January

Transcription

January
January – June 2007
Number 42
ISSN 1026 2881
IUCN
journal of the African Elephant, African Rhino
and Asian Rhino Specialist Groups
The World Conservation Union
January – June 2007
SPECIES
SURVIVAL
1
Chair reports / Rapports des Présidents
1
African Elephant Specialist Group report /
Rapport du Groupe Spécialiste des Eléphants
d’Afrique
Holly T. Dublin
13
African Rhino Specialist Group report / Rapport
du Groupe Spécialiste des Rhinos d’Afrique
Martin Brooks
17
Asian Rhino Specialist Group report / Rapport du
Groupe Spécialiste des Rhinos d’Asie
Nico van Strien and Bibhar Kumar Talukdar
22
Research
22
Parasites gastro-intestinaux d’éléphants dans la
Réserve Partielle de Pama, Burkina Faso
Nakandé Allasane, Adrien Marie Gaston Belem,
Aimé J. Nianogo, Christine Jost
33
Dry-season status, trend and distribution of the
Konkombouri elephants and implications for their
management, Burkina Faso
Philippe Bouché
43
Phenology of forest trees favoured by elephants
in the Kakum Conservation Area, Ghana
Emmanuel Danquah, Samuel K. Oppong
52
Status of elephant populations in Garamba
National Park, Democratic Republic of Congo,
late 2005
Emmanuel de Merode, Bila-Isia Inogwabini,
José Telo, Ginengayo Panziama
58
Northern Ghana elephant survey
Philippe Bouché
COMMISSION
Editor
Helen van Houten
Associate Editor
Dali Mwagore
Editorial Board
Holly Dublin
Esmond Martin
Leo Niskanen
Robert Olivier
Nico van Strien
Lucy Vigne
Design and layout
Damary Odanga
Graphics
Phillip Miyare
Address all correspondence,
including enquiries about
subscription, to
The Editor, Pachyderm
PO Box 68200 – 00200
Nairobi, Kenya
tel: +254 20 890605–12
fax: +254 20 890615
email: [email protected]
website: www.iucn.org/afesg
Reproduction of this publicaton for
educational or other non-commercial
purposes is authorized without
written permission from the copyright
holder provided the source is fully
acknowledged.
Reproduction of this publication for
resale or other commercial purposes is
prohibited without written permission of
the copyright holder.
No. 42
Cover: Elephants in Tarangire National Park, Tanzania. Photo:
Charles and Lara Foley
journal of the African Elephant,
African Rhino and
January – June 2007
No. 42
Asian Rhino Specialist Groups
70
Determinants of elephant distribution at Nazinga Game Ranch,
Burkina Faso
Bernard M. Hien, Jonathan A. Jenks, Robert W. Klaver,
Zeno W. Wicks III
81
Conflits homme–éléphants dans la Réserve Partielle de Pama,
Burkina Faso
Alassane Nakandé, Adrien Marie Gaston Belem, Aimé J. Nianogo,
Christine Jost
92
Field note
92
Composition of intestinal ciliate fauna of free-ranging African
elephants in Tsavo West National Park, Kenya
Vincent Obanda, Isaac Lekolool, John Kariuki, Francis Gakuya
97
Discussion
97
Prospects for managing African elephant population growth with
immunocontraception: a review
A.A. Perdok, W.F. de Boer, T.A.E. Stout
108
Inbreeding and outbreeding in African rhinoceros species
Toya S. Krummenacher, Samuel Zschokke
116
Rhino notes
116
Rhino issues at CITES CoP14
Richard H. Emslie
120
Guidelines for contributors
Views expressed in Pachyderm are those of the individual authors and do not necessarily reflect those of IUCN, the
Species Survival Commission or any of the three Specialist Groups responsible for producing Pachyderm (the African
Elephant Specialist Group, the African Rhino Specialist Group and the Asian Rhino Specialist Group).
Acknowledgements
The production of this issue of Pachyderm was only possible through contributions from a number of organizations and individuals. In particular, we would like to thank the following:
The views expressed herein are those of the authors and can therefore in no way be taken to reflect the official
opinion of the individual donors, donor agencies, the World Conservation Union (IUCN) or any of the three
IUCN/SSC Specialist Groups.
CHAIR REPORTS
RAPPORTS DES PRESIDENTS
African Elephant Specialist Group report
Rapport du Groupe Spécialiste des Eléphants d’Afrique
Holly T. Dublin, Chair/Président
IUCN/SSC African Elephant Specialist Group, PO Box 68200, Nairobi 00200, Kenya
email: [email protected]
This six-month period from 1 January to 30 June
2007 has been among the most challenging for me
in my long tenure as Chair of the African Elephant
Specialist Group. With the departure of both Leo
Niskanen (Senior Programme Officer) and Julian
Blanc (African Elephant Database Manager) and
our office move to the IUCN Eastern African
Regional Office, we have experienced a great
deal of upheaval. In the absence of a technical
person overseeing the changes, much has fallen
on our longstanding Nairobi staff, Cecily Nyaga
and Monica Buyu, who have both performed
admirably under the circumstances. We are now
well settled in our new surroundings at IUCN
EAROʼs Wasaa Conservation Centre in Langata,
Kenya, and bolstered by the arrival of the new
AfESG Programme Officer, Dr Julian Fennessy,
who started on 2 July 2007. Julian comes to us
from Australia via Namibia, where he worked
for 6.5 years on a range of conservation projects,
in particular assessing the ecology of the desertdwelling giraffe and elephant.
Unfortunately, this series of events has left me
with the brunt of the technical work for the past
few months which, on top of my SSC position
and the demands of a heavy elephant-dominated
agenda at the 14th Conference of the Parties to
CITES (CoP14) and Range States Dialogue,
presented challenges to say the least. I continue
to love my deep involvement in elephant issues
but miss the days when the AfESG staff was intact
and performed so brilliantly as a team. We need to
Pachyderm No. 42 January–June 2007
Les six premiers mois de 2007 ont été parmi les plus
ardus de tous ceux que jʼai passés comme présidente du
Groupe des spécialistes des Eléphants dʼAfrique. Avec
le départ de Léo Niskanen (responsable de programme
principal) et de Julian Blanc (gestionnaire de la Base
de données de lʼéléphant africain) et le déménagement
de notre bureau vers le Bureau régional de lʼUICN en
Afrique de lʼEst, nous avons connu une agitation peu
commune. En lʼabsence dʼun technicien pour superviser
les changements, une grande partie du travail est revenue à notre bon vieux staff de Nairobi, Cecily Nyaga
et Monica Buyu, qui ont réalisé de véritables exploits
en ces circonstances. Nous sommes maintenant bien
installés dans notre nouvel environnement au Centre de
Conservation Wasaa du EARO de lʼUICN à Langata,
Kenya, et stimulés par lʼarrivée de nouveau responsable
du programme, le Dr Julian Fennessy, qui a commencé
ici le 2 juillet 2007. Julian nous vient dʼAustralie, via
la Namibie où il a travaillé pendant six ans et demi sur
différents projets de conservation, en particulier sur
lʼévaluation de lʼécologie des girafes et des éléphants
qui vivent dans le désert.
Malheureusement, cette suite dʼévénements mʼa
laissée une bonne part du travail technique pendant
ces derniers mois, ce qui, avec mon job à la CSE et les
exigences de la 14ème Conférence des Parties à la CITES
(CoP14) et le Dialogue des Etats de lʼaire de répartition dont le calendrier était largement dominé par les
éléphants, représentait à tout le moins un fameux challenge. Je continue à adorer mon profond engagement à
la cause des éléphants, mais je regrette lʼépoque où le
staff du GSEAf était complet et fonctionnait si bien en
1
Dublin
begin to rebuild what we have lost and there is no
better time than now to start the process.
The African Elephant Database
The African Elephant Status Report (AESR) 2007
was officially released on 26 February 2007 on
the AfESG website (www.iucn.org/afesg/aed).
This most recent report from the African Elephant
Database contains information on elephant population estimates and distribution at site, national,
regional and continental levels, generated up to
the end of 2006.
As with the previous edition, we have introduced a number of new features in this AESR.
These include a priority-setting system to help
guide wildlife authorities and donors in planning
future surveys; a scaleable, standardized index
of data quality; and new tables at national, regional and continental levels to aid in interpreting
changes in elephant estimates compared with the
previous report, the AESR 2002.
Also included in the AESR 2007 is a statistical
analysis of changes in elephant estimates in major
populations in eastern and southern Africa—the
only regions where sufficient reliable data are
available for such a comparison. As with a similar
analysis published in Pachyderm 28, we found a
statistically significant increase in major elephant
populations in southern Africa. The AESR 2007
can be downloaded from the AfESG website
(http://www.iucn.org/afesg), either in one piece or
in smaller sections. We have produced a limited
number of copies on CD, many of which were
distributed to range state wildlife authorities during the recent Conference of the Parties to CITES.
Sadly, funding limitations have prevented us from
producing a hard-copy version of the AESR 2007,
but we hope to raise the funds required for printing and distribution before the report becomes
desperately out of date.
With the AESR 2007 now safely completed
and Julian having moved on to join the CITES
MIKE programme, we have had to take the decision to ʻmothballʼ the African Elephant Database
for now to ensure its safekeeping. However, I have
high hopes and a number of innovative ideas for
getting a new database manager in place to make
sure that the AED does not have to remain on the
shelf for too long. Our longstanding partnership
2
équipe. Nous devons reconstruire ce que nous avons
perdu, et il nʼest pas de meilleur moment que celui-ci
pour sʼy mettre.
La Base de données de l’éléphant
d’Afrique
Le Rapport du Statut de lʼEléphant dʼAfrique (RSEA)
2007 a officiellement paru le 26 février 2007 sur le site
du GSEAf (www.iucn.org/afesg/aed). Ce rapport très
récent de la Base de données de lʼéléphant dʼAfrique
contient des informations sur les estimations de population et sur la distribution des éléphants au niveau des
sites, national, régional et continental, récoltées jusquʼà
la fin de 2006.
Comme dans lʼédition précédente, nous avons introduit un certain nombre de nouveaux éléments dans ce
RSEA. Cela inclut un système pour établir les priorités
afin dʼaider les autorités de la faune et les donateurs dans
la planification dʼétudes futures, un index gradué, standardisé pour la qualité des données, et de nouvelles tables
au niveau national, régional et continental pour aider à
interpréter les changements des estimations dʼéléphants
par rapport aux données précédentes, le RSEA 2002.
Le RSEA 2007 comprend aussi une analyse statistique des changements des estimations dʼéléphants des
principales populations dʼAfrique de lʼEst et du Sud,
les seules régions pour lesquelles il y a suffisamment de
données fiables pour permettre la comparaison. Comme
dans une analyse comparable publiée dans le Pachyderm
28, nous avons trouvé une augmentation significative des
principales populations dʼéléphants en Afrique australe.
Le RSEA 2007 peut être déchargé sur le site du GSEAf
(http://www.iucn.org/afesg), en un seul bloc ou en plusieurs petites sections. Nous en avons produit un nombre
restreint sur CD, et nous en avons déjà distribué beaucoup aux autorités de la faune dans les états de lʼaire de
répartition au cours de la dernière Conférence des Parties
à la CITES. Des contraintes financières nous ont hélas
empêchés de produire une version papier du RSEA 2007,
mais nous espérons récolter les fonds nécessaires pour
lʼimprimer et le diffuser avant quʼil ne soit dépassé.
Le RSEA étant maintenant complètement terminé,
et Julian étant parti rejoindre le programme MIKE de la
CITES, nous avons dû prendre la décision de « ranger la
Base de Données de lʼEléphant dʼAfrique dans la naphtaline » pour lʼinstant afin de garantir sa conservation.
Jʼai cependant lʼespoir de, et un grand nombre dʼidées
novatrices pour mettre en place un nouveau gestionnaire
de données pour que la BDEA ne reste pas au placard trop
Pachyderm No. 42 January–June 2007
African Elephant Specialist Group report
with CITES MIKE and the well-recognized value
of the regular status reports offer opportunities for
continued and increasing mutual support in all
areas of common interest. So we remain hopeful that nothing will be lost and much will be
gained.
longtemps. Notre long partenariat avec MIKE-CITES
et la valeur reconnue des rapports réguliers sur le statut
nous donnent des possibilités de continuer ou même
dʼaccroître notre support mutuel dans tous les domaines
qui nous intéressent tous les deux. Nous espérons donc
que rien nʼest perdu, au contraire !
Managing the ecological impact
of elephants
Gérer l’impact écologique des
éléphants
Update from the Local Overpopulation
Task Force
Mise à jour du Groupe de travail sur les
surpopulations locales
AfESGʼs Local Overpopulation Task Force (LOTF)
has continued to revise the working draft, integrating reviewer comments and updating references
into a final draft of its technical review of the
main options for managing the ecological impact of
elephants. This has turned out to be a truly massive
task, which was picked up through the voluntary
efforts of LOTF members, in particular Debbie
Gibson and Dave Balfour, following Leoʼs departure. We are hoping to get the final draft copyedited, illustrated and translated over the coming
months but we are certainly not there yet.
Le Groupe de travail sur les surpopulations locales (Local
Overpopulation Task Force – LOTF) a continué à réviser
son projet de travail, y intégrant les commentaires du
réviseur et mettant à jour les références dans le projet final
de sa revue technique des principales options pour gérer
les impacts écologiques des éléphants. Ceci sʼest avéré
être une tâche colossale qui a pu être reprise grâce aux
efforts bénévoles des membres du LOFT, en particulier
Debbie Gibson et Dave Balfour, suite au départ de Léo.
Nous espérons que la dernière version sera écrite, illustrée et traduite dans les prochains mois, mais nous nʼen
sommes certes pas encore là.
Human–elephant conflict
Conflits hommes–éléphants
Vertically integrated models for human–
elephant conflict management
Modèles verticalement intégrés pour la
gestion des conflits hommes–éléphants
The final report of our preliminary investigations
into the development of vertically integrated HEC
models at national level for Tanzania and Burkina
Faso was completed in March of this year. This
report recommends a number of important actions
at local, national and regional levels for improved
management of HEC.
In Tanzania, these included the need to update
the national problem animal control policy and
have it included in the new Wildlife Conservation Act to allow, among other things, devolution
of problem animal control functions in certain
areas and separate problem-species policies, and
to make provision for future modification in a
simple way. In addition, the report suggested that
funding be found to create a long-term post for a
national coordinator for human–wildlife conflict
(HWC) issues. Initially the post would help coordinate—but not yet implement—policy formula-
Le rapport final de nos investigations préliminaires
au développement de modèles de CHE verticalement
intégrés au niveau national a été terminé en mars pour
la Tanzanie et le Burkina Faso. Ce rapport recommande
un certain nombre dʼactivités au niveau local, national et
régional pour une meilleure gestion des CHE.
En Tanzanie, elles comprennent la nécessité de mettre à jour la politique nationale en matière de contrôle
des animaux à problèmes et de lʼinclure dans le nouveau
Wildlife Conservation Act pour permettre, entre autres : la
dévolution des fonctions touchant les animaux à problèmes dans certaines régions, des politiques séparées
selon les espèces, et la prévision de futures modifications introduites de façon simplifiée. De plus, le rapport
suggère de trouver des fonds pour créer, à long terme,
un poste de coordinateur national pour les conflits hommes
–faune sauvage (CHF). Au départ, ce poste aiderait à
coordonner, mais pas encore à appliquer, la formulation
et lʼadoption dʼune politique. Comme cette personne aura
Pachyderm No. 42 January–June 2007
3
Dublin
tion and adoption. As the person would require
much initial familiarization about modern thinking
surrounding HWC and its mitigation, it was suggested that initially it might best be based at and
work through the Tanzania National Resources
Forum as an organization specifically equipped
for this work, but this would likely change as the
position evolves. The IUCN AfESG could perhaps
assist with the familiarization process.
There has been recent discussion of updating and
revising Tanzaniaʼs elephant management strategy
(2001). It was suggested that, in this context, the
section on HEC could follow AfESG guidelines
and serve as a model adaptable to managing other
problem wildlife species in the ʻlarge and potentially
dangerousʼ category for which the Wildlife Division
is currently responsible.
In contrast to Tanzania, Burkina Faso does
have a comprehensive and up-to-date national
strategy for conserving its elephants (see: http://
www.iucn.org/themes/ssc/sgs/afesg/tools/pdfs/
str_wbf0306_fr.pdf), which was developed with
the technical assistance of AfESG some years ago
and contributes to the subregional strategy recently
agreed at ministerial level among 13 range states.
Burkina Fasoʼs national strategy specifies HEC as
one of the most important challenges to the longterm survival of the species in the country. Efforts
at all scales—international, national and local—to
help address the HEC crisis in the country are
recommended in the strategy. The report notes
that this is highly useful as it clearly and officially
establishes HEC as a conservation priority and thus
helps get the required political buy-in. It may also
help to raise funds for developing a more sustainable HEC management system in this country. The
AfESG office in Ouagadougou should be able to
play a useful role in this regard.
The report recommended further action at
local, national and international levels, including
the need for local land-use planning and agrarian
reform laws in Burkina Faso, training in the use
of simple deterrent methods, establishing local
conflict-resolution committees, more standardized
monitoring of HEC incidents, better understanding of the elephant populations involved in crop
raiding, and clear responsibility for dealing with
HEC in relevant legal instruments being assigned.
More generally, it was highlighted that lessons
learned from HEC-mitigation efforts in both
4
besoin de se familiariser activement avec la conception
nouvelle des CHF et de leur mitigation, on a pensé quʼil
serait préférable quʼelle soit basée, et travaille, avec le
Forum Tanzanien des ressources naturelles qui est une
organisation spécifiquement équipée pour ce travail, mais
ceci serait susceptible de changer au fur et à mesure que
la situation évolue. Le GSEAf de lʼUICN pourrait sans
doute aider lors du processus de familiarisation.
On a discuté récemment au sujet de la mise à jour et
de la révision de la stratégie de gestion de lʼéléphant en
Tanzanie (2001). On a suggéré que, dans ce contexte, la
section sur les CHE suive les lignes directrices du GSEAf
et serve de modèle adaptable à la gestion dʼautres espèces
à problèmes, dans la catégorie « grands et potentiellement
dangereux », pour lesquelles la Division de la Faune est
actuellement responsable.
Contrairement à la Tanzanie, le Burkina Faso possède
une stratégie complète et actualisée pour la conservation
des éléphants (voir :http://www.iucn.org/ themes/ssc/sgs/
afesg/tools/pdfs/str_wbf0306_fr.pdf) qui a été mise au
point il y a quelques années avec lʼaide du GSEAf et qui
contribue à la stratégie sous-régionale qui a été acceptée
récemment au niveau ministériel des 13 états de lʼaire de
répartition. La stratégie nationale burkinabée considère
les CHE comme le défi le plus important pour la survie à
long terme de lʼespèce dans le pays. La stratégie recommande de produire des efforts à tous les niveaux— international, national et local—pour aider à juguler la crise
des CHE dans le pays. Le rapport indique quʼelle est très
utile parce quʼelle reconnaît clairement et officiellement
que les CHE sont une priorité de la conservation et quʼelle
aide de ce fait à obtenir lʼappui politique requis. Elle
peut aussi aider à récolter des fonds pour développer un
système de gestion des CHE plus durable dans ce pays.
Le bureau du GSEAf à Ouagadougou devrait pouvoir
jouer un rôle très utile dans ce cas.
Le rapport recommandait dʼaller plus loin au niveau
local, national et international, citant le besoin de lois sur
le système foncier et la réforme agraire au Burkina Faso,
la formation à lʼutilisation de méthodes dissuasives simples, lʼétablissement de comités locaux pour la résolution
des conflits, une surveillance continue plus standardisée
des incidents de CHE, une meilleure appréhension des
populations dʼéléphants impliquées dans les dommages
aux cultures, et des responsabilités claires lors du règlement des CHE, avec attribution dʼinstruments juridiques
pertinents. De façon plus générale, on a insisté sur le fait
que les leçons tirées des efforts de mitigation en Afrique
et en Asie devaient être partagées plus largement avec les
gestionnaires des CHE et les décideurs, et quʼil fallait que
Pachyderm No. 42 January–June 2007
African Elephant Specialist Group report
Africa and Asia must continue to be shared more
widely with HEC managers and decisionmakers
and that HEC and all wildlife-related conflict
problems that negatively affect human livelihoods
be taken into account in national development and
poverty-reduction programmes and supported by
the donor community.
AfESG-certified training course for
human–elephant conflict mitigation
Earlier in the year, a group of AfESG-selected
practitioners from both anglophone and francophone range states attended a training workshop
at the Elephant Pepper Training Facility in Livingston, Zambia. The workshop was very successful and the trainees have all gone back to their
respective homes to try out their newly acquired
skills. As part of the training programme, each
participant was given a small grant to get them
started on local mitigation efforts. We anxiously
await news of their experiences and hope that this
training opportunity will have helped to spread
expert knowledge from the trainers to the places
where it is most needed.
The comprehensive HEC training course,
developed by AfESG in collaboration with the
Elephant Pepper Development Trust and funded
by WWF International, reported on in Pachyderm
41, is now complete. Human–elephant conflict
mitigation: a training course for communitybased approaches in Africa by GE Parker, FV Osborn, RE Hoare and LS Niskanen is now available
in French and English on the AfESG website at
http://iucn.org/themes/ssc/sgs/afesg/hec/hectools
.html. I would like to express my personal gratitude to the team that so diligently undertook this
impressive task, which certainly contributes one
more important tool in the toolbox for mitigating
human–elephant conflict.
Illegal killing and ivory trade
Update on the CITES MIKE programme
After a hiatus of several months, the MIKE
Central Coordinating Unit (CCU) became fully
operational again in April 2007. Now based at
the United Nations Environment Programmeʼs
headquarters in Gigiri, Nairobi, the CCU is curPachyderm No. 42 January–June 2007
les CHE et tous les problèmes de conflits liés à la faune
sauvage, qui affectent négativement des vies humaines,
soient pris en compte dans les programmes de développement national et de réduction de la pauvreté, avec le
soutien de la communauté des donateurs.
Formation certifiée par le GSEAf pour la
gestion des conflits hommes–éléphants
Au début de cette année, un groupe de praticiens sélectionnés par le GSEAf dans des états anglophones et francophones de lʼaire de répartition a participé à un atelier
de formation à la Elephant Pepper Training Facility de
Livingston, en Zambie. Lʼatelier a très bien marché, et
tous les participants sont rentrés dans leur pays pour
mettre en pratique leurs nouvelles compétences. Dans
le cadre du programme de formation, chacun a reçu une
petite allocation pour quʼil entame ses efforts de mitigation locale. Nous attendons avec anxiété les nouvelles de
leurs expériences et nous espérons que cette formation
aura aidé à répandre lʼexpertise des formateurs vers les
endroits où elle est la plus nécessaire.
Le programme polyvalent de la formation en CHE,
mis au point par le GSEAf en collaboration avec le
Elephant Pepper Development Trust et financé par le
WWF-International—on en parle dans le Pachyderm
41—est maintenant complet : La gestion des conflits
hommes–éléphants : formation sur les approches communautaires en Afrique par G.E. Parker, F.V. Osborn,
R.E. Hoare et L.S. Niskanen, est maintenant disponible
en anglais et en français sur le site du GSEAf : http://
iucn.org/themes/ssc/sgs/afesg/hec/hectools.html. Je
voudrais exprimer toute ma gratitude à lʼéquipe qui a si
diligemment entrepris cette tâche impressionnante qui
place dans lʼarsenal destiné à la mitigation des CHE un
de ses outils les plus importants.
Massacres illégaux et commerce
d’ivoire
Mise à jour du programme MIKE/CITES
Après un hiatus de quelques mois, lʼUnité centrale de
coordination de MIKE (CCU) est redevenue tout à
fait opérationnelle en avril 2007. Basée aujourdʼhui au
Quartier général du PNUE à Gigiri, Nairobi, la CCU se
compose de Tom De Meulenaer, qui a succédé à Nigel
Hunter comme coordinateur de MIKE, et de Julian Blanc,
qui est devenu lʼanalyste des données de MIKE en avril
5
Dublin
rently staffed by Tom De Meulenaer, who succeeded Nigel Hunter as the MIKE coordinator,
and Julian Blanc, who became the MIKE data
analyst in April 2007. A memorandum of understanding has been concluded between CITES
and IUCN for the latter to provide administrative
and logistic support to the MIKE subregional
support units (SSUs) in central, eastern and West
Africa. These three SSUs continue to be headed
by Sébastien Luhunu, Edison Nuwamanya and
Sani Massalatchi, respectively. Two new staff
members recently joined MIKE–Central Africa:
Martha Bechem as new deputy support officer
and Solange Soh as administrative assistant. The
recruitment of another deputy support officer for
West Africa, and of administrative assistants for
eastern and West Africa and the CCU are under
way. The SSU for southern Africa is expected to
reopen soon under the guidance of a new support
officer. The future of the MIKE programme in
Africa appears secure over the medium term, with
funding from the European Commission expected
to carry the programme through 2011.
In the six years since it began, the MIKE
programme has been deployed in over 70 sites
in 44 elephant range states in Africa and Asia.
These years of hard work have culminated in the
achievement of an important milestone. With the
completion of population surveys in a number of
Asian sites, the MIKE baseline was approved by
the CITES Standing Committee at its 55th meeting, held in The Hague just before CoP14 (3–15
June 2007). As per its mandate, a monitoring
programme such as MIKE needs to have baseline information in place to determine trends in
elephant populations and levels of illegal killing,
successes and failures of management efforts,
and effects of national or international decisions
regarding elephants or trade in elephant products.
One of the challenges for MIKE will be to monitor the impact of the eventual sales of legal ivory
stocks from Botswana, Namibia, South Africa and
Zimbabwe, as agreed at CoP14.
The MIKE baseline report, which contains
information on law enforcement, elephant populations and site-influencing factors for 51 MIKE
sites in Africa and 20 in Asia, suggests that in
Africa, levels of illegal elephant killing are significantly affected by the subregion (poaching in
central Africa is much higher than in any other part
6
2007. Une lettre dʼentente a été conclue entre la CITES
et lʼUICN pour que ce dernier fournisse son support
logistique et administratif aux Unités Sous-régionales de
Support de MIKE (SSU) en Afrique centrale, de lʼEst et
de lʼOuest. Ces trois SSU sont toujours respectivement
dirigées par Sébastien Luhunu, Edison Nuwamanya et
Sani Massalatchi. Deux nouveaux membres ont rejoint
récemment le programme MIKE en Afrique centrale :
Martha Bechem comme nouveau responsable adjoint du
support et Solange Soh comme assistante administrative.
Le recrutement dʼun nouveau responsable adjoint du
support pour lʼAfrique de lʼOuest et dʼassistants administratifs pour lʼAfrique de lʼEst et de lʼOuest et pour la
CCU est en cours. La SSU dʼAfrique australe devrait
rouvrir prochainement sous la direction dʼun nouveau
responsable du support. Lʼavenir du programme MIKE
en Afrique semble assuré à moyen terme car le financement de la Commission européenne devrait le mener
jusquʼen 2011.
Depuis quʼil a été lancé, il y a six ans, le programme
MIKE a été déployé sur plus de 70 sites, dans 44 états
de lʼaire de répartition des éléphants, en Afrique et en
Asie. Ces années de travail intense ont culminé par la
pose dʼun jalon important. En terminant les études de
population dans un certain nombre de sites asiatiques, la
base de référence MIKE a été approuvée par le Comité
permanent de la CITES lors de sa 55ème réunion, qui sʼest
tenue à La Haye juste avant la CoP14 (3–15 juin 2007).
Comme le veut son mandat, un programme de contrôle
continu comme MIKE se doit dʼavoir des informations
de référence pour déterminer les tendances des populations dʼéléphants et le taux de massacres illégaux, les
réussites et les échecs des efforts de gestion, et les effets
des décisions nationales et internationales concernant les
éléphants ou le commerce des produits qui en sont issus.
Un des défis de MIKE consistera à surveiller lʼimpact
des ventes des stocks dʼivoire légal dʼAfrique du Sud, du
Botswana, de Namibie et du Zimbabwe, que la CoP14
a autorisées.
