WP4A25 – Mastercourse for Universities

Transcription

WP4A25 – Mastercourse for Universities
...
..· ....··· .
PRO -TIDE
Master course on Tidal Energy
WP4A25
REPORT
Alexei Sentchev
Laboratoire d'Oceanologie et Geosciences (LOG)
Universite du Littoral - Cote d'Opale (ULCO)
32 avenue Foch, 62930 Wimereux, France
{http://log.univ-littoral.fr/}
{[email protected]}
November 2015
CJ-e
l
PRO -TIDE
-
" -.all.a-,._.,.llll'\llrfl4.t.'t
IIIITI(II I!;Gl/l"f
SUMMARY
A Master Course on Tidal Energy was created and introduced into education
program at the regional university level (Nord - Pas de Calais region). Master
Course is given by Mr A. Sentchev at the University of Sciences and Technology of
Lille (USTL), U. de Bethune (U. d'Artois) and U. du Littoral - Cote d'Opale (ULCO).
The Master Course is also given at the U. of Sci. and Tech of Hanoi (Viet Nam). This
is a part of an international education network.
In this re ort all the
ntations of the course are resented.
PRO-TIDE
............,.,,,.,,.,...,...,...,..,,.2............,.,,.,,.,,,.,,.,,,,..,,....................,,,,,,,,,,,,,,,.,,,...,,,,
===----..a
PRESENTATIONS MASTER COURSE
PRO-TIDE
.......... ...................................... " ......J. ...................... ...................... ....... ........................ . ....
UNIVERSITE
DU LITTORAL
COTE D'OPALE
PRO-TIDE
Marine Renewable Energy (MRE)
Alexei Sentchev, Lab. d'Oceanographie & Geosiences,
Univ. du Littoral- Cote d'Opale, FR
[email protected]
MASTER Course on Marine Renewable Energy
Plan of the course
Introauct:IOn (Population growth, Energy production &REproduction)
Status of MRE in Europe, in the world (some specific cases)
Economic motivation, cost, evolution
00
0
Basic understanding in Fluid Mechanics (Frictionless Flow,Geophyso FL Dynamics,
Tides & Tidal currents, Waves)
Evaluation of Energy Potential and Advances on free stream turbine
hydrodynamics
Tidal Power Conversion Technology
- Tidal Range
- Tidal Stream
-Other
Introduction
-
Dt-tllft&IO
(Uftreoctl
--- O.!NftdttnerllJO
{C--)
ProQu<bOn tltctnc t
{lltNrtn<t)
Producllon 61tt1rltllt
(Con,_I
The demand of electricity production is due to population growth
We expect production of 55 000 TWh in 2050 (170% increase) but it is strongly constrained but 3
priorities:
• to garantle the power supply
• to limit the impact on climate and envlronnement
• to control the cost of power production in order to avoid the Inequality between countries
Introduction
The energy consumed by one person in different parts of the world varies dramatically...
Country
USA
kW hours per
person per day
250
UK&EU
125
Hong Kong
80
China
42
India
12
Africa
2 (poorest countries)
There are a whole range of solutions being considered and implemented to reduce our energy
consumption.Solutions include lifestyle I behavioural changes, technological developments in
many areas, design innovations and attempts to change the consumption mindset of modem
civilised society.
The solutions for our future energy production seem to come down to:
• The maximum amount of Renewable Energy
• The balance from Nuclear Power
For every 2 KWh of electricity produced from fossil fuels 3 KWh are lost in the generating
process. The losses associated with WIT/H power are much less because there is no heat loss
in the process
Electricity production resource
Energy production from fossil are dominant and even in progress, but why?
A) boom in USA 19998-2002 (gaz), B) in China (coal/charbon)
But the fraction of green energy increases (4% in 2011) ...
Nuclear power decreases after 2011 (80% of elec. in France)
Subjects of
the course
Panorama in Europe
Potential of Electricity production (RenEn) by country
RenEn Resources in Europe in 2020
(cf GreenNet Europe)
0.------------------------------
:250 +------1---­
•Additionalpotential 2020
•Achieved potantial 2004
.?:
·E 200 +------IR•------ ._r...
ii
150 +---- --IR--- --.- --- f-...
..
w. oc.
100 +---- --IR--- -;- ---1!
:!
50
....
<
w
.,
0
""
u:: IE
UJ
0
"' !!!
C)
-'
!:: :::> z
-'
... "'
Q.
UJ
w
"' :::>""
¥!!!.
....
....
= "'i
2
Cl
"'
ll
Electricity production in Europe
·..,..-,.·
0·-··--·-
-····-··­­---
---
Since 1990, the majority of power convertors in EU are gaz turbines
Europe needs tidal
Ocean Energy
Europe
No control of energy in fossil fuel economy
53% energy imports
€400bn a year
94% of transport relies on oil (90% imported)
€120 bn in energy subsidies (excluding transport) a year
€70 bn in subsidies to fossil fuels and nuclear
Europe needs all renewable technologies
2020
2050
20% renewables
35% RES power
I
27% renewables
80%- 95% decarbonisation
45%-50% RES power
99% decarb (RES) power
Le potentiel des energies marines renouvelables
Potentiel nature! theorique (dont celui non exploitable techniquement)
Potentiel techniquement exploitable (sous contraintes environnementales et
societales, variables et dependantes du developpement des filieres)
(ex: eolien flottant, totalement absent il y a 10 ans, ouvre un vaste nouveau potentiel exploitable)
Pour !'ensemble des EMR: Potentiel nature! theorique de l'ordre de 100 000 lWh/an
(d'apres IPCC)
• Eolien offshore pose: potentiel de lSOGW en Europe pres des cotes (500 lWh/an)
• Eolien offshore flottant: potential N x1000 lWh/an
• Maremoteur: ressource mondial 380 lWh/an
• Hydrolien: potential mondial techniquement exploitable 450 TWh/an
• Houle: potential techniquement exploitable en Europe 1 400 TWh/an
• ETM: potential nature! (difference de temperature 20j 80 000 TWh/an
Production globale: energie tidale- 0.5 GW, energie renouvelable 0.5 TW, toute
energie 2.5TW
Energies marines
5 ressources- 5 technologies-5 opportunites
Tidal stream
Gestion des ressources marines•.•
•.• de Ia diversite des EMR
Eo/len flottant
Hydro/len
iollenpose
Mat&moteur
Houlomoteur
t
I
_J_ _ _ _
ETH
,-------- ...
5 segments strategiques
M
_
_
_
------------T·---------------------1
I
I
I
Pression osmotlque
Haturltes et potentlels echelonnes
Avant2005
Date de demmaae eommerrial
.....,.aw
I'O Rn&l T11dm/qu11met fitploltabl11 (PTfJ
• •aw
l
Energie eolienne offshore
Perspectives
vent plus fort, plus constant, mieux previsible qu'a terre
moins de conflits d'usage et d'espoce qu'a terre
besoin de R&D : prevision de Ia production.notamment a court terme
Contraintcs
coOt d'installotion et d'exploitation aujo1.1rd'hui plus tleves que le terrestre:au global, on posse
de <80€/MWh a >200€/MWh actuellement, objectifs 2020 -> deti : reduction des coOts
autres usages dans Ia zone cotiere :poysoges, peche, nautisme... -> connaissonce des impacts
reglementation
a
Techniques
transposition en mer des eoliennes terrestres ;
depuis 1990 au Danemark
sur pieux, gravftaires, jacket {treillis metallique), mixtes...
installation par barges offshore et navispiciafises
maintenance difficile: exigencede fiabilite
Amelioration de ta fiabilite (corrosi . fouling. effet de sillag )
•
f•
Charles Francis Brush,
le grand-pere des eoliennes
Les batteries d'accumulateur de son laboratoire ont ete alimentees pendant 20
ans au moyen de Ia premiere eoli enne fonctlonnement automatique de
l'histoire,gigantesque pour l'epoque- 17 metres de haut, lourdes pales en
cedre produisalent une puissance de 12 kilowatts.
a
Potentiel eolien offshore
puissance et rentabilite
Special case: Scotland,Denmark (100% and
80% of Elec:.Con.In 2030 from HRE
Evolution des installations Eol. Offshore (EO)
--L....-
EnW<gn de
rAirt>us A380
80m
Pare de Thorntonbank, au large d'Ostende (Belgique), utilise depuis 2008 des
turbines de 5 wrN
Crown Estate (Royaume-Uni) a acquis un prototype de 7,5 wrN developpe par
Clipper Windpower
On evoque deja des projets d'eoliennes d'une puissance unitaire de 10 wrN
Un « pare eolien » ou « ferme eolienne » comporte generalement
entre 20 et 50 eoliennes de 2 a 5 MW.
D'ici a 2015, les pares pourraient rassembler de 50 a 100 eoliennes pour une
puissance unitaire de 5 a 10 MW et une puissance installee totale de 500
MW. Certaines installations« farshore » c'est-a-dire au large (plus de 30
kilometres des cotes}, dotees de bases flottantes sont aujourd'hui en phase
de conception
Hlstolre: Pare de Middelgrunden (Danemark) est le plus grand pare eolien offshore en 2001.
Une nouvelle generation d'eoliennes: 20 eoliennes de 2 MW, distantes de 180m et disposees
en un arc de cercle de 3,4 km de long.
Ces eoliennes sont specialement con ues pour resister a Ia corrosion.La nacelle et Ia tour
sont equipees de systemes de controle et de regulation de l'humidite et de Ia temperature
pour eviter tout risque de corrosion interne. La nacelle est equipee de deux grues hydrauliques
permettant Ia manutention d'outils et de pieces de rechange en tout point de l'eolienne
+/-de Ia technologie eolienne offshore
Un nouveau potentiel eleve
• La technologie de « EO » beneficie des avancees technologiques de « ET »
• La mer etant plane, les vents plus soutenus, plus reguliers et moins turbulents.
• A puissance egale, une EO peut produire 2 fois plus d'electricite qu'une ET.
• La mer offre de grands espaces libres d'obstacles pour !'implantation, sous
reserve de concertation avec les autres usagers de Ia mer
• La duree de fonctionnement comprise entre 3000 et 3500 h selon les sites en
Europe alors qu'elle est de moins de 2000 heures a terre
Limites pour !'exploitation
•
•
•
•
•
•
•
•
Une EO coote environ ou 30 a 50% plus cher qu'une ET.
