
•
‘MAR’ - Martin VOR Beacon
MART Sector- Martin Sector
•
‘BLN’ - Bailen VOR Beacon
BALN Sector- Bailen Sector
•
‘PPN’ - Pampelona VOR Beacon
PPN Sector - Pampelona Sector
•
‘ZZA’ - Zaragoza VOR Beacon
ZZA Sector - Zaragoza Sector
•
‘VTB’ - Villatobas VOR Beacon
VTB Sector - Villatobas Sector
•
‘TLD’ - Toledo VOR Beacon
TLD Sector - Toledo Sector
In the case where the beacons are written as part of a route they shall appear in
inverted commas e.g. ‘VJF-MAR-BLN’
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age i x
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
Intentionally Left Blank
P age x
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
1.
INTRODUCTION
The SPAIN 97 Simulation was requested by the Spanish Civil Aviation Authority
(AENA DCCA). The simulation examined new traffic flows within Madrid and Sevilla
airspace in particular the proposed inversion of the Air Traffic Service (ATS) routes
UN869/UN871, foreseen for implementation in 1998 as a consequence of the AirNav
Route Network (ARN) Plan.
The suggested inversion of UN871 and UN869 would require the routes to cross
over each other within Sevilla airspace, in order that traffic entered and exited the
Madrid (LECM) FIR through the existing points,
• UN871 - via ‘ADUBI’, Northbound flow
• UN869 - via ‘GALTO’, Southbound flow
New sectorisation and co-ordination procedures for Madrid Air traffic Control Centre
(ACC) and Sevilla ACC were also studied during the course of the simulation.
2.
2.1
SIMULATION OBJECTIVES
GENERAL OBJECTIVES
To access the impact on controller workload within the Madrid UIR of the new traffic
flows including the interface with Sevilla.
2.2
SPECIFIC OBJECTIVES
1. To assess the impact, in terms of controller workload, of the inversion of routes
UN869 and UN871 using the sectorisation described for Organisation 1 and 1998
traffic levels. When the routes are inverted the crossover point (helice) used will
be the one selected in Objective 3.
2. To study the operational impact on the interface between the Madrid TMA and enroute sectors when the routes UN869 and UN871 are inverted, with particular
reference to arriving and departing traffic to Madrid Barajas Airport.
3. To determine which, of VJF-MGA-BLN and VJF-MAR-BLN, is the more suitable
crossover point (helice), based on controller feedback using Organisation 2 and
1998 traffic levels.
4. To study the operational impact of the new sectorisation in Madrid and Sevilla
airspace, described in Organisation 3, using the preferred helice (from Objective
3) with 1998 and higher levels of traffic (+30%).
5. To determine which Organisation, 2 or 3, is the more suitable, with 1998 and
higher levels of traffic (+30%), based on subjective feedback and measures of
controller workload.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 1
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.
THE SPAIN 97 (S16) REAL-TIME SIMULATION
3.1
THE SIMULATION ENVIRONMENT
The simulation area incorporated seven sectors within the Madrid Upper Flight
Information Region (UIR) and three sectors within the Sevilla UIR (Figure 2 shows
the airspace layout).
The measured airspace spanned the length of Spain, from the French border
(Bordeaux) to the Moroccan border (Casablanca). Feed sectors were created
outside of the measured area, to deliver and receive traffic to/from the measured
sectors and were staffed by controllers from Bordeaux, Barcelona, Madrid and
Sevilla ACCs.
Figure 2. SPAIN 97 Simulation - Airspace layout
P age 2
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.2
SECTOR TYPES
The simulation area was divided into "Measured sectors" and "Feed sectors".
3.2.1
Measured Sectors
The Measured sectors closely resembled existing Madrid and Sevilla ACC sectors.
These sectors required detailed analysis, therefore recordings were made of all
inputs to the system in order to obtain results such as controller workload and R/T
loading (for a more detailed description of the analysis process see RESULTS
Section: 4).
Two controllers; Executive (EXC) Controller and Planner (PLC) controller (Figure 3
shows a typical sector) staffed each measured sector. The Operations Room layout
for each organisation can be found at Annex D.
Figure 3. A Measured Sevilla Sector
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 3
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.2.2
Feed Sectors
Five feed sectors were created to assure continuity of control and co-ordination to
the measured positions. (Figure 4 shows the row of five feed sectors).
SECTOR
BARCL
BORDX
MATMA
SEVIL
MADRD
AIRSPACE
CONTROLLER
Barcelona UIR, Zaragoza TMA and the Sevilla Barcelona
(South East) UIR.
(Mr C. Peregrin)
Bordeaux (France UIR)
Bordeaux
(Mr P. De Langen)
Madrid TMA
Madrid (Various)
Sevilla (west) UIR, central below FL135, Sevilla (Various)
Casablanca UIR
Madrid (west and North west) UIR.
Madrid (Various)
Each feed sector was staffed by one controller, whose primary task was provide a
realistic interface with the measured sectors, and to carry out pilot orders such as
climb, heading and frequency change using the Hybrid console (Hybrid - a combined
pilot/controller position).
Figure 4. The five Feed Sectors (BARCL sector in the foreground)
P age 4
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.3
ORGANISATIONS
Six airspace organisations were prepared in order to meet the objectives.
3.3.1
Organisation 1
Organisation 1 simulated the airspace proposed for 1998, which is the current
sectorisation and route network with the following exceptions;
• The Castejon sector CJN was vertically split into two sectors, CJA - upper sector
from FL305-FL460 and CJB - lower sector from Ground - FL305.
• The traffic on route UN871 exited the Madrid UIR via a new point ‘LATEK’, instead
of ‘SOVAR’.
3.3.2
Organisation 2
In Organisation 2 the routes UN869 and UN871 were inverted. The inversion
required the traffic to crossover within the Sevilla airspace to enable the traffic to
enter Casablanca airspace on the existing routes. Two different crossover scenarios
were tested, and the preferred controllers’ choice determined whether Organisation 3
or 4 would be used.
In Madrid airspace the route UG52 between Pampelona (PPN) and Tarbes (TBO)
was bi-directional.
The sectorisation in Organisation 2 was the same as in Organisation 1.
3.3.3
Organisation 3
Organisation 3 tested a new sectorisation plan within Madrid and Sevilla airspace,
using the route inversion (UN869/UN871) described in Organisation 2.
The Madrid sectors, PPN and ZZA were joined together, and vertically split at FL305
to become ZPA (upper) and ZPB (lower). The same was done with TLD and VTB,
which became TVA (upper) and TVB (lower). The route UG52 between Tarbes
(TBO) and Pampelona (PPN) was unidirectional, and traffic exiting the Madrid UIR to
the North East via Pampelona was routed ‘PPN-SOVAR’ instead of via ‘PPNLURAN-TBO’.
Sevilla tested the introduction of a new sector (SURR), which incorporated the
crossover of the routes UN869 / UN871. The SURR sector was positioned in the
south of the Sevilla UIR and reduced the length of the existing BALN and MART
sectors.
3.3.4
Organisation 4
Organisation 4 was the same as Organisation 3, except for the Sevilla sectorisation.
The BALN and MART sectors remained the same shape as in Organisation 2, with a
new upper sector (BAMA) covering both of them from FL305 to FL460.
Due to the results of Organisation 2, Organisation 4 was not used.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 5
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.3.5
Organisation 5
Organisation 5 was a combination of Organisation 2 and 3. The Madrid sectorisation
(with the exception of the ESTE vertical limit FL205) was the same as Organisation 2
with the traffic exiting the UIR to the North East, routeing PPN-SOVAR.
The Sevilla sectorisation was the same as Organisation 3 (3 sectors; BALN, MART
and SURR).
3.3.6
Organisation 6
Organisation 6 closely resembled ORG 5, with the exception of the BALN and MART
sectors, which were joined together and vertically split at FL325. The new sectors
were named MBA (FL325-FL460) and MBB (FL000-FL325). The Madrid sectors
remained the same as ORG5.
3.4
TRAFFIC SAMPLES
3.4.1
Creation of traffic samples
The traffic samples were created at the EEC. They were based upon traffic
recordings from 31 August 1996 and the 13 and 18 October 1996 supplied by AENA
in MS Excel format. Two base samples were created representing traffic flow in the
morning and afternoon, each one lasted for a period of 1 hour 30 minutes, 75
minutes of which was measured for analysis.
The morning and the afternoon traffic sample represented Madrid using a northerly
runway configuration (RWY 36 in use for take-off at Madrid).
The samples were adjusted to include conflicting traffic situations within the
measured sectors, and to represent a workload equivalent to the present published
sector capacity (1997) plus 10% to represent 1998 traffic, and a further increase of
30%, which represented a busy future traffic scenario.
The samples for Organisation 2 and 3 were modified to include new airspace
changes and there were 2 variations of each sample in order to test the different
helice proposals in Sevilla airspace.
The samples used in Organisation 5 and 6 included addition traffic on the route
‘BAN-LARDA’ in order to test the exit point ‘SOVAR’. These departures were later
re-routed via ‘TOSMA’ or ‘DGOS’ (Domingo south).
3.4.2
Sector capacities
The Sector capacity figures for 1997 were provided by AENA. The capacity figures
were used as a guide to help construct the base traffic samples, however, due to
sectorisation and routeing changes, the sector capacities in Organisations 2-6 varied
from those in Organisation 1.
The following table details sector capacity (number of aircraft per hour).
P age 6
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
SECTOR
ZZA
PPN
CJA
CJB
ESTE
VTB
TLD
MART
BALN
SURR
1997
Declared
Capacity
Target
1998
Capacity
(97 +10%)
36
36
36
36
40
39
36
30
30
40
40
40
40
44
43
40
33
33
1998 Traffic
Sample
used during
the
simulation
31
43
41
38
36
40
39
35
35
Target
1998+30%
30% Traffic
Sample used
during the
simulation
52
52
52
52
57
56
52
43
43
43
52
58
46
46
56
50
58
31
49
33
The 1997 Madrid airport capacity is 50 movements per hour.
(The planned (1999) Madrid airport capacity using the new parallel runway
configuration will be between 70-75 movements per hour)
The 1997 Malaga airport capacity is 30 movements per hour.
The following table details the hourly movement rate calculated from the traffic
samples used. The high number of Madrid departures compared to arrivals was due
to extra traffic being added (on the request of AENA) on the departure route BANLARDA. This was done in order to study the problems associated with the
departures and arrivals conflicting in the ZZA sector.
Movements per
hour
1998 MADRID
MALAGA
30% MADRID
MALAGA
3.4.3
Morning
IN
20
14
23
16
OUT
45
16
62
21
Afternoon
IN
24
8
30
10
OUT
42
13
58
17
Traffic distribution
Figure 5 and 6 show the distribution of traffic in the 1998 and +30% (morning and
afternoon) traffic samples.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 7
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
Traffic +30% am
No. Flights 305
Max Present 163
Mean Present 123
Traffic 1998 am
No. Flights 236
Max Present 127
Mean Present 104
Morning Traffic Samples
for Organisation 2HM
Figure 5. Morning Traffic distribution
Traffic +30% pm
No. Flights 303
Max Present 144
Mean Present 123
Traffic 1998 pm
No. Flights 239
Max Present 114
Mean Present 98
Afternoon Traffic
Samples for Org 2HM
Figure 6. Afternoon Traffic distribution
P age 8
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.5
OPERATIONAL PROCEDURES
The ATC procedures used during the simulation were in accordance with current
Letters of Agreement and Operational Instructions. In order to reduce co-ordination
between upper and lower sectors, some new procedures were adopted during the
exercises where vertically split sectors were used.