Le rapport de référence de MIKE, qui contient des
informations sur lʼapplication des lois, les populations
dʼéléphants et les facteurs influents sur le terrain pour 51
sites africains et 21 sites asiatiques de MIKE, laisse penser quʼen Afrique, les taux de massacre illégal dʼéléphants
sont significativement affectés par la sous-région (le
braconnage en Afrique centrale est bien plus élevé que
partout ailleurs dans le continent), par lʼaccessibilité des
sites et la proximité des routes, le degré de corruption
sévissant dans un pays, le niveau réel de protection,
et lʼhabitat (par exemple, il y a pour le moment plus
Pachyderm No. 42 January–June 2007
African Elephant Specialist Group report
of the continent), accessibility of sites and vicinity
of roads, the degree of corruption in a country, the
actual levels of protection, and the habitat (for
example, there is more illegal killing in forests
than in savannas at present). In reference to the
African Elephant Status Report 2007, the MIKE
programme is monitoring between 35% and 43%
of the total estimated number of elephants on the
African continent. Although statistical analysis of
the baseline information is preliminary in nature,
it will become the basis for the benchmark against
which changes in levels of illegal killing will be
measured in the future.
While ensuring that data continue to flow
from the sites to the CCU, the MIKE team is
now working on improving and refining the
programme to enhance its robustness and build
additional capacity in the range states. The new
team is also keen to reinvigorate the synergy and
collaboration with both the African and the Asian
Elephant Specialist Groups.
Control of illegal trade in African
elephant ivory
The recent report of TRAFFICʼs Elephant Trade
Information System (ETIS) was presented at
CoP14 in June 2007 and can be viewed in its
entirety at http://www.cites.org/eng/cop/14/doc/
E14-53-2.pdf. The report produced an updated
trend representing the general pattern of illegal
trade in ivory over the period 1989–2006. Adjusted to reduce bias and smoothed to indicate the
underlying trend more clearly, the trend showed
that illicit trade in ivory has been increasing since
2004 but that, despite its increase, overall the
level of illicit trade now is less than what it was
in 1998 and 1999. This increasing trend in recent
years is serious cause for concern, as it follows
on the coattails of steps by CITES since CoP13
to implement ʻan action plan for the control of
trade in African elephant ivoryʼ. Perhaps more
worrying still, it is a clear signal that measures
taken to implement the required actions identified
previously have not been sufficient to demonstrate
any positive impact to date.
The report further stated that the hypothesis
that CITES elephant discussions and decisions
produce ʻsignalsʼ leading to increased illicit trade
in ivory could not be validated using the ETIS
Pachyderm No. 42 January–June 2007
de massacres illégaux en forêt quʼen savane). Dʼaprès
le Rapport du Statut 2007 de lʼEléphant dʼAfrique, le
programme MIKE surveille entre 35 et 43 % du nombre
total estimé des éléphants sur le continent africain. Bien
que lʼanalyse statistique de lʼinformation de référence soit
par définition un préliminaire, elle deviendra la référence
à laquelle les changements des niveaux de massacres
illégaux seront comparés à lʼavenir.
Tout en sʼassurant que les données continueront à
affluer des sites vers la CCU, lʼéquipe de MIKE cherche
maintenant à améliorer et à affiner le programme pour le
renforcer et pour élaborer des capacités supplémentaires
dans les états de lʼaire de répartition. La nouvelle équipe
souhaite aussi raviver la synergie et la collaboration avec
les deux Groupes spécialistes des éléphants, africain et
asiatique.
Contrôle du commerce illégal de l’ivoire
d’éléphant d’Afrique
Le rapport récent du Système dʼInformation sur le Commerce des Eléphants (ETIS) de TRAFFIC a été présenté à
la CoP14 en juin 2007, et peut être lu dans sa totalité sur:
http://www.cites.org/eng/cop/14/doc/E14-53-2.pdf. Ce
rapport donne une tendance actualisée du schéma général
du commerce illégal dʼivoire pour la période 1989–2006.
Ajustée pour réduire les biais, et atténuée pour indiquer plus
clairement la tendance sous-jacente, la tendance montre
que le commerce illégal dʼivoire a augmenté depuis 2004
mais que, malgré cette augmentation, le niveau général de
commerce illégal est plus faible aujourdʼhui quʼen 1998
ou 1999. Cette tendance à la hausse des dernières années
est vraiment inquiétante dans la mesure où elle apparaît
dans le sillage de décisions prises par la CITES depuis la
CoP13 pour réaliser « un plan dʼaction pour le contrôle du
commerce de lʼivoire dʼéléphant africain ». Plus inquiétant
encore peut-être, cʼest un signe évident que les mesures
prises pour réaliser les actions demandées identifiées
auparavant nʼont pas été suffisantes pour pouvoir montrer,
à ce jour, un impact positif.
Le rapport dit encore que lʼhypothèse selon laquelle
les discussions et les décisions CITES sur les éléphants
produisent des « signaux » qui entraînent une augmentation du commerce illégal dʼivoire nʼa pas pu être validée
au moyen des données dʼETIS. Lʼanalyse de la tendance
du commerce illégal et la chronologie des questions
et des événements touchant les éléphants au niveau
de la CITES ne montrent aucun lien prévisible, aucun
schéma qui vienne étayer cette théorie. Contrairement
aux signaux, le commerce illégal dʼivoire était lié plus
7
Dublin
data. Analysis of the trend in illicit trade and
the timeline of elephant issues and events under
CITES showed no predictable relationship or pattern supporting this theory. In contrast to signals,
illicit trade in ivory was most directly related to
tangible market forces and the degree of effective
law enforcement. This analysis confirms for the
third consecutive ETIS analysis that illicit ivory
most typically flows through and into domestic
ivory markets that lack effective law enforcement
and regulatory control. Put simply, illegal ivory
follows the ʻpath of least resistanceʼ in realizing
economic returns in the most efficient and timely
manner possible.
Lastly, the ETIS report to CITES CoP14
highlighted the link between poor governance
and the illicit ivory trade, and drew attention to
corruption as a root cause in illicit trade dynamics.
There are implications for improved governance
at all levels of the illegal trade in ivory including whether seizures are made and are reported,
ivory stock management systems are developed,
legislation is amended or improved, and ivory
trade offenders are investigated or prosecuted.
The report concluded that unless governance
issues are firmly addressed at the national level,
successful implementation of the CITES Action
Plan for Ivory Control will continue to be seriously
compromised.
Updates on conservation and
management strategies and
action plans
Central Africa
Growing concerns about the status of elephants
and elephant conservation in central Africa have
emerged in recent months, including worrying
reports of illegal killing of elephants in the Congo
Basin and areas just to the north in neighbouring
Chad, and the interdigitated forest and savanna
zone in the northern part of Central African Republic. The ETIS report to CITES CoP14 identified several central African countries as being
the source of illegal ivory on the international
market with the growth of Chinaʼs demand for
this highly valued luxury product flagging cause
for concern.
To this end, and further to my last report, I
8
directement à des forces tangibles du marché et au degré
effectif dʼapplication des lois. Cette analyse confirme
pour la troisième fois consécutive pour ETIS que lʼivoire
illicite sʼécoule de façon très caractéristique par et dans
des marchés domestiques où lʼapplication des lois et
les contrôles sont totalement insuffisants. En un mot,
lʼivoire illégal suit « la voie de la facilité » et procure
des revenus économiques de la façon la plus efficace et
la plus rapide possible.
Enfin, le rapport ETIS à la CoP14 de la CITES
souligne le lien entre la mauvaise gouvernance et le
commerce illégal dʼivoire et il attire lʼattention sur la
corruption qui est une cause première dans la dynamique
du commerce illégal. Il sous-entend quʼil est possible
dʼaméliorer la gouvernance à tous les niveaux du commerce illégal dʼivoire, selon que lʼon fait des saisies et
quʼon en fait rapport, que lʼon développe des systèmes
pour la gestion des stocks dʼivoire, que la législation
est amendée ou améliorée et que les contrevenants sont
poursuivis et condamnés. Le rapport conclut que, si les
questions de gouvernance ne sont pas fermement traitées
au niveau national, la réussite de lʼapplication du Plan
dʼaction de la CITES pour le Contrôle de lʼIvoire sera
toujours gravement compromise.
Mise à jour des stratégies de
conservation et de gestion et des
plans d’action
Afrique Centrale
Ces derniers mois, nous sommes de plus en plus inquiets
au sujet du statut et de la conservation des éléphants en
Afrique centrale, en raison de rapports préoccupants
notant des massacres illégaux dʼéléphants dans le bassin
du Congo et dans les régions juste au nord, dans le Tchad
voisin, et dans la zone interpénétrée de forêt et de savane
du nord de la République Centrafricaine. Le rapport ETIS
à la CoP14 de la CITES identifie plusieurs pays dʼAfrique
centrale comme étant les sources de lʼivoire illégal qui
arrive sur le marché international, suite à la croissance de
la demande chinoise pour ce produit de luxe très prisé,
et cʼest très inquiétant.
Pour cette raison, et suite à mon dernier rapport, jʼai
contacté nos membres, nos partenaires et les organismes donateurs en Afrique centrale afin de chercher des
moyens pour collaborer au mieux dans nos efforts visant
à faire accepter officiellement la Stratégie de Conservation de lʼEléphant en Afrique Centrale et à poursuivre
le développement et la réalisation des plans dʼaction naPachyderm No. 42 January–June 2007
African Elephant Specialist Group report
have been actively approaching our central African
members, partners and donor agencies, looking
for ways and means to best collaborate in the efforts needed to get the Central African Elephant
Conservation Strategy formally adopted and to
continue the development and implementation
of subsequent national action plans. This work
remains vital in the face of growing threats across
the area, largely driven by the rapidly escalating
exploitation of the subregionʼs timber, oil and
mineral resources.
Southern Africa
In April 2007, the Southern African Elephant
Conservation Strategy was formally adopted by
the environment ministers of SADC (Southern
African Development Community). This now
paves the way for further development of national
action plans and their implementation throughout
the subregion.
In South Africa, the Ministerʼs Scientific
Round-table on Elephants (SRT), reported in
previous AfESG Chair reports, has evolved into
an assessment of elephant management in South
Africa. SRT recommended an elephant research
programme to address the key gaps in the scienceinforming management decisions in the country.
The first action called for a scientific assessment,
aimed at establishing the information baseline and
user needs, thus making a gap analysis possible.
The assessment will establish what information
is needed to address the responsible management
of elephant populations in South Africa, what is
known and agreed, and what is uncertain because
either it has not been adequately researched or the
scientific interpretations vary. This assessment
will be undertaken this year under the leadership
of Dr Bob Scholes from South Africaʼs Council
for Scientific and Industrial Research (CSIR) with
a cadre of authors and review editors, including
myself.
The output of the assessment will be a booklength volume (200 pages) with about 10 chapters,
covering a range of topics: synthesizing, evaluating and summarizing knowledge on the biology
and ecology of elephants; elephant effect on trees,
other herbivores, birds and ecosystem function;
management techniques; and the social, economic
and ethical implications of various options. The
Pachyderm No. 42 January–June 2007
tionaux subséquents. Ce travail reste primordial face aux
menaces croissantes dans la région, fortement aggravées
par lʼexploitation en croissance rapide du bois, du pétrole
et des ressources naturelles de la sous-région.
Afrique australe
En avril 2007, la Stratégie sud-africaine de conservation
de lʼéléphant a été officiellement adoptée par les Ministres de lʼEnvironnement de la SADC (Southern African
Development Community). Ceci trace la voie pour le
développement ultérieur de plans dʼaction nationaux et
pour leur application dans toute la sous-région.
En Afrique du Sud, la Table ronde scientifique ministérielle sur les éléphants (SRT), dont il fut question
dans de précédents rapports du GSEAf, a évolué en une
évaluation de la gestion des éléphants en Afrique du Sud.
La SRT recommandait quʼun programme de recherche
sur les éléphants sʼintéresse aux lacunes principales
dans les décisions en matière de gestion scientifiquement basée dans le pays. La première démarche faisait
appel à une évaluation scientifique visant à établir les
besoins dʼinformation de base et les demandes des utilisateurs, pour rendre possible une analyse des carences.
Lʼévaluation va permettre de connaître quelles informations sont nécessaires pour une gestion responsable des
populations dʼéléphants en Afrique du Sud, ce qui est
connu et accepté, et ce qui nʼest pas sûr, soit parce que
la recherche nʼa pas été adéquate, soit parce que les
interprétations scientifiques varient. Cette évaluation se
fera cette année sous la direction du Dr Bob Scholes du
Council for Scientific and Industrial Research (CSIR) de
lʼAfrique du Sud, avec un cadre dʼauteurs et dʼéditeurs
de comptes-rendus, dont moi-même.
Le résultat de lʼévaluation sera un réel volume (200
pages) dʼenviron dix chapitres couvrant des sujets divers:
la synthèse, lʼévaluation et le résumé des connaissances
sur la biologie et lʼécologie des éléphants ; lʼeffet des éléphants sur les arbres, sur les autres herbivores, les oiseaux
et les fonctions de lʼéco-système ; les techniques de gestion ; et les implications sociales, économiques et éthiques
des différentes options. Ce livre sera le premier en son
genre et sera dʼactualité au point de vue tant national
quʼinternational. Les lecteurs auxquels il est destiné sont
multiples : non seulement les décideurs et les professionnels de la conservation en Afrique du Sud et dans le reste
de lʼAfrique, mais aussi les étudiants de troisième cycle
dans de nombreux endroits du monde, les chercheurs et
les universitaires, les ONG de conservation, les parties
prenantes intéressées et le public en général.
9
Dublin
book will be the first of its kind and will be topical
both nationally and internationally. Thus anticipated readership is broad, including not only conservation policymakers and practitioners in South
Africa and the rest of Africa, but also postgraduate
students in many parts of the world, researchers
and academics, conservation NGOs, interested
stakeholders, and members of the public.
West Africa
From January to June 2007, the AfESGʼs West
African Programme Officer, Lamine Sebogo,
continued to put considerable effort into assisting range states in West Africa develop national
strategies to guide elephant conservation in the
subregion. With financial support from the US
Fish and Wildlife Service, and technical support
from AfESG, two new national strategies were
completed, for Guinea and Benin.
Other countries have expressed their interest and requested assistance to develop similar
initiatives. In the light of these requests, we have
just assisted a local NGO in Mali in preparing a
funding proposal to work with the government in
developing a strategy for Mali. Our West African
office remains ready to support Sierra Leone and
any other interested country of the subregion in
fulfilling their commitment to develop national
action plans.
Stemming from the memorandum of understanding for implementing the Strategy for the
Conservation of Elephants in West Africa signed
by the 13 elephant range states in West Africa,
bilateral agreements for corridor management
are being negotiated. A bilateral agreement between Ghana and Burkina Faso has been drafted
and will be signed by the relevant authorities in
the upcoming months. Similar agreements are in
progress between Ghana and Togo and between
Côte dʼIvoire and Ghana, while still others are
under discussion between Burkina Faso and Mali
and between Burkina Faso and Côte dʼIvoire.
Transboundary elephant conservation efforts are
really moving forward in West Africa.
Perhaps most importantly a number of activities from the existing action plans and strategies
are now being implemented successfully. In fact,
thanks to funding received from the French government and the US Fish and Wildlife Service,
10
Afrique de l’Ouest
De janvier à juin 2007, le responsable du programme
du GSEAf en Afrique de lʼOuest, Lamine Sebogo, a
poursuivi son effort considérable pour aider les états
ouest-africains de lʼaire de répartition à développer leur
stratégie nationale, pour guider la conservation des éléphants dans la sous-région. Grâce au support financier
du US Fish and Wildlife Service et au support technique
du GSEAf, deux stratégies nationales ont été complétées,
en Guinée et au Bénin.
Dʼautres états ont manifesté leur intérêt et demandé
de lʼaide pour développer des initiatives similaires. A la
lumière de ces demandes, nous venons justement dʼaider
une ONG locale malienne à préparer une proposition
de financement, pour travailler avec le gouvernement
au développement dʼune stratégie pour le Mali. Notre
bureau ouest-africain reste à la disposition de la Sierra
Leone et de tout autre pays intéressé de la sous-région
pour les aider à respecter leur engagement de développer
des plans dʼaction nationaux.
Trouvant leur origine dans la lettre dʼentente signée
par les 13 pays ouest-africains de lʼaire de répartition des
éléphants pour appliquer la Stratégie de Conservation
des éléphants, des accords bilatéraux sont en négociation
pour la gestion de corridors. Un accord bilatéral entre le
Ghana et le Burkina Faso est prêt et il sera signé par les
autorités compétentes dans les mois qui viennent. Des
accords similaires sont en préparation entre le Ghana et
le Togo et entre la Côte dʼIvoire et le Ghana. Dʼautres
encore sont en discussion entre le Burkina Faso et le Mali
et entre le Burkina Faso et la Côte dʼIvoire. Les efforts de
conservation transfrontalière des éléphants progressent
vraiment en Afrique de lʼOuest.
Plus important peut-être encore, un certain nombre dʼactivités inscrites dans les plans dʼaction et les
stratégies existants sont réalisées avec succès. En fait,
grâce au financement reçu du Gouvernement français et
du US Fish and Wildlife Service, notre bureau du GSEAf
dans la sous-région peut apporter un appui considérable
dans la réalisation des stratégies existantes et dʼautres
initiatives. Entre autres, nous sommes engagés et nous
prenons part à trois processus consultatifs pour développer des corridors pour les éléphants : le premier entre le
Ghana et le Burkina Faso, le deuxième entre le Ghana et
la Côte dʼIvoire dans le corridor forestier Bia–Goasso–
Djambarakrou et le troisième entre le Gourma (Mali) et
le Sahel du Burkina voisin, un paysage important utilisé
par les éléphants pour aller dʼun pays à lʼautre. Nous
sommes vraiment dans les discussions sur la faisabilité
Pachyderm No. 42 January–June 2007
African Elephant Specialist Group report
our AfESG office in the subregion is providing
considerable input for implementing the existing
strategies and other initiatives. Among others, we
are engaged and contributing to three consultative processes for developing elephant corridors:
the first between Ghana and Burkina Faso; the
second between Ghana and Côte dʼIvoire in the
forested Bia–Goasso–Djambarakrou corridor; and
the third between Gourma Mali and neighbouring
Sahel Burkina, an important landscape used by
elephants moving between the two countries. We
are fully engaged in discussions on feasibility and
management options, the ecological assessments
and the necessary actions to ensure the effective
management of these corridors. Thanks to funding support received from the European Union
through the ECoPAS (Protected Areas of Sahelian
Africa) project, joint field activities are being
undertaken in the W–Pendjari–Eastern Reserves
of Burkina Faso corridor as well.
East Africa
Progress on the development of Kenyaʼs national
elephant management strategy has continued under the leadership of Dr Keith Lindsay of EDG
Consultants Limited. A background document on
elephant conservation and management in Kenya
has been prepared following the success of 10
regional workshops in various elephant ecozones
of the country. Inputs from a cross-section of
stakeholders received through the workshops
have been collated and are currently being used to
develop subnational elephant management strategies and a draft national strategy and financing
plan. The draft strategy is anticipated to be ready
for comments before October 2007, with a final
draft produced by December 2007.
Looking forward
The occasion of the CITES CoP14 put African
elephant range states through yet another trying
process, to span the differences of the subregions
while finding a way forward for a common vision
for Africaʼs elephants. Details of the final decision
can be found on the CITES website and I will not
even attempt to summarize them here. But for
now only Japan is acknowledged by CITES as an
Pachyderm No. 42 January–June 2007
et les options de gestion, les évaluations écologiques et
les actions nécessaires pour assurer la gestion efficace
de ces corridors. Grâce au soutien financier de lʼUnion
européenne par lʼintermédiaire du projet ECoPAS (Aires
protégées de lʼAfrique sahélienne), des activités de terrain conjointes sont aussi entreprises dans le corridor des
Réserves de W–Arly–Pendjari au Burkina Faso.
Afrique de l’Est
La stratégie nationale de gestion des éléphants du Kenya
a poursuivi son développement sous la direction du Dr
Keith Lindsay de EDG Consultants Limited. Un document rétrospectif sur la conservation et la gestion des
éléphants au Kenya a été préparé suite à la réussite de dix
ateliers régionaux dans diverses écozones à éléphants du
pays. On a réuni les inputs de tout un ensemble de parties
prenantes récoltés lors des ateliers, et ils servent actuellement à mettre au point des stratégies sous-nationales de
gestion des éléphants et un projet de stratégie nationale
et de plan de financement. Le projet de stratégie devrait
être prêt à recevoir les commentaires avant octobre 2007,
et le projet final en décembre.
Evénements à venir
La CoP14 de la CITES a fait passer les états de lʼaire de
répartition des éléphants par un autre processus éprouvant : prendre la mesure des différences entre les sousrégions tout en trouvant le moyen dʼavoir une vision
commune des éléphants dʼAfrique. Il est possible de
trouver tous les détails de la décision finale sur le site de
la CITES et je ne vais même pas essayer de les résumer
ici. Mais jusquʼà présent, seul le Japon est reconnu par la
CITES comme une destination acceptable pour les ventes
autorisées des stocks dʼivoire, tandis que la Chine fait
tout ce quʼelle peut pour être bientôt reconnue comme
second partenaire.
Cette épreuve de trois semaines complètes mʼa donné
le temps de réfléchir aux deux décennies qui se sont
écoulées depuis les premiers appels pour une interdiction
totale du commerce de lʼivoire, pour protéger la ressource
naturelle la plus estimée du continent, et certainement
son espèce la plus charismatique, lʼéléphant dʼAfrique.
Vingt ans, cʼest long, dans notre vie comme dans celle
dʼun éléphant. Cela devrait suffire pour développer une
vue commune de la façon dʼavancer. Hélas ! Tout en ayant
atteint un « consensus africain », je trouve décourageant
que certains soient rentrés chez eux en pensant quʼils
11
Dublin
acceptable destination for the agreed sale of ivory
stocks, with China striving to become recognized
as a second trading partner soon.
The entire three-week ordeal gave me pause to
think back over nearly two decades since the first
calls came for a total ban on ivory trade to protect
arguably the continentʼs most valuable natural
resource and certainly its most charismatic species—the African elephant. Twenty years is a long
time—in our lives and in the lives of the elephants.
It should be enough time to develop a common
view on the way forward. Sadly, despite achieving
an ʻAfrican consensusʼ, I found it disheartening
that some went home feeling they were winners,
while others left feeling something had been lost.
This is not the outcome one would have hoped for.
Nonetheless, we now have a situation that will
provide virtually another decade for introspection,
dialogue, strategic thinking and decisive action to
conserve the continentʼs elephants.
In the final analysis, of concern to me was
the call for a new African Elephant Action Plan
for three subregions of Africa: West, central and
southern. Such plans already exist with many
national action plans completed and more in the
pipeline. Hence, we must work with our colleagues in the CITES Secretariat to at all costs
avoid duplicating effort. The planning process
is well in hand; what is needed are funds for
implementation, and this brings me to another
part of the ʻconsensusʼ—the call for an African
Elephant Fund to be the repository for donor
funds to support the needs of Africaʼs management
authorities in conserving elephants. Theoretically,
such funds would be used towards strengthening
enforcement capacity, implementing the CITES
action plan for the control of trade in elephant
ivory; building capacity, managing translocations, mitigating human–elephant conflicts, and
enhancing community conservation programmes
and development programmes within or adjacent
to the elephant range—quite a tall order. In fact, I
worry that the magnitude of the need and the ability and willingness of donors to meet these needs
will go unmet as it has for so long. There could be
nothing more demoralizing and undermining than
unfulfilled expectations. So, we must redouble our
efforts and work together to avoid redundancy, to
fill the gaps and move the entire field of elephant
conservation and management in Africa.
12
avaient gagné alors que dʼautres estimaient que quelque
chose était perdu. Ce nʼest pas le résultat quʼon aurait
pu espérer. Néanmoins, nous nous trouvons dans une
situation qui devrait nous donner une décennie supplémentaire pour lʼintrospection, le dialogue, la réflexion
stratégique et des actions décisives pour conserver les
éléphants du continent.
En analyse finale, ce qui mʼa préoccupée fut cette
demande pour un nouveau Plan dʼaction pour lʼéléphant
africain pour trois sous-régions dʼAfrique : lʼOuest, le
Centre et le Sud. De tels plans existent déjà, avec de nombreux plans dʼaction complets et dʼautres à venir. Nous
devons donc travailler avec nos collègues du Secrétariat
de la CITES pour éviter à tout prix de dupliquer ces efforts. Le processus de planification est bien en main ; ce
quʼil faut, ce sont des fonds pour la mise en route, et ceci
mʼamène à une autre partie du « consensus »—lʼappel
pour un Fonds pour lʼEléphant Africain qui recevrait les
fonds des donateurs pour soutenir les besoins des autorités
africaines de gestion dans la conservation des éléphants.
Théoriquement, ces fonds serviraient à renforcer les
capacités en matière dʼapplication des lois, à réaliser le
plan dʼaction de la CITES pour le contrôle du commerce
de lʼivoire dʼéléphant, à créer des capacités, à gérer les
translocations, à traiter les conflits hommes–éléphants,
et à renforcer les programmes communautaires de conservation et les programmes de développement au sein
de lʼaire de répartition des éléphants et à proximité, tout
un programme ! En fait, jʼai bien peur que lʼamplitude
des besoins ne puisse être couverte par la capacité et la
bonne volonté des donateurs, comme cʼest le cas depuis
si longtemps. Je ne connais rien de plus déprimant et de
plus usant que des espérances déçues. Nous devons donc
redoubler dʼefforts et travailler tous ensemble pour éviter
toute redondance, pour combler les lacunes et pour faire
bouger tout le monde de la conservation et de la gestion
des éléphants en Afrique.
Pachyderm No. 42 January–June 2007
Brooks
African Rhino Specialist Group report
Rapport du Groupe Spécialiste des Rhinos d’Afrique
Martin Brooks, Chair/Président
59 Silverdale Crescent, Chase Valley, Pietermaritzburg 3201, South Africa
email: [email protected]
CITES issues
Des affaires de CITES
According to the CITES Secretariat and Parties at
the recent 14th Conference of the Parties to CITES
held 3–15 June 2007 at The Hague, Netherlands,
African and Asian rhinoceros range states are
now in a position to make informed decisions
on managing and conserving their rhinoceros
populations, thanks to the full and comprehensive
joint report the IUCN SSC African and Asian
Rhinoceros Specialist Groups and TRAFFIC (the
wildlife trade monitoring network) submitted to
the CITES Secretariat.
Many range states in Africa and Asia, at least
30 non-range states and the CITES Secretariat
commended these Specialist Groups and TRAFFIC on this report, the compilation of which had
been coordinated by AfRSGʼs Scientific Officer.
The report, which summarizes information on the
conservation status of African and Asian rhino
species, the legal and illegal trade in specimens,
incidents of illegal killing, and conservation and
management strategies, is available at http://
www.cites.org/eng/cop/14/doc/E14–54.pdf.
TRAFFIC also released an associated information document during CoP14 entitled
Rhino-related crimes in Africa: an overview of
poaching, seizure and stockpile data for the period
2000–2005 (downloadable from http://www.cites
.org/common/cop/14/inf/E14i-41.pdf).
In addition, the draft decisions and proposed
amendments to rhino resolution Res 9.14(rev),
which included a provision for future reporting
to CITES CoPs by the rhino specialist groups
and TRAFFIC, were agreed to and adopted by
consensus at CoP14.
Dʼaprès le Secrétariat de la CITES et les Parties à la
14ème Conférence des Parties à la CITES qui sʼest tenue
à La Haye, aux Pays-Bas, du 3 au 15 juin 2007, les états
asiatiques et africains de lʼaire de répartition des rhinocéros sont maintenant à même de prendre des décisions
informées pour la gestion et la conservation de leur
population de rhinos, grâce au rapport complet et détaillé
conjoint des Groupes Spécialistes des rhinos dʼAsie et
dʼAfrique (CSE/UICN) et de TRAFFIC (le réseau de
surveillance continue du commerce de la faune sauvage)
soumis au Secrétariat de la CITES.