Energie eolienne offshore est egalement intermittente.
EO est soumise aux efforts du vent sur les pales/structure, mais aussi aux courants.
L'installation est plus compliquee. Des bateaux adaptes sont employes {500kE/j).
La maintenance est egalement plus compliquee et plus coOteuse qu'a terre {200kE/j).
En cas d'une panne, plusieurs jours sans reparation, done une perte de production.
Le raccordement electrique: des cables sous-marins jusqu'a Ia cote {nx1Okm).
Un acheminement en courant continu avec des convertisseurs electroniques de
puissance afin d'attenuer les pertes d'electricite.
Les constructeurs
Les pays leaders
Ht'!gi'.JU('
(•i"T )
Carvu:tf9 finJit:-'fV\9 ollc;hom
1t1Siallf..e d..'loie m>!){1e
<Jftrl2012
cn;or.
(9,2"Ao)
5538 MW
Royauutt:·lini
(52. 1
[)Jll)Cffl<ll1o.
{!QG•O)
En 2012, Siemens a construit 940 des 1 662 eoliennes offshore actuellement installees en Europe.
Offshore wind farms:
design, limitations, installation technique
I. Forces, resistance, .... sQiutions
11
=>tfrr
II
!;!!
v
I
I
Particular requirements for quality of all
materials
II. Foundation inspection & protection
{high risk of erosion: hole depth- diame
filling with rocks & stones
Ill. Under strong external forces, risk of oscillations
System dimensions, de-coupling in
frequency band, assessment of osc period
"tt
.g
-
-e
r-
.!!
CXI
'
u
s
Cl)
1-2 3 4
I Wave's period
Rotor rotation I
Period (s)
7
Floating
systems
15
IV. Foundation & structure requirements, height, depth ...
IGRAVITAIRE I ! MONOPIEU I
.
i
.!!
::::
til
5 MW, 25m w.depth,
.5!
->6m dlam, 40m long,
.1!
Ill
6 em wall thickness,
450 tweigh
c:
::::
.s
s
For bigger depth,
diam >Bm, length
difficult to
manage
I')
8
1'1
"..
""
-2
...
.!!a
.2!
.Q
g
.e ...
2-.C:
u-21
C'l
l:
;
I')
"
1'1
le
-8-2
Ill
ill
:;
oo..
o::::
c: 0
'5E
,g
Prototype 5MW
onshore
1e
V. Installation: 3 techniques
l
r;;;r
L BMGE_.,., ........
NJTOE&DAnucf.
Wind turbine 5MW.
nacelle at 100m
VI. Cable, grid connection
VII. Maintenance conditions
Calm sea (waves< 1.5m},implies a
boat or helicopter, higly qualified
VIII. Removing is highly expensive
IX. Options for floating turbines
{ali
1-11
IDU'vE'NTiL........y'
l-J
!
Energie eolienne: R&D
--site de test
a terre d'Aistom Wind : Le Carnet
(Loire Atlantique)
test de l'eollenne « Haliade 150 » de 6 MW
(rotor de 150 m. nacelle a 100 m)
bane test de nacelle de
-
unn•u'""
Realisation awe USA
• Allemagne. France ?
Bane test dynamique de 1!5 MW --- >
- sites de demonstration et d'e sais en
er :
Plateforme Fino (Aile agne) : Mat instrumente
permet Ia 111es1re :
- du wrrt, des conditions ociano-mcteo, des irnpaGts
Site d ais -\!p a Ve
(AIIemagne)
2 types d'eollennes test&s (RcPower et Arevo Multlbrid 5MW)
Projet de site d'essais ZEPHIR en Espagne
Projet de site d'essais WIN en France
• nouvelles technologies : eoliennes flottantes (plus de 25 projets...)
Eoliennes flottantes · nombreux projets ...
Diwet {Blue H)
Principle power {Windfloat)
NL!Uk/IT 3.!1 o !IMW ?
l50 200 m ect..ll<o rCdult. 2008
Etuts-llnis !i
o 10 MW
"" tut .., PCII'fugal fill 2011 (pub Oregan ... Alai.,.)
2 MW on 2012?
Poseidon
3 x 3.6 MW (2012?)
Norvige 2.!1
o !i MW
(2011)
t>ancmork couplage avec: houlc
Floating Wind Turbines
Wind farms
Hywlnd
Statoil
Technip
Stavanger
Norway, 2009
SPAR2,3MW
anchoredfllnked
Eoliennes posees
r-----------------------
Haliade 150
Alstom
Le Carnet
6 MWturbine
Paysage de Ia France
apres 2 appels d'offres
... for more information, please read in
Tony Barton. David Sharfpe, Nick Jenkins,Evrim Bossanyi 2001: Wind Energy
Handbook
'Wind Energy o The Facts',European Wind Energy Association, 2004.
'Wind Energy Explained- Theory,Design and Application' J.F. Manwell,
J.G.McGowan, A.L.Rogers, J.Willey and Sons, 2002.
'Wind Power Plants o Fundamentals,Design,Construction and Operation',R.
Gasch,J. Twele,James and James, 2002.
'Wind Power in View',edited by M. J. Pasqualetti,P. Gipe,R.W. Righter, Academic
Press, 2002.
'Wind Energy in the 21st Century',R.Y. Redlingen,P.D. Andersen,P.E. Morthorst,
UNEP, 2002.
'Wind Energy Handbook',T. Burton, D. Sharpe,N. Jenkins,E. Bossanyi,John
Wiley and Sons, 2001.
'Wind Energy Comes of Age',P. Gipe,John Wiley and Sons,1995.
TidalEnergy: barrage and free stream
Characteristics of TidalEnergy
• Sustainable (as long as there is
relative motion of the
earth,moon and sun)
• Perfectly predictable
• Theoretical potential 7,800
TWh/year (39% of world
consumption)
Tidaltheory
Tidal Energy: barrage and free stream
i Pressure turbines
i Free Stream turbines
• High efficiency
•
Lower efficiency
• High costs
•
Lower costs
Why is tidal energy not used widely?
lrdal tJower tJiants worldWide
Tidal Energy compared to other Renewable Energy
+--------------------1
Current E consumption {"'23000 TWh/year)
100,000"!.>
TraditionaiHydro -----------
10,000%
0,010%
-1------------------- -l
+------- -=,.-=----- +TPP Lake Sihwa
---------------
Tidal:la Rance+ Annapolis + Kislay Guba
o,oo1% +-------.----'-----,r----,.----'
1995
2000
2005
2010
Year[-)
Attention: Y axis in log scale
Indication of kWhr-cost
20
18
-----------------------------------------------
-f-------------------,., 20years
•
5 % discount rate
-- "----=--£--- - -+-•
2%
O&M
20-40 year amortization
•
0
1
2
3
4
5
3300 hours full load eq.
6
7
capitalcosts [MEuro/MW]
1. Tidal Energy is more expensive than fossil fuel
2. RanQe on-shore/offshore wind enerQY - similan
Tidal Energy in some more detail
• Fundamentals of tidal dynamics (more information on
the subject can be found on http://www.co­
ops.nos.noaa.gov)
Tidal theory
Forces gCnt:rahices de mar.TbCorie de Ia marie d' uilibre.
Gravitationalforce
Foree d'attraction newtonienne
F Gm,m,
d'
oti G = 6.67 JO1. I N kg 'm·';
m..m2: ma.c;ses des deux corps;
d:distances entre leurs centres.
Un corps de masse unitaire a Ia surface de Ia Terre est attiree par Ia Terre avec Ia force
/·i-=G'"·l=g (N).
R
Pour le systeme Terre-Lune, avec les masses respectives mT, m1 Ia force d'attrnction du
mCme corps par 1a Lune est:
F -gmLR2
L- mrx2
(.r - distance entre lc corps et Ia Lune) .
De Ia meme fat;on, pour une masse unitaire placee au centre de Ia TerrIa force d'attractio
est·
R2
'-=mmrr
(r - distance entre les deux centres) .
Compte tenu de !'eifel de Ia force centrifuge et du fait que les deux forces (attraction pa
Ia Lune et centrifuge) se compcnsent au centre de Ia Terre.on constate que Ia difference entr
les deux forces (foKe multante) varie selon l'endroit. Ceue force rt!sul!ante, provoque le
dcplacement des particules p.a.p.aux autres particules et p.a.p.au centre de Ia Terre.
La force gent!ratrice de maree eo point X est dfflnie com me Ia force resultante en X
tl.i.p.au centre de Ia Terre, oii cUe est nulle. Cest une force difi'Crentielle.
Gravitationalforce with centrifugalforce
(rotating system)
et
z
Centrifugalforce:
rotating system and
rotating Earth
c<ntreof=of
Earth·Moon system
Fig. 5.1: Rotation of t.be Earlb and Moon about a common ceotre of mu:s
lust vector sum of
two forces
..........
to the Moen
<··
+
wunfq4lfM•
...-
11dtldt l"lforn
g avitanonQ/for«dw t drll>frx11l
Fig. 5.2: Poinu .A, D and C l'ftOYO iA cireula.t pnths o£ the a.mo radii; CM is the
n•ntce of ma....s o£ the Earth-Moon sysLem, and F 4 denotes t.bc ce:nt.rifu(;OI force
;,:. G.3 Rebotive Jtft!IIIM .00 dirtcli!ollll of SJ""ilational. 1;011ttifupl am! lido.
raduda,f<lrces(.dapled&OIIl ,J9t1)
Detailed but static view
Vectors on the earth's surface in the diagram below indicate the difference between
the gravitational force the moon exerts at a given point on earth's surface and the
force it would exert at the earth's center,These resultant force vectors move water
toward the earth-moon orbital plane, creating two bulges on opposite sides of the
earth.See http://www.lhup.edu/-dsimaneklscenario/tides.htm for a full explanation.
T11 distant
atimet ing ma'IS
The Moon turns,two bulbs also turn
Semidiumal Tide
Mixed Tide
OiumaiTide
IIWlet
low tide
0 6 12 18 24 3836 4218
0 6 12 18 24 30 38 4218
0 6 121824:.1384248
Time (hf)
Tlme(h1)
Tlm&(hf)
It results in a variety of tides
Moon and Sun motion
creates another
dynamics (a wave?)