3.5.1
Radar Display
It was agreed during the preparation phase to use Sony 2K Colour screens. This
was a new feature to the controllers who are accustomed to a predominantly green
picture. On all measured sectors the following colours were used on the radar
display.
Dark grey Medium grey Black White Radar Labels Yellow Radar labels Light green Orange Blue (cyan) -
Concerned sector
Non-concerned sectors
Sector geographical limits.
Traffic assigned to a sector
Traffic not-assigned to a sector
Route centrelines and beacons
Danger/military areas
Borderlines and coastlines
The controllers adapted quickly to the screens and many welcomed the use of colour
to highlight sector limits and assigned aircraft. (Figure 7 shows sector MBA during
Organisation 6).
Figure 7. Colour Radar screen (Sector MBA)
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 9
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
3.5.2
Short Term Conflict Alert (STCA)
Short Term Conflict Alert (STCA) was available within the radar coverage area.
STCA parameters,
1. The minimum horizontal separation was 10 Nm.
2. The minimum vertical separation was 1000 ft below FL290
3. The minimum vertical separation above FL 290 was 2000 ft.
In each case the look ahead time was 1 minute, and the Cleared Flight Level (CFL)
was taken into account when calculating conflicts involving climbing and descending
traffic.
3.6
CONSTRAINTS OF THE SIMULATOR
The following considerations should be taken into account regarding the results.
• The controllers may be able to handle more traffic than in reality due a
combination of factors associated with the simulator e.g. reduced stress,
predictable aircraft performance, co-operative pilots.
• The controllers may also become familiar with the traffic samples. This ’Learning
Effect’ was countered by
◊ placing controllers in different working positions
◊ varying the meteorological conditions (i.e. wind)
◊ Altering start times by up to ± 5 minutes on selected aircraft (this was
done so as not to effect sector throughput).
• The system provided was designed to closely resemble the functionality currently
in use at the Madrid and Sevilla ACCs. Certain functionality, however, did prove
to be difficult for the controllers to adapt to, in particular,
◊ the Mouse operation was sometimes slow and erratic,
◊ many controllers had difficulty with the size and rotation of the radar label
◊ the response time following an input (i.e. change of CFL) was slower
than real life.
P age 10
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.
RESULTS
The description of the methods (Subjective and Objective analysis) used to collate
the results follows this paragraph. The results are then detailed according to the five
Specific Objectives (see section 4.2). The Conclusions of the results appears at
section 5.
4.1
ANALYSIS
4.1.1
Subjective Results
The subjective results are obtained from two different sources: questionnaires and
the Instantaneous Self-Assessment (ISA) method. The questionnaires were given to
the controllers before, during, and after the simulation. ISA was used for each
measured position during the measured exercises.
Questionnaires
Where appropriate questions asked on the questionnaires (indicated by a ‘ Q.’
followed by the text in bold italic letters) have been inserted, the answers to the
questions appear below the question in normal text
ISA
ISA allows the controller to assess his or her workload during the course of a
simulated exercise. The controller is provided with a prompt (a flashing light) every 2
minutes and then has 30 seconds to register their perceived workload according to
the following five-point scale:
1 - Under utilised, 2 - Relaxed, 3 - Comfortable, 4 - High, 5 - Excessive.
4.1.2
Objective Results
The Objective data is taken from recordings made during each exercise. These
cover:
•
•
•
•
•
•
4.1.3
Flight profiles (position updates)
STCAs and Separation Losses
R/T occupancy
Flight Level Occupation and RFLs
Pseudo-pilot Inputs
Telephone Use
Analysis of the loss of separation
The Aircraft Proximity Index (API) is a measure designed to describe numerically the
‘severity’ of a loss of separation. It is calculated according to the separation minima
in force for the airspace in question.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 11
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
The API was calculated as follows :
API = (1000 -Dv)2 * (5-Dh)2 / 2.5E5
where Dv was the vertical separation in feet and Dh the horizontal separation in nm
The classification of « Very serious », « Serious », « Minor » is based on the
following scale:
• 0
=< API < 6.25
• 6.25 =< API < 31.36
31.36 >= API
« Minor »
« Serious »
« Very serious »
Conflict severity zones (FL < 290 or RVSM)
1200
No separation violation
Vertical separation (feet)
1000
800
Minor separation violation
600
400
Serious violation
200
Very Serious violation
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Horizontal separation (nm)
Figure 8. Aircraft proximity in vertical and horizontal terms
P age 12
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.2
SPECIFIC OBJECTIVE 1
To assess the impact, in terms of controller workload, of the inversion of
routes UN869 and UN871 using the sectorisation described for Organisation 1
and 1998 traffic levels. When the routes are inverted the helice used will be the
one selected in Objective 3.
The results applicable to this objective are based on the comparison between
Organisations 1 and 2. Figure 9 shows the route network in Organisation 1
with the routes as they are in use today, and the routes inverted in
Organisation 2.
Figure 9. Routes UN869/UN871 before and after the inversion
4.2.1
Madrid
In Madrid airspace the inversion of the routes UN871 and UN869 generally had little
effect on controller workload.
Figure 10 shows the average ISA response from both ACCs for the two
Organisations. It can be seen that the responses were unaffected by the inversion.
Several operational problem areas were identified, especially in Organisation 3 and
5, and these problems are detailed under Specific Objective 2.
The controllers considered that the inversion did not reduce safety, and the majority
felt that sector capacity either remained unchanged or increased. The mean ISA
response from Madrid positions was just over two which corresponds to a ’Low to
Comfortable’ perceived workload for this level of traffic.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 13
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
5
M ed ian IS A resp onse
(V a lues rep resent the m ean o f 6 exerc ise s. B ars show ±2 std.)
4
3
2
1
O rg.1
O rg .2
M ad rid
S evilla
Figure 10. Mean ISA Response by ACC and Organisation
No operational problems were encountered at the interface between Madrid ACC
and Sevilla ACC.
Q. Based on what you have seen here, do you prefer the routes UN869 and
UN871 inverted or non-inverted?
Inverted
Non-inverted
= 53%
= 7%
No preference
= 40%
P age 14
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.2.2
Sevilla
In Sevilla airspace the inversion of routes UN871 and UN869 had two notable
effects,
1. Advantage - The inversion meant that the routes in MART sector became
predominantly southbound. This helped the controller by reducing the controlling
tasks, and allowing the overflying traffic to be more easily integrated with the
descending arrivals to Malaga Airport (LEMG) via ‘MAR’ from ‘CRISA’ and ‘LOGRO’.
In the BALN sector the traffic flow became predominantly northbound, and Malaga
departures via ‘BLN-MORAL/ANZAN’ could be sequenced more easily with the
northbound overflights. Traffic routeing ‘LOGRO-AMR’ caused some problems as
they remained opposite direction to the northerly flow.
The controllers all felt that having the traffic flow in the same direction made the
controlling safer. As can be seen from Figure 11 the perceived controller workload
was 'High' and remained “High” with the inversion.
2. Disadvantage - The inversion required the routes to crossover so that the traffic
crossed the Casablanca FIR at the existing entry/exit points. This meant that
overflights passed through both the BALN and MART sectors, where previously, they
would only pass through one sector or the other. This increased the number of
aircraft passing through a sector, and added extra workload. Figure 11 shows the
percentage of ISA results of 'High' or 'Very High' from the 2 Sevilla sectors. This
percentage is very high in both sectors before the inversion and becomes even
higher for BALN rising to 75%. Based on previous uses of ISA in other simulations it
is apparent that this is an unacceptably high level of workload.
100
%Responses( ’High’ or ’V.High’)
(Values represent the mean of 6 exercises. Bars show ±2 std.)
80
60
40
20
0
Org.1
Org.2
BALN
MART
Figure 11. Percentage of High Responses
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 15
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
Q. Based on what you have seen here, do you prefer the routes UN869 and
UN871 inverted or non-inverted?
Inverted
Non-inverted
No preference
= 100%
= 0%
= 0%
Q. What do you think was the impact of the inversion on the capacity of the
Sevilla Centre.
Increase
Decrease
Unchanged
Don’t Know
4.2.3
= 100% (43% stated that it increased in a 3 sector
configuration and decreased in the 2 sector configuration).
= 0%
= 0%
= 0%
Conflicts and STCA
The table below shows the number of Very Serious / Serious conflicts and the mean
number of STCAs. It can be seen that there are fewer incidents in Organisation 2
compared to Organisation 1. There is very little difference between the two options
in Organisation 2, Helice Malaga (HM) and Helice Martin (HB).
Separation
Losses
STCA
P age 16
ORG1
5
ORG2HM
2
ORG2HB
0
43
31
29
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.3
SPECIFIC OBJECTIVE 2
To study the operational impact on the interface between the Madrid TMA and
en-route sectors when the routes UN869 and UN871 are inverted, with
particular reference to arriving and departing traffic to Madrid Barajas Airport.
4.3.1
Madrid
Organisation 2
Six exercises (morning and afternoon traffic) were run using Organisation 2. No
major operational problems were encountered during these exercises, and only 1
controller preferred the routes non-inverted. The controllers considered that the
sector split FL305 between CJA and CJB was well positioned, with the traffic load
and the controller workload being evenly distributed between the 2 sectors. Figure
12 shows the median ISA results from these two sectors along with the occupation of
the R/T frequency. Both variables indicate that the sectors CJA and CJB were
evenly charged to a comfortable level with 1998 traffic.
3
Median IS A R esponse
40%
% O ccupation R /T
30%
2
20%
1
10%
0
C JA
C JB
C JA
C JB
Figure 12. Load on CJA/CJB with 1998 traffic levels
There were no reported difficulties with the new entry point ‘LATEK’, and the 2 exit
points ‘LURAN’ and ‘SOVAR’ on the Madrid /Bordeaux boundary.
ORGANISATION 5
Interface with Bordeaux ACC
The current Letter of Agreement between Bordeaux ACC and Madrid ACC, allows
aircraft to exit via the point ‘SOVAR’ at the even levels FL280 and FL350. This is to
permit traffic in the nearby Barcelona sector to exit into Bordeaux airspace at the
remaining flight levels, ‘conflict free’. It was agreed with the representative from
Bordeaux ACC that for the duration of the simulation, all even levels would be
available to traffic exiting Madrid airspace via the point ‘SOVAR’. Traffic exiting on
the same route, at the same level was subject to standard ICAO horizontal and
lateral radar separation standards.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 17
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
Madrid departures via ‘SOVAR’
In Organisation 3 and 5, traffic departing from Madrid Barajas airport to the north
east (‘BAN-LARDA-SOVAR’) exited Madrid airspace into Bordeaux airspace through
a point ‘SOVAR’, which was also the exit point for overflying traffic on two other
routes (‘DGO-PPN-SOVAR’ and ‘ZZA-SURCO-SOVAR’).
The controllers had
difficulty climbing the departing traffic to the requested flight level because of the
volume of overflying traffic, converging towards SOVAR, already occupying the
‘even’ cruising levels. At the same time the controllers had to sequence the
overflying traffic prior to transfer to Bordeaux ACC.
The Standard Instrument Departure (SID) route from Madrid Barajas, was varied to
study whether this had a major impact on controller workload. Two new departure
routes were tested, one via ‘TOSMA’ and the other via ‘DGOS’ (Domingo south). All
three SIDs tested passed through the ZZA sector, the TOSMA SID routed via the
ESTE and CJB sectors and the DGOs routed via the Domingo sector and the PPN
sector. In comparing the relative workload and traffic load between sectors, it must
be remembered that the Domingo sector was not measured and only formed part of
the Madrid feed sector.