De nombreux états de lʼaire de répartition en Afrique
et en Asie, au moins 30 états qui nʼen font pas partie et
le Secrétariat de la CITES ont félicité les deux groupes
spécialistes et TRAFFIC pour ce rapport, résultat dʼune
compilation qui fut coordonnée par le Responsable scientifique du GSRAf. Le rapport, qui résume les informations sur le statut de conservation des espèces de rhinos
asiatiques et africains, le commerce légal et illégal de
spécimens, les cas de massacres illégaux et les stratégies
de conservation et de gestion, est disponible sur : http://
www.cites.org/eng/cop/14/doc/E14–54.pdf.
TRAFFIC a aussi distribué à la CoP14 un document
descriptif intitulé Rhino-related crimes in Africa: an
overview of poaching, seizure and stockpile data for the
period 2000–2005 (déchargeable sur http://www.cites
.org/common/cop/14/inf/E14i-41.pdf).
De plus, les projets de décisions et les amendements
proposés pour la résolution rhinos Res 9.14 (rev), qui
prévoit un financement pour les rapports futurs des
groupes spécialistes des rhinos et de TRAFFIC lors des
prochaines CoP de la CITES, ont été acceptés et adoptés
par consensus à la CoP14.
Pachyderm No. 42 January–June 2007
13
Brooks
Improved system for allocating
permits to hunt black rhinos in
South Africa
Un meilleur système pour accorder
les permis de chasse au rhino noir en
Afrique du Sud
In response to concerns raised by AfRSG and others, South Africaʼs Department of Environment
and Tourism agreed that the system for allocating
permits for trophy hunting black rhinos in South
Africa required modification. A proposed revised
system has been drafted and circulated for comment by a working group of the SADC Rhino
Management Group, which was coordinated by
the AfRSG Scientific Officer. The proposed system brings it in line with the generic guidelines
AfRSG developed a few years ago for range states
that might wish to consider such trophy hunting.
As such, it accords with AfRSGʼs recommended
best practices, and seeks to give incentives to good
black rhino conservation.
En réponse aux inquiétudes exprimées par le GSRAf et par
dʼautres, le Département sud-africain de lʼEnvironnement
et du Tourisme a reconnu que le système national
dʼallocation des permis pour la chasse au trophée de rhinos noirs devait être modifié. Une proposition de système
révisé fut préparée et distribuée pour commentaires par
un groupe de travail du Groupe de gestion des rhinos de
la SADC, coordonné par le Responsable scientifique du
GSRAf. Le système proposé se place dans la lignée des
directives que le GSRAf a mises au point il y a quelques
années pour les états de lʼaire de répartition qui pourraient envisager ce genre de chasse. De cette façon, il est
en accord avec les meilleures pratiques recommandées
par le GSRAf et veut encourager la bonne conservation
des rhinos noirs.
Rhino conservation strategies
Stratégies de conservation des rhinos
A workshop to review Kenyaʼs black rhino strategy was held in early 2007 and a draft will soon
be available for comment. The strategy is aiming for 700 black rhinos by 2011 with the target
of a minimum annual rate of increase of 6% in
the fenced sanctuaries. Improved performance
towards reaching the target is expected since by
late 2006 all 255 elephants had been removed from
Ngulia Sanctuary in Tsavo West and its size was
increased by 28 km2 in mid-2007.
The review of South Africaʼs black rhino
conservation plan, which is also nearing completion, includes a revised target of 3000 or more
for the most abundant south-central subspecies,
and emphasis is given to creating large viable
populations of 50–100 or more animals. Another
important strategic planning initiative concerns
the management of the four remaining northern
white rhino in Garamba National Park, Democratic
Republic of Congo. The AfRSG Secretariat will be
attending a workshop organized by African Parks
Foundation and DRCʼs Institut Congolaise pour
la Conservation de la Nature in September this
year to decide on the best management approach
to secure the future of this Critically Endangered
subspecies.
Un atelier sʼest tenu au début de 2007 pour réviser la
stratégie kényane pour le rhino noir, et un projet sera
bientôt soumis pour commentaires. La stratégie vise
un objectif de 700 rhinos noirs en 2011, avec un taux
dʼaugmentation annuel dʼau moins 6% dans les sanctuaires clôturés. On sʼattend à de meilleures performances
étant donné que fin 2006, les 255 éléphants ont été retirés
du Sanctuaire de Ngulia, au Tsavo-ouest ; lʼajout de 28
km2 au sanctuaire est tenu mi-2007.
La révision du plan dʼaction sud-africain de conservation des rhinos noirs, qui est presque terminée, comprend un objectif réajusté de 3 000 individus, ou plus,
de la sous-espèce la plus abondante au centre-sud, et on
insiste sur le fait de créer de grandes populations viables
de 50–100 individus, voire davantage. Une autre initiative de planification importante concerne la gestion des
quatre derniers rhinos blancs du Nord du Parc National
de la Garamba, en République Démocratique du Congo.
Le Secrétariat du GSRAf va assister à un atelier organisé
par lʼAfrican Parks Foundation et lʼInstitut Congolais
pour la Conservation de la Nature en septembre de cette
année pour déterminer la meilleure approche de gestion
pour assurer un avenir à cette sous-espèce en danger
critique dʼextinction.
14
Pachyderm No. 42 January–June 2007
African Rhino Specialist Group report
SADC Regional Programme for
Rhino Conservation
Programme régional de la SADC pour
la conservation des rhinos
AfRSG coordinated the drafting of terms of
reference for a phase II of the SADC Regional
Programme for Rhino Conservation (RPRC) as
requested by range states. It was suggested that
the programme would concentrate on catalysing
and facilitating intercountry rhino translocations.
SADC RPRC has published its Guidelines for
implementing SADC rhino conservation strategies. The editor and compiler, and four of the five
contributing authors are AfRSG members. It seeks
to succinctly capture the accumulated knowhow
of implementing successful rhino conservation.
While it primarily informs rhino conservation
practitioners, it should also be useful to a wider
range of professionals in conservation and development organizations and in the wildlife and
tourism industry. The document will be released
once it has been formally launched by SADC
later this year.
Le GSRAf a coordonné la préparation des termes de
références pour une Phase II du Programme régional
de la SADC pour la conservation des rhinos (RPCR),
comme le demandaient les états de lʼaire de répartition. On a suggéré que le programme sʼoccupe principalement de catalyser et de faciliter la translocation
de rhinos entre pays. Le RPRC de la SADC a publié
ses « Lignes directrices pour réaliser les stratégies de
conservation des rhinos de la SADC » (Guidelines for
Implementing SADC Rhino Conservation Strategies).
Lʼéditeur et compilateur, et quatre des cinq auteurs
participants sont membres du GSRAf. Elles visent
à rendre de façon succincte tout le savoir-faire de la
conservation réussie des rhinos. Au départ, elles peuvent informer les professionnels de la conservation
des rhinos, mais elles devraient aussi être très utiles
à toute une série de spécialistes de la conservation et
dʼorganisations de développement, tout comme dans
lʼindustrie de la faune et du tourisme. Le document
sera diffusé dès quʼil aura été officiellement lancé par
la SADC dʼici la fin de lʼannée.
Collaboration of AfRSG with
colleagues in Asia
In addition to the joint report to CITES CoP14,
AfRSG continues to collaborate with the Asian
Rhino Specialist Group (AsRSG). The Scientific
Officer attended the recent AsRSG regional meeting held at Kaziranga, Assam, India, in March
2007, and participated in a task force meeting
of the Indian Rhino Vision 2020 range expansion project. We are also working with WWF in
Nepal to share information and lessons learned
and hold training sessions. This work should be
complemented by a recently approved UK-funded
Darwin project in Nepal.
Translocation guidelines
Joint IUCN guidelines on translocations are in
preparation and draft text has been received from
a number of authors. The guidelines are aimed at
decisionmakers and the private sector, and will
be finalized following a workshop later this year.
AfRSG member Dr Pete Morkel has also produced
a detailed manual on black rhino translocation.
Pachyderm No. 42 January–June 2007
Collaboration du GSRAF avec ses
collègues d’Asie
En plus du rapport conjoint à la CoP14 de la CITES,
le GSRAf poursuit sa collaboration avec le Groupe
Spécialiste des Rhinos dʼAsie (GSRAs). Le responsable
scientifique a assisté à la récente réunion régionale du
GSRAs à Kaziranga, Assam, en Inde, en mars 2007 et
il a participé à une réunion du groupe dʼétude du projet
dʼextension de lʼaire du rhinocéros indien Vision 2020.
Nous travaillons aussi avec le WWF au Népal, en partageant les informations et les leçons apprises et en tenant des
sessions de formation. Ce travail devrait être complété par
un projet Darwin dont le financement a reçu récemment
lʼapprobation de la Grande-Bretagne.
Lignes directrices pour les
translocations
Des lignes directrices conjointes de lʼUICN sont en
préparation, et on a déjà reçu les textes dʼun certain
nombre dʼauteurs. Les lignes directrices sont destinées
aux décideurs et au secteur privé et seront finalisées après
un atelier, plus tard dans lʼannée. Un membre du GSRAf,
15
Brooks
Appreciation
AfRSG is extremely grateful to WWF-South
Africa, WWF-Netherlands, Save the Rhino International, the EAZA campaign, the International
Rhino Foundation, and the US Fish and Wildlife
Service for their support, which has allowed its
active participation in and contribution to many
important African rhino conservation initiatives.
16
le Dr Pete Morkel, a aussi produit un manuel détaillé sur
la translocation des rhinos noirs.
Remerciement
Le GSRAf est très reconnaissant envers le WWF-Afrique
du Sud, le WWF-Pays-Bas, Save the Rhino International,
la campagne EAZA, lʼInternational Rhino Foundation,
et le US Fish and Wildlife Service pour leur support qui
a permis sa participation et sa contribution actives à de
nombreuses initiatives très importantes en matière de
conservation des rhinos.
Pachyderm No. 42 January–June 2007
van Strien and Talukdar
Asian Rhino Specialist Group report
Rapport du Groupe Spécialiste des Rhinos d’Asie
Nico van Strien,1 Co-chair for South-East Asia, and Bibhab Kumar Talukdar,2 Co-chair
for South Asia
Kondominium Taman Anggrek 3-23B, Jin. Parman, Slipi, Jakarta 11470, Indonesia
email: [email protected]
2
Aaranyak, 50 Samanwoy Path (Survey), PO Beltola, Guwahati – 781 028, Assam, India
email: [email protected]
1
Rhino Resource Center—new
website
Le Rhino Resource Center— nouveau
site Internet
In May 2007, the Rhino Resource Center (RRC),
jointly sponsored by the International Rhino
Foundation and SOS Rhino, launched its new and
improved website. The site is now updated daily
and lists almost 11,500 references in literature
to rhinos, of which more than 2600 are already
available as downloadable pdf files. The new site
also has a forum for exchange of ideas, news and
queries and a rhino picture gallery with over 600
pictures. Daily more references, pdfs and pictures
are added.
Check the RRC website regularly to see the
latest publications on rhinos and to see an amazing
selection of rhino pictures (www.rhinoresource
center.com). Sign in at the forum to get into
contact with rhino specialists and rhino friends
worldwide.
En mai 2007, le Rhino Resource Center (RRC), sponsorisé par lʼInternational Rhino Foundation et par SOS
Rhino, a inauguré son nouveau Site web. Il est désormais
actualisé chaque jour et reprend près de 11.500 références
sur les rhinos dans la littérature, dont plus de 2.600 peuvent déjà être déchargées en pdf. Ce nouveau site peut
aussi servir de forum dʼéchanges dʼidées, de nouvelles et
de demandes et possède une galerie de photos de rhinos
qui compte plus de 600 clichés. Chaque jour, de nouvelles
références, pdf et photos y sont ajoutés.
Allez voir le site RRC régulièrement pour connaître
les dernières publications sur les rhinos et pour admirer
une étonnante sélection de photos (www.rhinoresource
center.com). Inscrivez-vous au forum pour entrer en
contact avec des spécialistes et des amis des rhinos dans
le monde entier.
AsRSG (South Asia section)
workshop
The Asian Rhino Specialist Group (South Asia)
section had its first workshop during the 2004–2008
quadrennium at Kaziranga National Park, Assam,
5–7 March 2007, with 46 participants, including
20 AsRSG (South Asia) members, representing
Nepal and the states of Assam and West Bengal
in India. The workshop was inaugurated by the
Principal Chief Conservator of Forests, Assam,
Mr Sonadhar Doley; 17 papers were presented.
They were followed by working groups on Indian
rhino conservation in both India and Nepal. Participants expressed the need for an annual meeting
Pachyderm No. 42 January–June 2007
Atelier du GSRAs (section Asie du Sud)
Le Groupe Spécialiste des Rhinos dʼAsie (section dʼAsie
du Sud) a tenu son premier atelier pour la période de
quatre ans 2004–2008 au Parc National de Kaziranga, en
Assam, du 5 au 7 mars 2007, avec 46 participants dont 20
membres du GSRAs (Asie du Sud) représentant le Népal
et les états de lʼAssam et du Bengale occidental, en Inde.
Lʼatelier fut inauguré par le Conservateur principal en
chef des Forêts en Assam, Mr Sonadhar Doley. Dix-sept
articles furent présentés. Ils furent suivis par des groupes
de travail sur la conservation du rhinocéros indien (aussi
appelé unicorne) en Inde et au Népal. Les participants
ont dit quʼil était nécessaire que les membres du GSRAs
se réunissent chaque année. On a décidé que le prochain
atelier annuel du GSRAs (Asie du Sud) se tiendrait au
17
van Strien, Talukdar
of AsRSG members. It was decided that the next
annual workshop of AsRSG (South Asia) will be
held in Nepal in 2008. The workshop has identified
a key thrust area that needs intervention to promote
rhino conservation in India and Nepal.
Dr Bibhab Talukdar appointed
AsRSG Co-chair for South Asia
The sudden, accidental death of Dr Tirtha Man
Maskey, Co-chair of AsRSG (South Asia), in September 2006 created a vacuum in AsRSG (South
Asia). At the AsRSG workshop held at Kaziranga
the opinion from other AsRSG (South Asia)
members was solicited. Based on the feedback
received, Dr Bibhab Kumar Talukdar was unanimously selected as the most appropriate choice
for the vacant position. Dr Talukdar has been
actively involved in the field of rhino conservation for a decade in Assam, India, and is Secretary
General of Aaranyak—a society for conserving
biodiversity in north-east India. He is a member
of the Assam State Board of Wildlife, and on 16
June 2007, he was also nominated to be a member
of the National Board of Wildlife of India. This
board is the highest policy and decisionmaking
body in India concerning wildlife, constituted by
subsection (1) of Section 5A of the Wildlife Protection Act 1972 as amended in 2005. He is also
actively involved in Indian Rhino Vision 2020 and
a member of the Rhino Task Force, constituted by
the Assam government on 30 June 2005.
Vision 2020 update
Indian Rhino Vision (IRV) 2020 is progressing
slightly behind schedule in Manas National Park
(MNP). MNP was selected as the first site for
restocking rhinos in Assam under IRV 2020. The
Security Assessment Group formed by the Rhino
Task Force in Assam has suggested to the MNP
management authority that it speed up construction of antipoaching camps in MNP and properly
deploy forest guards in antipoaching camps. In
the last meeting of the Rhino Task Force held at
Kaziranga National Park on 8 March 2007, it was
agreed that in six monthsʼ time, the camps would
be ready and the Security Assessment Group
18
Népal en 2008. Lʼatelier a identifié une zone absolument
vitale qui nécessite une intervention pour promouvoir la
conservation du rhino en Inde et au Népal.
Le Dr Bibhab Talukdar nommé
co-président du GSRAs pour l’Asie
du Sud
Le décès accidentel du Dr Tirtha Man Maskey, co-président du GSRAs (Asie du Sud), survenu en septembre
2006 a laissé un vide au sein du Groupe. Lors de lʼatelier
de Kaziranga, on a sollicité lʼavis des autres membres du
GSRAs (Asie du Sud) et, suite aux feedback reçus, le Dr
Bibhab Talukdar fut choisi à lʼunanimité, comme étant le
choix le plus approprié pour remplir cette fonction. Le Dr
Talukdar est activement impliqué dans la conservation du
rhino sur le terrain depuis une décennie, en Assam, Inde
et il est le Secrétaire général dʼAaranyak—une société
vouée à la conservation de la biodiversité dans le nord-est
de lʼInde. Il est membre du Bureau de la Faune sauvage
de lʼétat dʼAssam, et le 16 juin 2007, il fut aussi nommé
membre du Bureau national indien de la Faune sauvage.
Ce bureau est la plus haute autorité du pays en matière de
politique et de décision concernant la faune, constituée
par la sous-section (1) de la Section 5A de la loi de 1972
sur la protection de la faune sauvage, amendée en 2005.
Il est aussi activement impliqué dans Indian Rhino Vision
2020 et membre du Groupe dʼétude sur le Rhino constitué
par le gouvernement dʼAssam le 30 juin 2005.
Mise à jour de Vision 2020
Indian Rhino Vision (IRV) 2020 progresse avec un léger
retard dans le Parc National de Manas (MNP). Le MNP
fut choisi pour être le premier site de réintroduction des
rhinos en Assam dans le cadre de IRV 2020. Le Groupe
dʼévaluation de la sécurité, constitué du groupe de travail
pour le rhino dʼAssam, a suggéré à lʼautorité de gestion du
MNP dʼaccélérer la construction des camps anti-braconnage dans le parc et de déployer correctement les gardes
forestiers dans ces camps. Lors de la dernière réunion
du groupe de travail qui a eu lieu au Parc National de
Kaziranga le 8 mars 2007, on a convenu que, six mois
plus tard, les camps devraient être prêts et que le Groupe
dʼévaluation de la sécurité viendrait les visiter et évaluer
la sécurité au MNP en vue de la translocation de rhinos
sauvages de Kaziranga et de Pabitora vers Manas.
Pachyderm No. 42 January–June 2007
Asian Rhino Specialist Group report
would revisit and reassess the security scenario
in MNP with regard to feasibility of translocating wild rhino from Kaziranga and Pabitora to
Manas.
Status of rhino in Nepal
The current conservation status of the rhino in
Nepal is challenging, with a downfall in population in both Chitwan National Park and Bardia
National Park. Due to sociopolitical unrest that
has resulted in the abandonment and destruction
of antipoaching camps in these parks, the wellorganized poachers have stepped up their attacks
on the rhino population. The Chitwan population
had declined to about 372 by the year 2005 from
about 544 recorded in 2000. The rhino population
in Bardia has touched 30 in 2007 from about 67
recorded in 2000. Currently in the Suklaphanta
Wildlife Reserve, about seven rhinos are estimated
to survive.
Status of rhino in India
Contrary to that in Nepal, rhino conservation in
India may be regarded as stable and encouraging.
In Assam the total rhino population was estimated
at, coincidentally, 2006 in the year 2006; in West
Bengal, the rhino population as estimated in 2005
was 135, of which 108 were found in the Jaldapara
Wildlife Sanctuary and 27 in Gorumara National
Park. However, there was a sudden organized
attack on the rhino population in Kaziranga National Park and in a span of about 45 days during
March–April 2007, six rhinos were poached and
their horns taken away. The incidence has prompted the Assam Forest Department to strengthen the
workforce and intelligence gathering in Kaziranga
National Park to halt further assault. As a result
of such effort, in April 2007 four poachers were
arrested and two killed in the park.
Training cooperation, Indonesia–
Malaysia–Sabah
The cooperation between the rhino protection
programmes in Malaysia (Peninsula and Sabah)
and Indonesia has continued, and at the invitation
of the Sabah Wildlife Department and SOS Rhino
Pachyderm No. 42 January–June 2007
Statut du rhino au Népal
Le statut actuel de conservation du rhino au Népal est
un vrai défi : la population a chuté aussi bien au PN de
Chitwan quʼà celui de Bardia. A cause de lʼinstabilité sociopolitique qui a entraîné lʼabandon et la destruction des
camps anti-braconnage dans ces parcs, les braconniers,
bien organisés, ont augmenté leurs attaques des populations de rhinos. La population de Chitwan est passée
544 rhinos enregistrés en 2000 à 372 environ en 2005.
La population de Bardia ne dépassait plus 30 individus
en 2007 alors quʼelle en comptait environ 67 en 2000. Et
on estime quʼil reste quelque sept rhinos dans la Réserve
de Faune de Suklaphanta.
Statut du rhino en Inde
Contrairement à ce qui se passe au Népal, on peut considérer que la conservation des rhinos en Inde est stable
et encourageante. En Assam, on a estimé la population
totale de rhinos à 2006 en 2006 ; au Bengale oriental, en
Inde, la population de rhinos était estimée à 135 en 2005,
dont 108 se trouvaient dans le sanctuaire de la Faune
de Jaldapara et 27 dans le Parc National de Gorumara.
Cependant, il y a eu une soudaine attaque bien organisée
sur la population de rhinos du Parc National de Kaziranga
et en lʼespace de 45 jours de mars–avril 2007, six rhinos
furent tués et leur corne emportée. Cet incident a poussé
le Département des Forêts dʼAssam à renforcer la force
de travail et la récolte dʼindices dans le parc pour mettre
fin à ces attaques. Suite à ces décisions, quatre braconniers ont été arrêtés et deux ont été tués dans le parc en
avril 2007.
Coopération dans la formation,
Indonésie–Malaisie–Sabah
La coopération entre les programmes de protection des
rhinos en Malaisie (Péninsule et Sabah) et en Indonésie
sʼest poursuivie et, à lʼinvitation du Département de la
Faune de Sabah et de SOS Rhino (Bornéo), deux gardes
seniors, MM Arief Rubianto et Miskun, ont participé
à lʼétude générale du rhino de Sumatra dans le Refuge
de la Faune de Tabin, Sabah, du 16 février au 16 mars
2007. Cette recherche fut réalisée conjointement par
le Département de la Faune de Sabah, SOS Rhino, le
WWF-Malaisie et Yayasan Sabah. Le rapport indique
que cinq des 12 groupes qui ont participé à la recherche
ont trouvé des signes de la présence de rhinos, mais aussi
19
van Strien, Talukdar
(Borneo), two senior rangers, Mr Arief Rubianto
and Mr Miskun, participated in the general survey
on Sumatran rhinos in Tabin Wildlife Refuge,
Sabah, held from 16 February to 16 March 2007.
The survey was collaboratively operated by the
Sabah Wildlife Department, SOS Rhino, WWF
Malaysia, and Yayasan Sabah. The survey reported
that 5 out of 12 in the survey group found rhino
sign, but also illegal activities like poaching and
fishing were recorded. The status of the Bornean
rhino in Sabah and the required conservation actions are being reviewed at a workshop in Kota
Kinabalu, 5 and 6 July 2007.
Four senior rangers from the Sumatra rhino
protection units will also participate in the Belum
rhino survey being conducted 8–18 July 2007 by the
WWF-Malaysia rhino project in cooperation with the
Perak State Parks Corporation, the WWF-Indonesia
rhino project, and SOS Rhino. Belum State Park and
adjacent areas in northern Malaysia are a key area
for Sumatran rhino in Malaysia, and the survey is
expected to provide more accurate information on
the status of this rhino and threats against it.
Andalas settles in well at the
Sumatran Rhino Sanctuary, Way
Kambas, Sumatra
On 21 February, Andalas arrived safely in the
Sumatran Rhino Sanctuary (SRS), after a trip of
63 hours from Los Angeles through Amsterdam
to Jakarta by plane and continuing by truck and
ferry to Sumatra. Andalas was in excellent health
and has since settled in well in the sanctuary. He
spent one month in compulsory quarantine in a
temporary boma, and after being introduced gradually to SRS conditions was released into a large
paddock in May. He has adjusted well to the SRS
diet and rhythm.
Both young females, Ratu and Rosa, are now
mature, and Rosa started cycling normally a few
months ago. Rosa is still reluctant to be with a male
but Ratu is paired regularly with Torgamba. Soon
both females will be introduced to Andalas, and
everyone is eagerly awaiting the first results.
Rhino May Day 2007—London
The 2007 Rhino May Day, an annual event organized in London to generate publicity and support
20
des activités illégales comme le braconnage et la pêche.
Le statut du rhino de Bornéo à Sabah et les actions de
conservation nécessaires doivent être révisés lors dʼun
atelier à Kota Kinabalu, les 5 et 6 juillet 2007.
Quatre gardes seniors des unités de protection du
rhino de Sumatra participeront aussi à lʼétude du rhino
de Belum, conduite du 8 au 18 juillet 2007 par le projet
rhino du WWF-Malaisie, en coopération avec la Perak
State Parks Corporation, le projet rhino du WWF-Indonésie, et SOS Rhino. Le parc dʼétat de Belum et les zones
adjacentes du nord de la Malaisie sont une région clé pour
le rhinocéros de Sumatra en Malaisie, et lʼétude devrait
fournir des informations plus précises sur le statut de ce
rhino et sur les menaces qui pèsent sur lui.
Andalas s’habitue bien dans le
Sanctuaire des Rhinos de Sumatra,
à Way Kambas
Le 21 février, Andalas est bien arrivé au Sanctuaire
des Rhinos de Sumatra (SRS) après un voyage de 63
heures, en avion entre Los Angeles et Jakarta avec
escale à Amsterdam puis en camion et en ferry jusquʼà
Sumatra. Andalas est arrivé en excellente santé et il sʼest
installé facilement dans le sanctuaire. Il a passé un mois
en quarantaine obligatoire dans un boma temporaire et,
après avoir été progressivement familiarisé aux conditions du SRS, il fut relâché dans un vaste paddock en mai.
Il sʼest bien adapté au régime et au rythme du SRS.
Les deux jeunes femelles, Ratu et Rosa, sont maintenant matures et Rosa a commencé à avoir des cycles réguliers depuis quelques mois. Elle est encore réticente à la
présence dʼun mâle mais Ratu est régulièrement mise en
présence de Torgamba. Les deux femelles seront bientôt
présentées à Andalas, et tout le monde attend anxieusement les premiers résultats de cette rencontre.
Fête du travail pour les Rhinos—
Londres 2007
Le 1er mai 2007 des rhinos, un événement organisé
chaque année à Londres pour faire de la publicité et soutenir la conservation des rhinos, sʼest tenu de nouveau dans
lʼauditorium de la Société zoologique de Londres le 30
mai 2007. Cette année, cette fête fut organisée par le Dr
Kees Rookmaaker, rédacteur en chef du Rhino Resource
Center, en coopération avec la Société zoologique de
Londres, le Zoo de Londres et Save the Rhino International. De nombreux orateurs venus dʼAsie et dʼAfrique
Pachyderm No. 42 January–June 2007
Asian Rhino Specialist Group report
for rhino conservation, was again held at the
auditorium of the London Zoological Society on
30 May 2007. This yearʼs May Day was organized by Dr Kees Rookmaaker, chief editor of the
Rhino Resource Center, in cooperation with the
London Zoological Society, the London Zoo and
Save the Rhino International. A wide range of
speakers from both Africa and Asia and also both
AsRSG Co-chairs were present. The day was well
attended and even made a modest profit for the
Rhino Resource Center.
Pachyderm No. 42 January–June 2007
ainsi que les deux coprésidents du GSRAs étaient
présents. Lʼassistance fut nombreuse, et il y eut même un
modeste bénéfice pour le Rhino Resource Center.
21
Nakandé et al.