That's why we talk about tidalwaves
PERIOD
SYMJIOL
M,
s,
n
(SOU.A Ha)
AUPUTUDE
(t'IJ:- 100)
IZ.4l
100.0
12.00
""
]I
12.66
19.1
1{,
1.1!17
12.7
K,
23.9
-"-•
0
p
2s.l2
lf.07
41.!1
19.3
Mt
IDM
17.2
lumr-
I>£SC1W'110N
------<>d>iUI
M ala
CODSiituom
Lattatdue lO moalhty
wartatloam IDOOQ"t d1s:CI.Dot
cialudccnmt<m
!Dm
e ton aDct
c:banps tacdot.m
clm
Sol&.r-l=u<COD$d:UJUI&
MaiD lomar diurnal COOS1i!Uml
MaiasobtdNn>alMooo'sf comtfu>e!>t
Semi-diurnalspectralband (many
waves,only few are important)
Co-tidalchart (amp and phase contour lines)
Zoom on the
North sea
Tide in La Manche
TidalEnergy in some more detail
• Fundamentals of tidal dynamics (more information on
the subject can be found on http://www.co­
ops.nos.noaa.gov)
Content
Part I
Useful power basic equation and Power Conversion Technology (TPC)
- Tidal Range
- Tidal Stream
-Other
Tidal barrage energy: some history,present state and evolution
Basic understanding in Fluid Mechanics (Frictionless Flow,Geophys. FL Dynamics)
Evaluation of Energy Potential
Economic motivations,cost,evaluation factors ...
Study cases
Part II
Evaluation of Energy Potential and Advances on free stream turbine
hydrodynamics. Ultra Low Head Technology. lnnovtions ...
Tidal Range System Overview
P1
--.
z1
II
I
I
I
I
I-::.. P2
IIZ2
This was an innovation ... 12th century
Woodbridge Tide Mill, UK
tlpe U Tid.!.!miD onlhe ben&tuary. (Courtesy WoodbridgeTideMiiJTJ'USI)
Elemtnu of TidiJI-Elrrtric Engin!!tnng. By Robert H. Oark
Copyright Cl 2007 the Institute of E trlcal and EIKtronics Engineen, Inc. I
France, Cotes d'Armor, Brehat island, Birlot tide mill, built in 1632,
Advances in technology
1876 1934
fJt{ituk!t d.ert
Toute ·sa vie, Kaplan se passionna pour les turbines et
l'hydroelectricite. Son invention revolutionnaire, les turbines a pas
variable, adaptee aux rivieres fort debit et faibles chutes, remonte
1912. Kaplan travaillait depuis 1910 sur ce projet lorsque l'industriel
Heinrich Storek, directeur de la fonderie et des Ateliers Mecaniques
lgnaz Storek,lui fit amenager un laboratoire dans les caves de
l'Institut Technique de Brunn.
a
a
L'invention de Ka lan « s12 h12urta d'abord au sc12pticisme d12s
(abricants ritab/is . » Entre 1912 et 1913, Kaplan deposa quatre
brevets import ants :
• une forme d'aube pour les roues primaires de turbine (28 decembre
1912: brevet n°74388)
• dispositif de variation de l'espacement entre deux aubes
consecutives (J aout 1913: brevet n° 74244)
• Le carenage du corps de turbine entre le rotor et le stator
• Procede de formage des aubes du rotor garantissant l'uni de surface
Turbine del'usine hydroe!ectrique de
Niederllausen-sur-!aNahe,inauguree en 1928 ;Ia
visitepeut se f'aire par l'ecluse de
Mettlach.
A c ela vint s'ajouter en suite le divergent Kaplan.
TI presenta ces inventions aux fabricants intemationaux et au public lors du Congres des Ingenieurs et
architectes autrichiens de 1917. Les conclusions pratiques de son intense travail de recherche se heurterent
Ia concurrence penible et au scepticisme des firmes suisses et allemandes, dont l'essentiel de Ia production
consistait en turbines Francis. Cette opposition feroce empecha de nouveaux developpements par
d'innombrable s proce s de propriete industrielle, qui epuiserent les forces de l'inventeur. Outre les sou cis
bureaucratiques, son travail se trouva interrompu a partir de 1914 par Ia Premiere Guerre mondiale.
a
Robert Pierre Louis GIBRAT (1904-1980)
Les turbines de tres basse chute (1954)
Low head turbine technology (1954)
This was the second innovation ...
Post WWII Revival of Tidal Power in France
Oust before FR switched to Nuclear Power)
Operational Tidal Power Stations
T.P. Station
Capacity
(MW)
Country
Come into
service
Sihwa Lake
254
S.Korea
2011
Uldolmok
1.5
S. Korea
2009
Annapolis
20
Canada
1984
Jiangxia
3.2
China
1980
Kislaya Guba
1.7
Russia
1968
Rance
240
France
1966
Strangford Lough SeaGen
1.2
UK
2008
·=--
'> " ':.
Tidal Power Stations under construction and proposed
T.P. Station
Garorim Bay; lncheon
Capacity
(MW)
520; 1 300
Country
ConstYr
South
Korea
Severn Barrage
8 640
UK
Tugurskaya, Mezenskaya,
Penzhinskaya
3 640; 2 000;
87 000
Russia
Skerries; Swansea Bay
10; 300
UK
Dalupiri Blue Energy
Project
2 200
Philippines
Gulf of Kutch
50
2015?
20132014
::!..--
-
The production of power from tide in 6 steps
Step 1: A location has to be found where there is sufficient
tidal changes to create enough energy to power the turbines.
Step 2: A dam or barrage is created.
Step 3: Sluice gates on the dam allow the tidal basin to fill
on the incoming high tides.
Step 4: The water then exits through the turbine system
of the outgoing tide.
Step 5: Turbines are turned by the outgoing water
producing energy.
Step 6: Two types of generators are used at TPS
to transfer the energy into electricity and to distribute it.
Step 1: A location has to be found where there is sufficient
tidal changes to create enough energy to power the turbines.
The map above shows the patterns of tidal energy across the surface of the Earth
as the lines of force. The red color displays areas with larger and stronger tidal
ranges. Blue colored areas have lower and weaker tidal ranges.
Step 2: A dam or barrage is created.
Sihwa US$ 355 million
Rance 94.5 million Euros at today's prices
The cost of setting up a tidal power station can be very high, although once in place
the operating costs are low. As an example of the cost of setting up, a proposed
8000 MW tidal power plant and barrage system on the Severn Estuary in the UK has
been estimated to cost US$15 billion, while another in the San Bernadino strait which
would produce 2,200 MW as a tidal fence in the Philippines will cost an estimated US$3
billion.
Tidal barrages have a lot in common with dams for traditional hydro power,
the resource availability and patterns are the same as for tidal streams.
P(t ) = pA (t) = p gQ h
Transmission
Unes
Q denotes the water flow volume per second and h is the drop height, called the
head. Twice the head, doubles the power, the same goes for water flow. Natural
ranges for these parameters are wide: E.g.
Niagara Falls: Q=1,420m3/s, h=52m
Val Strem (Switzerland): Q=0.71m3/s, h=216m
Step 3: Sluice gates on the dam allow the tidal basin to fill
on the incoming high tides.
Step 4:The water then exits through the turbine system
of the outgoing tide.
Step 5: Turbines are turned by the outgoing water
producing energy.
Reservoi( Flooding
l
EbbGeneration
The power that can be captured from water flowing from high to low level
(half a wave period) is proportional to the squared height (or head):
P{t ) = pgh
1
(t)
Power: way of estim.
(Dyan & Dalrymple'91)
k
1
(bl
Ftg. 43. nv.-8aoin TA' (Ci<p:>t-Oo!,.,. C)dt} (a) TPP --IUITO<rood bv diK\'\ for oorY1lU11Cat<>n
-ald t.- raca l • TA' --2 - dam fer (&wlld>ng ., .) a!
-wlh -
of the Vonbo! t.,pe: 3
lTnhdepo..w-a
otd-<oad!inogr<dJnJIllW.'.....,...ncicato
flow dr..:.ono "' CXlfTll)lolf1co .. lh - •• ..,_ 01<1:
SSH evolution (blue) and
electricity production (red)
"""' don> 4
<1-
-
,_.oog -tho ,...,.,• .-
o
cnmect.ont botWWl
-•
tho .,. . ll1d,th. o.
....-. " doogr"" (d <looglm "' the Cl<p:>t-Ooll:u cycie
Th
o1 pcwrts C D. E.. F.G. H. L C acc«dng to (a)
Basin separation allows to modify useful
power curve (c.f. Bernstein'96)
l
BARRAGE
I BASIN
·········-··-·-·········- ····
zl
···· ······---········ ·····-- Mean
Level
2
z
=:::t:==---
DATUM
The power available from the turbine at any particular instant is given by
where,
Cd = Discharge coefficient
A = Cross sectional area (m2)
g = gravity = 9.81
p =density (kg/m3)
The discharge coefficient accounts for the restrictive effect of the flow passage
Importance the difference between the water levels of the sea and the basin (Z1-Z2).
Stator btJ1Jt Into ecncrete
bamge
Turbines used at TPP
Bulb Turbine
Rim Turbine (90oang)
Pumping
Tubular Turbine
(Copyright Boyle, 1996)
The turbines in the barrage can be used to pump extra water into the basin at periods of low
demand. This usually coincides with cheap electricity prices, generally at night when demand is low.
The company therefore buys the electricity to pump the extra water in, and then generates power at
times of high demand when prices are high so as to make a profit. This has been used in Hydro
Power, and in that context is known as pumped storage.
Advantages
Disadvantages
Reduced greenhouse gas emissions by tidal
power.
It is also sustainable because its energy
comes from the lunar and solar cycle.
Effect on plants and animals which live near
tidal stations
affects a tidal basin ecosystem in negative
ways, causing habitat changes for aquatic
life as well as for birds that may rely on low
tides to unearth mud flats that are used as
feeding areas.
Easy to predict
There are a limited number of locations
worldwide that have tidal ranges large
enough to make tidal power cost-effective.
Tidal power systems are currently
expensive to develop and they cannot be
built in any location.
Improved transportation because of the
development of traffic or rail bridges across
estuaries
Very little is known about the full effect of
tidal power plants on the local environment
because so few have been built
Not many places have dramatic enough tide
change to support a tidal power plant
Tidal energy systems that use dams may
restrict fish migration.