Figure 13 shows the ISA results from the 5 sectors most concerned by the change in
SID. There appears to be an increase in perceived workload for ZZA and CJA
sectors when the departures are routed via LARDA. However there is no clear
distinction between Org 5T and Org.5D except in PPN sector where there is a slight
reduction in perceived workload in Org.5D. The reduction in ZZA sector is also seen
for the R/T occupation percentage (Figure 14). Again there is no clear distinction
between Org.5T and Org.5D, both are successful in reducing a very high R/T
workload in PPN and ZZA sectors to a more manageable level.
However, the controllers considered that changing the SID could not solve the
problem, as this still resulted in integrating 3 routes into one exit point. With high
levels of traffic as seen in the 30% traffic samples, it was felt that the only practicable
solution would be to use more than one exit point.
70
%Responses( ’High’ or ’V.High’)
(Values represent the mean of 8 exercises. Bars show ±2 std.)
60
50
40
30
20
10
0
CJA
ORG
CJB
5
ESTE
5D
PPN
ZZA
5T
Figure 13. Comparison of ISA for Org 5
P age 18
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
60
R /T p e r c e n ta g e o c c u p a tio n
(V a lu e s re p re s e n t th e m e a n o f 8 e x e rc is e s . B a r s s h o w ± 2 s td .)
50
40
30
20
CJA
C JB
ORG
5
ESTE
PPN
5D
5T
ZZA
Figure 14. Comparison of Org 5’s: R/T occupation
ESTE Sector - Vertical limit FL245 or FL205?
A request was made by Madrid ACC to study the effect on the ESTE sector when the
vertical sector limit was reduced from FL245 to FL205. This experiment was done
during Organisation 5 and a total of 7 exercises (5-LARDA SID, 1-TOSMA SID and
1-DGOS SID) were completed using morning and afternoon traffic samples.
The result was that the controllers preferred the split at FL245 instead of FL205. The
main reason for this was that when the split was at FL205 the Madrid arrivals
remained under the control of sector CJB longer, adding extra workload to the CJB
sector, and as a consequence the traffic spent less time in the ESTE sector.
The ESTE executive controller is responsible for sequencing Madrid arrivals and
separating departures from arrivals. The controllers considered this was best
achieved with the higher sector limit (FL245), as the aircraft were under the ESTE
sector control longer and the four extra flight levels gave greater flexibility for
separating the arrivals from the departures.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 19
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.4
SPECIFIC OBJECTIVE 3
To determine which, of ‘VJF-MGA-BLN’ and ‘VJF-MAR-BLN’, is the more
suitable crossover point (helice), based on controller feedback using
Organisation 2 and 1998 traffic level.
(Madrid ACC were consulted regarding the choice of helice, and it was decided
that the choice of helice had little/no direct impact on the Madrid sectors,
therefore, the results were based on the opinions and comments of the Sevilla
controllers only).
The point where the routes UN869 and UN871 crossed over in Sevilla airspace
was referred to as an helice (see Figure 15), and 2 different possibilities were
studied during the simulation;
• the ‘MGA’ helice, whose crossover occurred at the point ‘HELIX’ (junction of
‘VJF-MGA’ and ‘MAR-PIMOS’)
• the ‘MAR’ helice, whose crossover occurred at the point ‘MAR’ (junction of ‘VJFBLN’ and ‘LOGRO -PIMOS’)
4.4.1
Controllers choice of helice
Six exercises were completed in order to study the crossover problem, three using
the ‘MGA’ helice and three using ‘MAR’ helice. The traffic samples used were 1998,
morning and afternoon scenarios, and were played in the following order MAR, MAR,
MGA, MGA, MGA (30% traffic) MAR. The controllers were asked to choose, based
on professional opinion, the most suitable helice (with the option to view six more
exercises if they were unable to decide).
Q. How usable did you find the helice via ‘VJF-MGA-BLN’?
Optimal
Acceptable
Difficult
Impossible
- 29%
- 57%
- 14%
-0
Q. How usable did you find the helice via ‘VJF-MAR-BLN’?
Optimal
Acceptable
Difficult
Impossible
-0
-0
- 100%
-0
Q. Which helice do you recommend?
Use VJF-MGA-BLN
Use VJF-MAR-BLN
Use neither of them
Use either of them
P age 20
- 100%
-0
-0
-0
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
Figure 15. Sevilla airspace before and after the inversion
The controllers preferred the route via ‘MGA’, because the northbound traffic was
routed to the south-east of ‘MAR’ and entered the BALN sector just before ‘MGA’.
This meant that the northerly flow of traffic, was kept away from the busy southerly
flow of traffic (many of which are Malaga arrivals being descended and sequenced)
converging to ‘MAR’ from ‘LOGRO’ and ‘CRISA’. The northbound traffic entered the
BALN sector just before ‘MGA’ and this allowed the BALN controller sufficient time to
position and sequence traffic against Malaga departures to the north.
The disadvantage of the route via ‘MAR’ was that, the northbound overflights
(controlled by MART sector) converged towards ‘BLN’ with the Malaga departures
(controlled by the BALN sector). This often resulted in the BALN sector having to coordinate with the MART sector. When the traffic was transferred to the BALN sector,
it was very close to ‘BLN’ and would only remain in the sector for about 11 minutes
before being transferred to Madrid ACC.
As a consequence of the route ‘VJF-MGA-BLN’ being the preferred choice by the
Sevilla controllers, Organisation 4 (which had been foreseen in the event that the
elected crossover point had been via ‘MAR’), was not simulated.
All the Sevilla controllers agreed that the route ‘VJF-MGA-BLN’, with the crossover of
the routes UN869 and UN871 at the point “HELIX” was the most suitable. The
controllers also identified the need to introduce a new sector, in order to reduce the
controller workload and traffic load on the BALN and MART sectors (see 4.5.2 ).
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 21
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.5
SPECIFIC OBJECTIVE 4
To study the operational impact of the new sectorisation in Madrid and Sevilla
airspace, described in Organisation 3, using the preferred helice (from
Objective 3) with 1998 and higher levels of traffic (+30%).
The aim of this objective was to determine which was the most appropriate
sectorisation for the Madrid ACC and to see how the Sevilla ACC was affected
by the inclusion of the SURR sector.
4.5.1
Madrid
Objective 3 was achieved by using only 1998, morning and afternoon traffic samples.
Six exercises were completed. Three exercises with the sectors split at FL305 and 3
exercises with the sectors split at FL325.
The Madrid controllers preferred the split between the sectors CJA/B at FL305, as
the lower sector was very busy co-ordinating with the ESTE sector, and handling
Madrid arriving and departing traffic.
The split at FL325 was favoured on sectors ZPA/B and TVA/B, as the majority of
traffic was overflying and having FL310 in the lower sector helped to reduce the
controller workload particularly for ZPA (Figure 16). It can be seen in Figure 17 that
FL310 was used for more flights when it was controlled by the lower sector. A similar
result was found in ZPA/ZPB.
However, many controllers preferred the sectorisation used in Organisation 2,
because the routes generally flowed in only one direction i.e. VTB sector-northerly
flow, TLD sector-southerly flow.
4
M e d ia n IS A R e s u lt
(V a lu e s re p re s e n t th e m e a n o f 8 e x e rc is e s .
B a rs s h o w ± 2 s td .)
3
2
1
SECTOR
O rg .3
TVA
TVB
O rg .3 B
ZPA
ZPB
Figure 16. Mean ISA for Org.3 and 3B
P age 22
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
FL
410
390
370
350
330
310
290
280
270
220
O R G =3
FL305
TVA
TVB
0
1
2
3
4
5
6
7
8
9
FL
410
390
370
350
330
310
290
280
270
220
170
10
11
12
13
O RG =3B
FL325
0
1
2
3
4
5
6
7
8
9
10
11
12
Figure 17. Flight Level Occupation in Org 3 during the measured period
The option of having sectors split at different levels was discussed and rejected, and
as a consequence, it was agreed to create a new sectorisation plan (Organisation 5).
The new Organisation 5 retained the Madrid sectorisation used in Organisation 2 but
incorporated the new route ‘PPN-SOVAR’. ‘SOVAR’ became the only north east exit
point from Madrid UIR to Bordeaux ACC, and it was agreed with the Bordeaux
representative that all even flight levels would be available for traffic exiting via
‘SOVAR’. Sevilla ACC used the sectorisation described in Organisation 3 with the
SURR sector.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 23
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.5.2
Sevilla
There were no differences between Organisation 3 and 5 in Sevilla Airspace.
Organisation 3 was studied following the choice made by the Sevilla controllers in
Organisation 2, to use the helice via ‘VJF-MGA-BLN’. A new sector (SURR) was
introduced in the south of Sevilla airspace with the intention of,
• Positioning the crossover of the routes UN871 and UN869 in the new sector, so
that overflying traffic would only need to enter, either MART (southbound) or
BALN (northbound), instead of both MART and BALN, thus reducing the
movements within each sector.
• Reducing the length of the MART and BALN sectors
• Assuming the responsibility for co-ordinating traffic to and from the Casablanca
FIR.
Results
• All the Sevilla controllers were in favour of the SURR sector, and considered that it
was correctly positioned (Figure 18). This meant that the size of the BALN and
MART sectors was reduced, which decreased the flight time within the sectors.
Example - The approximate flight time for an MD80 at FL330 in the SURR sector
was, southbound-9 mins, northbound-14 mins, this time would previously have
been spent in the BALN and MART sectors.
Figure 18. The SURR Sector (Organisation 3)
P age 24
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
• It was immediately evident that the workload on all three Sevilla sectors was at a
more comfortable level compared with the same traffic with only two sectors (see
Figure 19).
◊ With the 1998 traffic there was a fairly even distribution of controller
workload among the 3 sectors, SURR and MART sectors were about the
same and BALN sector was the slightly busier.
◊ With the 30% traffic, BALN sector at times was overloaded, and it was
suggested, that in order to handle this amount of traffic or more, the
sector would need to be split into an upper/lower configuration. This is
seen even more clearly in Figure 20.
4
M e d ia n I S A R e s p o n s e
3
2
1
0
B A LN
M A R T
O rg 2 /1 9 9 8
B A LN
M A R T
S U R R
O rg 3 /1 9 9 8
B A LN
M A R T
S U R R
O rg 5 /+ 3 0 %
Figure 19. Sevilla ISA
• There were no problems encountered at the interface between Sevilla ACC and
Madrid ACC.
• The SURR sector successfully managed the traffic crossover at ‘HELIX’, which
resolved the problem of traffic being counted in both the BALN and MART sectors
(see Figure 21). Without the SURR sector, the controllers considered that the
inversion would cause reduced capacity and delays in the MART and BALN
sectors.