RESEARCH
Parasites gastro-intestinaux des éléphants dans la Réserve
Partielle de Pama, Burkina Faso
Alassane Nakandé,1 Adrien Marie Gaston Belem,2 Aimé J. Nianogo,3 Christine Jost 4
Ingénieur du développement rural, Option Eaux et forêts, Burkina Faso; email : [email protected]
Institut du développement rural / Université polytechnique de Bobo Dioulasso,
BP 3770 Ouagadougou 01, Burkina Faso
3
UICN–Burkina Faso, BP 3133 Ouagadougou 01, Burkina Faso
4
Tufts University School of Veterinary Medicine, Department of Environmental and Population Health,
Medford, Massachusetts, USA
1
2
Résumé
Lʼétude préliminaire sur les parasites gastro-intestinaux des éléphants par la coprologie dans la Réserve Partielle
de Pama a montré que ces pachydermes ne sont pas à lʼabri dʼinfestations par les parasites. Les éléphants sont
infestés de façon générale et prépondérante par les strongles quelle que soit la période et les zones. En outre
dʼautres parasites infestent les éléphants dans une certaine mesure et sont représentés par les Strongyloïdes,
les Eimeria, les ciliés, les trématodes et les ectoparasites. Leur prévalence serait variable selon les périodes et
les zones. Les charges parasitaires et les niveaux dʼinfestations des éléphants restent élevés pour les strongles
par rapport à ceux des Strongyloïdes. Les écarts types de ces indicateurs montrent que certains éléphants sont
largement infestés par les parasites tandis que dʼautres seraient à lʼabri de toutes infestations pour des raisons
qui restent à élucider. Face à ces données, la mise en place dʼune stratégie de suivi du stress parasitaire des
éléphants est nécessaire pour contribuer à la sauvegarde de cette espèce.
Mots clés supplémentaires : prévalence, charges parasitaires, niveaux dʼinfestations, coprologie
Abstract
This preliminary coprological study on gastrointestinal parasites of elephants in the Réserve Partielle de Pama
showed that these pachyderms are not safe from infestation by parasites. The elephants are generally infested;
strongles are the dominant parasites irrespective of the period or zone. Other parasites such as Strongyloides,
Eimeria, ciliates, trematodes and ectoparasites infest the elephants to a certain extent. Their prevalence is
variable depending on the period and zone. Parasitic loads and levels of infestation were high for strongles
compared with those of Strongyloides. Standard deviations show that certain elephants are heavily infested by
parasites while others are safe from all infestations for reasons that remain to be studied. In the face of these
data, a follow-up strategy on the parasitic stress to these elephants is necessary to contribute to conserving
this species.
Additional key words: prevalence, parasitic load, levels of infestation, coprology
22
Pachyderm No. 42 January–June 2007
Parasites gastro-intestinaux des éléphants, Burkina Faso
Introduction
Sites et périodes d’étude
La Réserve Partielle de Pama (RPP) héberge et accueille une population importante dʼéléphants estimée
à 2956 individus (Bouché et al. 2004). Malheureusement ces animaux sont confrontés entre autres aux
conflits avec les hommes et le bétail en raison dʼune
compétition pour lʼaccès aux ressources naturelles
(espace, eau, produits végétaux …) et aussi du braconnage même si celui-ci est limité. Egalement la
transhumance qui traverse la RPP et le Parc de Arly ne
se fait pas sans risques notamment épidémiologiques
au regard de lʼimportance des animaux mais aussi
de lʼinsuffisance du suivi sanitaire sans compter le
pâturage clandestin avec toutes ses conséquences
néfastes (Paris 2002).
Par ailleurs, les études réalisées en Afrique du
Sud et au Zimbabwé sur les éléphants dans des parcs
montrent que ces derniers ne sont pas à lʼabri de parasitoses souvent mortelles (Klôs et al. 1987). Dans la
RPP deux éléphants sont morts naturellement et les
observations directes témoignent dʼune atteinte à leur
appareil respiratoire (poumons rouge sombre, fragile au touché et tâchés de nombreux boutons) selon
les services forestiers. Tout ceci justifie davantage
lʼintérêt quʼil y a dʼintégrer cette recherche dans les
stratégies de conservation de lʼéléphant aujourdʼhui
beaucoup centrées sur lʼaménagement des réserves,
la lutte anti-braconnage, la promotion du tourisme
de vision. Les parasites gastro-intestinaux des éléphants peuvent être à lʼorigine de stress susceptibles
dʼinfluencer leur biologie et leur physionomie et de
façon probable être une menace à leur survie.
Des moyens simples et peu coûteux de recherche de certains agents pathogènes en particulier
parasitaires et dʼidentification de leurs œufs ont été
appliqués. Toute chose qui peut contribuer à améliorer les stratégies de gestion pour la sauvegarde
de lʼéléphant à travers la connaissance de leur état
sanitaire qui détermine probablement leur stress.
Ainsi les objectifs spécifiques assignés à cette étude
ont été les suivants :
• faire lʼinventaire des parasites gastro-intestinaux
des éléphants par la coprologie ;
• mesurer lʼimportance des parasites gastro-intestinaux des éléphants.
Les sites de prélèvements du matériel de base pour
lʼétude notamment les crottes ont lieu dans la Réserve
Partielle de Pama et dans le Parc de Arly ( fig. 1). Ces
deux sites présentent des caractéristiques similaires
sur le plan du climat, de la végétation, des sols, et
de la faune.
La saison des pluies couvre les mois de juin à
septembre et les précipitations oscillent entre 1000
mm et 1200 mm par an. Le reste de lʼannée est marqué
par une saison sèche où la période du mois dʼavril à
mai est la plus chaude au moyen 40 ºC.
La végétation dans ces milieux est caractérisée
principalement des savanes arbustives à boisées avec
cependant des galeries forestières le long des cours
dʼeau (Bouché al. 2004). La faune est importante et
diversifiée (antilopes, buffles, singes, phacochères,
bubales …) ; les éléphants occupent une place de
choix tant pour le maintien de lʼécosystème que
pour les retombée économiques engrangées grâce au
tourisme de vision au profit des hommes.
Lʼétude sʼest réalisée pendant quatre mois
dʼoctobre 2003 à janvier 2004 et les prélèvements ont
concerné les différentes concessions de chasse de la
RPP et le Parc de Arly. Des méthodes de collecte et
dʼanalyse au Laboratoire National de lʼElevage du
Burkina ont été appliquées.
Pachyderm No. 42 January–June 2007
Méthodologie
Déroulement de l’étude
Les lieux de prélèvements ont concerné les concessions de chasse de la Réserve Partielle de Pama dont
Pama Nord, Pama Centre-Nord, Pama Sud et Pama
Centre-Sud et le Parc de Arly. Les sites de collecte
sont essentiellement les lieux de refuge des éléphants,
les salines, et les points dʼeau. Le tableau 1 donne le
nombre dʼéchantillons obtenus par zone en fonction
des périodes.
Toutes les crottes observées ne font pas lʼobjet
de prélèvements systématiques. Seules les crottes
fraîches sont concernées par les prélèvements ; deux
échantillons (dont lʼun sert de témoin) dʼenviron
200 g sont alors constitués sur un tas de crottes. Le
choix de lʼéchantillon se fait en fonction de la taille,
lʼétat, et la composition des crottes afin de réduire les
chances dʼeffectuer plusieurs prélèvements sur des
crottes provenant dʼun même éléphant. Pour ce faire
23
Nakandé et al.
Niger
Burkina
Faso
Ghana
W–Arly–Pendjari
ecosystem
Togo
Benin
Ouamou
(Wamou)
PagouTandangou
Ranch de Singou
Pama Nord
Konkombouri
Pama Centre-nord
Parc d’Arly
Enclave
Pama Centre-sud
Enclave
Enclave
Pama Sud
Forêt
Classie de
Madjoari
Parc National de la Pendjari
Zone cynégétique Pendjari
Figure 1. Les sites d’étude et localisation des aires protégées du écosystème W–Arly–Pendjari.
24
Pachyderm No. 42 January–June 2007
Parasites gastro-intestinaux des éléphants, Burkina Faso
Tableau 1. Nombre d’échantillons en fonction de la période et de la zone, octobre 2003–janvier 2004
Zones
Octobre
Novembre
Décembre
Janvier
Total
Pama Nord
Pama Centre-Nord
Pama Sud
Pama Centre-Sud
Parc de Arly
50
0
0
0
0
25
32
27
30
0
0
58
40
31
41
0
0
0
0
90
75
90
67
61
131
Total
50
114
170
90
424
une seule sortie de récolte de crottes est effectuée dans
un endroit bien précis.
Une fois prélevé, lʼéchantillon de crottes est immédiatement introduit dans un flacon contenant une
solution NBF (neutral buffered formaldehyde) à 10 %
ou une solution de formol à 10 %. Cette conservation
permet de fixer les œufs des parasites et dʼéviter leurs
évolutions vers dʼautres stades de développement qui
rendent difficile leur identification.
Les échantillons ainsi conservés ont été analysés
au Laboratoire National dʼElevage à Ouagadougou.
Les matériels de laboratoire utilisés ont été les suivants : un microscope (OLYMPUS CH-2), des filtres
ou passoires à thé pour éliminer les gros débris dans
les échantillons, une balance (SARTORIUS 2153),
des tubes, des solutions, des lamelles, des lames.
La détermination des œufs a été possible grâce
à des caractéristiques particulières de ces derniers
pour chaque type de parasites à travers des techniques
appropriées.
derniers vont flotter en surface et être plus faciles à
identifier. Cette procédure a pour but de permettre
lʼidentification surtout des œufs de nématodes, de
cestodes et les ookystes de coccidies.
Pour le mode opératoire, on pèse à lʼaide dʼune
balance 5 g de fèces dʼéléphant quʼon introduit dans
un bêcher. On ajoute 50 ml dʼeau de robinet dans le
bêcher contenant la matière fécale. Ensuite le mélange
est filtré à lʼaide dʼune passoire à thé. Après 3 minutes, on verse soigneusement le surnageant tout en
conservant au moins 10 ml du restant dont 2 ml sont
introduits à lʼaide dʼune pipette dans un tube centrifugeur qui est rempli par la suite dʼune solution de
flottation (NaNO3) jusquʼà lʼapparition dʼun ménisque
(surface convexe). Une lamelle est placée sur le tube
tout en évitant la formation de bulles dʼair. A défaut
dʼune centrifugeuse le tube est laissé au repos pendant
au moins 10 minutes. Enfin une goutte du surnageant
est déposée sur une lame recouverte par une lamelle
puis observée au microscope à lʼaide des objectifs
x10 puis x40.
Techniques d’étude
Les méthodes qualitatives (sédimentation, flottaison, iode) ont permis de déterminer simplement la
présence des différents types dʼœufs de parasites
et une méthode quantitative (McMaster) a servi à
compter le nombre dʼœufs de parasites. Le principe
de toutes ces méthodes repose sur la différence de
densité entre les solutions utilisées et celle des œufs
de parasites.
MÉTHODE DE FLOTTATION SIMPLE
Le principe repose sur la différence de densité ou
de gravité entre la solution de chlorure de sodium
saturé (NaCl) préparée à raison de 400 g/l (400 g de
NaCl par litre dʼeau) et celle des œufs. La densité de
cette solution étant supérieure à celle des œufs, ces
Pachyderm No. 42 January–June 2007
MÉTHODE DE SÉDIMENTATION
Le principe de cette méthode repose sur la différence
de densité entre celle de lʼeau et celle des œufs. Les
œufs de densité plus élevée que celle de lʼeau vont
se déposer au fond du bêcher. Le but est de permettre
lʼidentification notamment des œufs de trématodes
qui sont de gros œufs souvent operculés et colorés
en brun ou en jaune.
La manipulation sʼest déroulée comme suit : à
lʼaide dʼune balance on pèse 5 g de fèces dʼéléphant
quʼon introduit dans un bêcher contenant 50 ml dʼeau
de robinet. Ensuite on filtre le mélange à lʼaide dʼune
passoire à thé et après 5 mm on verse soigneusement
le surnageant tout en conservant au moins 10 ml du
restant. On ajoute de lʼeau de robinet dans le tube sans
le remplir en le laissant au repos pendant au moins
25
Nakandé et al.
5 minutes. Le surnageant est versé et le contenu est
récupéré dans un aliquote. On recommence la même
procédure trois fois de suite. Enfin lʼobservation est
faite au microscope (au grossissement x100 et x400) en
versant directement lʼaliquote dans une boite de Pétri
ou en déposant à lʼaide dʼune pipette une goutte de la
préparation sur une lame recouverte dʼune lamelle.
MÉTHODE DIRECTE AVEC L’IODE
Le principe repose sur la coloration du contenu des
œufs notamment le cytoplasme qui se colore en jaune
ou en brun et le noyau en brun foncé. Cette méthode
permet de mettre en évidence les œufs et les formes
larvaires des nématodes. Une goutte dʼiode est déposée sur une lame et à lʼaide dʼun bâtonnet applicateur (brin dʼallumette), on prélève un échantillon de
fèces que lʼon mélange avec lʼiode. On recouvre la
préparation dʼune lamelle qui est ensuite observée au
microscope au grossissement x100 puis x400.
MÉTHODE QUANTITATIVE : MÉTHODE DE MCMASTER
La méthode quantitative de McMaster permet non
seulement dʼidentifier et de dénombrer les œufs de
nématodes, de cestodes et les ookystes de coccidies
(protozoaires). Le principe de la réaction est identique
à celui de la méthode de flottaison.
La manipulation sʼest réalisée de la façon suivante : 5 g de fèces pesés à lʼaide dʼune balance sont
introduits dans 45 ml de NaCl saturé et le mélange est
homogénéisé et filtré à lʼaide du filtre dʼune passoire
à thé. Le filtrat ensuite agité est prélevé à lʼaide dʼune
pipette pour remplir les deux chambres de la lame
de McMaster. On laisse reposer la lame remplie de
liquide pendant au moins 3 minutes et lʼobservation
est faite au microscope (au grossissement x10) afin
de dénombrer les œufs de chaque type de parasites
dans les deux chambres de la lame de McMaster. Ce
nombre est multiplié par le coefficient n (n = 30) pour
obtenir le nombre total dʼœufs par gramme de fèces et
ce coefficient n se calcule de la manière suivante.
Le volume dʼune chambre de la lame de McMaster est équivalent à 0,15 cm3 (longueur * largeur *
hauteur soit 1 * 1 * 0,15) et donc le volume de deux
chambres de la lame correspond à 0,30 cm3. Si Y est
le nombre dʼœufs compté dans les chambres de la
lame de McMaster à partir de 5 g de fèces dilués dans
45 ml de NaCl, alors le nombre dʼœufs par gramme
(OPG) de fèces est égal à 45 * Y / (0,3 * 5); soit 30
Y. Le coefficient n est alors égal à 30.
Y
26
Résultats
Les données ont été traitées en fonction des zones et
des périodes et trois paramètres ont été considérés
notamment la prévalence, la charge parasitaire moyenne et le niveau dʼinfestation.
La prévalence est définie comme la proportion
des échantillons positifs par rapport à lʼensemble
des échantillons analysés. La charge parasitaire moyenne est le nombre dʼœufs par gramme de matière
fécale et le niveau dʼinfestation traduit lʼintensité
de lʼinfestation en fonction des intervalles de classification.
Prévalences générales des parasites dans
la Réserve Partielle de Pama
Le tableau 2 montre la prévalence générale dans la
réserve. On remarque que les nématodes (strongles,
Strongyloïdes), les trématodes, les protozoaires
(Eimeria) et les ciliés infestent les éléphants à des
prévalences différentes.
Les nématodes qui infestent le plus les éléphants
sont les strongles avec une prévalence de 97,4 % et
donc générale alors que la prévalence des Strongyloïdes est moyenne (52,4 %). Le figure 2 montre
lʼimportance relative des différents groupes de parasites
qui infestent les éléphants. On note une prédominance
de lʼinfestation par les nématodes en particulier les
strongles (44 %) ensuite viennent successivement les
Strongyloïdes (24 %) les trématodes (14%), les Eimeria
(11 %) et enfin les ciliés (3 %).
Prévalences parasitaires des éléphants en
fonction des périodes
Il ressort du tableau 3 que lʼinfestation des éléphants
varie suivant les périodes et cela en fonction des difTableau 2. Prévalence parasitaires des éléphants
Effectifs positifs Prévalence (%)
Strongles
Strongyloïdes
Trématodes
Eimeria spp.
Ciliés
Ectoparasites
Autres
413
222
131
106
29
281
38
97,4
52,4
30,9
25,0
6,8
66,3
9,0
Effectif total des échantillons = 424
Pachyderm No. 42 January–June 2007
Parasites gastro-intestinaux des éléphants, Burkina Faso
Ciliés
3%
Eimeria spp.
11%
zones, la prévalence des strongles reste la plus élevée
et touche presque tous les éléphants. Par contre la
prévalence des autres parasites reste variable en fonction de la zone.
Autres
4%
Strongles
44%
Trématodes
14%
Strongyloïdes
24%
Figure 2. Importance relative des différents groupes
de parasites.
férents groupes de parasites sauf celle des strongles
qui reste importante quelle que soit la période, et
avec plus de 96 % des éléphants concernés. Presque
la majorité des éléphants est infestée par les Strongyloïdes quelle que soit la période, alors que pour les
autre parasites lʼinfestation atteint des proportions
moindres dʼéléphants.
Prévalences parasitaires des éléphants en
fonction des zones
Le tableau 4 montre la prévalence parasitaire en
fonction de la zone de prélèvement. Dans toutes les
Charges parasitaires des éléphants dans la
Réserve Partielle de Pama
Les charges parasitaires des éléphants et les niveaux
dʼinfestations ont concerné les strongles et les
Strongyloïdes, principaux parasites qui infestent les
éléphants et qui ont été uniquement identifiés par la
méthode quantitative de McMaster.
La situation générale des charges parasitaires des
éléphants traduit à partir du tableau 5 une infestation
moyenne plus élevée pour les strongles que pour les
Strongyloïdes. Lʼanalyse de ce tableau montre que
beaucoup dʼinfestations sʼéloignent de la moyenne au
regard des écarts types (plus élevés que la moyenne)
signifiant par conséquent une infestation forte dʼun
petit nombre dʼéléphants par rapport aux autres qui
restent à lʼabri.
Charges parasitaires des éléphants en
fonction des périodes
Les charges parasitaires des éléphants par les strongles
sont plus importantes dans le mois dʼoctobre (336,67
OPG ou œufs par gramme de matière fécale), environ trois fois plus élevées que dans les autres mois
(tableau 6). Celles des Strongyloïdes restent dʼau
Tableau 3. Prévalences en fonction des périodes
Périodes
Octobre
Novembre
Décembre
Janvier
Moyenne
Prévalences des types de parasites ( % )
Strongles
Strongyloïdes
Trématodes
Eimeria
Ciliés
Autres
96,9
98,3
98,3
100,0
97,9
65,6
47,1
70,1
55,6
59,2
28,1
38,7
36,8
28,9
33,5
22,9
37,0
17,1
6,7
21,7
2,1
6,7
7,7
2,2
5,0
10,4
19,3
3,4
2,2
9,2
Tableau 4. Prévalence des parasites en fonction des zones
Prévalence des types de parasites ( % )
Zones
Parc de Arly
Pama Centre-Sud
Pama Centre-Nord
Pama Sud
Pama Nord
Strongles
Strongyloïdes Trématodes
97,7
98,4
98,9
95,6
95,9
Pachyderm No. 42 January–June 2007
45,0
50,0
50,0
66,2
39,7
32,8
29,0
46,7
20,6
19,2
Eimeria
Ciliés
Autres
22,1
25,8
43,3
14,7
12,3
9,2
3,2
7,8
1,5
9,6
3,1
16,1
23,3
2,9
1,4
27
Nakandé et al.
moins 200 fois inférieur à celle des strongles même
si elles sont plus élevées en octobre. Cependant les
écarts types élevés (plus que la moyenne) montrent
une variabilité importante, signifiant que si certains
éléphants sont lourdement parasités, dʼautres échappent complètement aux infestations (OPG = 0).
Charges parasitaires des éléphants en
fonction des zones
Les charges parasitaires des éléphants sont plus importantes dans la zone Pama Centre-Sud tant pour les
strongles que pour les Strongyloïdes. Lʼanalyse du
tableau 7 montre que Pama Centre-Sud présente une
charge parasitaire des éléphants par des strongles à
peu près deux fois plus importante que celle des autres
zones. Quant aux Strongyloïdes, la charge parasitaire
des éléphants est la plus importante dans la zone de
Pama Sud et de Pama Centre-Sud comparativement
aux autres zones. Les écarts types traduisent que ces
charges parasitaires sont très importantes dans certaines zones et portent sur un petit nombre dʼéléphants
tandis que dʼautres plus nombreux sont totalement à
lʼabri de toutes infestations.
Niveaux d’infestations des éléphants dans
la Réserve Partielle de Pama
Le niveau dʼinfestation a été établi en référence de la
classification utilisée pour les dromadaires par Poda
(2002) empruntée de Leimbacher et al. (1977) afin
dʼapprécier lʼintensité des infestations. On a ainsi le
niveau dʼinfestation:
• faible ou niveau 1 (N1) correspondant à un nombre
dʼOPG strictement inférieur à 100
• moyen ou niveau 2 (N2) correspondant à un nombre dʼOPG compris entre 100 et 500
• élevé ou niveau 3 (N3) correspondant à un nombre
dʼOPG compris entre 500 et 2000
• très élevé ou niveau 4 (N4) correspondant à un
nombre dʼOPG supérieur à 2000
De façon générale dans la réserve les niveaux
dʼinfestations des éléphants par les Strongyloïdes restent plutôt alors que pour les strongles ils concernent
Tableau 5. Charges parasitaires des éléphants dans la Réserve Partielle de Pama (lame de McMaster)
Parasite
Moyenne
Maximum
Minimum
169,67
7,22
1740
180
0
0
Strongles
Strongyloïdes
Ecart type
269,16
22,55
Tableau 6. Charges parasitaires des éléphants en fonction des périodes
Période
Octobre
Novembre
Décembre
Janvier
Strongles
Strongyloïdes
Moyen
Maximum
Ecart type
Moyen
Maximum
336,7
132,1
110,3
119,7
1740
1260
1560
1620
338,5
154,2
199,0
218,0
20,1
7,6
0,5
1,7
180
30
30
30
Ecart type
37,6
13,0
3,8
6,8
Le minimum charges parasitaires était 0 pour les deux groupes de parasites.
Tableau 7. Charges parasitaires des éléphants en fonction des zones
Strongles
Zones
Moyen
Min.
Parc de Arly
Pama Nord
Pama Centre-Nord
Pama Sud
Pama Centre-Sud
105,6
124,8
123,0
196,7
143,7
0
0
0
0
0
28
Strongyloïdes
Max. Ecart type
1620
1560
630
1740
1620
204,7
220,2
170,4
208,2
272,1
Moyen
Min.
1,4
0,4
4,0
9,7
6,8
0
0
0
0
0
Max. Ecart type
30
30
30
150
180
6,4
3,5
10,2
24,1
19,9
Pachyderm No. 42 January–June 2007
Parasites gastro-intestinaux des éléphants, Burkina Faso
la majorité des éléphants. Néanmoins les niveaux
élevés dʼinfestations par les strongles sont observés
bien quʼils touchent peu dʼéléphants comme le précise
le tableau 8.
Tableau 8. Niveaux d’infestations des éléphants
dans la Réserve Partielle de Pama
Nombre
Fréquence (%)
Strongles
N1
N2
N3
270
132
22
63,88
31,13
5,19
Strongyloïdes
N1
N2
N3
421
3
0
99,29
0,71
0,00
Aucun éléphant n’est infesté par les deux groups de parasites au niveau N4.
Niveaux d’infestations des éléphants en
fonction des périodes
Les niveau dʼinfestations élevés par les strongles
sont plus importants dans le mois dʼoctobre (tableau
9). Les niveaux dʼinfestations par les Strongyloïdes
faibles concernent presque lʼensemble des éléphants
quelle que soit la période bien quʼon observe un
niveau dʼinfestation moyen dans le mois dʼoctobre.
On constate quʼaucun élépant nʼest infesté par les
strongles au niveau 4. En outre aucun éléphant nʼest
infesté par les Strongyloïdes au niveau 3 et 4 ; seulement 3 éléphants ou 32 % sont infestés au niveau 2
(tableau 9).
Niveaux d’infestations des éléphants en
fonction des zones
Le tableau 10 montre quʼun petit nombre dʼéléphants
est infesté par les strongles à des niveaux élevés dans
toutes les zones par contre le niveau dʼinfestation par
les Strongyloïdes reste faible pour lʼensemble des
éléphants quelle que soit la zone.
Tableau 9. Niveaux d’infestations des éléphants en fonction des périodes
Octobre
Novembre
Décembre
Janvier
nombre
%
nombre
%
nombre
%
nombre
%
Strongles
N1
N2
N3
16
24
10
32,00
32,00
32,00
64
48
2
56,14
42,11
1,75
124
40
6
72,94
23,53
3,53
66
20
4
73,33
22,22
4,44
Strongyloïdes
N1
N2
47
3
32,00
32,00
114
0
100,00
0,00
170
0
100,00
0,00
90
0
100,00
0,00
Tableau 10. Niveaux d’infestations des’éléphants en fonction des zones
Arly
Pama Centre-Sud
Pama Centre-Nord
Pama Nord
nombre
%
nombre
%
nombre
%
nombre
103
23
5
0
78,6
17,6
3,8
0,0
30
27
5
0
48,4
43,5
8,1
0,0
53
36
0
1
58,9
40,0
0,0
1,1
49
21
0
3
Strongyloïdes
N1
131
N2
0
100,0
0,0
60
2
96,8
3,2
90
0
100,0
0,0
73
0
Strongles
N1
N2
N3
N4
%
Pama Sud
nombre
%
67,2
28,8
0,0
4,1
15
37
0
16
22,1
54,4
0,0
23,5
100,0
0,0
64
4
94,1
5,9
Aucun éléphant dans les cinq zones n’est infesté par les Strongyloïdes au niveau 3 ou 4.
Pachyderm No. 42 January–June 2007
29
Nakandé et al.
Etats des crottes d’éléphants en fonction
des périodes
On remarque dans le tableau 11 quʼil existe des cas
assez suspects de symptômes même si le nombre
dʼéléphants concerné est faible. Lʼobservation de
crottes liquides peut indiquer des signes de diarrhée
qui sont du reste des symptômes possibles de maladies
parasitaires. Cʼest dans le mois de décembre que cet
état est le plus constaté. Dans lʼensemble on estime
à 5,9 % la proportion dʼéléphants présentant cette
anomalie.
Discussions
Les infestations des éléphants par les strongles sont
générales et même prépondérantes comme le montre
aussi une étude réalisée sur les dromadaires par Poda
en 2002. Outre les principaux parasites décrits plus
haut, on observe quelques parasites non identifiés
chez les éléphants (9,0 %), qui justifieraient des
travaux complémentaires pour leur identification. On
note une infestation importante des éléphants par les
ectoparasites. La présence de ces derniers serait liée
soit à leur localisation autour de lʼanus et à leur passage dans les fèces lors de leur émission, soit à leur
traversée du tube digestif après avoir été consommés
avec les aliments.
Lʼabsence des cestodes traduit le fait que leurs
œufs se retrouvent rarement au niveau des fèces. Il
est donc prudent de ne pas conclure rapidement à une
infestation nulle des éléphants par les cestodes.
Apparemment, les parasites gastro-intestinaux
notamment les helminthes auraient des variations
saisonnières similaires à celles des herbivores domestiques avec la saison pluvieuse représentant la période
la plus favorable de multiplication et dʼinfestations
parasitaires (Belem et al. 2001). Nos résultats montrent effectivement que la période et le milieu sont
des facteurs qui influencent dans une moindre mesure
les infestations des éléphants par les parasites. Selon
Hansen et Perry (1990), Bonfoh (1993), Schenkel et
Sapin (1984), et Graber et Perrotin (1983) lʼévolution
du parasitisme est intimement liée à la saison notamment à la chaleur et à lʼhumidité. Le mois dʼoctobre
reste pluvieux et présente une humidité qui pourrait
occasionner des infestations plus importantes. Seulement il y a lieu de nuancer ces résultats par le simple
fait que les éléphants sont très mobiles et fréquentent
plusieurs milieux humides à la fois, ce qui complique
la détermination du lieu dʼinfestation.
Il ressort de lʼétude que les éléphants sont dʼune
part surtout infestés par les strongles avec la coexistence dans une faible mesure des Strongyloïdes
et dʼautre part objet de polyparasitisme. Anonyme
(2003) et Ouattara et al. (1991) ont montré que ce
polyparasitisme est fréquent chez les ovins et souvent
mortel, ce qui semble indiquer des risques élevés
de maladies parasitaires pour ces pachydermes. En
particulier, les charges parasitaires importantes et les
niveaux dʼinfestations élevés de certains éléphants
par ces parasites sont des indicateurs inquiétants. En
effet même si certains éléphants échappent complètement aux infestations parasitaires pour des raisons
qui restent à élucider, dʼautres par contre sʼinfestent
à des niveaux relativement élevés.