Tidal dams, barrages, and fences may
affect commercial and recreational shipping
patterns requiring the need to find
alternative routes or costly systems to
navigate through a barrage or dam systems
Some concluding remarks:
To date, 520 MW are installed worldwide in only a few sites:
Shiva, S.Korea (254MW), La Rance estuary, France (240MW), Bay of Fundy, Canada
(20MW), others (6MW)
Economics
High cost
High capital costs > €/kWh 2,000, but long lifetime. La Rance is in operation since 1966. The
capital required to start construction of a barrage has been the main stumbling block to its
deployment.
Long payback time
It is not an attractive proposition to an investor due to long payback periods.
This problem could be solved by government funding or large organisations getting involved
with tidal power. In terms of long term costs, once the construction of the barrage is complete,
there are very small maintenance and running costs and the turbines only need replacing
once around every 30 years. The life of the plant is indefinite and for its entire life it will
receive free fuel from the tide.
Possible optimization
The economics of a tidal barrage are very complicated. The optimum design would be the
one that produced the most power but also had the smallest barrage possible.
Environmental issues
Perhaps the largest disadvantages of tidal barrages are the environmental and ecological
affects on the local area. Effects on local environment are very difficult to predict, each site is
different and there are not many projects that are available for comparison.
Potentially more flooding in the vicinity.
The change in water level and possible flooding would affect the vegetation around the coast,
having an impact on the aquatic and shoreline ecosystems.
Silting: Similar to hydro power dams.
Loss of intertidal habitat, as it alters the flow of salt water in and out of estuaries.
The quality of the water in the basin or estuary would also be affected, the sediment levels
would change, affecting the turbidity of the water and therefore affecting the animals that live
in it and depend upon it such as fish and birds.
Ecosystem perturbations.
Fish would undoubtedly be affected unless provision was made for them to pass through the
barrage without being killed by turbines. All these changes would affect the types of birds that
are in the area, as they will migrate to other areas with more favorable conditions for them.
Positive effects.
Flooding may allow different species of plant and creature to flourish in an area where they
are not normally found. But these issues are very delicate, and need to be independently
assessed for the area in question.
Outlook
Only feasible in few sites, though with huge potential. Construction of tidal barrages are
underway in South Korea and China.
There are advanced plans for a plant in Kamtchatka (87GW). Plans for the Severn Barrage
(near Bristol, UK) for 8.6GW have been scrapped in October 2010 due to cost pressure, as
the expected capital outlay would have been £30bn (-£/kWh3,500).
Case study comes here: La Rance and Sihwa Lake TPP
Optional ......
Hr= f 11H
Q = A2 g 11H (1- f)
Pmax
r::;
'7 P AJgi1Hr
2
f
(1- f)
u"
ul:'l
1
Head [m]
1:.!
,4
-Tidal Current Energy Resources
-Power Potential & Production by InStream Energy Conv (TISEC) Devices
-TISEC Device Innovations
-Real Case Study: SeaGen
Acknowledgement:
DR. JACOB VAN BERKEL
(Tech. Director of ProTide Un. Eindhoven, NL)
DR. CUAN BOAKE
(Tech. Director of ARR, N. Ireland)
vVny use marine currents?
Marine currents = High en
A tidal current turbine gains
over 4x as much energy per
m2 of rotor as a wind turbine
Energy Captured per Annum
MWh/yr per unit size of system
10
8
Min
6
. l:
-
+---+--
4
!
1:S - t
- - --&.z0
wave
current
Max
n
Typical
solar
General Principles 8t Power estimation
Principe de fonctionnement
Une HYL est une turbine saus-marine (pasee, ancree au demi immergee, ...)
Elle transfarme I'E de l'ecoulement (Ec) en E mecanique qui est transformee en E electrique
par un altemateur
Une source d'energie prapre, previsible et inepuisable
a
Criteres de choix d'une HYL et contraintes
Se maintenir en place et resister aux forces du courant;
Turbiner durant le flat et le jusant pour praduire de I'E mecanique (rarement possible)
Transformer E mecanique en E electrique;
Minimum de maintenance;
Minimum de gene pour Ia navigation, peche et ecosysteme;
Produire une E un coOt acceptable;
a
Puissance de Ia ressource
IF=
cpP Ar
v: I
P puissance disponible en W
Ar aire balayee par les helices
p
= 1025 kgfmA3
v vitesse de l'eau en m/s
Cp = 0.3- 0.5 (coef de puiss. loi de Betz)
Avantages multiples
pour HYL:
- coOt de production
- transport de pieces
- installation,maintenance
Potential Tidal Current Energy Sites
=
requirements: mean spring peak 2 to 3m/s (4 to 6kt)
water depth 20 to 40m at low tide
however slower continuous currents can be used
Tidal stream potential
••• real
France:
2eme potential in Europe : 3-4 GW (UK: 5-6 GW)
- The map should be completed
- Plan of development in progress (speculation
must be avoided)
- Price of El. Produced (if buy by EDF) is
unchanged 173 C/MWh
opportunity
Panorama in Europe
Potential of Electricity production (RenEn) par country
RenEn Resources in Europe in 2020
(cf GreenNet Europe)
300 ---------------------------------
..250+-----
•Additionalpotential2020
•Achievedpotential2004
300
250
200
;::.s:
:§ 200 +-----
150
!::
100
w•!;!:l 150 +--
- -
50
0
- ­
wo
.,
u)
,g
..
!!!
E
"'
?;-
100 t-----­
0
"' "' "'
..
f!
iii
c
0
iii
50
"'
l;
'i"5'
·E "'
(l)
en
:f
<>
<>
.2
(l)
.. :¥!
. .. s:"." .., ..,
*
.,
u
l!:
0
:g
. ..
Q)
>
0
0
,s::;
..r::
)
"'
.!!1
.E,
i
.!!
iii
...
0
"0'
0
:0
ftj
..r::
"' "'
.5
0
E
e
a; . , .e.,
0.
;::
s:
.,
0
!;
>-
:t:
"'
:t:
E
=
"
iii
0
(!)
rJ)
European standard
imyiEC I S.boorlbe
I SilOmop
J FIIQt
Contact ua
J ""•
f"dbaok
International Standards and Conformity Assessment for all
electrical, electronic and rotated technologies
You&
tha iEC
About
the IEC
I
News
& views
I
Standards
Gavelopment
\
TC 114
Scope
aunb1ts
Developing
'"',..
> TC 114
I 'W
-----------------M•a-•rh--
Webst ore
Search
dA v.:meed
Donhboard
Marine energyW
· ave, tidal and other water current converters
flll' Mdl@§ffi'@J t.l.!iiHJ,i@ ---@!d§MM
TC 114 scope
To prepare internationalstandards for marine energy conversion
systems The pnmary focus will be on conversiOn of wave, tidal and
other water current energy IntO electncalenergy,allllough other
conversionmethods.systems and products are included.Tidal
b
ar
ra
g
e
a
n
d
d
a
m
in
sta
llat
ion
s.
as
co
ve
re
d
by
T
C
4, are excluded
The standards
producedbyTC
114 V.lll address
TC114
-r-'
Further
mformat
100
Secretari
at
.
Umte
d
Kingd
om
strategic
Business
Plan
"system definitiOn
• performance measurement of we'Ve.tidalandwater
current energy corwerters
"resource assessment reqwrements. design and survivability'
·safety requirements
• power quality
"manufactunng and factory testing
• evaluatioo and m1nganon of enVJronmental•mpaciS
w
Contact
TC '\14 Jffl<er;
Kinetic Energy Conversion Methods
Axial-flow
(propeller)
Cross-flow
(Darrieus) ;-- - - B- ----.....
Lift-based kinetic energy converters
or "underwater windmills"
IIIli
p = 11."h.pAV3
Support structures
Limited to
20- 40m
Piled Jacket
Basic Tecnologies
Horizontal axis devise (mostly developed)
Hydrofoil devise
Incident flow pushes up and down a foil (aile).
A hydraulic system converts the Emec in electricity
Vertical axis devise
Ducked turbine uses Venturi effect
Conventional approach
Actuator disc theory
Example comes here (Hou/sby eta/., 2008)
Free Flow Turbine Theory
Actuator disc model
-P
_1
...
..........·····...
-- .............. _ .....
--
--
.,._.,.
PRO-TIDE
_,.--­
v=2/3 v1 pressure
· ·········--··-e..
-·-···
,.·········
v2=1/3 v1
1D Actuator Disc Model, Houlsby, 2008, Roc, 2013
Xt- a
Poo =-:pAr v; (1 +a
Axial velocity through a turbine,
Mikkelsen, 2003
a = V/Vt
2)
'7 =_!._(1+aXI-a 2 ) max=(16 / 27)=0.592
Betz
2
1
P= Cp p Ar v13
2
Wind Turbine Theory {modified) PRO-TIOE
Violating Betz-Limit
Efficiency > 59 % !
Boundary layer effects, Adamski, 2013
(ANSYS Fluent simulation)
I I
I I
I I
AR
I
I
I
I
::
I
I I
I
I
_!) -- : -- f----------- --1
I I
T
I
__
ij
t-----
I
I I
I I
I I
I
I I
:
::
I
I
I
I
I
4
A
.J.,
I
I
I
Mixing
Us= u
_
I
·
I
1D Actuator Disc Model. Houlsbv. 2008 (Whelan. 2009)
HAMCT (2) : Lift, Ducted
Typical Ducted Turbine
Sueamtube Boundary
.L
PRO-TIDE
Typical Unducted Tu:bine
Sueamtube Boundary
-j?.. . . . . . . . . . . . . . . . . . . ..
.
--
: : :.:: {·; .
·..
--
..,....
..,..
....
4 ............................................ .
Diffuser
...._
_
Figure 2.4:Sh·eamtubes In an unducted turbh1
Alidadi, 2009
Well known technology
Power density
Power
Density
(kW/m
W/m2
35
30
25
20
2
v
v
P!Ao
(kg/m3)
(knots)
(m/s)
0N/m2)
1,025
1,025
1,025
1,025
1,025
1,025
1,025
1,025
1,025
1,025
1,025
1,025
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
p
15
) 10
5
o+--o 0.5 1
----
-- --
1.5 2 2.5 3
Current Speed (m/s)
3.5
4
Incident Power Density as a Function of Current Speed
0.1
0.1
0.0
Frequency of
Occurrence O.O
0.0
0.0
0.1
0.5
0.9
l.3
1.7
2.1
2.5
2.9
3.3 3.7
0.26
0.51
0.77
1.03
1.29
1.54
1.80
2.06
2.57
3.09
3.60
4.12
Current Speed (mls)
Observations:
Representative Tidal Current Speed Distribution
9
70
235
558
1,090
1,884
2,992
4,466
8,722
15,071
23,933
35,725
&00
o +------+------+- L-
Well known technology
----­
400 t------+------tT ---+ -3oo -----l--------r-T--
..