• The SURR sector had the responsibility for making co-ordination calls to
Casablanca for southbound traffic via ‘GALTO’ and receiving co-ordination calls
from Casablanca for northbound traffic via ‘ADUBI’. This reduced the controller
workload on the MART sector as can be seen from Figures 19, 20, 21 and 22.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 25
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
70
% R e s p o n s e s ( ’ H i g h ’ o r ’V . H i g h ’ )
60
50
40
30
20
10
0
B A LN
M A R T
B A LN
O rg 2 /1 9 9 8
M A R T
S U R R
O rg 3 /1 9 9 8
B A LN
M A R T
S U R R
O rg 5 /+ 3 0 %
Figure 20. ISA percent of 4 or 5, Sevilla sectors
60
N u m b e r o f A irc ra ft E n te rin g th e S e c to r in 1 h o u r
50
40
30
20
10
0
BALN M ART
O rg 2 /1 9 9 8
BALN
SURR
MART
O rg 3 /1 9 9 8
BALN
SURR
MART
O rg 5 /+ 3 0 %
Figure 21. Sevilla traffic throughput
P age 26
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
Telephone Communication Duration (min.)
11
10
9
8
7
6
5
4
3
2
1
0
BALN
MART
Org2/1998
BALN
MART
SURR
Org3/1998
BALN
SURR
MART
Org5/+30%
Figure 22. Telephone Use in Sevilla sectors
• No East-West routes directly passed through the crossover point ‘HELIX’, which
made the controlling task easier.
• It was suggested that the route ‘SVL-MAR-MGA’ within the UIR could be
delegated to the SURR sector, in order to, reduce co-ordination and frequency
changes between the MART and BALN sectors.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 27
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.5.3
Modification to the BALN/MART sector boundary
In Organisation 5, following a request from the Sevilla controllers, the sector
boundary between MART and BALN sectors was modified (see Figure 23). All of
the Sevilla controllers felt that this small modification was necessary, as it provided
more airspace to the BALN sector, allowing traffic to route either ‘MGA’ direct ‘VTB’
or to be routed from a point about 10nm before ‘MGA ‘direct to ‘MORAL’, and remain
within the BALN sector.
The main advantages of the direct routes are;
• That overflying aircraft, are routed parallel or diverging (instead of being
directly above on the same route) to Malaga departures to ‘ANZAN’ via
‘BLN’, which makes the sequencing and separating easier for the
controller, thus reducing controller workload.
• Traffic remains within the BALN sector limits and does not require to be coordinated with the adjacent MART sector, again reducing the
controller/planner workload.
Figure 23. BALN/MART Sector boundary modification
P age 28
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.5.4
Study of vertically split sectorisation in Sevilla airspace (Organisation 6)
Organisation 6 - Sevilla ACC was interested to see the results of a sectorisation plan,
which involved joining the BALN and MART sectors together, and vertically splitting
them at FL325 into an upper (MBA) and lower (MBB) sector. This would mean that
the lower sector MBB would handle all the departures from Malaga up to FL310 as
well as the Malaga arrivals below FL310. The Upper sector would be predominantly
responsible for ‘overflight’ traffic.
The SURR sector limits and Madrid sectors remained unchanged from Organisation
5.
There were no new procedures agreed for Organisation 6.
Three exercises were run using 30% traffic levels (2-morning and 1-afternoon traffic
sample).
Results
• The Sevilla controllers all agreed that the co-ordination between sectors
MBA/B increased considerably, as it was necessary for MBB to co-ordinate the
climb above FL310 for Malaga departures with MBA and vice-versa for Malaga
arrivals at FL330 or above needing descent. These co-ordinations were generally
made between the planning controllers. Figure 24 shows that the mean
telephone usage for all the Sevilla sectors in Org.6 was greater than in Org.5.
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
N u m b e r o f M in u te s
of T elep h on e U se
BALN
SURR
MBA
SURR
MART
MBB
O rg .5
O rg .6
Figure 24. Sevilla telephone use in Org 5 and Org 6
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 29
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
• Many of the controllers found it necessary to work with the OJEO (show all
aircraft labels) button selected, despite the fact that, if an aircraft was profiled to
go through both sectors it was displayed in the next sector, before entering that
sector. The use of the OJEO button increases the controller’s workload as they
are presented with a very cluttered radar display, which makes identifying
particular aircraft more difficult.
• The majority of controllers felt that the geographical limits were not a problem,
however, all the controllers expressed dissatisfaction with having to work with
vertically split sectorisation.
P age 30
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
4.6
SPECIFIC OBJECTIVE 5
To determine which Organisation, 2 or 3, is the more suitable, with 1998 and
higher levels of traffic (+30%), based on subjective feedback and measures of
controller workload.
In Organisation 3, two different levels were tested for the division between the
upper and lower sectors in CJA/B, TVA/B and ZPA/B. As no common level
could be agreed, Organisation 5 was created (see Para 4.5.1), using the
sectorisation in Organisation 2 for Madrid, and the sectorisation in
Organisation 3 for Sevilla. The traffic, which previously exited Madrid airspace
via PPN-LURAN was, routed PPN-SOVAR (as previously planned in
Organisation 3).
4.6.1
Madrid
There was no clear preference for sectorisation between Organisation 2, 3 or 5.
Following the completion of Organisation 1 and 2, only 1 of the Madrid controllers
preferred the routes non-inverted, the remainder preferred either the inversion or had
no preference.
Several different sectorisation plans and Madrid SIDs were then tested in
Organisations 3 and 5, which lead to a variety of individual preferences. The
controllers had different opinions on the most suitable SID from Madrid airport to the
exit point SOVAR, however, all the controllers agreed that in real life, using ‘SOVAR’
as the exit point for 3 routes would be dangerous for converging overflights and
unexpeditious for climbing traffic.
It was agreed that the most suitable split between the Castejon upper and lower
sectors (CJA/B) was FL305, and the division between ESTE and CJB was best
placed at FL245.
4.6.2
Sevilla
Organisations 3 and 5 were preferred to Organisation 2.
In the 2 sector configuration, the BALN and MART sectors were very busy with 1998
traffic and overloaded with the 30% traffic. The SURR sector helped to reduce the
controller workload and traffic load on the MART and BALN sectors. All three sectors
were able to handle the 1998 traffic, however, with the 30% traffic the SURR and
MART sectors were busy and the BALN sector was frequently overloaded.
All the Sevilla controllers found that the route inversion improved the flow of traffic in
Sevilla airspace, specifically, it alleviated the problem of Malaga arrivals and
departures being opposite direction to overflying traffic.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 31
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
5.
5.1
CONCLUSIONS
SPECIFIC OBJECTIVE 1.
To assess the impact, in terms of controller workload, of the inversion of
routes UN869 and UN871 using the sectorisation described for Organisation 1
and 1998 traffic levels. When the routes are inverted the helice used will be the
one selected in Objective 3.
There was no significant difference in controller workload when the routes UN869
and UN871 were inverted. The Madrid controllers encountered no major problems.
The Sevilla controllers felt that having the Malaga arriving and departing traffic flying
in the same direction as the majority of overflying traffic was a big improvement.
However, to enable traffic to enter/exit Moroccan airspace at the existing points, the
routes were required to crossover. This meant that overflying traffic entered both the
Sevilla sectors instead of only one, therefore, increasing the workload and number of
aircraft passing through each sector.
5.2
SPECIFIC OBJECTIVE 2.
To study the operational impact on the interface between the Madrid TMA and
en-route sectors when the routes UN869 and UN871 are inverted, with
particular reference to arriving and departing traffic to Madrid Barajas Airport.
In Organisation 2 no major operational problems were encountered with the route
inversion. In Organisation 3 and 5, traffic departing from Madrid Barajas airport to
the northeast exited through a point called SOVAR, which was also the exit point for
overflying traffic on two other routes. The controllers had difficulty climbing the
departing traffic to the requested flight level at the same time that they were
sequencing the overflying traffic. The problem of integrating 3 routes into one exit
point was constant despite varying the Standard Instrument Departure (SID) route,
and the controllers felt that the only practicable solution would be to use more than
one exit point.
With reference to arriving and departing traffic the division of three of the Madrid
sectors (ESTE, CJA/B) was studied. The controllers preferred using the split of
FL305 instead of FL325 between sectors CJA/B, and the top level of the ESTE
sector was preferred at FL245 instead of FL205.
5.3
SPECIFIC OBJECTIVE 3.
To determine which, of ‘VJF-MGA-BLN’ and ‘VJF-MAR-BLN’, is the more
suitable crossover point (helice), based on controller feedback using
Organisation 2 and 1998 traffic levels.
All the Sevilla controllers agreed that the ’VJF-MGA-BLN’ route with the crossover of
the routes UN869 and UN871 at ‘HELIX’ was the most suitable. This option was
preferred to the ‘MAR’ option because the northbound traffic flow was separated
earlier from the southbound flow, and at the same time it was easier integrating the
Malaga departures with the northbound flow.
The controllers also identified the need to introduce a new sector, in order to reduce
the controller workload and traffic load on the BALN and MART sectors caused by
the crossover of the inverted routes.
P age 32
EEC Task - S16 SPAIN 97
EEC Report Nº 328
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
5.4
SPECIFIC OBJECTIVE 4.
To study the operational impact of the new sectorisation in Madrid and Sevilla
airspace, described in Organisation 3, using the preferred helice (from
Objective 3) with 1998 and higher levels of traffic (+30%).
Organisation 3 was tested using 1998 traffic only. Sectors CJA/B favoured the split
at FL305 as the lower sector was very busy with Madrid arriving/departing traffic and
co-ordination with the ESTE sector. Sectors ZPA/B and TVA/B favoured the FL325
split as the majority of traffic was overflying and having FL310 in the lower sector
helped to reduce the workload, however, many controllers preferred the Organisation
2 sectorisation as the routes generally flowed in only one direction instead of two.
The option of having sectors split at different levels was discussed and rejected, and
as a consequence, it was agreed to create Organisation 5. This new sectorisation
plan retained the Madrid sectorisation used in Organisation 2 but incorporated the
new route PPN-SOVAR. ‘SOVAR’ became the only north east exit point to Bordeaux
ACC, and all even flight levels were available for exiting traffic. Sevilla ACC used
the sectorisation described in Organisation 3 with the SURR sector.
The positioning of the SURR sector in Sevilla Airspace was considered as correct as
the crossover occurred within the SURR sector, which generally would handle less
traffic than the MART and BALN sectors. It was immediately clear that the workload
on all three Sevilla sectors was at a more comfortable level compared with the same
traffic with only two sectors.
5.5
SPECIFIC OBJECTIVE 5.
To determine which Organisation, 2 or 3, is the more suitable, with 1998 and
higher levels of traffic (+30%), based on subjective feedback and measures of
controller workload.
There was no clear preference for sectorisation between Organisation 2, 3 or 5.
Following the completion of Organisation 1 and 2, only 7% of the Madrid controllers
preferred the routes non-inverted, the remainder preferred either the inversion or had
no preference. The controllers had different opinions on the most suitable SID from
Madrid airport to the exit point SOVAR, however, all the controllers agreed that in
real life, using ‘SOVAR’ as the exit point for 3 routes would be dangerous for
converging overflights and unexpeditious for climbing traffic.
It was agreed that the most suitable split between the Castejon upper and lower
sectors (CJA/B) was FL305, and the division between ESTE and CJB was best
placed at FL245.
In Sevilla airspace Organisations 3 and 5 were preferred to Organisation 2. In the 2
sector configuration, the BALN and MART sectors were very busy with 1998 traffic
and overloaded with the 30% traffic. The SURR sector helped to reduce the
controller workload and traffic load on the MART and BALN sectors. All three sectors
were able to handle the 1998 traffic, however, with the 30% traffic the BALN sector
was frequently overloaded.
All the Sevilla controllers found that the route inversion improved the flow of traffic in
Sevilla airspace, specifically, it alleviated the problem of Malaga arrivals and
departures being opposite direction to overflying traffic.