Enfin, les prévalences mêmes faibles pour les
autres parasites, les charges parasitaires peu importantes, les niveaux dʼinfestations faibles nʼindiquent
pas forcément que ceci nʼaffecte pas la santé des
éléphants. En outre lʼimportance numérique des
débris dans les préparations et leur couleur souvent
verte et sombre nʼont pas toujours permis à partir des
méthodes employées dʼidentifier et même de voir
certains œufs, toute chose qui pourrait sous estimer
la réalité.
Conclusions et perspectives
Lʼétude sur les parasites gastro-intestinaux des éléphants a contribué à prouver que les éléphants ne
sont pas à lʼabri des infestations susceptibles dʼêtre
préjudiciables à leur santé. Les nématodes (Strongyles
et Strongyloïdes), les trématodes, les protozoaires
Tableau 11. Etats des crottes d’éléphants en fonction des périodes
Etats des crottes
Solides
Liquides
30
Effectifs / mois
Octobre
Novembre
Décembre
Janvier
Total
90
6
118
1
105
13
85
5
398
25
Pachyderm No. 42 January–June 2007
Parasites gastro-intestinaux des éléphants, Burkina Faso
(Eimeria et ciliés) infestent les éléphants de façon
variable suivant la période et le milieu.
La prévalence des strongles et Strongyloïdes
est presque générale et importante. En outre les
fortes charges parasitaires ainsi que les niveaux
dʼinfestations élevés pour certains éléphants même
peu nombreux restent inquiétants même si ces indicateurs ne sont pas forcement les seuls à donner des
signaux dʼalarmes. De toute évidence lʼétude sur les
parasites gastro-intestinaux est un nouveau champ
dʼexplorations scientifiques capable de contribuer
à une meilleure sauvegarde des éléphants et mérite
dʼêtre poursuivie et approfondie au regard des risques
probables de stress que peuvent causer ces parasites.
Dʼores et déjà des actions sont nécessaires pour
réduire et mieux comprendre ces risques et il sʼagit
notamment :
• dʼenvisager dʼautres études sur les parasites des
éléphants en couvrant toutes les périodes de
lʼannée à travers les différents milieux et en fonction de leur âge,
• dʼalerter les responsables des réserves à chaque
fois que des éléphants malades ou morts sont
retrouvés pour permettre des études cliniques et
nécropsiques plus complètes sur les pathologies
des éléphants,
• dʼinstaurer un suivi sanitaire des animaux transhumants à lʼintérieur des réserves pour limiter
ou empêcher les éventuels échanges dʼagents
pathogènes entre les animaux transhumants et
ceux de la réserve,
• de réaliser des traitements préventifs par
lʼaménagement des points dʼeau existants ou
créer de nouveaux points dʼeau et dʼaugmenter
le nombre de salines.
Remerciements
Nous sincéres reconnaissances vont à Lamine Sebgo
qui nous a beaucoup encouragé dans cette initiative
et par son ouverture sans toute considération que
humaine, et a Dr Mipro Hien pour son soutient scieintifue au cours de cette étude.
Nous tenons à exprimer toute notre gratitude aux
institutions en particulier lʼUICN, le Laboratoire Nationale de lʼElevage du Burkina Faso, le United States
Fish and Wildlife Service, Tufts Cumming School of
Veterinary Medecine et les universités (Université
polytechnique de Bobo Dioulasso et Tufts University
School of Veterinary Medicine) qui ont apporté leurs
Pachyderm No. 42 January–June 2007
appuis financiers et techniques à la réalisation de cette
étude. Egalement nous affirmons notre reconnaissance à Dr Bernard Doulkoum pour son soutien et tous
les conseils prodigués à notre profit. Nous ne pouvons
nous empêcher de remercier vivement Rachel Brodlie,
Rhea Hanselmann, Mme Nikiema du Laboratoire
National de lʼElevage pour leur apport technique et
leur disponibilité tout au long de lʼétude. Nos sincères
remerciements vont à Emmanuel Héma, étudiant en
thèse doctorat es-sciences pour son appui scientifique.
Enfin touts nos gratitudes sont manifestés à lʼendroit
de la direction régionale de lʼenvironnement et du
cadre de vie de lʼEst du Brukina, aux producteurs
des périphéries de la Réserve partielle de Pama et aux
pisteurs pour leur hospitalité et leur compréhension
durant cette étude.
Références bibliographiques
Anon. 2003. Memento de lʼagronome. CIRAD et GRET.
Ministère des Affaires Etrangères, Paris. 1700 p.
Belem AMG, Ouedraogo OP, Bessin R. 2001. Gastro-intestinal nematodes and cestodes of cattle in Burkina
Faso. Ouagadougou (Burkina Faso). Biotechnology,
Agronomy, Society and Environment 5(1) : 17–21.
Bonfoh B. 1993. Epidémiologie des nématodes gastro-intestinaux chez les ruminants dans le plateau au Togo.
Thèse de Médecine Vétérinaire. EISMV de Dakar,
Sénégal. 137 p.
Bouché P, Lungren CG, Hien B, Omondi P. 2004. Recensement aérien total de lʼécosystème ʻWʼ–Arli–Pendjari–Oti-Mandouri–Kéran (WAPOK). Ouagadougou,
Burkina Faso.
Graber M, Perrotin C. 1983. Helminthes et helminthoses des
animaux ruminants domestiques dʼAfrique tropicale.
Edition du Point Vétérinaire, Paris. 373 p.
Hansen J, Perry B. 1990. The epidemiology, diagnostic
and control of gastro-intestinal parasites of ruminants
in Africa. International Laboratory for Research on
Animal Diseases (ILRAD), Nairobi. 12 p.
Klös H-G, Ernst ML. 1987. Handbook of zoo-medicine:
diseases and treatment of wild animals in zoos, game
parks, circuses and private collection. Van Nostrand
Reinhold, New York. 372 p.
Ouattara L, Ouedraogo L, Kaufman J, Pfister K. 1991.
Epidemiologie des nématodes gastro-intestinaux des
ruminants au Burkina Faso. Centre de Recherche sur
les Trypanosomes Animales, Bobo Dioulasso, Burkina
Faso. Département de Parasitologie Vétérinaire, Université de Berne, Suisse. 9 p.
31
Nakandé et al.
Paris A. 2002. Etats des lieux quantitatifs et spatialisés de
la transhumance en phéripherie du Parc W, Burkina
Faso. 41 p + annexes.
Poda G. 2002. Contribution à lʼétude de lʼincidence de la
trypanosome et des nématodoses digestives chez le
dromadaire dans la province du Soum (Burkina Faso).
Thèse, diplôme dʼétat de docteur vétérinaire, Ecole
32
Inter-Etat des Sciences et Médecine Vétérinaires, Dakar,
Sénégal. 94 p.
Schenkel F, Sapin JM. 1984. Quelques données épidémiologiques concernant lʼélevage en Haute-Volta. Laboratoire de Diagnostics et de Recherches Vétérinaires,
Section Parasitologie. Projet GTZ « Appuis au Service
Vétérinaire PN 76.2151.9 ».
Pachyderm No. 42 January–June 2007
Dry-season status, trend and distribution of elephants, Burkina Faso
Dry-season status, trend and distribution of Konkombouri
elephants and implications for their management, Burkina Faso
Philippe Bouché
Konkombouri Ecological Monitoring Programme, Burkina Safari Club
BP 5081 Ouagadougou 02, Burkina Faso; email: [email protected]
Abstract
Konkombouri Hunting Zone is part of the transfrontier W–Arly–Pendjari ecosystem. Monthly dry-season
records from wildlife monitoring show that the free-ranging elephant population increased from month to
month with the progression of the dry season and the reduction of water points that still contained water.
However, with the arrival of the first important rains, elephant density continued to increase because water
and new shoots were available everywhere. In 2005 and 2006 elephant density in the Konkombouri Hunting
Zone reached the highest mean dry-season elephant density recorded in West Africa in recent decades. This
situation increases the impact on habitat close to water points and heightens human–elephant conflicts.
Résumé
La Zone de Chasse de Konkombouri fait partie de lʼécosystème transfrontalier W–Arly–Pendjari. Le suivi
mensuel de la faune en saison sèche montre que la taille des populations vivant dans la Zone de Chasse de
Konkombouri augmente de mois en mois tout au long de la saison sèche tandis que le nombre de mare contenant de lʼeau diminue. Avec lʼarrivée des premières pluies les densités dʼéléphants continuent à augmenter car
lʼeau et les nouvelles repousses deviennent disponibles partout. En 2005 et 2006 les densités dʼéléphants ont
atteint la densité moyenne globale pour toute la saison sèche la plus élevée qui ait été enregistrée en Afrique
de lʼOuest ces dernières décennies. Cette situation a pour conséquence, dʼaugmenter du même coup lʼimpact
de cette espèce sur les habitats à proximité des points dʼeau, les aménagements hydrauliques et les conflits
hommes–éléphants.
Introduction
West Africa shelters the smallest elephant (Loxodonta
africana) population of the African continent (Blanc
et al. 2007). However, the situation can be extremely
variable from place to place. This paper studies the
recent pattern of elephant density and distribution
during the dry season in the Konkombouri Hunting
Zone (KHZ). It discusses the impact of these trends
on water infrastructures, habitat, and human–elephant
conflicts.
Since 1996 and the start of the concession process
several methods have been used to assess elephant
numbers. An aerial sampling survey method (Norton
Griffiths 1978) was used in 1998, 1999 and 2000
(Barry and Chardonnet 1998; Chardonnet et al.
Pachyderm No. 42 January–June 2007
1999; Chardonnet 2000; Bouché et al. 2000; Bouché
et al. 2002) to count the elephant population of the
Pama Arly complex that includes KHZ. However,
the results of all these surveys are questionable to
some extent because none of the aircraft used were
fitted with a radar-altimeter, creating a variable and
undetermined bias in strip width. The aerial total
count method (Douglas-Hamilton 1996) was used
on the W–Arly–Pendjari (WAP) ecosystem in 2003
(Bouché et al. 2004a), providing for the first time
a baseline of the elephant status in the ecosystem.
The WAP ecosystem shelters a minimum of 4600
elephants, the largest elephant population in West
Africa. Most of this population, around 3000, frequent
the Burkina Faso side in the late dry season (Bouché
et al. 2004a).
33
Bouché
In 1996 the Burkina Faso government decided
to reform the wildlife sector and, notably, divide
the Burkina Faso side of the WAP ecosystem into
blocks, with the exception of the Burkina Faso side
of W National Park, to concede management to
private partners for 10 years, renewable. The KHZ
is one of these blocks. In 1997 KHZ was occupied
by more than 70 illegal farms. There were no roads
or tracks, except the Tindangou–Arly road, and no
water infrastructures. Water was permanent only in
the Singou River. As of 1997, farms were moved out
of KHZ with the agreement of the communities, 10
water points were created or improved for wildlife,
yearly burning was done and an ecological monitoring
programme unique in the region was implemented.
The main activity of KHZ is game viewing and large
game safari hunting. It must be emphasized that the
elephant is totally protected by Burkina Faso law and
is not a species to be hunted.
Since 1997, wildlife in KHZ has increased through
reproduction and immigration from other areas of the
ecosystem. In a few years the global mean dry-season
density had grown up to 20–25 ungulates/km2 in 2005
(Bouché and Renkens 2005; Bouché 2006), giving
KHZ the highest wildlife density of the region.
Study area
This study was conducted in the Konkombouri Hunting Zone in the east of Burkina Faso, between 9°95´
and 12°85´N and 0°40´ and 3°40´W; it covers 650 km2.
This zone is part of the W–Arly–Pendjari ecosystem
of 30,000 km2 shared by Benin, Burkina Faso and
Niger (Bouché et al. 2004a) (fig. 1). Altitude ranges
between 160 m and 250 m above sea level.
Climate is characterized by three seasons: a dry
cold season from November to the end of February,
a dry hot season from March to the end of May and
a rainy season from June to October. During the dry
cold season the harmattan wind blows from the northeast and dries out the vegetation, while in the rainy
season a monsoon wind blows from the south-west.
Mean annual rainfall for the last 12 years has been
945.0 ± 177.81 (SD) mm. Mean annual temperature
varies between 30 °C and 34 °C, with extremes of 9
°C and 45 °C.
Water availability is essential for wildlife survival in the KHZ during the dry season. Several rivers or streams cross the area. The most important are
the Singou River and its tributary, the Konkombouri
34
(fig. 1). In addition to some waterholes in the Singou
riverbed that are permanent even when the river becomes a trickle in the dry season, six other natural or
artificial waterpoints in KHZ always have water.
Habitat is mainly bushy to woodland savanna
with Vitellaria paradoxa, Combretum spp., Acacia
spp., Anogeissus leiocarpa, Afzelia africana, Burkea
africana, Isoberlinia doka and Terminalia spp., and
woodland savanna with forest galleries along the
main rivers with Danielia oliveri, Terminalia spp.,
An. leiocarpa and Khaya senegalensis.
Some villages and communities live along the KHZ
boundary in the Madjoari enclave (fig. 1), which is
a territorial and administrative division. In 1996, its
population was 5810 inhabitants distributed in 11 villages (Bouché et al. 2000). Agriculture is the main activity. Livestock is another important activity. Wildlife
areas like KHZ are also a source of revenue for local
communities through employment in safari hunting and
game viewing, through meat, taxes and, unfortunately,
also poaching to some extent, even if its impact is quite
low in KHZ (Bouché and Renkens 2004).
Method
The distance sampling method (Buckland et al. 1993)
by direct ground counts was implemented in 2004 and
2006 in KHZ (Bouché and Lungren 2004a; Bouché
2006). A network of 55 transects representing 339.2
km was walked by 10 teams along transects spaced
at 1.5 m to 2 km during four days at the end of April
or in early May 2004 and 2006.
Long-term ecological monitoring was done at the
end of each month of the dry season, December to
May. A road count (Norton-Griffiths 1978; Bothma
2002) along four circuits, totalling 193 km, in KHZ
started in 2003 and recorded elephant numbers and
their locations (Renkens and Bouché 2003; Bouché
and Renkens 2004, 2005, 2006). Because long grass
limited visibility, road counts were not done before
December, just after bush fires. Road counts were
stopped each year at the end of May with the arrival of
the rainy season because the roads became unusable,
muddy and sometimes flooded. In April 2004 road
counts were done at one- to three-day intervals on
foot and were considered a combined road count and
distance sampling count. Results of both April 2004
counts were compared by a d test (Norton-Griffiths
1978; Bailey 1995).
Pachyderm No. 42 January–June 2007
Pachyderm No. 42 January–June 2007
Togo
gou
Sin
Riv
er
Tinouari
Pama Central South
hunting zone
KHZ
road
m
Singou
RN 19
Nandui II
Singou Game Ranch
water point
river
c
te
ys
os
Benin
ri e
dja
en
–P
rly
A
W–
main water point
village
Legend
Ghana
Burkina
Faso
Singou
(Tapieni)
Nandui I
Ko
Kon
iver
Kodjoari Gourma
Pama South
hunting zone
Kodjoari Berba
r
ive
R
ri
u
bo
om
nk
Yanchadi
ri R
kom
bou
Niger
0
2
4
8
Tanli
Niamanga
Martambima
Momba
Madjoari
enclave
Modjoari
Tougou
12
Arly
National
Park
16 km
Arly
National
Park
Diabougou
Kobotougou
Nyabitankouagou
Tanbarga
KONKOMBOURI
HUNTING ZONE
Arly National Park
Dry-season status, trend and distribution of elephants, Burkina Faso
Figure 1. Konkombouri Hunting Zone and the W–Arly–Pendjari ecosystem.
35
Bouché
Results
Figure 2 shows the evolution of elephant numbers
in KHZ recorded during the six months of each dry
season between 2003 and 2006. It also shows that each
dry season, elephant density increases progressively
from December to May. There was no significant
difference between the road count and foot count of
April 2004 (dd = 0.2476 NS). From one year to the
next elephant numbers increased, except in 2006.
The mean global densities recorded these last years
are reported in table 1.
Figure 3, a and b, shows the difference between
elephant trends in 2005 and 2006 in comparison
with water availability. In 2005 water availability
decreased with the progression of the dry season
(r = –0.982; y = –17.594x + 121.06), while in the
whole dry season elephants increased (r = 0.955;
y = 0.3859x – 0.2085) (fig. 3a). In 2006 the water
availability decreased more sharply from March (r =
–0.950; y = –21.146x + 124.61), with the consequence
that the 2006 dry-season elephant trend was stable at
around 0.84 elephant/km2 (r = –0.06; y = –0.0123x +
0.8852) (fig. 3b).
1800
Number of elephants
1400
2
1200
1000
1.5
800
1
600
400
Density (no./km2)
2.5
1600
0.5
200
0
D J F M A M
2003
D J F M A M
2004
D J F M A M
2005
D J F M A M
2006
0
Months and years
Figure 2. Estimate of elephant numbers and densities in KHZ from 2003 to 2006 dry-season road counts.
The monitoring began in March 2003; this explains the absence of data from December to February 2003.
In May, the first rains were so great that only a small part of KHZ was covered, explaining in part the low
numbers recorded. Arrows show the beginning of the first important rains.
Table 1. Dry-season mean global estimate, calculated
on the pooled dry-season data and area surveyed with
95% confidence interval and coefficient of variation
in percentage (CV%) of the estimate for 2003, 2004,
2005 and 2006 dry seasons
Year
Estimate (n)
2
Density (n/km
n
n/km
)
CV%
2003
2004
2005
2006
236 ± 85
305 ± 97
821 ± 164
605 ± 263
0.36 ± 0.13
0.47 ± 0.15
1.26 ± 0.25
0.93 ± 0.40
18.1
16.0
11.8
21.8
36
Figure 4 shows the elephant distribution month
by month during the dry season. Elephants were
more or less evenly distributed throughout KHZ
from December to February. In March and April
elephants moved back towards the main permanent
water points. In 2006, three dams were damaged
and the rainfall did not occur in April as in previous
years. The April and May elephant distributions
were, therefore, different in 2006 from previous
years (fig. 4).
Pachyderm No. 42 January–June 2007
Dry-season status, trend and distribution of elephants, Burkina Faso
water and green pasture as
well as tranquillity. However,
100
with first rains at the end of
2.0
April and May, except in
80
2006, elephant density was
1.5
still growing with the ar60
rival of other elephants from
1.0
40
other parts of the ecosystem.
The elephant reproduction
0.5
20
season begins with the first
important rains. KHZ seems
0
0
to act as a crossroad for WAP
December January
February
March
April
May
elephant reproduction and
Month
could explain the sustained
elephant increase. Several
120
2.0
b
ʻforeignʼ herds and bulls that
2006
did not usually frequent KHZ
100
1.5
during the early dry season
80
were observed at that time
60
(Bouché and Renkens 2004,
1.0
2005). In KHZ the elephant
40
birth rate is 6.08 ± 0.31% per
0.5
20
year (Bouché and Renkens
2004, 2005, 2006). However,
0
0
December January
February
March
April
May
it is highly unlikely that the
increase between 2004 and
Month
2005 was due to reproduction
mean density
water volume
alone.
At the end of March 2005
Figure 3. Comparison of elephant trends (solid lines) in relation to water
all permanent water points
availability (dashed lines) during 2005 and 2006 dry seasons. The 2005
still contained an estimated
water volume data come from Lungren et al. 2004; the 2006 water volumes
total of 50 x 103 m3 of wawere adapted from the same source. Becaue of the three damaged dams,
ter (fig. 3a). With the first
the water was unusable from March to May 2006.
rains in April 2005, elephants
could find highly nutritious
new
shoots
and
sufficient
water everywhere (Bouché
Discussion
et al. 2000). The water volume available in the remaining water points in April and May 2005 was, therefore,
Numbers and trends
of less importance (fig. 3a).
Figure 2 shows that elephant numbers in KHZ are not
The situation observed in 2006 was different.
constant in the dry season from year to year. KHZ is Between December and February the trends grew at
part of an ecosystem of 30,000 km2 in which elephants an equivalent rate of those recorded in 2005, but in
roam freely. Elephant numbers can vary with time March and April, contrary to the previous years, the
and with the evolution of conditions in KHZ. With numbers became lower than in the early dry season.
the progression of the dry season and the reduction Three major, permanent, water points were damaged
of available water points, elephants concentrate along by elephants and crocodiles, becoming large muddy
rivers and streams that still contain water (Bouché et areas unusable for wildlife and reducing the carryal. 2004a; Bouché and Renkens 2004, 2005).
ing capacity. Crocodiles dug burrows in the dam that
Elephant density increas-ed in KHZ during the finally let the water leak, limiting the capacity of the
dry season from immigration because elephants found water point. The rainy season also began later than in
Density (no./km2)
Density (no./km2)
2005
Pachyderm No. 42 January–June 2007
Water volume (x 1000 m3)
120
a
Water volume (x 1000 m3)
2.5
37
38
10
0
10
20 km
N
1
2–5
6–10
11–20
21–40
Elephant 2006
Elephant 2005
1
2–5
6–10
11–20
Elephant 2004
2–4
5–10
11–20
April
March
Elephant 2003
2–4
5–10
January
December
KHZ limit
rivers
elevation (200 m & 160 m)
water points
main water point
damaged main water point in 2006
May
February
Bouché
Figure 4. Konkombouri elephant distribution showing the reduction of water points during the dry season.
Pachyderm No. 42 January–June 2007
Dry-season status, trend and distribution of elephants, Burkina Faso
previous years. In mid-May 2006, despite increasing
atmospheric moisture, the rains were still absent.
The absence of a peak count at the end of the 2006
dry season can be explained by the three damaged water points and the late rainy season, the end of May and
early June (fig. 2). In 2006, the first important rains
did not occur until after mid-May, while in March the
water points contained only 20 x 103 m3 of water (fig.
3b). At that time the volume of water available in the
remaining water points apparently was insufficient to
satisfy a larger elephant population. It is also possible
that elephants moved towards an area in WAP where
water resources were more abundant, before those
in KHZ totally dried up. This population reduction
probably could not be explained by food shortage
because leaves on trees were available everywhere
each year from December to January, corresponding
to the appearance of buds on most of the trees, up
to the end of each dry season. The slight increase in
elephants recorded in May 2006, like the sustained
progression in March and April 2005 (fig. 2), can
be partly explained by the increase in atmospheric
moisture a few weeks before the arrival of the first
rains, allowing new shoots to appear. From personal
observation, some plants, such as Andropogon gayanus and Hyparrhenia rufa, produce shoots when they
receive only a litle moisture.
The peak elephant density recorded in April and
May 2005 and the mean dry-season elephant density
recorded the same year were the highest recorded in
West Africa these last decades, compared with other
protected areas of the region, such as in Nazinga
Game Ranch (Bouché et al. 2004b) or Pendjari National Park (Tehou 2002; Bouché et al. 2004a; Parc
National de la Pendjari 2005).
Important intraseason elephant number variations
in KHZ (fig. 2) from the free-roaming elephants in
an open, large area support the idea of monitoring
the WAP ecosystem as a single entity (Bouché et
al. 2004a) and not surveying it piecemeal, as it is
often done on the pretext that intervention domains
are limited to parts of WAP. Unfortunately, few will
combine funds to survey WAP as a single entity, even
though some projects have been involved in WAP for
a long time.
Distribution
In the early dry season green pasture and water are still
available everywhere in the WAP ecosystem (Lungren
Pachyderm No. 42 January–June 2007
et al. 2005b) and the elephants are distributed over the
whole area. With the progression of the dry season,
elephants concentrate around the main permanent water
points. In May with first rains, except in 2006, elephants
leave the floodplains along the main rivers and reach
the top of the catena on red soils. Red soils are more
fertile than the clayey white soils of the floodplains,
and new shoots appear more rapidly. Also, heavy rains
transform white soils into mud that the elephants try
to avoid. The distribution recorded in May 2006 (fig.
4) shows that elephants were still concentrated near
the Singou floodplains. With the absence of rains in
May 2006, contrary to previous years, the floodplains
remained dry, allowing the elephants to roam there near
the last available water points. In 2004 and 2005, the
rains started in April. And in May 2004 and 2005 the
elephants were scattered mainly on the highest lands,
above 160 m, to avoid the muddy floodplains and to
find new green shoots (fig. 4).
Management implications of high elephant
density in Konkombouri
ELEPHANT IMPACT ON WATER INFRASTRUCTURES
High elephant density has an impact on water infrastructures, such as artificial pools and ponds, that are
at the origin of the recent elephant increase in KHZ.
It has been demonstrated that in the middle of the dry
season, 150 elephants can visit the same pool successively the same night (Himmelspach 2006). Once they
arrive at the pool, elephants erode the banks of the
pools by pushing earth into the pool with their feet and
knees. Also, from personal observation, play among
young animals or bachelors increases this erosion and
water turbidity, spoiling it for other species. In three
years a pool of 200 x 50 x 2.5 m in the deepest part
may lose 1.5 m of depth. A perennial pool then becomes progressively temporary and after three years
it will be unusable in the driest months of March and
April (Lungren et al. 2005b).
The best solution is to build one or two reservoir
dams to create a lake a few square kilometres in size.
A lake has a larger volume of water available for
wildlife and would thin the elephant density along a
large perimeter and surface (Lungren 2003; Lungren
et al. 2005a, 2005b). However, if this solution were
technically possible in several places, it would require funds that the concessionaire has not been able
to generate (Lungren et al. 2005b). Alternatively, a
39
Bouché
permanent water-point network could be expanded
to ease the pressure on the current points.
ELEPHANT IMPACT ON HABITAT
A deeper study of the elephant impact on vegetation
is in preparation. However, first evidence shows that
elephant impact seems greatest close to some of the
main pools that still contain water in the late hot dry
season; elephant impact seems quite low elsewhere.
(Ouedraogo 2005). Elephant pressure reaches its
maximum close to the permanent water points that
represent roughly 25% of the points in the early cool
dry season (Lungren et al. 2005b). The pressure on
vegetation is critical in these areas during the two last
months of the dry season.
If lakes were created, the elephant impact on
local vegetation would be diluted, allowing forest
galleries to form along their banks. The creation
of a lake, especially with several branches, would
increase significantly the length of the forest gallery
and the ecotone along the perimeter of the new lake,
favouring the habitat used by elephants and other species, such as buffalo (Syncerus caffer brachyceros),
bushbuck (Tragelaphus scriptus scriptus), red-flanked
duiker (Cephalophus rufilatus rufilatus) and leopard
(Panthera pardus) (Lungren 2003; Lungren et al.
2005a, 2005b).
Human–elephant conflict
The recent elephant population increase has had an
inevitable impact on human communities along KHZ
in the Madjoari enclave because elephants raid crops
frequently between July and November (Nakandé
2005). In 2005 crop raiding began in August, while the
crops were still at the growing stage. The situation is
critical. On one side communities are growing fast from
high birth rates and immigration of people from other
regions of the country. On the other side the elephant
population is growing fast from the quiet and goodquality fire management that provides green pasture
and green leaves on trees all year. With the creation of
new water structures, elephant density will certainly
continue to increase at the end of the dry season.
If conservation efforts are pursued in all protected
areas around the Madjoari enclave, the pressure on
communities will increase faster. The increasing human population will be surrounded by an increasing
elephant population. This will lead to the increase of
40
conflicts in violence and intensity with more victims
on both sides if no adequate measures are taken to
limit the immigration of people to the Madjoari enclave and to solve the problem of the human enclave in
the middle of a wildlife area. To limit human–elephant
conflict, permanent immigration of people foreign to
the region should be carefully controlled and limited
by local authorities. A concessionaire should continue
to help the communities develop their own community hunting area that the concessionaire could rent
and use for foreign game-bird hunters to create substantial revenue for the communities. If local people
benefit it will help them tolerate elephant presence;
the elephants come from KHZ, where hunter clients
enjoy seeing them. In addition to local crop protection and surveillance systems further research on
human–elephant conflict should be implemented to
find a practical solution to attenuate it.