-----t--- 7-"'t--"....-- -\t----'\---
·
200
100 t------k:fi !j::«:::=ir-..--\----\-----.l
2500
0-------- ---10
0
20
15
Vjte$se de rotatkm (tlmn)
2000
Puissance e/ectrique en fonction de Ia
vitesse de rotation du rotor et de Ia
vitesse du courant
Region I: Velocity
below cut-in speed
Electric power = 0
(rotor cannot turn
power train)
•
I
-- Flow power
I
I
I
----- Bectric power
I
•
I
1500
Region II: Velocity ,'
above cut-in speed ,:
Power
(kW)
Electric power = ,'
fluid power x !
powertrain /
1000
Observations:
II existe une relation entre Ia P mecanique
delivree et Ia vitesse de rotation
II existe une vitesse de rotation optimale pour
chaque v
Au-de/a, Ia P s'annule (vitesse de roue fibre)
I
I
I
I
f
Region Ill: Velocity abo'e rated speed
Electric power = rated power
efficiency ,•
500
-•/
l
0.0
0.5
,•
.4
1.0
III
IT
1.5
2.0
2.5
3.0
3.5
4.0
4.5
Flow Speed (m/s)
Typical plot of turbine output power vs flow speed
In Region I, at velocities below the cut-in speed, the turbine will not rotate and so generates no
power. In Region III, when current velocity exceeds the rated speed of the turbine, power output
will be constant, typically at the turbine's rated power, regardless of velocity. Between the cut-in
speed and rated speed, in Region II, the turbine's output depends on a chain of "water to wire"
conversion efficiencies, as shown in Figure 1-11.
There is no cut-out speed for tidal stream turbines, since even the most extreme currents
produced by storm surges superimposed on the highest spring tides are not that much greater
than monthly maximum spring tidal currents. This is in contrast to wind turbines, which must be
designed to handle the I 00-year peak wind speed, which is several times greater than typical
monthly maximum wind speeds.
100"/o
water to wire power chain
90%
>. SO%
l:!
·
70%
..
50%
!S
60"/o
pDelivered Electric = ATurbine X
-
==
...
e"
u"
(!)
A
X 17TFC
Water
Rotor
Generator
-Gearbox
40%
30%
20Yo
20%
40%
60%
80%
100%
11TFC = 11Turbine X 11DriveTrain X 11oenerator X 1JPowerConditioning
Device Load (% rated power)
10%
0%
Figure 1 11 Component Efficiency Curves
0%
Typical values for component efficiencies when the htrbine is operating at its full rating are:
• 11 Turbine = 45%
(maximum theoretically possible is 59%)
• 11 DriveTrain = 96%
• 11 Generator= 95%
• 11 Power Conditioning = 98%.
eagen ower
.,-. ·\
SeaGen delivers .... full power
14
octoa
generator speed
1300hr
1 0001)
1400hr
1500hr
1600hr
t6 00.00
Advantages et weak points in-stream technology
cf: document « Analyse de differentes filieres energetiques »
Cost of production & policy of buying of the energy
0.6
Wind offshore
o.ss
Wind onshore
o.s
ele<:triclte
0,45
$
0,35
1:!
E
Solar thermal electricity
'E
Photovoltaics
0,3
0,25
;;
..
Tide & Wave
0,4
.J:
<I)
"a .
' :
l
"
u
•cost range (LRMC)
PV:430 to 1640 E!MWh .
Hydro small-scale
0,2
0,15
Hydro large-scale
0,1
Geothermalelectricity
o.os
0
..
'f::}t:.
b'o
"
""'
,
-6
...,<
'$'
.y
.,.o
Biowaste
(Solid) Biomass
Solid) Biomass co-firing
Biogas
200
0
50
100
150
Costs of electricity (LRMC- Payback time: 15 years) [€JMWh)
' Filiiue
Arretes Duree des
contrats
1mars 20ans
2007
Hydraulique
Biogaz et
methanisatioo
10 juillet 15 ans
Energie eolienne 1Q ll!ill t 15 ans
2.rul§
(terrestre)
20 ans
{en mer)
Example de tarifs pour les nouvelles
installations
6,07 c{lkWh + prime comprise entre 0,5 et 2,-5
pour les petites installations + prime comprise
entre 0 et 1,68 c£/kWh en 11iver selon Ia regularite
de fa production
entre 7,5 et 9 c,:€lkWh selon Ia pt,tissance, + prime.
a l'eflicacite energetique comprise entre 0 et 3
c€1kWh ,+ prime a Ia methanisatinn de 2c€1kWh .
- eolien terrestre :8,2 c€1kWh pendant 10 ans,
puis entre 2,8 et 8,2 c€1kWh pendant 5 ans selon
les sites.
- eolien en mer :13 cflkWh pendant 10 ans,puis
entre 3 et 13 c€1kWh pendant 10 ans selon les
sites.
Energie
photovoltalque
1g juille1 20 ans
- Metropole :30 c€/kWh • + prime d"integration au
bati de 25 c€/kWh
- Corse, OOM, Mayotte : 40 c€/kWh , + prime
d'inhigration au bati de 15 c€/kWh .
Geothermie
10 iMill ! 15 ans
- Metropole : 12 c€/kWh • + prime a fefficacite
energetique comprise entre 0 et 3 c€/kWh
- DOM : 10 c€/kWh + prime a l'efficacite
energetique comprise entre 0 et 3 c{lkWh
.
:Pour Ia filiere solaire photovoltaique, un gud
i e technique precise les criters d'elgibilite des
equipements de production d'electricite photovolta que pour te benefice de Ia prime < 'integration
au bati definie rannexe de rarrete du 10 juillet 2006.
a
Conclusions
Alors Ia France, a Ia tra!ne ? « On a de bonnes idees, de bons concepts, de bons
industriels », constate Alain Clement, directeur du laboratoire de mecanique des fluides de
!'ecole centrale Nantes, qui teste depuis plusieurs annees un systeme houlomoteur tres
novateur. «On sent que. dans les discours au moins, les energies marines decollent. Maison
reste tres timide au niveau de !'action.»
Ces demieres annees, les acteurs ont ainsi reclame quatre axes de soutien : une
strategie nationale coherente, une rude financtbre A Ia R&D, Ia creation d'un s1te d'essru en
mer, et la nuse en pace d'un tarif d'achat attractif. Or, a ]'exception de ce dernier (0,15€/kWh
en France contre 0,22 a 0,25 au Portugal et en Grande-Bretagne), les vreux de Ia filiere son1
en train de se realiser.
Un developpement massif de cette technologie hydrolienne semble possible, mais doit
etre soutenue par une reelle volonte politique, notamment
travers des 1arifs de rachat.
d'electricite plus attrayant. Selon Herve Majastre, l'un des dew-: fondateurs d'Hydrohelix, les
courants littorau.x bretons et normands sont capables de fournir entre 6 et 12% de l'electricite
n&essrure a Ia France. 11 faudrait installer 4 SOO hydroliennes au fond des mers pour parvenir
a un tel mveau de prOduction. Ceia represente un r1deau d heliCes de quelque 21 km,
dissemn'le a moms de 6 kill des cotes, entre les fles de Sein et Ouessant et face au cao de.la
Hague, dans le Cotentin. 6000 emplois pourraient etre crees.
Toujours d'apres Herve Majastre, le coi'tt de l'electricite des hydroliennes serait
equivalent a celui des eoliennes (entre 1 et 1,3€ le watt). La productivite de Ia technologie
hydrolienne est superieure a celle des eoliennes. La qualite de 1a production permet une
exploitation plus aisee. L'impact visuel est sans commune mesure avec l'eolien. et
!'acceptation sociale devrait en etre largement facilitee.
a
Deux exemples de prototypes en fonctionnement
• Le pro jet SeaGen [41 [SJ
Le premier prototype mis au point par Ia societe
anglaise « Marine Current Turbine » est le prototype
Seaflow, une hydrolienne a simple rotor de 300 kW installee
dans le detroit de Bristol. Le produit commercial est base sur
le prototype SeaGen (2005), qui est installe a 400 metres du
rivage, et pese plus de 1000 tonnes. Pour Ia maintenance, les
pales remontent et s'immobilisent horizontalement au dessus de Ia surface de l'eau. Mesurant
16 metres de diametre, les rotors balayent un secteur de 402 metres carres. Les deux rotors
developpent une puissance 1200 kW (2x 600) et fonctionnent environ 20h par jour.
Le principal interet de ce prototype est !'orientation des pales qui varie : cela permet de
limiter Ia vitesse de rotation en cas de courant trop important, done de limiter Ia fatigue de Ia
structure, exactement comme sur une eolienne. II est meme possible de mettre Ia pale en
drapeau (le bord d'attaque face au courant) de maniere a l'arreter tout doucement, meme par
fort courant. Entin en faisant varier le pas de 180 degres, les rotors fonctionnent quand les
courants vont dans les deux sens. L'inconvenient majeur est le cout d'installation tres eleve de
cette machine: 4500 €/KW, dont 50% pour Ia fabrication, 30% pour !'installation et 20%
pour le raccordement au n!seau.
En 2011-2012, Marine Current Turbines compte installer Ia premiere "ferme"
d'hydroliennes a but commercial. Elle sera probablement constituee de 3 ou 4 unites a double
helices, ce qui permettrait d'obtenir une puissance de 4 a 5 MW.
Le projet Semi Submersible Turbine[6J
La compagnie londonienne TidalStream, a mis au
point en 2006-2007, un nouveau type d'hydrolienne facile
d'entretien qui fonctionne en eaux profondes. Le prototype,
appele Semi-Submersible Turbine ou SST, devra operer a
Pentland Firth
C'est un appareil
compose de 6 turbines de 20 m de diametre pour une
puissance maximale totale de 10 MW. Elle sera installee a
60 metres de profondeurs et pesera 1100 tonnes. Le cout de
Figure S : Prototype SST
l'energie pourrait atteindre 0,045 euro/kWh.
Le systeme a ete valide par des essais qui ont eu lieu dans Ia Tamise. Le Dr John Armstrong,
responsable du design du SST, pense que le systeme sera operationnel en 2010.