EEC Task - S16 SPAIN 97
EEC Report Nº 328
P age 33
SPAIN 97 Real-Time Simulation
(852&21752/
EUROCONTROL EXPERIM ENTAL CENTRE_________________________________________________________________
6.
RECOMMENDATIONS
The following recommendations are made on the assumption that the
proposed route inversion of UN869/UN871 is introduced within the Madrid UIR
but not within the Moroccan FIR, and that future traffic levels are the same as
those used during the simulation (1998 and 30%).
• A new sector (SURR) should be introduced in Sevilla airspace to
accommodate the crossover of the routes before entering the Casablanca
FIR.
• The crossover point (helice) in Sevilla airspace used for the route inversion
should be ‘VJF-MGA-BLN’.
• The most suitable sector split for the Castejon sector should be FL305.
• Co-ordination procedures are published between the Castejon upper/lower
and adjacent sectors, and that all controllers are familiar with these
procedures prior to the introduction of the sector split.
• With the current Madrid sectorisation, the ESTE sector upper limit remains
at FL245 instead of lowering the limit to FL205.
• ‘SOVAR’ should not be used as the only exit point in the Zaragoza sector for
traffic from the Madrid UIR to the Bordeaux UIR. Further studies should be
carried out (which include the Domingo sector) to determine the most
suitable solution for integrating the Madrid Barajas arriving/departing traffic,
with overflight traffic in the DGO, PPN and ZZA sectors.
P age 34
EEC Task - S16 SPAIN 97
EEC Report Nº 328
ESPAGNE 97 Simulation En Temps Réel
(852&21752/
CENTRE EXPERIM ENTAL EUROCONTROL ________________________________________________________________
TRADUCTION EN LANGUE FRANçAISE
RESUME
SIMULATION TEMPS REEL S16 ESPAGNE97
La simulation SPAIN 97 a été demandée par AENA DCCA (Spanish Civil Aviation
Authority). La simulation a examiné de nouveaux flux de trafics dans l’espace aérien
de Madrid et Séville et en particulier la proposition d’inversion des routes ATS (Air
Traffic Service ) UN869/UN871, en prévision d’une mise en œuvre en 1998 tel que
recommandé par le plan ARN (AirNav Route Network).
La proposition d’inversion de UN871 et UN869 amènera les routes à se croiser dans
l’espace de Séville, de façon que le trafic entre et sorte de la FIR de Madrid (LECM)
par les points existants,
• UN871 - via ‘ADUBI’, Northbound flow
• UN869 - via ‘GALTO’, Southbound flow
Une nouvelle sectorisation et de nouvelles procédures de coordination pour les
centres de contrôle de la navigation aérienne (ACC) de Madrid et de Séville ont été
aussi étudiées durant cette simulation.
Objectifs généraux
Evaluer à l’intérieur de l’UIR de Madrid l’impact des nouveaux flux de trafics sur la
charge de travail (y compris l’interface avec Séville).
Objectifs particuliers
Les objectifs spécifiques sont détaillés dans la CONCLUSION.
ENVIRONNEMENT DE LA SIMULATION
L’espace simulé comprenait sept secteurs à l’intérieur de l’UIR (Upper Flight
Information Region) de Madrid et 3 secteurs à l’intérieur de l’UIR de Séville.
L’espace mesuré couvrait l’Espagne, de la frontière française (Bordeaux) à la
frontière du Maroc (Casablanca). Des secteurs « FEED » ont été créés à l’extérieur
de l’espace mesuré, pour délivrer et recevoir le trafic venant de ou allant vers les
secteurs mesurés. Ces secteurs étaient gérés par des contrôleurs des centres de
Bordeaux, Barcelone, Madrid et Séville.
Tâche CEE – S16 SPAIN 97
Rapport CEE Nº 328
P age 35
ESPAGNE 97 Simulation En Temps Réel
(852&21752/
CENTRE EXPERIM ENTAL EUROCONTROL ________________________________________________________________
ORGANISATIONS
Six organisations de l’espace ont été préparées de façon à atteindre les objectifs.
Organisation 1
L’Organisation 1 simulait l’espace aérien proposé pour 1998, qui est la sectorisation
et le réseau de route actuel à l’exception des points suivants :
• Le secteur de Castejon (CJN) était éclaté en deux secteurs, CJA – secteur
supérieur du niveau 305 au niveau 460 et le secteur CJB – secteur inférieur allant
du sol au niveau 305.
• . Le trafic sur la route UN871 sortait de l’UIR de Madrid par le nouveau point
‘LATEK’ au lieu de ‘SOVAR’.
Organisation 2
Dans l’Organisation 2, la sectorisation était la même que dans l’Organisation 1 mais
les routes UN869 et UN871 étaient inversées. L’inversion a nécessité un croisement
dans l’espace de Séville pour permettre au trafic d’entrer dans l’espace de
Casablanca sur des routes existantes. Deux scénarios de croisement différents ont
été testés, et le choix des contrôleurs a déterminé quelle Organisation 3 ou 4 serait
utilisatée.
Organisation 3
L’Organisation 3 a testé un nouveau projet de sectorisation de l’espace aérien de
Séville et Madrid, utilisant l’inversion de route (UN869/UN871) décrite dans
l’Organisation 2. Les secteurs de Madrid, PPN / ZZA et TLD / VTB étaient réunis,
avec une coupure verticale au niveau 305. Le trafic sortant de l’UIR de Madrid par
Pampelone dans le Nord était dirigé vers ‘PPN-SOVAR’ au lieu de ‘PPN-LURANTBO’. Séville a testé l’introduction d’un nouveau secteur ‘SURR’.
Organisation 4
L’Organisation 4 était identique à l’Organisation 3, à l’exception de la sectorisation de
Séville. Les secteurs BALN et MART ont conservé la même forme que dans
l’Organisation 2, avec un nouveau secteur supérieur (BAMA) les recouvrant tous les
deux du niveau 305 au niveau 460.
A cause des résultats de l’Organisation 2, l’Organisation 4 n’a pas été jouée.
Organisation 5
L’Organisation 5 était une combinaison de l’Organisation 2 et 3. La sectorisation de
Madrid (à l’exception de la limite verticale de ESTE au niveau 205) était identique à
l’Organisation 2 avec le trafic sortant de l’UIR par le nord-est dérigé sur PPNSOVAR.
La sectorisation de Séville était la même que dans l’Organisation 3 (3 secteurs ;
BALN, MART et SURR).
P age 36
Tâche CEE – S16 SPAIN 97
Rapport CEE Nº 328
ESPAGNE 97 Simulation En Temps Réel
(852&21752/
CENTRE EXPERIM ENTAL EUROCONTROL ________________________________________________________________
Organisation 6
L’Organisation 6 était très proche de l’Organisation 5, à l’exception des secteurs
BALN et MART qui étaient réunis avec une coupure au niveau 325. Les nouveaux
secteurs ont été appelés MBA (FL325-FL460) et MBB (FL000-FL325). Les secteurs
de Madrid étaient identiques à ceux de l’Organisation 5.
ECHANTILLONS DE TRAFIC
La création des échantillons de trafic
Les échantillons de trafic ont été créés au CEE. Ils étaient basés sur des
enregistrements du 31 août 1996 et des 13 et 18 octobre 1996 fournis par AENA
sous format Excel. Les deux trafics de base ont été créés pour représenter des flux
de trafic du matin (morning) et après-midi (afternoon), chacun durant 1H30, les
analyses étant faites sur une période de 75 minutes.
Les échantillons étaient ajustés pour inclure des situations conflictuelles à l’intérieur
des secteurs mesurés, et pour représenter des charges de travail équivalentes aux
capacités secteurs déclarées en 1997 avec 10% de plus pour le trafic 1998, et une
augmentation supplémentaire de 30% pour représenter un trafic futur « chargé ».
PROCEDURES OPERATIONNELLES
Les procédures ATC utilisées durant la simulation étaient en conformité avec les
lettres d’accord (Letters of Agreement) et les instructions opérationnelles. De façon à
réduire les coordinations entre les secteurs supérieurs et inférieurs, un certain
nombre de nouvelles procédures ont été adoptées durant les exercices, où les
coupures verticales de secteurs étaient utilisées.
Radar Display
Comme convenu durant la phase de préparation, des écrans Sony 2K couleurs ont
été utilisés. L’utilisation de différentes couleurs sur les écrans radar étaient une
fonctionnalité nouvelle pour les contrôleurs habitués à une image à prédominance
verte. Les contrôleurs se sont rapidement adaptés aux écrans et beaucoup ont
accueilli avec joie l’utilisation des couleurs pour mettre en relief les limites des
secteurs ainsi que l’attribution des avions.
Tâche CEE – S16 SPAIN 97
Rapport CEE Nº 328
P age 37
ESPAGNE 97 Simulation En Temps Réel
(852&21752/
CENTRE EXPERIM ENTAL EUROCONTROL ________________________________________________________________
RESULTATS (conclusions)
1. D’évaluer l’impact, en terme de charge de travail du contrôleur, de
l’inversion des routes UN869 et UN871 en utilisant la sectorisation définie pour
l’Organisation 1 et des niveaux de trafics de 1998. Quand les routes sont
inversées « l’hélice » utilisée sera celle sélectionnée dans l’Objectif 3.
Il n’y avait aucune différence significative sur la charge de travail quand les routes
UN869 et UN871 étaient inversées. Les contrôleurs de Madrid n’ont rencontré
aucunes difficultés majeures. Les contrôleurs de Séville ont eu le sentiment que le
fait d’avoir les arrivées et départs de Malaga naviguant dans la même direction était
une grande amélioration. Cependant, pour permettre au trafic d’entrer et de sortir de
l’espace aérien du Maroc par les points existants, il était nécessaire de croiser les
avions. Ceci signifiait que le trafic en survol entrait dans les deux secteurs de Séville
au lieu d’un seul, et donc accroissait la charge de travail et le nombre d’avions
passant dans chaque secteur.
2. D’étudier l’impact opérationnel de l’impacte de l’interface entre la TMA de
Madrid et les secteurs en-route quand les routes UN869 et UN871 sont
inversées, avec une référence particulière pour le trafic à l’arrivée et au départ
de l’aéroport de Madrid Barajas.
Dans l’Organisation 2 aucun problème opérationnel majeur n’a été rencontré avec
l’inversion des routes. Dans l’Organisation 3 et 5, le trafic au départ de Madrid
Barajas vers le nord-est sortait par le point nommé SOVAR, point qui servait aussi de
point de sortie pour les avions en survol sur deux autres routes. Le problème
d’intégration de 3 routes sur un point de sortie était constant quelque soit la route
SID (Standard Instrument Departure), et les contrôleurs ont eu le sentiment que
l’unique solution serait d’avoir plus d’un point de sortie.
Les contrôleurs ont préféré utiliser la coupure au niveau FL305 au lieu de FL325
entre les secteurs CJA/B, et le niveau supérieur du secteur ESTE a été préféré au
niveau FL245 au lieu du niveau FL205.
3. De déterminer entre, ‘VJF-MGA-BLN’ et ‘VJF-MAR-BLN’, le point de
croisement le plus approprié (hélice), selon l’appréciation des contrôleurs
dans le cadre de l’Organisation 2 et les niveaux de trafic de 1998.