POACHING
Elephant is a species totally protected by Burkina Faso
law. Currently, elephant poaching in Burkina Faso is
not a profitable business. To kill an elephant on privately managed land, a poacher team needs several
uninterrupted days to cut the animal into pieces and
take it out and more days if they have to smoke it.
When an elephant is poached in Burkina Faso, ivory
is generally not the first goal. First, most elephants
in Burkina Faso are tuskless or have small tusks, so a
lot of elephants must be killed to collect a significant
amount of ivory, increasing the risk of being spotted
and arrested. In some parts of Burkina Faso, elephant
populations are very small (Bouché and Lungren
2004b), limiting the source of profit. Second, ivory
poachers receive a very low price.
Elephant poaching in KHZ is very low or nil. The
quiet allows the elephant to roam all over the area,
even along the boundary with the Madjoari enclave
(Bouché and Renkens 2004). In five years a single
dead elephant killed by poachers was reported near
Diabougou, north-east of KHZ, coming from Arly
National Park (fig. 1). Some people tried to kill elephants with poisoned watermelon. However, from
all attempts we heard, there is no evidence that an
elephant died by this method. Some people use singleshot 12-gauge shotguns against elephants to defend
their fields during crop raiding. However, this weapon
has a limited impact on an adult elephant, except if
brenek bullets are used very close to the animals.
Pachyderm No. 42 January–June 2007
Dry-season status, trend and distribution of elephants, Burkina Faso
Conclusion
Surveys show that since 1999, the elephant population
seems stable. However, wildlife monitoring shows
that the reality is far more complex. The free-ranging
elephant population size is variable from month to
month in the dry season. While one could think that
elephant densities would decrease with the progression
of the dry season, the reverse was observed. The mean
dry-season elephant density increased in KHZ, in
2005 and 2006 reaching the highest densities recorded
in West Africa in these last decades, increasing the
impact of this species on habitat close to water,
water infrastructures, and heightening the number of
human–elephant conflicts.
Acknowledgements
I wish to thank all our partners who in one way or
another have contributed to implementing or funding surveys in the Konkombouri Hunting Zone: the
Ministry in Charge of Environment, the Direction
de la Faune and the wildlife officers, AFD (Agence
Française de Développement), AWHDA (African
Wildlife Husbandry Development Association),
IUCN (World Conservation Union) National Office,
PAUCOF (Projet dʼAppui aux Unités de Conservation de la Faune). I would like to thank M. Moumouni
Dermé, Director of Burkina Safari Club, without
whom the ecological monitoring would never exist,
and Ms Doris Renkens, who alone led the first part
of the data collection in 2003 and 2004.
The Konkombouri Long-Term Ecological Monitoring Programme is funded by Burkina Safari Club
and Philippe Bouché.
References
Bailey NTJ. 1995. Statistical methods in biology, 3rd ed.
Cambridge University Press, Cambridge. 255 p.
Barry I, Chardonnet B. 1998. Recensement aérien de la
faune de lʼUnité de Conservation dʼArly. Résultats
et commentaires. Ministère de lʼEnvironnement et de
lʼEau. Burkina Faso. 24 p.
Blanc JJ, Barnes RFW, Craig CG, Dublin HT, Thouless
CR, Douglas-Hamilton I, Hart JA. 2007. African elephant status report 2007: an update from the African
Elephant Database. Occasional Paper of the IUCN
Species Survival Commission No. 33. IUCN, Gland,
Switzerland. 284 p.
Pachyderm No. 42 January–June 2007
Bothma J du P. 2002. Counting wild animals. In: Bothma J
du P, ed. Game ranch management, 4th ed. Van Schaik
Publishers, Pretoria, South Africa. p. 335–357.
Bouché Ph. 2006. Recensement pédestre des grands mammifères de la Zone de Chasse de Konkombouri, Burkina
Faso. Rapport provisoire no. PMZCK/2006/02. Burkina
Safari Club, ADEFA. 37 p.
Bouché Ph, Heymans J-C, Lungren CG, Ouedraogo LK.
2000. Recensement aérien des animaux sauvages
dans les concessions de faune de lʼEst. Ministère de
lʼEnvironnement et de lʼEau, UICN, Burkina Faso.
Bouché Ph, Lungren CG. 2004a. Recensement pédestre
des grands mammifères de la Zone de Chasse de
Konkombouri, Burkina Faso, Avril 2004. Rapport
no. PMZCK/2004/02. Burkina Safari Club/ADEFA/
PAUCOF/AFD. 48 p.
Bouché Ph, Lungren CG. 2004b. Les petites populations
dʼéléphant du Burkina Faso—statut, distribution et
déplacement. Pachyderm 37:84–91.
Bouché Ph, Lungren CG, Ouedraogo LK. 2002. Statut
et tendances des effectifs dʼéléphants dans les aires
protégées de lʼEst du Burkina Faso. Pachyderm
32:49–54.
Bouché Ph, Lungren CG, Hien B, Omondi P. 2004a. Recensement aérien total de lʼEcosystème W–Arly–Pendjari–Oti-Mandouri–Kéran (WAPOK). CITES-MIKE,
ECOPAS, PAUCOF, Benin, Burkina Faso, Niger,
Togo. 114 p.
Bouché Ph, Lungren CG, Hien B. 2004b. Recensement
aérien total de la faune dans lʼécosystème naturel Po–
Nazinga–Sissili (PONASI). CITES-MIKE, Burkina
Faso. 95 p.
Bouché Ph, Renkens D. 2004. Suivi de la Faune de la Zone
de Chasse de Konkombouri, Burkina Faso, décembre
2003–mai 2004. Rapport no. PMZCK/2004/02. Burkina
Safari Club. 114 p.
Bouché Ph, Renkens D. 2005. Suivi de la Faune de la Zone
de Chasse de Konkombouri, Burkina Faso, décembre
2004–mai 2005. Rapport no. PMZCK/2005/02. Burkina
Safari Club. 160 p.
Bouché Ph, Renkens D. 2006. Suivi de la Faune de la Zone
de Chasse de Konkombouri, Burkina Faso, décembre
2005–mai 2006. Rapport no. PMZCK/2005/02. Burkina
Safari Club. 102 p.
Buckland ST, Anderson DR, Burnham KP, Laake JL.
1993. Distance sampling: estimating abundance of
biological populations. Chapman and Hall, London,
reprinted 1999 by RUWPA, University of St Andrews,
Scotland. 446 p.
41
Bouché
Chardonnet B. 2000. Etude des effectifs et de la répartition
saisonnière des éléphants des aires classées de lʼEst du
Burkina Faso. Pachyderm 28:16–31.
Chardonnet B, Rouamba P, Barry I, Ouedraogo A, Nacoulma P. 1999. Suivi écologique aérien des aires
classées des bassins de lʼArly et du Singou. Ministère
de lʼEnvironnement et de lʼEau, Burkina Faso. 124 p.
Douglas-Hamilton I. 1996. Counting elephant from the air:
total counts. In: Kangwana K, ed., Studying elephants.
Handbook No. 7. African Wildlife Foundation, Nairobi.
p. 31–41.
Himmelspach Ch. 2006. Etude de la fréquentation de
deux mares par la faune de la Zone de Chasse de
Konkombouri dans lʼEst du Burkina Faso. Rapport no.
PMZCK/2006/01. Burkina Safari Club et Université
de Liège. 37 p.
Lungren CG. 2003. Réflexions sur lʼhydraulique faunique.
ADEFA, Ouagadougou, Burkina Faso. 3 p.
Lungren CG, Lungren D, Lungren L. 2005a. Etude de faisabilité pour lʼaménagement des points dʼeau pérennes
dans la Forêt Classée et Réserve Partielle de Faune de
la Comoé-Léraba, Burkina Faso. Association Intervillageoise de Gestion des Ressources Naturelles et de
la Faune Comoé–Léraba (AGEREF-CL). Banfora,
Burkina Faso. 144 p.
42
Lungren CG, Ouedraogo F, Bouché F, Lungren L, Zida C,
Légma M. 2005b. Etude sur les ressources en eau du
Complexe Arly–Pama–Arly–Wamou. ADEFA/UICN,
Ouagadougou, Burkina Faso. 237 p.
Nakandé A. 2005. Etude des conflits hommes–éléphants
dans la Réserve Partielle de Pama. Unpublished report.
Norton-Griffiths, M. 1978. Counting animals, 2nd ed.
African Wildlife Foundation, Nairobi.
Ouedrago I. 2005. Contribution à la conception dʼune carte
de végétation de la Zone de Chasse de Konkombouri.
Burkina Safari Club, MECV, PAUCOF, 39 p.
Parc National de la Pendjari. 2005. Plan dʼaménagement
et de gestion 2004–2013. CENAGREF, GTZ. 83 p. +
annex.
Renkens D, Bouché Ph. 2003. Suivi de la faune de la zone
cynégétique de Konkombouri, mars–mai 2003. Rapport
no. PMZCK/2003/01. Burkina Safari Club, Burkina
Faso. 46 p.
Tehou A. 2002. Les éléphants Loxodonta africana dans
la Réserve de la Biosphère de la Pendjari, nord-est
République du Bénin : abondance, densités et répartition
spatiale. Pachyderm 33:64–68.
Pachyderm No. 42 January–June 2007
Phenology of forest trees favoured by elephants, Ghana
Phenology of forest trees favoured by elephants in the Kakum
Conservation Area, Ghana
Emmanuel Danquah, Samuel K. Oppong*
Faculty of Renewable Natural Resources, College of Agriculture and Natural Resources
Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
* corresponding author email: [email protected]
Abstract
The reproductive and foliage status of forest trees that are important elephant fruit sources were monitored
from July 2001 to June 2002 in the Kakum Conservation Area, Ghana. Phenological events were variable
among and within species. Generally, drought conditions triggered leaf shedding while rains induced leaf
flushing. Also, rainfall in the wet season was related to the amount of fruits available for elephants in the dry
season. However, the best climatic predictor of fruiting was minimum temperature.
Résumé
Le statut de la reproduction et du feuillage des arbres de forêt qui sont dʼimportantes sources de fruits pour
les éléphants a été suivi de juillet 2001 à juin 2002 dans lʼAire de Conservation de Kakum, au Ghana. Les
changements phénologiques étaient variables au sein des espèces et entre les espèces. En général, la sécheresse
déclanchait la chute des feuilles, et la pluie entraînait lʼapparition de nouvelles feuilles. On a aussi trouvé
que la quantité de pluie tombée en saison des pluies était liée à lʼabondance des fruits disponibles pour les
éléphants en saison sèche. Cependant, le meilleur indice climatique de la production des fruits est la température minimale.
Introduction
Most tropical rainforest trees produce fruits that are
consumed by forest elephants, which also disperse
their seeds (Alexandre 1978; Short 1983; Lieberman
et al. 1987; Chapman et al. 1992; Feer 1995). The
large number and diversity of viable seeds in elephant
dung piles shows the importance of fruits in the diet
of forest elephants (Wing and Buss 1970; Alexandre
1978; Short 1981; Merz 1981; Martin 1982; White
et al. 1993; White 1994; Theuerkauf et al. 2000;
Muoria et al. 2001; Danquah and Oppong 2006) and
the significance of elephants as seed dispersal agents
(Alexandre 1978; Short 1981; Lieberman et al. 1987;
White et al. 1993; Muoria et al. 2001; Waithaka 2001;
Blake 2002).
The availability throughout the year of fruits and
leaves on which elephants feed is of great importance.
Pachyderm No. 42 January–June 2007
However, there is great variability in tree phenology,
which to some extent is influenced by environmental
factors like temperature, rainfall, humidity and length
of daylight (Longman and Jenik 1974). Hence it is
expected that elephant population and reproductive
capacity will respond to the phenological patterns of
the fruit trees they forage (Struhsaker 1998).
Predicting the effects of climatic elements on
forest tree phenology may provide insights into the
impact of future climate changes on the availability
and diversity of food (fruits and leaves) for elephants.
These predictions are possible by establishing relationships between weather patterns and tree phenology (Inouye et al. 2003). Hence, the current study
sought to investigate climatic factors that govern fruit
tree phenology in the Kakum Conservation Area of
Ghana, which is likely to form the basis for developing good elephant management options.
43
Danquah, Oppong
The Kakum Conservation Area (KCA), located in
southern Ghana, comprises Kakum National Park
and the adjacent Assin Attandanso Reserve (fig. 1).
It encompasses an irregular block of forest measuring 366 km2, consisting mainly of Celtis zenkeri
and Triplochiton scleroxylon moist
semi-deciduous vegetation (Hall and
Swaine 1976), which is transitional
to the more typical rainforest Lophira
alata–Triplochiton scleroxylon association in the southern part of the
Kakum Conservation Area (Dudley
et al. 1992).
Mali
Niger
Burkina
Faso
Cotê
D’Ivoire
Ghana
Benin
Study area
Briscoe 2 and Ahomaho—were randomly selected and
a non-linear phenology strip transect approximately
3.4 km long and 10 m wide was constructed within
each section.
Strip transects were constructed by linking major
(frequently used) elephant trails with patrol trails to
minimize damage to vegetation when cutting new
transects. All trees (> 10 cm diameter at breast height)
that are important elephant fruit sources (Merz 1981;
Togo
Materials and methods
Nigeria
Climatic variables
Mean monthly rainfall collected from
seven strategically placed rain gauges
around KCA indicated a bimodal
distribution with peaks occurring
in March–July and September–
November, and a dry season between
December and February. There is a
short dry spell in August.
KCA does not have records
for maximum and minimum air
temperatures and relative humidity.
However, there is some similarity
in climatic conditions between KCA
and a nearby meteorological station
at Asuansi, 18 km east south-east of
the park headquarters (Barnes et al.
2003). Therefore data on maximum
and minimum air temperatures and
relative humidity for Asuansi were
used to establish the relationships
among weather elements and phenological events in KCA.
Gulf of Guinea
5˚40’ N
44
Adiembra
5˚35’ N
Ahomaho
Aboabo
Afiaso
Assin
Attendanso
Resource
Reserve
Briscoe 1
5˚30’ N
Briscoe 2
5˚25’ N
Antwikwaa
Asomdwee
5˚20’ N
Phenological events
KCA was broadly classified into 10
sections: Abrafo (park headquarters),
Mfuom, Antwikwaa, Afiaso, Aboabo,
Adiembra, Ahomaho, Briscoe 1,
Briscoe 2 and Asomdwee (fig. 1).
Four sections—Abrafo, Antwikwaa,
N
Kakum
National
Park
Mfuom
Abrafo
(Park HQ)
5˚15’ N
1˚30’ W
1˚25’ W
1˚20’ W
1˚15’ W
Figure 1. The Kakum Conservation Area showing the 10 sections
surveyed.
Pachyderm No. 42 January–June 2007
Phenology of forest trees favoured by elephants, Ghana
Short 1981; Theuerkauf et al. 2000; White et al. 1993)
were marked within strip transects.
During the study period (July 2001 to June 2002),
all phenology strip transects were synchronously
monitored at two-week sampling intervals and the
reproductive (flowering and fruiting) and foliage
status (flushing, full crown, dropping of leaves, leafless) were noted on all marked trees. Observations
were made with 8 x 30 binoculars.
The coefficient of dispersion (CD) (standard deviation, arising from the (mean estimates of the trees
sampled) / (mean monthly number of trees showing
a phenological event over the entire study)) was used
to represent the synchrony of fruiting and flowering
events (Chapman et al. 1999). When the CD is > 1, the
pattern is synchronized, that is fruiting and flowering
events occur in the same period; when < 1, the pattern is
uniform; and equal to 1 when the pattern is random.
Fruit availability and diversity study
During each sampling period, fruits available to
elephants was assessed by counting the number of
freshly fallen fruits from marked trees along the
phenology strip transects (Chapman et al. 1994).
Fruit availability was expressed as number of fallen
fruits per square kilometre. Fruit diversity was also
expressed as the number of species with fallen fruits
per square kilometre.
Climatic predictors of phenological events
The association between climatic elements and
phenological events was determined by relating the
number of trees fruiting, flowering and leaf flushing
or leaf dropping in a given month to climatic variables
such as mean rainfall, minimum and maximum air
temperatures, and relative humidity. These analyses
compared the occurrence of phenological events for
a given month with climatic variables for the same
month and with each preceding month up to seven
months (lagged climatic variables; Chapman et al.
1999).
Results
Phenological events
Nineteen tree species were marked and their phenology monitored (table 1). Flowering was not observed
on Desplatsia sp. Flowering and fruiting in Panda
sp. was staggered over the period of study. However,
Parinari and Ficus species flowered and fruited only
Table 1. Phenological events of tree species for each month at Kakum Conservation Area
Species
Jul
Aningeria robusta (n
n = 4)
Antiaris africana (n
n = 11)
Antrocaryon micraster (n
n = 3)
Desplatsia dewevrei (n
n = 6)
Ficus capensis (n
n = 5)
Klainedoxa gabonensis (n
n = 4)
Mammea africana (n
n = 3)
Microdermis puberla (n = 6)
Milicia excelsa (n = 7)
Musanga cercropoides (n
n = 4)
Myrianthus arboreus (n
n = 8)
Ongokea gore (n
n = 5)
Panda oleosa (n
n = 11)
Parinari excelsa (n
n = 2)
Ricinodendron heudelotii (n
n = 8)
Strombosia glaucescens (n
n = 3)
Strychnos aculeata (n
n = 4)
Tieghemella hecklii (n
n = 9)
Treculia africana (n = 6)
ox
–
ox
x
–
x
x
o
–
x
x
ox
x
–
x
x
–
o
–
Aug Sep
x
+
x
x
–
x
x
o
–
x
x
x
x
–
x
x
–
ox
o
x
o+
x
x
–
x
x
ox
–
x
x
x
ox
o
x
x
–
x
o
Oct
Nov
Dec
Jan
Feb Mar Apr
x
ox+
x
x
–
x
x
x
–
x
x
x
ox
x
x
x
o
x
o
x
x
x
–
–
x
x
x
+
x
x
x
–
–
x
x
x
o+
+
–
x
x
x
–
x
x
x
ox
–
x
–
–
o+
–
–
x
ox
o+
–
–
x
x
+
+
x
–
x
–
x
+
–
ox+
–
–
x+
x
o
–
–
x
–
+
+
x
–
x
x
x
x
x
–
x
ox
x
ox
+
x
+
–
x
–
o
+
x
x
+
–
o
–
+
+
x
–
x
+
–
–
–
x
o+
o
–
x
x
o+
o
o
–
o
–
x
–
ox
May Jun
–
–
–
x
x
x+
o
–
x
x
ox
o
ox
+
ox
o
x
+
ox
o
–
o
x
–
x
ox
o
x
x
x
ox
x
+
x
o
x
+
x
x = presence of fruits, o = presence of flowers, + = exchange of leaves, n = sample size
Pachyderm No. 42 January–June 2007
45
Danquah, Oppong
four months within the period. Fruiting (mean =
40.917, SD = 14.419, CD = 0.35) and flowering (mean
= 10.417, SD = 7.997, CD = 0.77) were uniform (CD
< 1.0) when values were pooled
for all species. However, fruiting 14
(63%) and flowering (94%) were
synchronous (CD > 1.0) when the
12
values were analysed for each species (table 2).
Fruit availability was significant- 10
ly related (r2 = 0.902, P < 0.05) to
8
fruit diversity (fig. 2). Fruit diversity
increased with fruit availability and
6
was more rapid when fruit density
exceeded the threshold of 15,000
fruits per square kilometre.
4
Climatic predictors of
phenological events
Phenological events varied among
tree species (table 3). Leaf flushing was occasional with fewer tree
species experiencing foliage fluxes
2
0
5000 10000 15000 20000 25000 30000 35000 40000
fruits per sq km
Y = 3.987–1.697E-4 * X + 1.229E-8 * Xˆ2; Rˆ2 = 0.902
(N = 12, r2 = 0.902, P < 0.05)
Figure 2. The relationship between fruit availability and fruit diversity
in the Kakum Conservation Area.
Table 2. Pattern of fruiting and flowering in tree species based on the coefficient of dispersion (CD) (standard deviation (SD) / mean number of trees in each month)
Fruiting
Species
Aningeria robusta
Antiaris africana
Antrocaryon micraster
Desplatsia dewevrei
Ficus capensis
Klainedoxa gabonensis
Mammea africana
Microdermis puberla
Milicia excelsa
Musanga cercropoides
Myrianthus arboreus
Ongokea gore
Panda oleosa
Parinari excelsa
Ricinodendron heudelotii
Strombosia glaucescens
Strychnos aculeata
Tieghemella hecklii
Treculia africana
46
Mean no.
of trees
SD
CD
1.167
3.333
1.750
2.833
0.583
0.667
0.917
2.500
1.833
0.667
4.000
1.583
8.250
0.333
3.333
0.500
1.750
2.583
3.000
1.403
4.334
1.765
2.980
0.900
0.492
0.996
2.939
2.250
0.492
3.838
1.443
4.202
0.492
3.525
0.522
1.357
3.370
2.374
1.20
1.30
1.01
1.05
1.54
0.74
1.09
1.18
1.23
0.74
0.96
0.91
0.51
1.48
1.06
1.04
0.78
1.30
0.79
Flowering
Pattern
synchronized
synchronized
synchronized
synchronized
synchronized
uniform
synchronized
synchronized
synchronized
uniform
uniform
uniform
uniform
synchronized
synchronized
synchronized
uniform
synchronized
uniform
Mean no. SD
of trees
0.500
1.167
0.417
0.000
0.167
0.083
0.500
1.000
0.500
0.167
0.667
0.667
1.333
0.083
1.000
0.167
0.500
0.917
0.833
0.798
2.725
0.900
0.000
0.389
0.289
0.798
1.907
1.446
0.389
2.309
1.155
3.200
0.269
1.954
0.389
1.243
2.234
1.193
CD
Pattern
1.6
2.3
2.2
0.0
2.3
3.5
1.6
1.9
2.9
2.3
3.5
1.7
2.4
3.2
2.0
2.3
2.5
2.4
1.4
synchronized
synchronized
synchronized
not observed
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
Pachyderm No. 42 January–June 2007
Phenology of forest trees favoured by elephants, Ghana
(flushing, shedding leaves, becoming leafless) than
reproductive changes (flowering and fruiting). Fruiting was the most common phenological event while
leaf loss was rare.
major wet season (table 4). Similarly, fruit availability
was high in October and during the dry season and
also showed a high correlation with rainfall in the
last four (rr = 0.857, P < 0.01) and five (rr = 0.867, P
< 0.01) months prior to October. However, rainfall
was inversely correlated (rr = –0.811, P < 0.01) to
leaf shedding.
Rainfall
The majority (68%) of the tree species were deciduous; 32% remained evergreen. The highest leaf shedding occurred in January, leaf flushing in March and
flowering in April (table 3).
Fruiting was highest in the minor wet season
(table 3) and correlated (rr = 0.764, P < 0.05) highly
with mean rainfall in the previous three months of the
Temperature
Leaf flushing occurred at the onset of the major wet
season and showed a positive correlation (r = 0.714,
P < 0.05) with mean maximum temperature during
the same month (table 5).
Table 3. Mean climatic variables and phenological events of tree species in each month for the period July
2001 to June 2002
Season/
month
Rainfall
(mm)
Max
temp
(ºC)
Min
temp
(ºC)
Rel
hum
(%)
Major season
Mar
Apr
May
June
July
69.86
129.36
141.56
262.64
70.72
31.9
32.6
32.4
29.5
28.7
24.2
24.5
24.3
23.5
22.6
82.4
83.0
82.2
85.6
87.4
26
9
2
0
1
10
2
1
0
0
10
2
0
1
0
Short dry spell
Aug
24.10
27.9
22.5
87.6
0
0
Minor season
Sep
Oct
Nov
89.20
153.54
106.93
29.4
31.7
30.8
22.9
23.5
23.6
85.8
83.0
85.2
0
7
0
32.23
19.76
53.49
32.0
29.6
31.9
23.9
22.5
24.1
84.0
86.2
83.2
Dry season
Dec
Jan
Feb
Total
Leaf
Leaf
flush- sheding
ding
Leaf- Flowerless
ing
Fruiting
No.
fruits/
km2
4
31
14
9
15
19
18
27
46
42
16,412
12,301
1,522
860
2,875
0
11
49
8,934
7
0
5
7
0
0
12
14
4
58
57
54
19,941
36,169
29,699
5
1
2
1
11
10
6
2
18
6
3
2
53
38
30
28,610
24,581
11,434
53
47
46
125
491
Table 4. Correlation of lagged rainfall with phenological events in the Kakum Conservation Area
Event
Leaf flushing
Leaf shedding
Leafless
Flowering
Fruiting
Fruit availability
Rainfall (mm)
n
n–1
n–2
n–3
n–4
n–5
n–6
n–7
–0.114
–0.811**
–0.712*
0.523
0.112
–0.301
–0.489
–0.632*
0.585
0.365
0.301
–0.280
–0.539
–0.504
0.265
0.312
0.566
–0.119
–0.525
–0.061
0.200
–0.039
0.764*
0.245
–0.150
0.193
0.080
–0.418
0.601
0.857**
0.325
0.372
0.291
–0.277
0.322
0.867**
0.582
0.214
0.109
–0.014
–0.070
0.601
0.154
0.382
0.076
–0.337
–0.273
0.147
* P < 0.05; ** P < 0.01; n, month in which phenological event occurred
Pachyderm No. 42 January–June 2007
47
Danquah, Oppong
Fruit production was inversely correlated to mean
maximum temperature (fruiting, r = –0.762, P < 0.05;
fruit availability, r = –0.739, P < 0.05 (table 5) and
mean minimum temperature (fruiting, r = –0.877, P
< 0.05; fruit availability, r = –0.781, P < 0.05) (table
6) that occurred three months prior to the month the
estimate was recorded.
Relative humidity
The climatic element of relative humdity had a low
correlation with phenological events but there was a
solitary inverse correlation between leaf flushing and
relative humidity during the time of data collection.
Fruit availability also showed an inverse correlation
with relative humidity two and three months prior to
the period the estimate was recorded (table 7).
Table 5. Correlation of lagged mean maximum temperature with phenological events in the Kakum
Conservation Area
Event
Leaf flushing
Leaf shedding
Leafless
Flowering
Fruiting
Fruit availability
Mean maximum temperature (ºC)
n
n–1
n–2
n–3
n–4
n–5
n–6
n–7
0.714*
0.366
0.295
0.069
–0.504
0.161
0.261
0.145
–0.071
–0.100
–0.543
–0.207
–0.038
–0.127
0.045
0.026
–0.511
–0.680*
–0.043
–0.243
–0.095
0.058
–0.762*
–0.739*
–0.279
–0.243
0.036
0.429
–0.109
–0.581
–0.037
–0.426
–0.346
0.582
0.259
–0.151
–0.372
–0.599
–0.686*
0.453
0.602
0.161
–0.370
–0.370
–0.491
0.216
0.504
0.357
* P < 0.05; n, month in which phenological event occurred
Table 6. Correlation of lagged mean minimum temperature versus phenological events in the Kakum
Conservation Area
Events
Leaf flushing
Leaf shedding
Leafless
Flowering
Fruiting
Fruit availability
Mean minimum temperature (ºC)
n
n–1
n–2
n–3
n–4
n–5
n–6
n–7
0.549
0.021
–0.084
0.332
–0.606
–0.214
0.041
–0.030
–0.215
0.137
–0.469
–0.357
–0.129
–0.396
–0.098
0.384
–0.235
–0.677*
–0.278
–0.502
–0.381
0.150
–0.877**
–0.781*
–0.483
–0.334
–0.104
0.316
0.250
–0.288
–0.020
–0.447
–0.340
0.574
0.457
0.134
–0.326
–0.371
–0.454
0.243
0.581
0.358
–0.199
–0.286
–0.317
0.216
0.580
0.473
* P < 0.05; ** P < 0.01; n, month in which phenological event occurred
Table 7. Correlation of lagged relative humidity and phenological events in the Kakum Conservation Area
Event
Leaf flushing
Leaf shedding
Leafless
Flowering
Fruiting
Fruit availability
Relative humidity (%)
n
n–1
n–2
n–3
n–4
n–5
n–6
n–7
–0.685*
–0.204
–0.299
–0.014
0.272
–0.233
–0.285
0.123
0.139
–0.138
0.444
0.201
0.066
0.276
0.191
–0.259
0.428
0.656*
0.330
0.258
0.131
0.090
0.242
0.709*
0.333
0.117
–0.175
–0.225
–0.060
0.435
–0.125
0.357
0.295
–0.498
–0.225
–0.063
0.283
0.284
0.380
–0.417
–0.525
–0.315
0.064
0.420
0.440
–0.369
–0.592
–0.382
* P < 0.05; n, month in which phenological event occurred
48
Pachyderm No. 42 January–June 2007
Phenology of forest trees favoured by elephants, Ghana
Discussion
The data were collected over a one-year period, and it
is likely that fluctuations over longer periods cannot
be adequately described (Martin 1982). However, the
results presented provide an insight into what might
be expected on average over the long term and also
serve as a baseline on which future elephant management strategies could be based.