Cet appareil a les avantages suivants: une installation facile, une grande utilisation des
courants qui le traverse car il est equipe des plusieurs helices et qu'il s'oriente facilement
grace a son bras pivotant. Cependant, ce type d'hydrolienne utilise de nombreux systemes qui
risquent de tomber en panne (comme les ballastes utilisees pour remonter les helices, les pas
reglables des pales,...), et il provoque une gene pour les bateaux puisqu'il n'est pas
totalement immerge.
[4] http://www.ifremer.fr/dtmsi/colloques/seatech04
[5] ww.marineturbines.com
[6] www.tidalstream.co.uk
Examples: MCT Seaflow & SeaGen
Just to remind that it exists a non-zero potential in Vietnamese waters
Fig.18. Zone de fort potentlel hydro/len a l'et:heiiB mondlaiB (Soue :
http:/lwww.atlanti!lresources<:orporatlon.t:om/marlnB-powBr/global-re.oun:B!I html)
Examples of turbines (FSC) ••• much more inf in ProTide document
Goals:
in ProTide
1. Reduce costs, especially for
low head,low flow turbines
2. Reduce environmental impact
- Fauna friendliness: Fish,Mammals
- Morphology
- Basin ecology
3. Stimulate Public Private Partnership
Improve
technology
Governance
Advances in Ultra Low Head Technology
1. Fish friendly Turbines
2. Aerated Siphon
3. HydroVenturi
4. Civil Engineering
PRO -TIDE
PRO-TIDE_
Fish Friendliness
ucttM 1 Tile Ald•ll Turblno
A!JIIN 5.1magts from blgMpeecl Video of rainbow ttout blade strikes forUl mUos ol25
(top pbotos) and 1(bottomphotos),
ALDEN
Solving low problems since 1694
e
I-I
ElECTRIC POWER
RESEARCH INSTITUTE
Fish Friendly (Tidal) Turbines
-
Nijhuis Pentair {NL)
Patented Technology
PRO-TIDE
VLH: Very Low Head Turbine
Embryonic Technique: II Tidal Fence
PRO-TIDE
• Ultra Low
Head
• "Open
Navigation"
IT-Power, and many others....
Siphon air-turbine
Aerated Siphon
PRO-TIDE-
F" urr 1:
Idea is not new ... (cf. Bernshtein'95) --
of TPP.
f ew
.
enerator o n
1'f coupled Wit h a g
) 't could be great
...
•
(h'-s
generation
1 peed rot ,I
Hn
Some efforts have been
already accomplished in
Russia (cf. Bernshtein'95)
F.g. 1:216 l!'illlS!lO"tatOO of the Love HEPP lloatong ea.ssoos
8C10!1$
tile Allarllle
Oa:3n oo a
Civil Construction
PRO-TIDE jl
Turbines are not the only components that count
Remove
dam core;
10
Turbines;
135
Anticipated Direct Costs TPP
Brouwersdam,MIRT 2010
--·--------·---
Civil construction
SIHWA TPP, Korea, 2010
(VAtech-hydro, Andritz)
Plastic membrane dams
Severn, Hafran Power
TU Delfts (NL) Van der Ziel
PRO-TIDE
HydroVenturi
Bernoulli's principle (energy equation):
a; +
-------
v2 +:
+ gz
= /(t),
Frictionless flow: High velocity, Low pressure
r:a:=r:::: .
PRO-TIDE_
System Overview
-·--------
Tidal Stream
HAMCT (1) : Lift, open
MCT-Seagen (now Siemens)
Evopod
Cygnet
Morild
HAMCT (2): Lift, open
Tocardo
HAMCT (2) : Lift, Ducted
PRO-TIDE
Lunar Energy
Clean Current
Under Water Electric Kite
Tidal Energy Pty
Open Hydro
HAMCT (3): Drag, open
PRO-TIDE'!
Aquaphile
Rutten
VAMCT (3)
PRO-TIDE
Ponte di Archi
Blue Energy (
f
Ocean Mill (IHC)
Sea Power International
Edinburgh designs
PRO-TIDE
Orthogonal Turbine (RusHydro JCNies)
;RO -TIDE
Orthoqonal Turbine (RusHydro JCNies)
Multi story (shared axis)
Top view flow pattern
Tidal Stream Innovations (IHC)
PRO-TIDE
Part Ill
Ocean Thermal Energy Conversion (OTEC)
Ocean Wave Energy Conversion (OWEC)
Osmotic Energy Conversion
Part IV
Research in LOG
Ocean Thermal Energy Conversion (OTEC)
80' N
26
Constraints :
Big/heavy installation at
zones cyclonic activities
(Pipe-lines,surf. Plate­
formes •••)
- En. transport toward the
consumer (future de
hydrogen transport)
2«- v
24
40'N
23
22
21
0'
20
19
18
40'S
.. ?
Evaluation du productible ..
Limitations: transport,impact
17
16
100'W
100'E
Map of the temperature difference between surface and depth of 1000
meters, showing the region open to develop OTEC technology. Blue
contour- area with possible production during the whole year.
Energy experts believe that OTEC could produce GW of electrical power if it could
become cost competitive with conventional power technologies.
Tropical islands are the most likely areas for OTEC development because of their
growing power requirements and their dependence on expensive imported oil. To
bring the cold water to the surface, OTEC plants require an expensive, large
diameter intake pipe, which is submerged 1OOOm or more into the ocean's depths.
French DCNS
projet of 20 MW
For Martinique Is.,
Caribbean Sea
Air-condition & thermal pump
Desalfnallld wat&r
OTEC
,,,_
8Jdldlng
<IOIHIIIlanlrtg
l tfgat!On
Cold·W11...,
refrlgefallon
lllr-cqodlttonfng
Environmental impacts
-low if the site is selected carefully.
- appropriate spacing of plants throughout the tropical oceans can eliminate
negative impacts on ocean temperatures and on marine life
Economic Challenges
- OTEC plants require a lot of capital investment.
- Only a few hundred land-based sites in the tropics where deep-ocean
water is close enough to shore to make OTEC plants feasible.
"Thalasso-thermie" (.fr)
= heat pump in the marine environment
Ocean Wave Energy Conversion {OWEC)
Map of the waves energy resources in the World
Potential resources -290 GW in the area of the north-eastern Atlantic
(including the North Sea) and -30 GW in the Mediterranean sea.
Waves energy resources available mainly in the northern and
southern parts of the ocean.
Commercial energy plant location: Scotland (5MW), Denmark(?),
Spain(?).
Wave Energy Potential in Europe
Wave resource
distribution
'
cl'tlluation du praductible
40 TWh/y
Potential in France : JO GW
- onshore I near shore I off shore
French over-sea territories :
- effective solution for population on islands
- immediate access to the market
- experimentation and fast exploitation
Why Wave Energy ?
•Energy is produced without fossil fuels
•Devices are low structures and situated at sea they have no visual impact
•W/En is more predictable and stable than wind energy
•W/En devices produce more energy when placed far from shore at gr depths
•Devices can provide coastal protection
Reduction of the cost of energy farms due to:
•Sharing the cost-intensive offshore installations (plateforms,foundations,
transformers,power cables,connection,...)
•Optimization and increasing the utilization of the available sea area
•Positioning of W/En devices in front of offshore wind turbine farms will reduce
the waves and ease servicing of the wind turbines
•W/En inscr/decreaces slower than wind power and En. production is more stable
•Combination will provide a more stable balance
•W/En can be predicted 6-9h ahead with larger accuracy,thus it is cheaper to
integrate in the electrical system.
HOMERE database:
Wave climatology in Manche - Gascogne
WAVEWATCH Ill hindcast {1994-2012)
Provides complete wave statistics
.:·:"''··.:
..·::/:!.;. ::': ..
..... ,
•
et
•·!••
>
• " .i '..'*'
.- ...
•:!
,,.
... l':
·...: -
·-··'-·--''•::_,...
.
I
.
·,\
:·.:.::. ':' ...:::·:
..
'\
L''-"'•i --•'•\.\.
er>'il
4fl
$ I'!)
f
e
G
••
e
'1)
e
f)
Q)
e
til
(!)
(D
(0
• •
$
(tl)
G>
fl)
•
.,
fit >
il
tb
0
II
i)
¢!
(;
(if
($
$
(j.
$
e•
(:)
G
(l
e
G
$
Mean power per lm for wave power
1/6
Pelamis: offshore wave energy converter (180m long, 4m in diam)
Fig.23.
Principe de ftmctiannement de /11 chaine ffotante Pe/11mls
http:llwww.pelaml•wave.com}
@ • (Soun:e:
Operating in water depths greater than 50m. The machine consists of a series of semi­
submerged cylindrical sections linked by hinged joints. As waves pass along the length
of the machine, the sections move relative to one another. The wave-induced motion of
the sections is resisted by hydraulic cylinders which pump high pressure oil through
hydraulic motors via smoothing hydraulic accumulators. The hydraulic motors drive
electrical generators to produce electricity.
It was first connected to the UK grid in 2004. Commercial production since 2008 (Scott)
2/6
Oyster, Aquamarine Power, UK
Fig. 24
l"rlnci'pe d6 hHttliotJIIflmiN'It d• Ill fMIOI Oy.ter 0 .. (Source:
http?'Jwww.Mf......W=O I!W=WDdc&?
Power Connector Frame (PCF) is bolted to the seabed, and a Power Capture Unit
(PCU). The PCU is a hinged buoyant flap that moves back and forth with movement
of the waves. The movement of the flap drives two hydraulic pistons that feed high­
pressured water to an onshore hydro-electric turbine, which drives a generator to
make electricity. Oyster is stationed at the EMEC site in Orkney, Scotland, in August
2009.
On 20 November 2009, Oyster was officially launched and connected to the National
Grid (UK)
Oyster 1 (300kW), Oyster 2 (2.4 MW)
3/6
Principtl de fonctitH'IIHiment de Ia t:t1fonne -cillante • (Source:
http:lfwww.tdfrlctu«t/on.orglartlt:WI1Illldng-wilm.wtpry.w; yebobl
Fig.25.
Wavebob system, developed since 1999, tested since 2006 in lrlande.
The Wavebob consisted of two oscillating structures. These structures must be able to
absorb in a variety of conditions and be robust to survive in the harsh marine
environment. The structures are controlled by a damping system that can respond to
predicted wave height, wave power and frequency. The tank structure (a semi­
submerged body) uses captured sea water mass as the majority of its inertial mass.