Tous les contrôleurs de Séville ont trouvé que la route ‘VJF-MGA-BLN’ avec le
croisement des routes UN869 et UN871 à ‘HELIX’ était la plus commode. Cette
option a été préférée à l’option ‘MAR’ car le flux de trafic nord était séparé du flux sud
plus tôt, de plus il était plus facile d’intégrer les départs de Malaga avec les flux de
trafic nord.
Les contrôleurs ont aussi identifié le besoin d’un nouveau secteur, de façon à réduire
la charge de travail et le volume de trafic sur les secteurs BALN et MART provoqué
par le croisement des routes inversées.
4. D’étudier l’impact opérationnel de la nouvelle sectorisation de l’espace
aérien de Madrid et Séville, décrite dans l’Organisation 3, en utilisant l’hélice
choisie (dans l’Objectif 3) avec des volumes de trafics de 1998 et plus (+30%).
L’Organisation 3 a été testé seulement avec du trafic 1998. Les contrôleurs des
secteurs CJA/B ont préféré la coupure au niveau FL305 car le secteur inférieur était
très occupé par le trafic arrivées/départs de Madrid et la coordination avec le secteur
P age 38
Tâche CEE – S16 SPAIN 97
Rapport CEE Nº 328
ESPAGNE 97 Simulation En Temps Réel
(852&21752/
CENTRE EXPERIM ENTAL EUROCONTROL ________________________________________________________________
ESTE. Les contrôleurs des secteurs ZPA/B et TVA/B ont préféré la coupure au
niveau FL325 car la majorité du trafic était en survol et le fait d’avoir le niveau FL310
dans le secteur inférieur a permis de réduire la charge de travail, cependant ,
beaucoup de contrôleurs ont préféré la sectorisation de l’Organisation 2 car les
routes étaient généralement unidirectionnelles.
L’option « coupures secteurs » à différents niveaux a été discutée et rejetée, et en
conséquence, il a été décidé de créer l’Organisation 5. Cette nouvelle sectorisation a
retenu la sectorisation de Madrid utilisée dans l’Organisation 2 mais en incorporant la
nouvelle route PPN-SOVAR. ‘SOVAR’ est devenu le seul point de sortie nord est
vers Bordeaux, et tous les niveaux de vol pair étaient disponibles pour le trafic en
sortie. Le centre de Séville a utilisé la sectorisation décrite dans l’Organisation 3 avec
le secteur SURR.
Le positionnement du secteur SURR dans l’espace aérien de Séville était considéré
comme correct, le point de croisement se trouvant dans le secteur SURR, lequel
généralement gère moins de trafic que les secteurs MART et BALN. Il est apparu
immédiatement que la charge de travail des trois secteurs de Séville était à un
niveau plus confortable que le cas au l’on utilise seulement deux secteurs.
5. De déterminer laquelle des Organisations , 2 ou 3, est la plus adaptée, avec
un volume de trafic de 1998 et plus (+30%), en fonction de l’avis subjectif des
contrôleurs et de mesures de la charge de travail des contrôleurs.
Il n’y avait aucune préférence particulière en ce qui concerne la sectorisation entre
les Organisations 2, 3 ou 5.
A la fin des Organisations 1 et 2, seulement 7% des contrôleurs de Madrid ont
préféré les routes non-inversées, les autres préférant la solution d’inversion ou
n’ayant pas de préférence.
Les contrôleurs avaient des opinions différentes sur la SID la plus adaptée pour
l’aéroport de Madrid vers le point de sortie SOVAR. Cependant, tous les contrôleurs
étaient d’avis que dans la vie réelle l’utilisation de ‘SOVAR’ comme point de sortie
pour les 3 routes serait dangereuse pour la convergence des avions en survol et pas
efficace pour les vols en montée.
Il a été décidé que le niveau de coupure le plus adapté entre le secteur supérieur et
inférieur de Castejon (CJA/A) était le FL305, et la coupure entre ESTE et CJB était
mieux placée au niveau FL245.
Dans l’espace de Séville les Organisations 3 et 5 ont été préférées à l’Organisation
2.
Dans les 2 configurations de secteur, les secteurs BALN et MART ont été très
chargés avec le trafic 1998 et surchargés avec le trafic +30%. Le secteur SURR a
permis de réduire la charge de travail du contrôleur et la charge de trafic sur les
secteurs MART et BALN. Ces trois secteurs ont pu gérer le trafic 1998, cependant,
avec le trafic +30% le secteur BALN était fréquemment surchargé.
Tous les contrôleurs de Séville ont trouvé que l’inversion des routes améliorait le flux
de trafic dans l’espace aérien de Séville, en particulier, elle réduit le problème des
arrivées et départs sur Malaga qui vont en direction opposée au trafic en survol.
Tâche CEE – S16 SPAIN 97
Rapport CEE Nº 328
P age 39
ESPAGNE 97 Simulation En Temps Réel
(852&21752/
CENTRE EXPERIM ENTAL EUROCONTROL ________________________________________________________________
RECOMMENDATIONS
Les recommandations suivantes sont faites sous l’hypothèse que la
proposition d’inversion de route de UN869/UN871 est introduite dans l’UIR de
Madrid mais non dans la FIR du Maroc, et que les niveaux de trafic futurs
soient équivalents aux capacités utilisés durant la simulation (1998 et +30%).
•
Un nouveau secteur (SURR) devrait être introduit dans l’espace aérien de
Séville pour facilité le croisement des routes avant l’entrée dans la FIR de
Casablanca.
•
Le point de croisement (hélice) dans l’espace de Séville utilisé pour
l’inversion des routes devrait être ‘VFD-MGA-BLN’.
•
La niveau de coupure le plus adapté pour le secteur Castejon devrait être
FL305.
•
Les procedures de co-ordination entre les secteurs Castejon supérieur et
inférieur et les secteurs adjacents devraient etre documentees et tous les
controlleurs devraient etre familiarises avec ces procédures avant
l’introduction de la coupure verticale.
•
Avec l’actuelle sectorisation de Madrid, les limites supérieures du secteur
ESTE demeurent au niveau FL245 au lieu d’être descendue au niveau
FL205.
•
‘SOVAR’ devrait être utilisée comme l’unique point de sortie dans le
secteur Zaragoza pour le trafic de l’UIR de Madrid vers l’UIR de Bordeaux.
Des études complémentaires devraient être conduites (incluant le secteur
Domingo) pour déterminer la solution la plus adaptée pour intégrer le trafic
au départ/arrivée sur Madrid Barajas, avec le trafic en survol dans les
secteurs DGO, PPN, et ZZA.
P age 40
Tâche CEE – S16 SPAIN 97
Rapport CEE Nº 328
ANNEX A
MAPS OF SIMULATION AIRSPACE
SPAIN 97 - ORG1/ORG2
45
08
07
06
05
04
03
NUB42
02
01
00
01
02
45
NUA23
LOTEE
SAU
NUL14
GASCO
ATLEN
NUB11
NH200
PATEL
ENSAC
44
POPUL
BISKA
AVS
FERMO
ABRIX
SSN
BLV
AMTOS
CEGAM
OLTRE
VRA
KORET
VEDER
LURAN
SILOS
POSSY
BORJA
RUBEO
GRECO
ARN
TOSMA
TAPET
ACD
LMD
CNR
BERMI
KASEL
TLD
WUG52
QUV
MLA
41
AROMA
AMPOL
CMA1
ADUXO
LOTOS
CJN
LEMD
NVS
LRD
PEXOT
CMA
SEGRE
AVILA
REBUL
ERMES
SMA
NINOS
42
GRAUS
SHARA
BAN
ORBIS
CANAR
40
TURBO
RITEX
ZZA
ZMR
BARDI
ANETO
ZRZ
MALIS
RIVRO
ESTAT
PERDU
EPATO
PPN
ADORO
GIROM
SURCO
MARIO
LARDA
42
43
ZZA
ALEPO
DGO
BGS
TOU
SOVAR
RONKO
RATAS
41
LATEK
44
TBO
ENDAY
THUNE
BEGUY
PIPOR
PPN
BEMRA
MADRD
134.35
BARKO
BORDX
134.0
BTZ
SNR
43
GAI
AGN
BELEN
CPL
PALIO
ALVAL
GOTOR
CJA
CJB
MARTA
MANDY
DRAGO