Phenological events
Temporal variations in the production of flowers,
fruits and young leaves were complex, making it
difficult to generalize. Similarly, combining data for
all tree species for the entire study period masked
important variations in phenological episodes.
Time of leaf fall and leaf flush was often not well
defined, hence foliage fluxes were rather tricky to
record reliably. Therefore, small and brightly coloured
leaves, which appeared to be new leaves, may have
been several months old (Lieberman 1982) and might
have introduced errors in the estimates. Also, the enormous variability in fruiting regime made it difficult to
judge reproductive events accurately, bearing in mind
that the observer in most cases had to judge from a
distance of more than 25 m through an understorey that
allowed only a partial view of the tree crown.
It is presumed that the flowering and fruiting data
are incomplete, especially for species with small,
inconspicuous flowers or fruits. Fruiting in Panda
oleosa was staggered and is likely to provide a longer
source of fruit supply for elephants as compared with
other tree species that were more season specific. Richards (1998) also noted that species with staggered
fruiting seasons provide a year-round food supply
for unspecialized frugivores and seedeaters such as
elephants.
The pooled data showed uniformity in reproductive regimes for tree species. However, intraspecific
fruiting or flowering synchrony was prevalent, where
many individuals of the same species produce flowers
or fruits over a relatively short time over large areas.
Temporal variations in the production of flowers and
fruits by different tree species may result in varying
density, diversity and distribution of fruits available to
elephants in any particular season. In the dry season,
for instance, a threshold fruit density of about 15,000
Pachyderm No. 42 January–June 2007
fruits/km2 is attained, beyond which fruit diversity
increases significantly with availability. However,
the long wet season experiences periods of low fruit
diversity and availability, far below the threshold fruit
density. When fruit density falls below the threshold, elephants may possibly use a different feeding
strategy to compensate for the lack of fruits and may
depend much more on supplementary food, including
cultivated crop species (Danquah and Oppong 2006).
The timing and abundance of fruiting tree species may
play an important role in predicting the distribution
and movement of elephants in particular seasons.
Climatic predictors of phenological events
RAINFALL
Periods of low rainfall resulted in leaf shedding; thus
leafless periods occurred in the dry season. Leaf flushing occurred in the major wet season since young growing leaves require a lot of water for their development
(Struhsaker 1998). The availability of fresh browse
(leaves) within reach of elephants may supplement
their feed in the major wet season at KCA when fruit
availability drops and reduce their incursion into nearby
crop farms and thus ease human–elephant conflict.
Danquah and Oppong (2006) reported an increased
amount of leaf fragments in elephant dung piles for
the same season at KCA.
Not all trees of the same species produced new
leaves in each flush period. In the major wet season,
for instance, all Myrianthus species developed new
leaves, while only about 70% of Tieghemella species
had leaves. Also, leaf flushing was sometimes not
simultaneous on adjacent trees of the same species, as
in the case of Antiaris africana. Rainfall undoubtedly
is important in determining the leaf-flux behaviour in
KCA, particularly the length and severity of the dry
season (Richards 1998).
Rainfall also significantly influenced fruiting, as
young growing fruits required a lot of water for their
development (Lieberman 1982). The reproductive
events showed that most tree species relied on the
rains in the major wet season (March–July) to reproduce. Fruit availability was highest in October (four
months after the peak rainy season) and influenced
positively the amount of fruits available to elephants
several months into the dry season.
49
Danquah, Oppong
TEMPERATURE
Leaf flushing was influenced by the mean maximum
temperature. Nonetheless, this observation is more
likely to be linked to rainfall since the two variables
are necessary for plant growth and development.
The association between flowering and temperature during this study was not dependable although
Tutin and Fernandez (1993) found that flower initiation was stimulated by low temperature at Lope
Reserve in central Gabon. Fruit production was especially negatively correlated to minimum temperature.
Hence, confirming the reports of Tutin and Fernandez
(1993) and Chapman et al. (1999) that the number of
trees that fruit in a fruiting season may be influenced
by low temperature. With data from a single yearʼs
investigation it is difficult to be conclusive, but the
potential importance of this finding is enormous for
elephant management, as a small rise in minimum
temperatures resulting from global warming may
result in the inability of certain tree species to fruit,
therefore reducing the quantity of feed (Tutin and
Fernandez 1993) available to elephants.
Acknowledgements
Conservation International, the Centre for Applied
Biodiversity Science, the United States Fish and Wildlife Service (African Elephant Conservation Fund),
the Smart Family Foundation, and the Betlach Family
Foundation financed this study. The Ghana Wildlife
Division provided staff and facilities. We also wish
to acknowledge the contributions of Dr Brent Bailey
and Dr Richard Barnes for their untiring support of the
Elephant Biology and Management Project. Mr Emmanuel Adu generously provided data on temperature
and relative humidity for Asuansi.
References
Alexandre DY. 1978. Le role disseminateur des éléphants en
forêt de Tai, Côte dʼIvoire. La Terre et la Vie 32 : 47–72.
Barnes RFW, Boafo Y, Nandjui A, Dubiure UF, Hema EM,
Danquah E, Manford M. 2003. An overview of crop
raiding by elephants around the Kakum Conservation
Area, parts 1 and 2. Elephant Biology and Management
Project, Africa Program, Conservation International,
USA. Unpublished.
Blake S. 2002. The ecology of forest elephant distribution
50
and its implications for conservation. PhD dissertation,
University of Edinburgh.
Chapman CA, Chapman LJ, Wrangham R. 1992. Balanites
wilsoniana: elephant-dependent dispersal? Journal of
Tropical Ecology 8:275–283.
Chapman CA, Wrangham RW, Chapman LJ. 1994. Indices
of habitat-wide fruit abundance in tropical forests.
Biotropica 26:160–177.
Chapman CA, Wrangham RW, Chapman LJ, Kennard DK,
Zanne AE. 1999. Fruit and flower phenology at two sites
in Kibale National Park, Uganda. Journal of Tropical
Ecology 15:189–211.
Danquah E, Oppong SK. 2006. Food plants of forest elephants and their availability in the Kakum Conservation
Area, Ghana. Pachyderm 40:52–60.
Dudley JP, Mensah-Ntiamoah AY, Kpelle DG. 1992. Forest
elephants in a rainforest fragment: preliminary findings
from a wildlife conservation project in southern Ghana.
African Journal of Ecology 30:116–126.
Feer F. 1995. Morphology of fruits dispersal by African forest elephants. African Journal of Ecology
33:279–284.
Hall JB, Swaine MD. 1976. Distribution and ecology of vascular plants in a tropical rainforest: forest vegetation in
Ghana. Junk Publishers, The Hague, Netherlands.
Inouye DW, Saavedra F, Lee-Yang W. 2003. Environmental influences on the phenology and abundance of
flowering by Androsace septentrionalis (Primulaceae).
American Journal of Botany 90:905–910.
Lieberman D. 1982. Seasonality and phenology in a
dry tropical forest in Ghana. Journal of Ecology
70:791–806.
Lieberman D, Lieberman M, Martin C. 1987. Notes on
seeds in elephant dung from Bia National Park, Ghana.
Biotropica 19:365–369.
Longman KA, Jenik J. 1974. Tropical forests and its environment. Longman, London.
Martin C. 1982. Management plan for the Bia Conservation Areas. General part I and final report. IUCN/WWF
Project 1251. Wildlife and National Parks Division,
Forestry Commission, Ghana.
Merz G. 1981. Recherches sur la biologie de nutrition et les
habitats prefers de lʼéléphant de forêt, Loxodonta africana cyclotis Matschie, 1900. Mammalia 45:299–312.
Muoria PK, Gordon I, Oguge NO. 2001. Elephants as seed
dispersal agents in Arabuko-Sokoke Forest, Kenya.
Pachyderm 30:75–80.
Richards PW. 1998. The tropical rainforest. Press Syndicate
of the University of Cambridge, UK.
Pachyderm No. 42 January–June 2007
Phenology of forest trees favoured by elephants, Ghana
Short J. 1981. Diet and feeding behaviour of the forest elephant. Mammalia 45:177–186.
Short JC. 1983. Density and seasonal movement of forest
elephant (Loxodonta africana cyclotis Maschie) in
Bia National Park, Ghana. African Journal of Ecology
21:175–184.
Struhsaker TT. 1998. Ecology of an African rainforest—logging in Kibale and the conflict between conservation
and exploitation. University Press of Florida, Gainesville, Florida.
Theuerkauf J, Waitkuwait WE, Guiro Y, Ellenberg H,
Porembski S. 2000. Diet of forest elephants and their
role in seed dispersal in the Bossematie Forest Reserve,
Ivory Coast. Mammalia 64:447–460.
Tutin CEG, Fernandez M. 1993. Relationships between
minimum temperature and fruit production in some
Pachyderm No. 42 January–June 2007
tropical forest trees in Gabon. Journal of Tropical
Ecology 9:241–248.
Waithaka J. 2001. Elephants as seed dispersal agents in
Aberdare and Tsavo National Parks, Kenya. Pachyderm
30:70–74.
White LJT. 1994. Sacoglottis gabonensis fruiting and the
seasonal movements of elephants in Lopé Reserve,
Gabon. Journal of Tropical Ecology 10:121–125.
White LJT, Tutin CEG, Fernandez M. 1993. Group composition and diet of forest elephants, Loxodonta africana
cyclotis Matschie, 1900, in the Lopé Reserve, Gabon.
African Journal of Ecology 31:181–199.
Wing LD, Buss IO. 1970. Elephants and forests. Wildlife
Monograph 19. Wildlife Society, Washington, DC.
92 p.
51
de Merode et al.
Status of elephant populations in Garamba National Park,
Democratic Republic of Congo, late 2005
Emmanuel de Merode,1 Bila-Isia Inogwabini,2* José Telo,3 Ginengayo Panziama4
Zoological Society of London, Virunga National Park Programme
WWF-DRC Program, BP 15.872 Kinshasa I, Kinshasa, Democratic Republic of Congo
3
Independent Expert
4
Institut Congolais pour la Conservation de la Nature
* corresponding author, email: [email protected]; [email protected]
1
2
Abstract
An aerial reconnaissance of the southern sector of Garamba National Park was undertaken between 14 and 24
August 2005 at the request of the Institut Congolais pour la Conservation de la Nature. Almost all of the parkʼs
wildlife is reported to be limited to the southern sector. In total, 32.4 hours of transects were flown between
the Dungu and the Garamba Rivers (1610 km2). A small proportion of the Gangala na Bodio Hunting Reserve
was also covered (130 km2). Atmospheric conditions were excellent, with stable air and clear visibility, but
observations were hindered by long grass. A minimum estimate of 1202 elephants was made based on a total
count of all individuals encountered. Twenty-eight elephant carcasses were sighted—1 was recent (< 1 month)
with ivory removed and 27 were old (> 1 month)—and 13 poaching camps were seen.
Résumé
A la demande de lʼInstitut Congolais pour la Conservation de la Nature, on a procédé à une reconnaissance
aérienne du secteur sud du Parc National de la Garamba entre le 14 et le 24 août 2005. Les rapports indiquent
en effet que presque toute la faune du parc se limite au seul secteur sud. Au total, on a volé pendant 32,4 heures
en traçant des transects entre les rivières Dungu et Garamba (1610 km2). On a aussi couvert une petite partie
de la Réserve de chasse de Gangala na Bodio (130 km2). Les conditions atmosphériques étaient excellentes,
lʼair était stable et la visibilité parfaite mais les observations étaient compromises à cause des hautes herbes.
On a pu faire une estimation minimum de 1202 éléphants en se basant sur le comptage total des animaux rencontrés. On a repéré 28 carcasses dʼéléphants, une était récente (moins dʼun mois) dont lʼivoire était enlevé,
et 27 étaient plus anciennes (plus dʼun mois) et on a aussi vu 13 camps de braconniers.
Introduction
Garamba National Park (GNP) is an immense (ca
5000 km2) relatively unencroached savanna of grassland and woodland, interspersed with gallery forests
(essentially of Chlorophora excesa, Khaya sp. and
Irvingia smithii) along the riverbanks and swampy
depressions (UNESCO 2005). The park lies in the
north-eastern corner of the Democratic Republic of
Congo (3–4°N and 29–30°W, fig. 1). Its northern
border is the watershed of the Nile and Congo Rivers.
Elevation ranges from 740 to 1060 m with a gently
undulating Loudetia and Hyparrhenia grassland,
with a few granite outcrops or inselbergs towards the
52
north. Kigelia africana (sausage trees), and Vitex donniana occur occasionally in the savanna regions but
deciduous woodlands occur towards the southern and
northern edges of the park and in the hunting reserves
surrounding it (de Merode et al. 2000).
Established in 1938, GNP is one of the oldest
parks in Africa (Kabala 1975; Kalpers 1990) and was
declared a World Heritage Site in 1980 in recognition
of its unique natural value (UNESCO 2005). Its epitomes are the elephant (Loxodonta africana), giraffe
(Giraffa camelopardalis congoensis), hippopotamus
(Hippopotamus amphibius) and above all the white
rhinoceros (Ceratotherium simum cottoni) (Kabala
1975). These charismatic species and other wildlife
Pachyderm No. 42 January–June 2007
Status of elephant populations in Garamba National Park
Democratic
Republic
of Congo
Maridi (20 km)
Sudan
Sudan
Garamba National Reserve
Duru
Azande Reserve
Mondo Misa Reserve
Aba
Survey area
Nagero
Dungu
0
Faradje
Gangala na
Bodio Reserve
Sambia
40 km
Projection: Universal Transverse Mercator
Watsa
Figure 1. Garamba National Park and adjacent reserves in the Democratic Republic of Congo.
were slaughtered in the years that immediately followed the independence of the country (IRF 2005)
and again from 1978 to 1984 in the wave of elephant
and rhino poaching that swept through Africa at the
time (Hillman Smith et al. 1985, 1995). Since the early
1980s, the park received considerable national and
international attention, which initiated the Garamba
National Park Project, funded by a consortium of conservation donors (Frankfurt Zoological Society, World
Wide Fund for Nature, UNESCO under the auspices
of the World Conservation Union, and the International Rhino Foundation) with the aim of protecting
a large variety of wildlife species under the umbrella
of the remnant population of the wild northern white
rhinoceros (Kalpers 1990; IRF 2005). This support
boosted the morale of the national personnel, and for
Pachyderm No. 42 January–June 2007
more than a decade populations of wildlife recovered.
The situation however changed with the anarchy
instilled by the new political unrest in the country,
which began in 1996 (Inogwabini et al. 2005). Since
1991 Garamba has also been increasingly affected
by poaching driven by the civil war in neighbouring
Sudan. A dramatic, but not a hopeless, change occurred in mid-2003 when formerly bushmeat-focused
poaching shifted to exclusively elephant ivory and
rhino horn (Hillman Smith 2005; IRF 2005).
Since then, when the Garamba Project had to pull
out, numerous rumours have been spread across the
media about the conservation status of large mammalian taxa in GNP. This report, the first field scientific
expedition since the project closed, describes the
current elephant situation in the park.
53
de Merode et al.
Material and methods
A high-wing light aircraft was used to fly low-level
transects at an altitude of between 90 and 110 m systematically at 500-m intervals at an average of 182
km/hr. Flight lines were flown using a GPS and a radar
altimeter was used to maintain a consistent altitude.
Two quadrants of 200 km2 each were flown over 10
days (fig. 2). The team comprised a pilot and two
observers, the principal observer seated at the front
and the other at the rear of the aircraft. The principal
observer covered the right side of the aircraft and took
notes and photographed all key observations (large
herds of elephants and other major wildlife species)
while the second observer made observations at the
left of the aircraft. After flying over each 200-km2
quadrant observers compared their notes and adjusted
numbers of counts. The minimum total count number
of elephants was a simple sum of adjusted counts.
Aerial surveys have been widely used to estimate
mammalian populations across Africa (for example,
Western 1976; Norton-Griffiths 1978; Hillman Smith
1989, 1997, 2005; Mbugua 1996; Douglas-Hamilton
1996).
For comparison of methods, another estimate was
calculated using a data set collected from a test flight
flown over two quadrants of 400 km2 combined. At
this first flight, an adjusted count of 300 elephants was
made, which yielded a density of 0.75 elephants/km2.
This density was then multiplied by the total area
of 1740 km2 of the southern sector covered by the
survey including 130 km2 of the Gangala na Bodio
Hunting Reserve.
Sample quadrants were randomly selected but
the selection of the survey area itself was based on
information provided by field-monitoring personnel,
who suggested that most of the large mammals in GNP
were concentrated in the southern part of the park.
This concentration of large mammals, particularly
elephants, in the southern sector of GNP has been
previously documented in systematic surveys in the
recent past (Hillman Smith et al. 1995, 2003, 2004;
Figure 2. The southern sector of the survey area in the park with flight paths registered using GPS
tracklogs, 2005.
54
Pachyderm No. 42 January–June 2007
Status of elephant populations in Garamba National Park
Results
We estimate that a minimum of 1202 elephants was
present in the southern sector of GNP between the
Garamba and Dungu Rivers, based on a total count
of all individuals encountered. Extrapolation from an
indicative density produced by a sample aerial count
yielded an estimate of 1305 individuals. These estimates differed by 9%, indicating that both methods
produce relatively similar estimates. We sighted 28
elephant carcasses: one was fresh with ivory removed,
and 27 were over 1 month old; we saw 13 poaching
camps.
Discussion
Both estimates (total count or sample counts) indicate
lower elephant populations in GNP than in previous
surveys (Savage et al. 1976; Hillman Smith 1989,
1997, 2005). Although some of the differences in
estimates may be due to variations in methods used
(1976–1995 used sample counts, 2005 was a total
count), a comparison of the two methods, used concomitantly, indicated similar results. The difference
of 9% between the two methods, nevertheless, is large
enough to preclude intermethodological comparisons
based on crude estimates.
Even though the aerial survey was flown at the
height of the rainy season when grass is tall (over 2 m
high in some areas), which prevented detection of all
individuals and introduced a fair probability of failure
to detect some elephant groups, we nevertheless think
that because the flight was extremely intensive and at
low altitude, the present survey captured the real situation of the elephant population in GNP. Assuming that
negligible numbers of animals can be found north of
the Garamba River (based on a short reconnaissance
flight in the northern sector, and on the evidence of
staff in Garamba), and even with elephant sightings
reported outside the national park in the Domaine de
Chasse Gangala na Bodio and in the Pangba and Sambia regions, the present minimum estimate depicts a
realistic trend in the conservation status of elephant
populations in GNP. Overall numbers of elephant in
Pachyderm No. 42 January–June 2007
the park have drastically decreased from 11,000 in
1996 to 5500 individuals in 2002 (Hillman Smith and
Mafuko 2000; Hillman Smith 2002a, 2002b, 2005;
Inogwabini et al. 2005). The minimum estimate presented in this report indicates a further decline clearly
linked to significant elephant poaching reported in
the last 18 months (Hillman Smith et al. 2003; Hillman Smith 2005). Reports from local people and
wardens indicate that this new wave of poaching is
highly organized, orchestrated by heavily armed and
disciplined Arabic groups composed of Muharaleen,
Bagara, Mbororo and janjaweed from neighbouring Central African Republic, Chad and Sudan, and
appears to be concentrated largely in the dry season
(Hillman Smith 2005; Hillman Smith and Ndey 2005;
Mayumba and Mboma, pers. comm.).
High levels of poaching, low morale of rangers
and wardens, insufficient antipoaching resources and
low political support make the large mammal populations in Garamba extremely vulnerable to poaching.
With other species that inhabit the Garamba complex
such as the remnant population of the northern white
rhinoceros (albeit in a critically endangered situation),
eastern chimpanzees, Congo giraffes, a significant
wild population of hippos, and a large cohort of
other large mammals, Garamba and its relatively
unencroached large stretches of savanna is still one
of the strongholds for biodiversity in the Democratic
Republic of Congo, which deserves more conservation effort at this critical time. Elephant numbers in
Garamba declined in the past (fig. 3), particularly
between 1976 and 1986, but significant effort invested
by both national and international conservation agencies succeeded in curbing the decline. This means that
25,000
Elephant numbers
Hillman Smith and Ndey 2005). Elephant carcasses
were also counted during the flights and were categorized as recent (aged < 1 month) and old (those that
were > 1 month) (Hillman Smith et al. n.d.; Beyers
et al. 2001; Blake 2002).
20,000
15,000
10,000
5,000
0
1976
1986
1995
2005
Year
Figure 3. Elephant population trends in Garamba
National Park, 1976–2005.
55
de Merode et al.
even the current situation can be stopped, stabilized
and improved, provided resources (first human and
then material) are made available. We would therefore
recommend that a more cohesive Garamba conservation plan, piloted by the Institut Congolais pour
la Conservation de la Nature but solidly backed by
political authority at the highest level, be put in place
before the next dry season, which appears to be the
period most vulnerable to poaching activities.
Acknowledgements
The survey was funded and executed by the European
Union. We would like to thank the assistant director
general of the Institut Congolais pour la Conservation
de la Nature for allowing us to carry out this survey
and for releasing the field personnel; and the World
Wide Fund for Nature–Central Africa Regional Programme Office for releasing its technical staff. We
are grateful to an anonymous reviewer who provided
constructive comments and greatly improved the
quality of the paper.
References
Beyers R, Thomas L, Hart JA, Buckland ST. 2001. Recommendations for ground-based survey methods for
elephants in the central African forest region. Technical
report 2. MIKE Central African Pilot Project, submitted
to the Wildlife Conservation Society, New York.
Blake S. 2002. Proposed methodology for forest elephant
inventory using dung counts. Unpublished working
document. MIKE-Central Africa and Wildlife Conservation, New York.
de Merode E, Hillman Smith K, Nicholas A, Ndey A,
Likango M. 2000. The spatial correlates of wildlife
distribution around Garamba National Park, Democratic
Republic of Congo. International Journal of Remote
Sensing 21:2665–2683.
Douglas-Hamilton I. 1996. Counting elephants from the air:
total counts. In Kangwana K, ed., Studying elephants.
African Wildlife Foundation Technical Handbook Series 7. AWF, Nairobi. p 29–37.
Hillman Smith KAK. 1989. Ecosystem resource inventory.
Unpublished manuscript of the Garamba National Park
Project.
Hillman Smith KAK. 1997. Garamba National Park,
Research and Monitoring Programme annual report.
Internal report.
56
Hillman Smith KAK. 2002a. Biodiversity conservation in
regions of armed conflict: protecting world natural heritage in the Democratic Republic of Congo. UNESCO,
Paris.
Hillman Smith KAK. 2002b. Comptes rendus de la réunion sur la gestion du projet UNESCO/UNF/DRC.
UNESCO, Paris.
Hillman Smith K. 2005. Garamba National Park Project
and Garamba Conservation Programme Annual Report
for 2004 and part of 2005. Institut Congolais pour la
Conservation de la Nature (ICCN), UNESCO and International Rhino Foundation (IRF), Kinshasa, Democratic
Republic of Congo.
Hillman Smith KAK, Mafuko G. 2000. Lessons learned
so far on the World Heritage Sites of the Democratic
Republic of Congo. Proceedings on the role of World
Heritage in Danger listing in promoting international cooperation for the conservation of world natural heritage,
WHC/IUCN workshop, Amman, Jordan, 6 –7 October
2000. IUCN, Gland, Switzerland.
Hillman Smith K, Mbayma A, Monungu L, Smith F, Ndey
A, Giningayo P. 1995. Parc National de la Garamba
et domaines de chasse: general aerial count 1995 and
evaluation of the status and trends of the ecosystem.
Version Française par Monungu L. et Mbayma A.
GNPP/ICCN report.
Hillman Smith K, Ndey JA. 2005. Post-war effects on
the rhinos and elephants of Garamba National Park.
Pachyderm 39:106–110.
Hillman Smith K, Smith F, Tshikaya P, Ndey A, Watkin
J. 2003. Poaching upsurge in Garamba National
Park, Democratic Republic of Congo. Pachyderm
35:146–150.
Hillman Smith KAK, Watkin J, de Merode E, Smith F. [n.d.]
Parc National de la Garamba et domaines de chasse:
general aerial counts. Manual of methods and analysis.
Unpublished technical paper.
Inogwabini BI, Omari I, Mbayma AG. 2005. Protected areas
of the Democratic Republic of Congo. Conservation
Biology 19(1):15–22.
[IRF] International Rhino Foundation. 2005. Garamba National Park. (All recent Garamba press releases linked at
this archive.) http://www.rhino-irf.org/africaprograms/
Garamba. Accessed 29 September 2005.
Kabala M. 1975. La conservation de la nature au Zaïre:
aspects. Editions Lokole, Kinshasa, Zaïre.
Kalpers J. 1990. Garamba National Park, 1990 annual report. Final report. Institut Zaïrois pour la Conservation
de la Nature (IZCN, now ICCN). Kinshasa, Democratic
Republic of Congo.
Pachyderm No. 42 January–June 2007
Status of elephant populations in Garamba National Park
Mbugua S. 1996. Counting elephants from the air: sample
counts. In Kankwana K, ed., Studying elephants. African Wildlife Foundation, Technical Handbook Series
7. p. 21–27. AWF, Nairobi.
Norton-Griffiths M. 1978. Counting animals. African Wildlife Foundation, Handbook 1. AWF, Nairobi.
Savage JM, Woodford MH, Croze H. 1976. Report on a mission
to Zaïre. FAO W/K1593 KEN/71/526 – ZAI/70/001.
Pachyderm No. 42 January–June 2007
[UNESCO] United Nations Organization for Education,
Science and Culture. 2005. Garamba National Park,
Democratic Republic of Congo. World Heritage Site.
http://whc.unesco.org/pg.cfm. Accessed 29 September
2005.
Western D. 1976. An aerial method of monitoring large
mammals and their environment. FAO KEN/71/256,
Project Working Document 9.
57
Bouché
Northern Ghana elephant survey
Philippe Bouché
IUCN Country Office, BP 3134 Ouagadougou 01, Burkina Faso; email: [email protected]
Abstract
Northern Ghana shelters an important protected areas network. However, the current elephant range is restricted
to a few protected areas. An aerial total count was carried out in Mole National Park and partially in Gbele
Resource Reserve. The eastern and western corridors were surveyed by direct and indirect distance sampling
counts. A minimum of 401 elephants were observed in Mole National Park while 15 elephants (coefficient
of variation: 87%) were estimated by dung count in the extreme north of the western corridor. No elephant
sign was observed in the other areas surveyed. Human activities were widely spread in all areas except Mole
National Park, where permanent human activities, fields and villages were outside the boundaries. Because of
high human impact, elephant migration is now essentially non-existent in both corridors. The recent records
of elephant in Gbele Resource Reserve make a case for a third corridor between Mole National Park and
Bontioli in Burkina Faso through Gbele Resource Reserve.