This significantly reduces the cost associated with structural materials.
4/&
POWER
TO THE USER
15-50 METAfS
WATER DEPTH
SEA\VATER RETURH
Principe du capde pnunslon lmmtti'Bti -(Saui'Cfl:
Fi'g.26.
http:llwww.t!lnHiffltl-v•.t:IHIIIJ
CETO units are fully submerged and permanently
anchored to the sea floor meaning that there is no
visual impact as the units are out of sight. This also
assists in making them safe from the extreme forces
that can be present during storms.
Recent work has focused on the design and
manufacture of the commercial scale CETO unit
(CETO Ill) and its testing in the waters off Garden
Island in Western Australia.
CETO
'
.
"'""'·lf•.JOD.«((S.Iotlt7!.•nlfl!
J
'-'' "·
t'WI'f Urill'ltw
\
:
-
"!t.:.fl''l"'l.
·-
V£--...
.r.;
·-vr-·•· !
.
y.· f11r+¥ "t
"--
(>f '
r,.....
•
I ,..,...
:;
f
.
'tS:; r
-.
c.n..t'o C9< <>•t<
.-o...n.n&.
W < l lnefl )'
...... ._
•
(tl'Q
A
tro ,.......
Fig.27.
Les sites d'investigatiDn pDur
htte:llwww.csmegiewave.CDIIIIJ
implantatiDn
de
CETD -
{Source:
5/&
oceanlinx
Fig.28.
Print;:ipfl de Is colonne tPesu ocesnllnlr • (Source:
http://www.ociNinlinx.com/J
The concept involves the use of waves to produce high pressure air, which in turn is
converted into electricity by a turbine. Oceanlinx reached a milestone with the launch of
the first 1MW wave-energy-to-electricity unit in Port MacDonnell, South Australia. The
unit's rated capacity of 1MW can supply approximately 1,000 homes with their required
electricity consumption. This machine is the first commercial-scale unit to be launched.
&I&
Fig.29.
Principe du piege a defertement (Siot.C..ne Generator) ·(Source.:
http:t!Wm.-u.dk/flt.s/52276928/R D
t:Dnttnerc lizMIIH! of S.JI Wawr Slot Con
e GenenlttH' SSG Overl!!pplng Waw E-rgy Conwttrftlr.pdfJ
r-nt•
The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle.
It utilizes a total of three reservoirs stacked on top of one other (referred to as a
'multi-stage water turbine') in which the potential energy of the incoming wave will
be stored. The water captured in the reservoirs will then run through the multi­
stage turbine for highly efficient electricity production.
The main focus is on opportunities to build the SSG concept as breakwater
structures.
Concept implemented in breakwater structures capacity will depend on local wave
energy and length of breakwater Example: 20kW m wave climate with 50m
breakwater structure has 1MW capacity
We do not forget Australia and its great potential ...
Status of Wave Energy development in Denmark
Wavestar is testing their prototype with two floaters at DanWEC, Hanstholm
Floating Power Plant in testing
phase prototype with power
production from wind & waves
WavePiane at DanWEC
Resen Energy testing 2kW level operated
pivoted float
Leacon Wave En is preparing testing
Wave En Fyn testing their CrestWing scale 1:5
Wave Dragon is developing a 1.5 MW demonstration devise
WavePiston conducting small scale tank testing
WECs
WECs
Status of Wave Energy development in other countries
Pelamis 2 at Orkney, Scotland
PowerBuoy 150kW USA
Ceto, 200 kW Australia & Bolt 45 kW, Norway
Seabased, Sweeden, 25 kW
module in a 10,5 MW array
20 kW, OE Buoy, Ireland
BOO kW Oyster, Aquamarin, Ireland
T
Tidal CtJr rd:.4.8 MW + 1 7 MW"
Wave energy: 2 MW + 2.4 wrw•
·
(
. Tidal aJrrent:300 kW
Salmi'¥.4 kW
• W'«Ve et ergy-
150 kW + 1000 kW"
Todal ..,.,.gy:240 WIN
1i
.....
A \10
Wt:NeEnergy
*{ installation}
4kW+ 20kW"
MRE potential: short summary for the World
Osmotic Power Conversion
Osmosis is a process in which a fluid passes through a semipermiale
membrane, moving from an area in which a solute such as salt is present in
low concentrations to an area in which the solute is present in high
concentrations. The end result of osmosis, will be equal amounts of fluid on
either side of the barrier, creating a state which is known as "isotonic." The fluid
most commonly used in demonstrations of osmosis is water, and osmosis with
a wide variety of fluid solutions is key for every living organism on Earth, from
humans to plants.
A semipermeable membrane is a membrane that
allows certain types of molecules to pass through
but blocks others. Body cells are surrounded by
this type of membrane, which helps to control what
substances can and cannot pass into the cells. By
serving as a barrier between the interior and the
exterior of the cell, it protects the cell from foreign
bodies that could be harmful. Outside of the body,
these membranes, usually artificially created, are
used for specific functions such as water
desalination and purification.
... works in Norway.
capable to produce power
in regions were fresh and
salty water are available:
estuaries, fiords, ...
Statkraft (Norway) is the
world's leader in the
development of
osmotic power.
-- - -
J lif
­
. -. ;­
Osmotic power is clean, renewable energy, with a global
potential of 1 600 to 1 700 TWh - equal to China's total
electricity consumption in 2002.
Based on the natural phenomenon osmosis , defined as the
transport of water through a semi-permeable membrane.
When fresh water meets salt water, for instance where a
river runs into the sea, enormous amounts of energy are
released. This energy can be utilized for the generation of
power through osmosis.
At the osmotic power plant, fresh water and salt water are
guided into separate chambers, divided by an artificial
membrane. The salt molecules in the sea water pulls the
freshwater through the membrane, increasing the pressure
on the sea water side.The pressure equals a 120 metre
water column, or a significant waterfall, and be utilized in a
power generating turbine.
The membrane is the most essential component in the
osmotic power system. Statkraft has been involved in the
development of suitable membranes through several years,
and in 2011 a cooperation with Nitto Denko, a world leader
in membranes, were established.
Seagen (MCT)
The world's first and only official tidal current power plant delivered as
electrical energy into the grid in UK
Seagen History
SeaGen Prototype
Some key features:-
-+ 2x 600kW rotors:16m diameter
-+ rotors and nacelles raised above
sea levelfor maintenance and
easy replacement
-+ transformer and electrical
connection to grid in accessible
and visible housing at top of pile
-+ 180 degree pitch controlallows
efficient rotor operation with bi­
directionalflow
-+ deployment in arrays or "farms .
Qf hundreds of turbines
Seagen Life Cycle
- Site & Resource Assessment (2oo4)
-Device Installation (April2ooa)
- Environmental Monitoring (2oos-2o11)
-Performance Assessment (2oo9-2o1o)
- Electrical Power Quality (2010)
-Blade Loading (2011)
-Turbulence/Wake Investigations (2009 7)
Seagen- Strangford Lough
CIS!!.:ngf:lro,OI.9h
C
=··Awl
li
I "'IIP'f
•
_..,goog e..;,
l.c>9-> Cl flWC
;p!xe'Sn 01n9bd• o
, ifl!C ..A.....'lll
ll
CIIC
(.,j.
•JI
, ';
,..;
"'-'-
E.Jsrl'W t:ee., G FB
l'•:4· - a,...,
FUa
4
G9'l • 1!4G
.:1
.f')C;::
•yo<,1;o,
'':r
- -· ' j( '
U ff!M @ m.t ll ' .&e! '¥;·
- 1M! •PO QQUII W Aatt.B
"
,,_
[.')Spe.dltd
I!S s·o
• ,. m
II =.
•
Seagen- Strangford Lough
Strangford Narrows Tidal Test Site
Contours to MSL
Speed m/s
- -,
:
Jtl
-
'.3 -l.O
1·,- h
1'1$
10
(11'1
-"
I
180
200
220
240
260
280
300
320
340
360
380
-
w
Seagen Design
._ t.:mponuy
platfonn
•-" conductor
• tube
1 OOOt ballast
Seagen Deployment
SeaGen showing
quadropod (4 fee )
jacket structure
being collected
crane oarDe.:f;?J
"Ra.........rw.,-.-
Harland
Seagen Deployment
SeaGen installation (MCT)
SeaGen - Cross Arm and Rotors
SeaGen - Cross Arm and Rotors
SeaGen - Cross Arm and Rotors
SeaGen - Technical Solutions
The first commercial technology
Rated at 1.2 MW for currents above 2.4 m/s; cut off speed 1.0 m/s
Twin rotors
- Cost-effective solution (2 times more energy at lower cost)
- Twin-bladed rotor is more cost-effective than a three-bladed one
- Power trains (rotor, gearbox, generator) are outboard of the pile,
on wing-like cross arm: rotor is not disturbed by the pile wake
-full-span pitch control (180°pitch angle), high efficiency to stop in Ss
- Cross arm (complete) weigh 120 t
-Normal loading (at rated power) -30 t per blade
- Gearbox and gen are passively cooled
Top-housing/work platform contains all electronics for power conditioning and
lifting mechanism (60kW waste heat is dissipated). It produces fully grid
compliant electricity.
High capability multiple turbines can be easily interfaced to form an array
Power Certification
power
:
:
. -.
kW
r------------------- ----
-n--o.....
'
'
1200 -•••••••••- ••••••••••••••••. :.•-••••-•• ••••-•.ebb..u-•••-·•- •" f&,l'.f.&J I --.........--...
. . j: :·-······;.·······:...····-······
........,..
.
;
1000
"i· ..... . .
:•........_ftooJ
200
4
•I
..
..
600
....... ;
'
r
•v
·.·
800
400
...
.•.
....·
......!::·
00 ------------------2
3 rnls velocity
,,
SeaGen at Strangford Narrows: Power Curve
1200kW rated Power
•
Peak average (Flood & Ebb tides) turbine efficiency (based on net power before
turbine transformer) is 0.43 (Cp = 0.43)
•
Average Rotor efficiency of 0.48 (using current magnitude)
•
Cp spreading (best I worst) 0.52/ 0.45. Means 88% - 75% of theor value (0.59)
Verified by DNV (lnt Marine & Offshore Certification and Classification Agency) delivered a Statement of Conformity on 27-Aug-2010
The overall system efficiency (inc losses in gen, gearbox, elect) ranges 40 - 45%
Project cost
Seagen Power Production
SeaGen delivers .... full power
620kW
-+--- -
14 oct
-- -
generator speed
1
1300hr
1400hr
1500hr
1600hr
oa
power
ADCP Deployment- Cp/Lamda
PotertialPower (top) •nd hghll{filtered GeneratedPower (bottom)
600
Available power
y
500
.;M,,..,. .