TLD
CENTA
VTB
40
CLS
KAMPO
PORTA
WUB60
CCS
SOLAX
ELVAR
39
MOLIN
PARKA
SEVIL
128.50
MORAL
LOGRO
CRISA
VLC
NASOS
VTB
MONTO
ANANA
BEJ
VILNA
YES
MAGAL
RESTU
BAZAS
TOSGA
BAENA
ROLAS
VIBAS
SVL
LOJAS
MINTA
ONUBA
MAR
MRN
GRD
VIBA1
LABRO
AMR
MGA
HELIX
LEMG
ADUBI
TNG
BARPA
GOLFO
CARBO
GONZA
PIMOS
KORIS LINTO
BAMBA
HAMRA
BOLKA
BALN
VJF
ORTOP
37
GENNI
PESAS
BRIKE
BARCL
132.35
38
ALCOL
SANTA
KORNO
ALT
BLN
ROSAL
36
39
IBZ
HIJ
VULPE
37
ASTRO
NARGO
OXACA
VFA
GATOS
ANZAN
MART
38
RIKOS
BERUM
36
MOS
LIGUM
GALTO
TTN
ABODA
TSE
SN871
35
08
SUG5
07
HMB
ALM
06
05
04
MADRD (000/460) : 134.35
BARCL (000/460) : 132.35
BORDX (000/460) : 134.0
MATMA (000/195) : 127.50
SEVIL (000/460) : 128.50
CJB
(245/300) : 133.85
CJA
(300/460) : 132.97
MATMA
35
SEVIL
128.5
ARB
ESTE
03
02
01
00
01
TLD (000/460) : 133.75
PPN (050/460) : 133.95
VTB (000/460) : 133.20
ZZA (000/460) : 136.25
BALN (135/460) : 132.60
MART (135/460) : 133.35
ESTE (000/245) : 118.40
MILITARY AREA
VLC TMA
ZZA TMA
02
SPAIN 97 - ORG3
45
08
07
06
05
04
03
NUB42
02
01
00
01
02
45
NUA23
LOTEE
SAU
NUL14
GASCO
ATLEN
NUB11
NH200
PATEL
ENSAC
44
POPUL
BISKA
AVS
FERMO
ABRIX
SSN
BLV
AMTOS
CEGAM
OLTRE
VRA
KORET
VEDER
ESTAT
SILOS
POSSY
BORJA
ZPA
ZPB
SHARA
BAN
ORBIS
ERMES
SMA
NINOS
RUBEO
GRECO
ARN
TOSMA
CNR
BERMI
TAPET
ACD
LMD
KASEL
WUG52
40
PALIO
ALVAL
GOTOR
TVA
TVB
AMPOL
CMA1
LOTOS
CJN
CPL
TLD
41
AROMA
ADUXO
LEMD
NVS
QUV
MLA
PEXOT
CMA
SEGRE
AVILA
REBUL
LRD
RITEX
ZZA
CANAR
42
GRAUS
ZRZ
ZMR
BARDI
TURBO
EPATO
MALIS
RIVRO
ANETO
SURCO
MARIO
LARDA
ADORO
43
GIROM
PERDU
ALEPO
DGO
BGS
42
TOU
SOVAR
RONKO
RATAS
41
LATEK
LURAN
44
TBO
ENDAY
THUNE
BEGUY
PIPOR
PPN
BEMRA
MADRD
134.35
BARKO
BORDX
134.0
BTZ
SNR
43
GAI
AGN
BELEN
CJA
CJB
MARTA
MANDY
DRAGO
CENTA
VTB
40
CLS
KAMPO
PORTA
WUB60
CCS
SOLAX
ELVAR
39
MOLIN
PARKA
SEVIL
128.50
VLC
NASOS
MORAL
LOGRO
BEJ
CRISA
ANANA
VILNA
YES
ALT
MAGAL
BLN
ROSAL
ALCOL
TOSGA
ROLAS
VIBAS
SVL
LOJAS
ONUBA
MAR
MRN
38
BAZAS
BAENA
MINTA
GRD
VIBA1
LABRO
AMR
MGA
HAMRA
HELIX
LEMG
BOLKA
GOLFO
BRIKE
VJF
KORNO
BAMBA
SURR
BARPA
CARBO
GONZA
PIMOS
KORIS LINTO
ADUBI
TNG
37
GENNI
PESAS
ORTOP
BARCL
132.35
RESTU
BALN
SANTA
36
39
IBZ
HIJ
VULPE
37
ASTRO
NARGO
OXACA
VFA
GATOS
ANZAN
MART
38
RIKOS
MONTO
BERUM
36
MOS
LIGUM
GALTO
TTN
ABODA
TSE
SN871
35
08
SUG5
07
HMB
ALM
ARB
06
05
04
03
35
02
01
TVA (300/460) : 133.20
TVB (000/300) : 133.75
ZPA (300/460) : 133.95
ZPB (050/300) : 136.25
BALN (135/460) : 132.60
MART (135/460) : 133.35
ESTE (000/245) : 118.40
MADRD (000/460) : 134.35
BARCL (000/460) : 132.35
BORDX (000/460) : 134.0
MATMA (000/195) : 127.50
SEVIL (000/460) : 128.50
CJB
(245/300) : 133.85
CJA
(300/460) : 132.97
MATMA
SEVIL
128.5
ESTE
MILITARY AREA
00
01
02
SURR (135/460) : 132.47
VLC TMA
ZZA TMA
SPAIN 97 - ORG4
45
08
07
06
05
04
03
NUB42
02
01
00
01
02
45
NUA23
LOTEE
SAU
NUL14
GASCO
ATLEN
NUB11
NH200
PATEL
ENSAC
44
POPUL
BISKA
AVS
FERMO
ABRIX
SSN
BLV
AMTOS
CEGAM
OLTRE
VRA
KORET
VEDER
ESTAT
SILOS
POSSY
BORJA
ZPA
ZPB
SHARA
BAN
ORBIS
ERMES
SMA
NINOS
RUBEO
GRECO
ARN
TOSMA
TAPET
ACD
LMD
CNR
BERMI
KASEL
WUG52
40
PALIO
ALVAL
GOTOR
TVA
TVB
AMPOL
CMA1
LOTOS
CJN
CPL
TLD
41
AROMA
ADUXO
LEMD
NVS
QUV
MLA
PEXOT
CMA
SEGRE
AVILA
REBUL
LRD
RITEX
ZZA
CANAR
42
GRAUS
ZRZ
ZMR
BARDI
TURBO
EPATO
MALIS
RIVRO
ANETO
SURCO
MARIO
LARDA
ADORO
43
GIROM
PERDU
ALEPO
DGO
BGS
42
TOU
SOVAR
RONKO
RATAS
41
LATEK
LURAN
44
TBO
ENDAY
THUNE
BEGUY
PIPOR
PPN
BEMRA
MADRD
134.35
BARKO
BORDX
134.0
BTZ
SNR
43
GAI
AGN
BELEN
CJA
CJB
MARTA
MANDY
DRAGO
CENTA
VTB
40
CLS
KAMPO
PORTA
WUB60
CCS
SOLAX
ELVAR
39
MOLIN
PARKA
SEVIL
128.50
BEJ
MORAL
LOGRO
CRISA
HIJ
ANANA
ASTRO
VILNA
YES
ALT
MAGAL
ALCOL
TOSGA
ROLAS
VIBAS
SVL
LOJAS
MAR
MRN
38
RESTU
BAENA
MINTA
ONUBA
GRD
VIBA1
LABRO
AMR
MGA
HAMRA
HELIX
LEMG
BOLKA
GOLFO
BRIKE
KORNO
VJF
BAMBA
BARPA
CARBO
GONZA
PIMOS
KORIS LINTO
ADUBI
TNG
37
GENNI
PESAS
ORTOP
BARCL
132.35
BAZAS
SANTA
36
39
IBZ
BLN
VULPE
37
GATOS
ANZAN
BAMA
BALN
BAMA
MART
OXACA
VFA
RIKOS
NARGO
ROSAL
38
VLC
NASOS
MONTO
BERUM
36
MOS
LIGUM
GALTO
TTN
ABODA
TSE
SN871
35
08
SUG5
07
HMB
ALM
ARB
06
05
04
03
35
02
01
TVA (300/460) : 133.20
TVB (000/300) : 133.75
ZPA (300/460) : 133.95
ZPB (050/300) : 136.25
BALN (135/300) : 132.60
MART (135/300) : 133.35
ESTE (000/245) : 118.40
MADRD (000/460) : 134.35
BARCL (000/460) : 132.35
BORDX (000/460) : 134.0
MATMA (000/195) : 127.50
SEVIL (000/460) : 128.50
CJB
(245/300) : 133.85
CJA
(300/460) : 132.97
MATMA
SEVIL
128.5
ESTE
MILITARY AREA
00
01
02
BAMA (300/460) : 132.47
VLC TMA
ZZA TMA
SPAIN 97 - ORG5
45
08
07
06
05
04
03
NUB42
02
01
00
01
02
45
NUA23
LOTEE
SAU
NUL14
GASCO
ATLEN
NUB11
NH200
PATEL
ENSAC
44
POPUL
BISKA
AVS
FERMO
ABRIX
SSN
BLV
43
CEGAM
OLTRE
VRA
KORET
VEDER
LATEK
RONKO
ZZA
SILOS
POSSY
BORJA
RUBEO
GRECO
ARN
TOSMA
TAPET
ACD
LMD
AVILA
CNR
BERMI
KASEL
TLD
WUG52
40
41
AROMA
AMPOL
CMA1
ADUXO
LOTOS
CJN
LEMD
NVS
QUV
MLA
PEXOT
CMA
SEGRE
BARDI
LRD
ERMES
SMA
NINOS
REBUL
SHARA
BAN
ORBIS
42
GRAUS
RITEX
ZZA
ZMR
CANAR
RIVRO
TURBO
ZRZ
MALIS
41
ANETO
EPATO
PPN
ADORO
PERDU
SURCO
MARIO
LARDA
42
43
GIROM
SOVAR
ESTAT
ALEPO
DGO
BGS
MADRD
134.35
TOU
ENDAY
THUNE
BEGUY
PIPOR
LURAN
44
TBO
PPN
BEMRA
RATAS
BARKO
BORDX
134.0
BTZ
SNR
AMTOS
GAI
AGN
BELEN
CPL
PALIO
ALVAL
GOTOR
CJA
CJB
MARTA
MANDY
DRAGO
TLD
CENTA
VTB
40
CLS
KAMPO
PORTA
WUB60
CCS
SOLAX
ELVAR
39
MOLIN
PARKA
SEVIL
128.50
MORAL
LOGRO
CRISA
VLC
NASOS
VTB
MONTO
ANANA
BEJ
39
IBZ
HIJ
VILNA
YES
ALT
MAGAL
BLN
ROSAL
VULPE
RESTU
BALN
TOSGA
ROLAS
VIBAS
SVL
LOJAS
ONUBA
BAZAS
BAENA
MINTA
MAR
MRN
PESAS
HELIX
BRIKE
BARCL
132.35
38
ALCOL
SANTA
37
ASTRO
NARGO
OXACA
VFA
GATOS
ANZAN
MART
38
RIKOS
GRD
VIBA1
LABRO
37
GENNI
AMR
MGA
LEMG
HAMRA
BOLKA
GOLFO
VJF
ORTOP
36
KORNO
BAMBA
SURR
KORIS LINTO
ADUBI
TNG
BARPA
CARBO
GONZA
PIMOS
BERUM
36
MOS
LIGUM
GALTO
TTN
ABODA
TSE
SN871
35
08
SUG5
07
HMB
ALM
06
05
04
03
02
01
TLD (000/460) : 133.75
PPN (050/460) : 133.95
VTB (000/460) : 133.20
ZZA (000/460) : 136.25
BALN (135/460) : 132.60
MART (135/460) : 133.35
ESTE (000/205) : 118.40
MADRD (000/460) : 134.35
BARCL (000/460) : 132.35
BORDX (000/460) : 134.0
MATMA (000/195) : 127.50
SEVIL (000/460) : 128.50
CJB
(000/300) : 133.85
CJA
(300/460) : 132.97
MATMA
35
SEVIL
128.5
ARB
ESTE
MILITARY AREA
00
01
02
SURR (135/460) : 132.47
VLC TMA
ZZA TMA
SPAIN 97 - ORG6
45
08
07
06
05
04
03
NUB42
02
01
00
01
02
45
NUA23
LOTEE
SAU
NUL14
GASCO
ATLEN
NUB11
NH200
PATEL
ENSAC
44
POPUL
BISKA
AVS
FERMO
ABRIX
SSN
BLV
AMTOS
CEGAM
OLTRE
VRA
KORET
VEDER
RATAS
BARKO
LATEK
RONKO
ZZA
SILOS
POSSY
BORJA
ERMES
SMA
NINOS
RUBEO
GRECO
ARN
TOSMA
KASEL
TLD
WUG52
40
41
AROMA
AMPOL
CMA1
ADUXO
LOTOS
CJN
LEMD
NVS
QUV
MLA
PEXOT
CMA
SEGRE
TAPET
AVILA
CNR
ACD
BERMI
LMD
REBUL
LRD
SHARA
BAN
ORBIS
CANAR
42
GRAUS
RITEX
ZZA
ZMR
BARDI
TURBO
ZRZ
MALIS
RIVRO
ANETO
EPATO
PPN
41
PERDU
SURCO
MARIO
LARDA
ADORO
43
GIROM
SOVAR
ESTAT
ALEPO
DGO
BGS
42
TOU
ENDAY
THUNE
BEGUY
PIPOR
LURAN
44
TBO
PPN
BEMRA
MADRD
134.35
BORDX
134.0
BTZ
SNR
43
GAI
AGN
BELEN
CPL
PALIO
ALVAL
GOTOR
CJA
CJB
MARTA
MANDY
DRAGO
TLD
CENTA
VTB
40
CLS
KAMPO
PORTA
WUB60
CCS
SOLAX
ELVAR
39
MOLIN
PARKA
SEVIL
128.50