200
Generated power
fh....fv"J,
1oo
-"''
20 19"00
11-..\
II\J\N; tJtl"'. . JN¥\. )V
tt" i'"'J;vi
'If
20 2000
20 21"00
Time
/T'
f
\·l!,.\Jr'\
\
2022 00
202300
Seagen Power Production
During 4000 hour period (2006- 2010) averaged PP was
2800MWh
20h per day Power generation; 1000 houses receive Elec Power
Facteur de charge 65% (pare eolien - 24 % en 2012, pare
photovolta'ique -13,3% en 2012)
Project cost ???
25-30% reduction in generating unit cost is possible
MCT Future Plans
Horizontal arrays of smaller or bigger rotors
Ex. A: six 8m rotors would sit in 12m of water and
produce 660kW
Ex. B: six 24m rotors would deliver up to BMW.
Marine Current Turbines Ltd
BENDALLS
Engineering
lnstitut fur Solare
Energieversorgungstachnik
Jahnei-Kestarmann
Getriebewerke Bochum GmbH
Marine Current Turbines Ltd
'W·'
......
. . - ··- '· .""
..!..
-5
I Ai
L
Operational mode
13
'I'.
Marine Current Turbines Ltd
. "••
-:;.,
11
·
"' ..... }
Seaflow gearbox - assembly at Jahneii-Kestermann
14
Marine Current Turbines Ltd
'-
.
.
·-
I{. ...
...
Seaflow rotor blade assembly- at Aviation Enterprises
l_
Marine Current Turbines Ltd
"
·. - · .
.. ,
Seaflow
Project
Pile and
collar
16
Marine Current Turbines Ltd
"L ....
. .
. .
J
L
Seaflow Project
testing rotor blade
pitch system
Newport - Mar 2003
7
Marine Current Turbines ltd
'L:,_ .-· .
Seaflow jack up 'Deep Diver' drilling foundation in up to
5 knot currents and u to 25m water de
18
Marine Current Turbines Ltd
·--
W'
_ - J'&·..
.:.
Seaflow - Foundation drillin
1
l
I
i
J
!
1!1
""' onii.O to • t 5 m o•p>h b•low '"''' lm
I
w
19
Marine Current Turbines Ltd
.WIML -·.-
W '·
)
Seaflow - Pile Installation
It.ij
0
Cood,do" ood 9'PP" oon 'Omo_,d
open hoe. ;:.
11
oo. og ooo;ng ond
ft d, Cl!l buoX,!;Int ft,_ and H!_esented
through drilled h e.
20
Marine Current Turbines Ltd
·
:,. ·.- ,
Seaflow­
Assembly ·#1
21
-'
Marine Current Turbines Ltd
.
"· ·-
"
. ,
.
Seaflow - Assembly #2
22
..
.
Marine Current Turbines Ltd
·
.
'
Seaflow installed
30 May 2003
operational
11
..
,....
.,
raised for access
rotor dia. 11m
rated power 300kW
pile dia. 2.1m
23
Marine Current Turbines Ltd
..
.
,
_
'L
-'
.
.
..e
Seaflow installed
First run
30 May 2003
24
Marine Current Turbines Ltd
'L" .-,_ - - ,
Visual impact from Exmoor
25
:w-· _ .
Marine Current Turbines Ltd
''.f'•-
:
tJI!!t
· ..
· •
Energy capture - Actual v Predicted
500
400
-
-
I
:c
I
I
I
-
- Energy Actual
I
-Energy Predicted ISET
I
I
300
l
>e'
Gl
/,
c:
w
27o/o better
/
/ /
/
200 1--
than
predicted
/
L
,_
-t
100
/
-+-
/
-·--
-
-
....,.
0
0.0
0.5
1.0
1.5
/
-2.0
+--!-
2.5
-f-
3.0
3.5
Timefrom HW rhrsl
Marine Current Turbines Ltd
--
·· ......
What has 'worked'
The Fundamental Concept
•
•
•
•
Axial flow rotor
Marinised drive train
Surface breaking monopile
Structure
:;.
-
-.,.
-.' ,
• Low cost intervention
• Minimal environmental impact
27
:W''
Marine Current Turbines Ltd
··
-
L.· ,
:t'.
The future - twin rotors
Some key features:·
+ 2 x 500kW rotors:16m diameter
+ installed on steel pile
+ rotors and nacelles raised above
sea level for maintenance
+ transformer and electrical
connection to grid in accessible
and visible housing at top of pile
+ deployment in arrays or "farms".
of hundreds of turbines
28
Marine Current Turbines Ltd
"L" -..., -.- .
MCT Phase 2 Technology
29
Marine Current Turbines Ltd
.
.J
-
......
'JIItt
.
..
Planned R&D Programme
Route to commercial production
2002-3 Ph. 1
300kW trial unit
2003-5 Ph. 2 1MW commercial prototype
(SeaGen project)
2005-6 Ph. 3 5 MW farm installed
(SeaGen Array project)
2006-7 Commercial Demonstrator Projects
2007-8 installed capacity over 15 MW
2009-10 installed capacity over 350 MW
by 2012- installed capacity over 500 MW
ultimate potential -- 1OOOs of MW
30
"11··
_ -·
. ·.. •
· ... -··
, ..JIA#
. -.
Marine Current Turbines Ltd
Key Project Costs - short-term cost trend
§'
4000
fJ)
3000
()
:5 2000
"C
Q)
1000
fJ)
c::
Seaflow 0.3MW
SeaGen 1MW
DGrid Connection DInstallation costs
SeaGen Array SMW
Manufacturing Costs
31
."'f'L
Marine Current Turbines Ltd
1p
= 1.5 Euro-cent
:2 22
s 20
-- -t
•
Q)
w
Ill!
.;.. ·...,,
t.
Driving down costs
- ------1.................r...-- -
+­
18 1- - --t-- 71'---- + -+a.
'-"
16 1----+-------i-----+----++-'
14 1------+----+--(_) 121------+ - -tl
10
t------+-----+--- .r-- -----r---(.)
·c 8 ---------+-----+----- ---t)
_r:
6 r.n t;rur-
-
----
t- --t- --==-"'"""i
1-=--llUii.l.eiiH +-----+-----+----2--+-----+-----1- ==r-
4
0--------------------- ---- ---- ---2004 2005 2006 2007 2008 2009 2010
2003
Year
32
Status of Offshore Wind and Offshore
Wind Industry in Denmark
--
Offshoreenergy.dk
Colloque lnternational"les Energies Marines Renouvelables" novembre 2013
The worlds first offshore wind farm has now
been operating for more than 20 years
0-'(,e,
?P
-... "'"'0 o.;y-4.
-"
7>e.
J>-oo. .e
1>e,..,c \.
..,y e,
,.. ..,...o.'O.
.....,... t$>""
-
,-?>-0
'01
e.'"
tP ;d>""'b-
02
1
11
1
(\
110
oo
0.
_y..o
I I
I
'91
oc,
,.
._II<
,'?-.. sP
'13
I
--
Offshoreenergy.dk
Renewabl.es
Status of Offshore Wind and Offshore Wind Industry in Denmark
We are going to more than double our offshore wind
capacity - until 2020 we will install 1.500 MW
The Danish Energy Agency
will call two tenders of large
scale offshore - total 1GW.
r·
---
/
1. Horns Reef 3: 400 MW
This tender will be finalized
in the beginning of 2015
2. Kriegers Flak: 600 MW
Both parks have to be in
operation at latest the 1st of
January 2020
-­
...............
Offshoreenergy.dk
Ranewables
Status of Offshore Wind and Offshore Wind Industry in Denmark
We are going to more than double our offshore wind
capacity - until 2020 we will install 1.500 MW
The Danish Energy Agency
will call for tender of 450
MW near shore offshore
wind farms
On the top of this 50 MW will
be awarded to projects
which aims to demonstrate
Cost of Energy reducing
solutions
'
Source: Danish Energy Agency
Status of Offshore Wind and Offshore Wind Industry in Denmark
Offshoreene rgy.dk
Ranewables
Zooming in on Denmark's
current world leading
position in offshore wind
• 30% wind energy in 2012 and 50% in 2020
• The worlds leading OWF operator is Danish
• 9 out of 10 installed offshore wind turbines are
manufactured and installed by Danish based
companies
• World's most globalised wind industry with a
strong first mover advantage in the offshore
market
--
Offshoreenergy.dk
Renewables
Status of Offshore Wind and Offshore Wind Industry in Denmark
2015-2020 "Mega" off­
shore power plants
New concepts,technolo­
gies and "Supergrid"
2009-2015 Industrialization
Production set-up for installation
Economies of scale,sourcing,
knowhow,installation and O&M
Offshoreenergy.dk
Renewabtes
Status of Offshore Wind and Offshore Wind Industry in Denmark
-
Offshoreenergy.dk
Status of Offshore Wind and Offshore Wind Industry in Denmark
The economic impact from Offshore Wind
..;-Offshoreenergy.dk
Renewabtes
Colloque lnternationai"Les Energies Marines Renouvelables" novembre 2013
The economic impact
• 11,200 employees in the offshore wind and
wave industry {2012)
• FORECAST 2015-2020- 21.000 employees
References
• Farming- 69.728 employees
• Food & Beverage- 55.107 employees
• Metal Industry- 36.730 employees
• Electrical- 16.086 employees
• Medicinal Industry -17.711employees
\
--
Offshoreenergy.dk
Renewables
The economic impact from Offshore Wind
14
The economic impact
• Total turn-over 32 MDKK/4.3 BEUR
• Export share 2 MDKK/2 BEUR
References
• Food & Beverage- 160 MDKK/21.5 BEUR
• Metal Industry- 146 MDKK/19.6 BEUR
• Electrical- 28 MDKK/3.8 BEUR
• Medicinal Industry- 72 MDKK/5.6 BEUR
Offshoreenergy.dk
Renewable.
The economic impact from Offshore Wind
15