BEJ
CRISA
ASTRO
39
IBZ
VILNA
MBA
MBB
VULPE
YES
MAGAL
BLN
38
BAZAS
TOSGA
BAENA
ROLAS
VIBAS
LOJAS
MINTA
MAR
MRN
PESAS
HELIX
BRIKE
BARCL
132.35
RESTU
SVL
ONUBA
ALT
ALCOL
SANTA
37
GATOS
NARGO
OXACA
VFA
ANANA
RIKOS
ANZAN
HIJ
ROSAL
38
MORAL
LOGRO
VLC
NASOS
VTB
MONTO
GRD
VIBA1
LABRO
37
GENNI
AMR
MGA
LEMG
HAMRA
BOLKA
GOLFO
VJF
ORTOP
36
KORNO
BAMBA
SURR
KORIS LINTO
ADUBI
TNG
BARPA
CARBO
GONZA
PIMOS
BERUM
36
MOS
LIGUM
GALTO
TTN
ABODA
TSE
SN871
35
08
SUG5
07
HMB
ALM
06
05
04
03
TLD
PPN
VTB
ZZA
MBB
MBA
ESTE
MADRD (000/460) : 134.35
BARCL (000/460) : 132.35
BORDX (000/460) : 134.0
MATMA (000/195) : 127.50
SEVIL (000/460) : 128.50
CJB
(000/300) : 133.85
CJA
(300/460) : 132.97
MATMA
35
SEVIL
128.5
ARB
ESTE
02
01
(000/460) : 133.75
(050/460) : 133.95
(000/460) : 133.20
(000/460) : 136.25
(135/325) : 133.35
(325/460) : 132.60
(000/205) : 118.40
MILITARY AREA
00
01
02
SURR (135/460) : 132.47
VLC TMA
ZZA TMA
ANNEX B
SIMULATION PARTICIPANTS
S16 PARTICIPANTS
EUROCONTROL - Experimental Centre
Roger LANE
Peter ERIKSEN
Jose SEIXO
Yvette FAUCHOT
Andy HARVEY
Peter SLINGERLAND
Veronique BEGAULT
Francoise ROTH
Project Manager
Assistant Project Manager
Simulation Technical Co-ordinator
Data Preparation Specialist
Analyst
Operations room Supervisor
Map Preparation Specialist
Administration
AENA - Headquarters Madrid
Julian TORRES CARRERO
Jose Maria CURA OCANA
Iciar CEBERIO
AENA - MADRID ACC
Ramon VEGA ALONSO
Vicente LAMATA GARCIA
Ramon EXPOSITO PUERTAS
Julio GIL RENEDO
Joaquin CASADO CATALINA
Antonio PLAZA VICENTE
Juan J. GARCIA CONDE
Miguel FIDALGO VILLAPALOS
Juan A. FERNANDEZ MORALES
Jose CANELADA SANTOS
Jose L. FERNANDEZ LOJA
Francisco J. RODRIGUEZ GARCIA
Maria Dolores CELADA ALMELA
Atilano LORENZANA PEREZ
Maria Aranzazu LUCIA AGUIRRE
Manuel P. MUNOZ CUENCA
Manuel MOYANO BOYERO
Fernando MARTIN FELIPE
AENA - SEVILLA ACC
Francisco RENSHAW GONZALEZ
Felix RODRIGUEZ MORENO
Jose R. JURADO CHACON
Manuel CABEZUELO GAMITO
Loreta MESON GARCIA
Eduardo MAURY BUENDIA
Ricardo AGUADO TOME
Esther MARTIN DIEZ
Emilio VIEJO MIRA
AENA - BARCELONA ACC
Cristobal PELEGRIN
CRNA SUD OUEST - BORDEAUX ACC
Pierre DE LANGEN
ANNEX C
EXERCISE TIMETABLE
Date
START
STOP
SCENARIO/ACTIVITY
1030
1200
1445
1615
INTRODUCTION
AND THE EEC
Training exercise
Training exercise
Training exercise
TUE 09 0945
SEP
1145
1430
1115
Exercise 1 - ORG 1
T98M1
1315
1600
Exercise 2
Exercise 3
T98A1
T98M1
WED 10 0900
SEP
1100
1400
1030
Exercise 1 - ORG 1
T98A1
1230
1530
Exercise 2 Exercise 3
T98M1
T98A1
1040
Exercise 1 - ORG 2
T98M2HB
1245
1530
1630
Exercise 2
Exercise 3
Debrief
T98A2HB
T98M2HM
1030
Exercise 1 - ORG 2
T98A2HM
1230
1530
1630
Exercise 2
Exercise 3
Debrief (MGA
T30M2HM
T98A2HB
WEEK 1
MON 08 0915
SEP
1100
1330
1500
THU 11 0915
SEP
1110
1400
1545
FRI 12 0900
SEP
1100
1400
1545
TRAFFIC
CODE
TO
Helice chosen)
S16
TTNG
TTNG
TTNG
WEEK 2
MON
15 0900
SEP
1100
1400
1545
TUE
SEP
WED
SEP
THU
SEP
16 1045
1030 Exercise 1 - ORG 3 (helice via T98M3
Malaga)
FL300
1230 Exercise 2 T98A3
FL300
1530 Exercise 3
T98M3b
FL325
1630 Debrief
1215 Exercise 1 - ORG 3
S3bT98M3b
FL325
S3-T98M3
FL300
1330
1455 Exercise 2
1500
1530 Debrief
1530
1700 Exercise 3
S3T98A3b
FL325
17 0900
1030 Exercise 1 - ORG 1
S1-T98M1
1300
1445
1415 Exercise 2
1600 Exercise 3 - ORG 2
S1-T98A1
S2T98M2HM
1600
1635 Debrief
18 0900
1100
1400
1545
FRI 19 SEP 0900
1100
(Org 3 not required,
continue with Org 5 with CJA/B split at
FL305)
1030 Exercise 1 - ORG 5
S5-T30A5
1230 Exercise 2
1530 Exercise 3
1630 Debrief
S5-T30M5
S5-T30A5
1030 Exercise 1 - ORG 5
1230 Exercise 2 -S5-T30A5
S5-T30M5
(Org 2
with ESTE FL205 exit traffic via PPNSOVAR and SURR sector)
(lost
due to technical failure)
1400
1545
1530 Exercise 3
1630 Debrief
S5-T30M5
WEEK 3
MON
22 0900
SEP
1100
1400
1545
TUE
SEP
23 0945
1130
1330
1500
WED
SEP
24 0900
1100
1400
1545
THU
SEP
25 1000
1130
1345
1545
FRI
SEP
26 0930
1030 Exercise 1 - ORG 6
S6-T30M6
1230 Exercise 2
1530 Exercise 3
1630 Debrief
S6-T30A6
S6-T30M6
1055 Exercise 1 - Org 5
S5-T30M5T
1240 Exercise 2 (ESTE FL205)
1500 Exercise 3 (ESTE FL245)
1700 Debrief
S5-T30A5D
S5-T30M5T
1030 Exercise 1 - Org 5
S5-T30M5D
1230 Exercise 2
1530 Exercise 3
1630 Debrief
S5-T30A5T
S5-T30M5D
1100 Exercise 1 - ORG 3
S3 - T30M3T
1230 Exercise 2
1430 Exercise 3
1630 Debrief
S3 - T30A3T
S3 - T30M3T
(ORG5
but with BALN and MART combined
and split at FL325 with CJA/B split
at FL300)
LEMD
departures to SOVAR via TOSMA
or DGOS (ESTE FL205)
LEMD
departures to SOVAR via TOSMA
or DGOS (ESTE FL245)
(CJA/B
Split at FL300, TVA/B and ZPA/B
split at FL325 - Departures via
TOSMA, Traffic via MAR in Sevilla
UIR)
1100 Final Presentation
1130 Depart
ANNEX D
OPERATIONS ROOM LAYOUTS
ORGANISATION 1 / 2
OPERATIONS ROOM
132.35
134.35
BARCL
MADRD
134.0
BORDX
128.5
127.5
SEVIL
MATMA
24
25
26
27
23
28"
28"
28"
28"
28"
VTB
133.2
strp.pr.
M
R.B.
15
28"
M
M
28"
EXC
PLC
R.B.
4
28"
EXC
133.75
CJB
3
28"
PLC
R.B.
MART
2
28"
28"
1
28"
28"
EXC
PLC
132.97
BALN
PPN
PLC
S16
SPAIN-97
PLC
ZZA
EXC
EXC
133.95
R.B.
R.B.
17
28"
8
28"
18
R.B.
R.B.
28"
9
28"
19
R.B.
132.60
PLC
EXC
28"
strp.pr.
R.B.
R.B.
7
R.B.
EXC
strp.pr.
11
PLC
28"
R.B.
133.35
CJA
strp.pr.
12
16
strp.pr.
R.B.
28"
EXC
133.85
strp.pr.
13
28"
strp.pr.
TLD
PLC
6
R.B.
118.4
R.B.
28"
28"
R.B.
ESTE
strp.pr.
14
EXC
M
PLC
R.B.
5
M
136.25
ORG.1/2
R.B.
strp.pr.
EXC
PLC
28"
10
28"
20
R.B.
R.B.
strp.pr.
SUPERVISEUR
15.09.97/SLI
ORGANISATION 3
OPERATIONS ROOM
132.35
134.35
BARCL
MADRD
24
134.0
BORDX
128.5
127.5
SEVIL
MATMA
25
26
27
23
TVA
133.2
28"
strp.pr.
R.B.
15
28"
28"
M
M
28"
M
28"
EXC
28"
R.B.
28"
EXC
133.75
CJB
3
28"
PLC
R.B.
2
28"
28"
MART
1
28"
28"
EXC
PLC
SURR
17
28"
8
28"
18
R.B.
R.B.
EXC
28"
9
28"
19
R.B.
132.47
PLC
ZPA
PLC
133.95
S16
SPAIN-97
R.B.
PLC
ZPB
EXC
28"
strp.pr.
R.B.
R.B.
7
R.B.
EXC
EXC
28"
R.B.
133.35
CJA
strp.pr.
11
PLC
132.97
R.B.
16
strp.pr.
strp.pr.
12
EXC
133.85
R.B.
28"
28"
strp.pr.
strp.pr.
13
6
R.B.
118.4
TVB
PLC
28"
R.B.
PLC
R.B.
4
EXC
M
ESTE
strp.pr.
14
28"
PLC
R.B.
5
28"
M
ORG.3
R.B.
strp.pr.
BALN
EXC
132.60
136.25
PLC
28"
10
28"
20
R.B.
R.B.
strp.pr.
SUPERVISEUR
15.09.97/SLI
ORGANISATION 5 and 6
OPERATIONS ROOM
Organisation 5 and 6 were the same except for the following ; MART Sector became
MBB and BALN Sector became MBA. The frequencies remained unchanged.
132.35
134.35
BARCL
MADRD
134.0
BORDX
128.5
127.5
SEVIL
MATMA
24
25
26
27
23
28"
28"
28"
28"
28"
VTB
133.2
strp.pr.
M
R.B.
15
28"
M
M
28"
EXC
PLC
R.B.
4
28"
EXC
133.75
CJB
3
28"
PLC
R.B.
MART
2
28"
28"
1
28"
28"
EXC
PLC
132.97
EXC
SURR
PLC
132.47
PPN
EXC
17
28"
8
28"
18
R.B.
R.B.
SPAIN-97
ZZA
ORG.5
28"
9
28"
19
R.B.
R.B.
strp.pr.
S16
PLC
EXC
PLC
133.95
R.B.
R.B.
28"
strp.pr.
R.B.
R.B.
7
R.B.
EXC
strp.pr.
11
PLC
28"
R.B.
133.35
CJA
strp.pr.
12
16
strp.pr.
R.B.
28"
EXC
133.85
strp.pr.
13
28"
strp.pr.
TLD
PLC
6
R.B.
118.4
R.B.
28"
28"
R.B.
ESTE
strp.pr.
14
EXC
M
PLC
R.B.
5
M
EXC
BALN
132.60
136.25
PLC
28"
10
28"
20
R.B.
R.B.
strp.pr.
SUPERVISEUR
15.09.97/SLI

Documents pareils