Additional key words: northern Ghana corridors, elephant trends, Mole National Park, human impact
Résumé
Le Nord Ghana abrite un réseau important dʼaires protégées. Cependant lʼaire de distribution des éléphants
est actuellement réduite à quelques aires protégées. Un comptage aérien total a été mené au Parc National
de Mole et partiellement sur la Réserve de Gbele. Les corridors Est et Ouest ont été recensés par comptage
pédestre direct et indirect en utilisant la méthode du transect en ligne. Un minimum de 401 éléphants ont été
observés dans le Parc National de Mole alors que 15 éléphants (coefficient de variation: 87 %) ont été estimés
par le comptage de crotte dans lʼextrême nord du Corridor Ouest. Aucun signe de présence dʼéléphant nʼa été
enregistré dans les autres aires protégées couvertes par cet inventaire. Les activités humaines étaient largement
répandues sur toute la zone dʼétude à lʼexception du Parc National de Mole pour lequel les activités humaines
permanentes, champs et villages, sont contenues hors des limites du parc. Lʼimpact humain élevé dans les
corridors a rendu la migration des éléphants inexistante dans les deux corridors. Les récentes observations
dʼéléphant dans la Réserve de Gbele plaide pour lʼexistence dʼun troisième corridor entre le Parc National de
Mole et Bontioli au Burkina Faso via la Réserve de Gbele. Cependant ceci reste à être confirmé.
Mots clés supplémentaires : corridors du Nord Ghana, tendance des populations dʼéléphants, Parc National
de Mole, impact humain
Introduction
Despite the protected areas network in northern Ghana
(fig. 1), current elephant range is restricted to a few
protected areas or corridors (Wildlife Division 2000;
Blanc et al. 2003). During the first half of the 20th
century, elephants were widely distributed across
Ghana (Roth and Douglas-Hamilton 1991). After
1950, elephant distribution decreased and became
restricted to a few protected areas. Even after the
58
1950s it was long known that some elephant populations used to migrate between protected areas of West
Africa (Bouché and Lungren 2004), mainly along the
scattered relict of the former Sudanian savanna that
spread from Senegal to the Nile River. The original
habitats of the region were progressively transformed
into agropastoral areas. West Africa has had the larger
human population of the continent, with a high birth
rate. Human population pressure induced the fragmented habitat.
Pachyderm No. 42 January–June 2007
Northern Ghana elephant survey
Recently, Ghana created corridors using relicts
of the savanna between the current protected areas.
Corridors play a key role in conserving migrating
species and are a priority of the Wildlife Division
(2000) and IUCN (2003). Corridors may play a more
important role in West Africa than in other regions
of the continent because most protected areas are
very small and often surrounded by agricultural and
pastoral areas. They are often the last link and chance
to ensure genetic mixing of West African elephants
(Bouché and Lungren 2004).
This paper summarizes the main results of the
northern Ghana elephant survey carried out in 2006
by the World Conservation Union (IUCN) and the
Northern Savannah Biodiversity Conservation Programme, funded by the Global Environment Facility
and the World Bank. This survey was the first attempt
to establish a baseline status of northern Ghanaian
elephant in protected areas in Ghana and those of
Burkina Faso, notably Nazinga Game Ranch and
Kabore Tambi National Park. This network extends
Burkina Faso
Benin
Study area
Ghana
Ivory Coast
Ghana
Togo
WAP
ecosystem
Nazinga complex
11º30’0” N
11º0’0” N
Kabore Tambi
NP
Bontioli
FR
Gbele Resource
Reserve
Kulpawn
tributaries
FR
Ambalalai
FR
10º30’0” N
10º0’0” N
3º30’0” N
Sissili
hunting
zone Nazinga GR
Koulbi
FR
3º0’0” W
BURKINA FASO
Zabre
corridor
Oti-Mandouri
TFR
Fosse aux
Lions NP
Western
corridor
Eastern corridor
Keran NP
GHANA
Legend
reconnaissance flights
ground reconnaissance
Mole
National
Park
2º30’0” W
2º0’0” W
TOGO
river
area surveyed
other protected areas
corridor
proposed corridor
1º30’0” W
1º0’0” W
0º30’0” W
0º0’0” E
0º30’0” E
1º0’0” E
Figure 1. The protected areas network in northern Ghana and neigbouring countries (FR – forest reserve,
GR – game ranch, NP – national park).
Pachyderm No. 42 January–June 2007
59
Bouché
into Burkina Faso and currently constitutes a hub
for elephant migration in West Africa (Bouché and
Lungren 2004).
Survey area
At first, the survey of Gbele Resource Reserve was
not planned, but Tumu Wildlife officers advised us on
the potential of Gbele Resource Reserve and that elephants had been observed there in the last few years.
We took their advice. The survey was carried out on
the current elephant range of northern Ghana, except
the Nadom range in the extreme north-west of Ghana
(Wildlife Division 2000; Blanc et al. 2003). It covered
the 4504 km2 of Mole National Park (Bouché 2006),
the 968 km2 eastern corridor (commonly called Red
Volta), the 510 km2 of the western corridor (Ghana
Geographical Survey n.d.) and the 549 km2 of Gbele
Resource Reserve (fig. 1). The corridors are a series
of contiguous forest reserves (fig. 1). The study area
elevation ranges from 120 m to 490 m.
The climate has three seasons: a dry cold season
from October or November to February, a dry hot
season in March and April, and a rainy season from
April or May to October or November. During the
cold dry season the harmattan wind blows from the
north-east, drying out the vegetation. In the rainy
season a monsoon wind blows from the south-west.
Annual rainfall ranges from 900 mm in Bolgatanga to
1100 mm in Mole National Park (Wilson 1993). The
mean annual temperature is 27.8 °C, with extremes
of 10 °C and 40 °C (Wilson 1993).
Habitat is mainly bushy to woodland savanna
with Vitellaria paradoxa, Combretum spp., Acacia
spp., Anogeissus leiocarpa, Afzelia africana, Burkea
africana, Isoberlinia doka, and Terminalia spp. Forest
galleries along main rivers contain Danielia oliveri,
Terminalia spp., Anogeissus leiocarpa and Khaya
senegalensis.
Method
Mole National Park and Gbele Resource
Reserve survey
The aerial total count method (Douglas-Hamilton
1996) was used to survey elephants (Loxodonta africana). A four-seater Cessna 175 aircraft with a pilot,
60
front-seat recorder and two rear-seat observers was
used. The altitude was adapted according to the terrain, visibility and vegetation. The average height was
around 100 m or less. The flight speed was between
130 km and 150 km per hour, but could reach 175 km
to 195 km per hour with a back wind. An average of
six to seven flight hours each day was necessary to
cover the daily flight plan. The flights began in the
morning between 0545 and 0600 and continued until
the entire daily flight plan was completed. In addition
several reconnaissance flights were done between
Mole National Park and Gbele Resource Reserve and
across the western corridor.
Mole National Park was divided into several
blocks. Gbele Resource Reserve was considered a
single block. Each block was scanned by a series
of east-to-west flight lines spaced 1 km apart. Each
flight line went beyond the block limit, overlapping
the neighbouring block by 2 km. Each block was
supposed to be covered in one day. The low elephant
density and the large block size minimized the risk
of elephants moving from one block to another, especially during the survey in early March, when water
is mostly in the main streams. In March, scarcity of
water points causes the large herbivores to group
mostly in large herds near water. On the other hand
earlier surveys (Wilson 1993; Bouché 2002; Mackie
2004) showed elephants mainly concentrated in the
core of the southern, wider part of Mole National
Park. This did not hamper application of the total
count because the whole area was scanned.
Elephants were counted accurately; the number of
adults, subadults, young and babies in herds were recorded. This had the advantage of comparing elephant
group distribution and eliminating double counts.
Elephant carcasses were recorded, as proposed by
Douglas-Hamilton (1996). For large elephant herds
of more than 15 individuals, pictures were taken with
a Nikon Coolpix 3.2 M pixel digital camera. Animal
counts from digital images on the screen followed the
procedure described in Blake et al. (2003).
The survey of Mole National Park was carried out
from 2 to 9 March 2006. It took almost 31.5 hours to
cover the 4504 km2 of the park at 138.65 km2/h. The
Gbele Resource Reserve survey was carried out from
4 to 5 July 2006. Limited fuel did not allow completely
surveying Gbele Resource Reserve; 356.3 km2 of 548.9
km2 (65%) were covered at 125 km2/hour.
Pachyderm No. 42 January–June 2007
Northern Ghana elephant survey
Corridor surveys
A ground count method was selected for corridors
because it was assumed that animal densities were
low (Adjewodah 2004). The teams would have a
better chance to see elephants or their sign from the
ground than they would from the air. A ground count
of live wild animals and their dung or scat was planned
using the distance sampling method (Buckland et al.
1993). Data treatment was run under DISTANCE
4.1 software (Thomas et al. 2003). The results in this
paper concern only elephants. To estimate elephant
numbers from dung count, the dung decay rate and the
dry-season defecation rate observed in Nazinga Game
Ranch, Burkina Faso, were used (Jachmann 1991).
The choice of which forest reserves in the western
corridor to survey was guided by the elephant corridor the Wildlife Division (2000) recognized. Some
Wildlife Division officers found elephants might not
have used the whole corridor and asked to target areas
most likely to have been used in migration.
A reconnaissance visit in February 2006 showed
the habitat of forest reserves in some places was
degraded by cultivation, villages and wood cutting,
while other areas remained untouched. Because some
animals were observed only in remote areas and
poached animals were observed in some villages, it
was assumed that wildlife existed in lower density
near areas degraded and occupied by humans than in
areas where habitat seemed intact. In addition, discussion with traditional hunters provided information
about recent elephant migration routes and patterns.
A ground survey between the western corridor and
Mole National Park was also done.
To compare areas with intact habitat with those
with degraded habitat, greenness was assessed using
Google EarthTM (2006) satellite images. To avoid a
complete vegetation map treatment, which would
have required a completely separate mission, Adobe
Photoshop Elements 2.0TM software was used. Habitats were selected by the software by coloured patches.
A patch was considered untouched if it had a green
colour index between 0 and 95. All patches that did not
meet the criteria were considered degraded habitat.
It was unlikely this greenness index corresponded
to intensive agriculture, which was not in the study
area. The satellite images showed some areas, the
Chiana and Sissili south corridors, were outside the
Pachyderm No. 42 January–June 2007
forest reserves but had intact habitat. It was decided
to survey them to check their potentialities.
The transects were perpendicular to the main
rivers inside the forest reserves. A series of transects
spaced 2 km apart were used to cover the corridors
where the habitat was intact and transects 4 km apart
where the habitat was degraded (Bouché 2006).
Twelve teams of three people each carried out the
survey. Each team had a transect to walk each day.
One team member recorded the observations and
manipulated the GPS, compass and tape measure,
while the other two spotted animals.
The survey of the eastern corridor was carried out
from 14 to 19 June 2006; 363.43 km of transect were
walked by 11 teams. The survey of the western corridor was carried out from 21 to 23 June 2006; 219.76
km of transect were walked by 11 teams.
Results
Mole National Park
ELEPHANT
In total, 401 elephants were observed. Each herd
was counted accurately, resulting in a density of 0.08
elephants/km2, a minimum estimate. Several herds
may have been missed in the large forest galleries
along the major rivers. Mean group size was 9.11
± 14.66 (SD); herds ranged up to 80 individuals.
Six elephant carcasses, all old, were observed in the
south of the park. Elephants were mainly in the central area and near the headquarters in the south-west
of the park (fig. 2). For the first time elephants were
observed in the north of the park. The other areas had
no elephants.
HUMAN ACTIVITY
Human activity was recorded outside the park, but
several were very close to park limits. Very often
the fields were just beyond the perimeter road that
marks the park boundary. The pressure from fields,
farms and villages varied. Farm fields and villages
seemed to continuously increase along the north-west,
south-east and southern boundaries. Pressure along
the western and north-eastern boundaries seemed
quite low (fig. 2).
61
Bouché
Gbele Resource Reserve
N
ELEPHANT
No elephant was recorded during this survey.
HUMAN ACTIVITY
Gbele Resource Reserve is surrounded by
fields. Several fields and two villages were
observed inside the north-west part of the
reserve. All other Gbele habitat covered by
this survey seemed untouched (fig. 3). During
the reconnaissance flight made between Mole
and Gbele, half of the land between the two
protected areas, which included the Kulpawn
tributaries and the Ambalalai Forest Reserve,
was absolutely free of fields. Only old fields
were observed. However, the rest of the distance was extensively cultivated, mainly along
a tributary of the Kulpawn River (fig. 1).
Eastern corridor
ELEPHANT
Legend
no. of elephants
1–4
5–11
12–25
26–48
49–80
carcass
0
5
10
20
30
cattle
farm
field
village
Mole HQ
river
40 km
Figure 2. Elephant distribution and human activity in Mole
National Park.
Legend
village
camp
field
cattle
The survey revealed no elephant sign in the
eastern corridor. According to traditional
hunters in the region, no elephants had been
observed for two years, although they had
still been ʻnumerousʼ four years ago. In the
recent past elephants did not reside in the
eastern corridor but visited the area between
September and November or December, when
crops were harvested. Elephants used to follow the Red Volta River from Burkina Faso
to go into Ghana.
river
area not surveyed
reserve boundary
HUMAN ACTIVITY
There was plenty of human activity inside the
corridor. There were several permanent villages, camps and fields, and cattle herds and
sign were numerous (fig. 4). It was obvious
the eastern corridor was used to move cattle
from the Sahel to the coast of West Africa. The
presence of villages and fields confirms that law
enforcement in the corridor has been weak for
several years.
N
0 2 4
8
12
16 km
Figure 3. Main human activity in Gbele Resource Reserve.
62
Pachyderm No. 42 January–June 2007
Northern Ghana elephant survey
Western corridor
HUMAN ACTIVITY
ELEPHANT
Several permanent villages, camps and fields were
installed in the corridor, and cattle herds and sign were
numerous. Figure 5 shows human activity was spread
throughout the corridor, but an untouched patch of
habitat was observed from the satellite image. This
area is under the protection of local gods and has
cultural value. Evidence of a migration corridor was
discussed with some traditional hunters and members
of several communities. According to them, the last
elephant migration was in 1986. The western corridor
has not been active for two decades.
Figure 5 shows large species distribution in the
western corridor. Elephant signs were observed in the
conserved northern part of the corridor. The number
of elephant dung contacts in the northern part of the
corridor was quite low—only 29. To reach reasonable
precision for statistical treatment, 60 to 80 observations are recommended. However, we decided to treat
the number we found (table 1).
The data treatment provides a result of 412.62
dung count/km2. According to the results, a mean
estimate of 15 elephants visited the corridor in Pudo
Hills and Sissili North (77.74 km2). No live elephant
was observed. The coefficient of variation and therefore the variance and the confidence interval are large
because most of the dung (87.8%) was concentrated
in a few transects along the Sissili River. It was possible that elephants roamed between Pudo Hills and
Sissili.
Re
Mole National Park
Several surveys have been conducted in Mole National Park (Wilson 1993; EBM&WD 2001; Barnes
2002; Bouché 2002; Mackie 2004). However, only
aerial surveys provided animal estimates (Wilson
1993; Bouché 2002; Mackie 2004).
d
ta
Vol
N
Discussion
e
Riv
Legend
r
White Volta
village
cattle
field
Ri
ve
r
river
escarpment
eastern corridor
R
lta
rV
pe o
Up
iver
0
5
6
12
18
24 km
Figure 4. Main human activity in the eastern corridor.
Pachyderm No. 42 January–June 2007
63
Bouché
Table 1. Elephant density (no./km2), coefficient of variation (CV%), degree of freedom (df) and limits of the
95% confidence interval
Dung density
Elephant density
Elephant number
Estimate (no./km2)
CV%
df
95% confidence interval
412.62
0.187
15
81.19
85.54
85.54
40.06
37.47
37.47
97.953
0.042
3
1738.1
0.84
65
confidence limit of 1993. It is difficult to confirm
elephant decline since 1993, like that affirmed by
Figure 6 shows the estimates provided by the aerial Mackie (2004), because the size of the confidence
surveys of 1993, 2002, 2004 and 2006 (Wilson 1993; interval provided by earlier surveys is large and the
Bouché 2002; Mackie 2004). All were carried out in estimate of 2006 is a minimum one. Statistically, there
March. Results show that an aerial sampling count is no significant difference between the three former
provides estimates with a large confidence interval surveys (dd test1993 vs 2002 = 0.124 NS and d test2002 vs
and, therefore, poor precision. The aerial total count 2004 = 0.133 NS). The heat could have influenced the
in 2006 provided a minimum estimate higher than results because animals take refuge in the deep shade
the mean estimates provided by the aerial sampling and may not have been spotted by the observers. It is
count in 2002 and 2004 and higher than the lower almost sure that several herds or individuals escaped
observation in the deep forest galleries.
This survey showed the presence
of elephants in the north of Mole
National Park (fig. 2), the first time
a survey showed elephant presence
in this remote area. Elephants used to
migrate between the park and Nazinga
Game Ranch up to the mid-1980s.
However, it seems that since then the
migration stopped (Bouché 2006).
N
We have no information about the
links that could have existed between
Mole National Park and Côte dʼIvoire,
Legend
notably Comoé National Park.
Sissil
i Rive
r
Sis
sili River
ELEPHANT
elephant dung
elephant spoor
village
camp
field
cattle
river
survey extension
s
Sis
western corridor
ili R
r
ive
0
4.5
9
18
27
36 km
Figure 5. Elephant sign and human activity in the western corridor.
64
COMPARISON WITH OTHER PROTECTED
AREAS IN WEST AFRICA
Table 2 shows the mean densities of
elephants in several protected areas
in the region that have recently been
surveyed. Considering that Mole
National Park aerial surveys provide
a minimum estimate for elephants,
density in the park is the lowest when
compared with other protected areas
in West Africa surveyed using the
same methods (Bouché et al. 2004a,
2004b).
Pachyderm No. 42 January–June 2007
Northern Ghana elephant survey
1200
Number
1000
800
589
600
401
380
400
259
200
0
93
94
02 03
Years
04
05
06
Figure 6. Elephant estimates and the 95% confidence interval of the 1993, 2002, 2004 and 2006
surveys in Mole National Park.
The current situation is contradictory. First, the
protected areas in the park benefit from high annual
rainfall and a short dry season. Secondly, the park is
covered by an extensive network of rivers and streams
that have water even in the driest month, March. All
the other areas cited have chronic problems with
water availability that oblige managers to spend large
amounts of money and effort in water structures and
water management (Lungren et al. 2005; Lungren
and Bouché 2006).
The higher rainfall and shorter dry season should
be advantageous for Mole National Park. It should
harbour larger elephant densities. It certainly has high
potential for biodiversity and could enhance wildlife
densities to some of the highest in the region.
Gbele Resource Reserve
In 2005, three elephants visited Gbele Resource
Reserve (pers. comm. Tumu wildlife officers 2006).
Tumu wildlife officers assumed they came from Mole
National Park. The elephants could also have come
from Bontioli in Burkina Faso, close to Nandom in
Ghana, known to be an elephant range (Wildlife Division 2000; Blanc et al. 2003). Gbele Resource Reserve
is at equal distance between Mole National Park and
the Black Volta. Black Volta, between Bontioli and
Gaoua in Burkina Faso, is also known to be an episodic elephant corridor (Bouché and Lungren 2004).
Despite the low animal densities (Bouché 2006) and
the human activity (fig. 3), Gbele Resource Reserve
could be important for a third corridor between Mole
National Park and Bontioli in Burkina Faso, mainly
along the Kulpawn River. From the air, this corridor
seems, in some areas, not much affected by human
activity. However, a thorough ground reconnaissance
should be undertaken to check free areas. The area
between Gbele Resource Reserve and Bontioli should
be included in the survey.
Eastern corridor
Despite more transects walked than in previous surveys
(Sam et al. 2002; Adjewodah 2004) no elephant sign
was recorded in the eastern corridor. According to
several testimonies, the elephant migration seems have
stopped two years ago. Traditional hunters did not complain about elephants raiding crops the last two years.
The last community record was two or three years ago.
Adjewodah (2004) recorded very little elephant dung
in the Red Volta Forest Reserve in 2003 and 2004. The
literature provides some estimated elephant numbers
for the eastern corridor (Sam 1994; Wildlife Division
2000; Blanc et al. 2003; Adjewodah 2004). Figure 7
shows that in 12 years the elephant population in the
eastern corridor collapsed.
The eastern corridor seems to have been threatened by human activity for several years (Sam and
Barnes 1998; Sam et al. 2002; Adjewodah 2004).
According to traditional hunters, elephants apparently have not been resident in the corridor these last
Table 2. Elephant densities (no./km2) in several protected areas of West Africa
Protected area
Mole National Park
W Regional Park
Pendjari National Park
Nazinga Game Ranch
Konkombouri Hunting Zone
Area
(km2)
Rainfall
(mm)
4,540
1100
14,360 700–1000
2,660
1000
940
900
650
900
Country
Ghana
BE–BF–NG
Benin
Burkina
Burkina
Elephant
density
0.08
0.08
0.29
0.66
1.16
Source
This study
Bouché et al. 2004a
Bouché et al. 2004a
Bouché et al. 2004b
Bouché and Renkens. 2005
BE – Benin ; BF – Burkina Faso ; NG – Niger
Pachyderm No. 42 January–June 2007
65
Bouché
140
120
Number
100
80
60
40
20
0
94
98
04
Year
Figure 7. Decline in mean elephant numbers in the
eastern corridor from 1994 to 2006.
decades. They used to roam in the area, mainly at the
end of the rainy season when crops reached maturity
(Adjewodah 2004; Adjewodah et al. 2005), then
moved back to Burkina Faso.
The current situation in the eastern corridor is
critical. This corridor has not been active since 2004.
Illegal activities are numerous and widespread, posing
questions on the effectiveness of law enforcement.
The consequence is that with the local population
growth and the immigration of people, and thus the
need for land, communities have invaded the last
unoccupied lands. Before its gazetting in the 1950s,
traditional authorities owned the land.
The eastern corridor seems to be an important
halting place in cattle transhumance from the Sahel
to the subhumid zones of coastal countries in the dry
season and back in the rainy season.
Figures 1 and 4 show that the larger rivers, thus the
larger water resources, are landlocked in the corridor.
In the absence of effective law enforcement and official
and managed cattle routes, for years cattle herders have
used the corridor to take their cattle to drink. Sam et
al. (2002) believed that elephants avoid cattle-grazed
areas. During the day the same phenomenon, extended
to fields and villages, was observed in several places
in West Africa (Bouché et al. 2004a, 2004b; Bouché
2005). However, the proposal of Sam et al. (2002) to
convince cattle herdsman to keep their cattle between
the farmland and the reserve to reduce crop raiding
would be difficult to implement because cattle compete with elephants for the same water. The herdsmen
do not receive any advantage by protecting elephants
66
that compete for the same resources as the cattle. This
competition has increased over the years in the region
because of the demand for meat. With agriculture
expanding up to the limits of the protected areas, herdsmen sometimes have no other choice than to use the
forest reserve to avoid conflicts with farmers.
The corridor does not provide significant revenue
or advantage for communities. If it did, the communities could have the feeling that the reserve land was
theirs. Currently, those who take the land illegally
consider that the land is a wasted resource because
only a limited number of people benefit. Up to now the
corridor acts more as an obstacle for traditional activities, such as cultivation, pastoralism and hunting.
A corridor is supposed to link protected areas.
In the past, the eastern corridor linked the Burkina
Faso Nazinga complex to Togolese protected areas
(Okoumassou and Barnes 1998) that were the last
step before reaching the W–Arly–Pendjari (WAP)
ecosystem (Bouché and Lungren 2004) (fig. 1).
However, the protected areas on the Togo side were
completely invaded by many fields and other human
activity not compatible with elephant survival. No
elephants were observed there in 2003 (Bouché et al.
2004a). In the 1990s during the Togolese civil trouble,
300 elephants left Togo for the WAP ecosystem and
never came back (Bouché et al. 2002).
Until recently, the administrations in charge of the
environment did very little to conserve wildlife in the
eastern corridor. In Togo, it seems recent efforts have
been made to rehabilitate some protected areas, but
the efforts are too recent to yet have had a significant
impact. At the same time, huge efforts were made in
Burkina Faso to link Kaboré Tambi National Park of
the Nazinga complex to the eastern corridor by the
Zabre corridor, with the agreement of the communities
(pers. comm. Drabo A. 2006) (fig. 1).
Western corridor
The situation in the western corridor is markedly different. The northern part shelters a wildlife population
coming mostly from Nazinga Game Ranch in Burkina
Faso (fig. 1). Intense poaching makes it highly unlikely
that wildlife would be resident in that part of northern
Ghana. Human activities increase in the corridor southward. The western corridor seems more visited by cattle
herds in the south of Sissili North, Sissili Central and
Bopono Forest Reserves. Farming pressure seems less
important than in the eastern corridor.
Pachyderm No. 42 January–June 2007
Northern Ghana elephant survey
The Sissili River is still used by elephants. However, it seems that elephants did not migrate beyond
the northern part of Sissili North once human activity
became more intense. According to several testimonies, elephants have not migrated between Mole
National Park and the western corridor since 1986.
The northern part, along the Burkina Faso border
and the Nazinga Game Reserve, was free from cattle
and fields, as predicted by satellite images, even if
poaching is still active there. Efforts should be made
to agree with local communities to give to that area
an official conservation status. Two particular points
must be mentioned concerning this area:
• The area was cultivated in the past (Bouché 2006).
Ground survey and aerial reconnaissance in 2003
(Bouché et al. 2004b) and in 2006 confirm that
this area became free of fields.
• During the ground survey a team member met
some local people who were not in favour of
letting the team have access to part of the forest
protected by local gods.
The context seems favourable to rapidly gazette
that area (fig. 1), with agreement of the communities,
and with a concrete financial mechanism to generate
socio-economic revenues, at least in the northern part.
This is a run against time. Such a favourable situation
may not recur.
Wildlife densities are still low. Concrete and appropriate conservation efforts must be done to favour a
wildlife population increase. The proximity of Nazinga
Game Ranch could help enhance wildlife density, if
appropriate management is taken. The ground survey
between the western corridor and Mole National Park
showed that most of the land is covered by cattle grazing during the dry season. In the rainy season, however,
the land is empty of cattle herds. The area is little
populated. Few villages exist and the impact of their
fields is low. There are opportunities to create wildlife
community areas. Some villages are in favour of that
because large game has completely disappeared from
the area and the negative impact of wildlife is nil.
How to reactivate the corridors
Most parts of the corridors have been invaded by human activity. They could be reactivated through a long
process that would include several stakeholders. First,
the government should define a clear vision of how
it intends to use its wildlife inheritance and provide
a strong commitment to realizing it.
Pachyderm No. 42 January–June 2007
A corridor is a purely ecological view. Legally
the protected areas in the corridors are forest reserves
managed by foresters for wood production and not
by wildlife officers. The legal status of these forest
reserves should be revised to include ecological aspects
linked to the corridor goals. However, the protected
areas are often small and narrow and many of them
are scattered. First, the corridors must be enlarged to
provide sufficient space to let elephants roam and gaps
between corridors should be reduced. Land between
protected areas should be surveyed to check for human
activity density and to see how communities could
provide some land to help to build up the corridor.
Communities could create protected areas that could
be leased to private partners to run ecological and cultural tourism. Appropriate management that pays for
itself from professional tourism revenue could finance
long-term conservation in the corridor and create substantial revenue for local communities. This way, Mole
National Park could be a hub for elephant corridors in
northern Ghana, with elephants coming from Nazinga
Game Ranch in the north and possibly from Gbele from
the north-west and the link between Comoé National
Park and Côte dʼIvoire to the west.
Conclusion
In Mole National Park the trends are difficult to define, since the 1993 to 2004 estimates are imprecise.
Compared with other protected areas of West Africa,
Mole National Park elephant density is the same as
in W Regional Park, but far less than in Pendjari
National Park in Benin, Nazinga Game Ranch or
Konkombouri Hunting Zone in Burkina Faso. Sound
management should be implemented to enhance the
elephant population in Mole National Park.
The current situation shows the corridors are no
longer active, mainly from human pressure on what
was untouched habitat a few years ago. Increasing
population, cattle pressure, lack of revenue from
wildlife activities for communities and the absence
of effective law enforcement have all converted the
wildlife corridors into agricultural and pastoral areas,
despite a lot of money spent in the last eight years for
a natural resource management programme (World
Bank 1998). Large conservation measures, in agreement with socio-economic interest of people living
in and around the corridors, must be implemented.
If no appropriate measures are taken, the corridors
may disappear completely. The loss of corridors and
67
Bouché
the associated wildlife would represent not only the
loss of a natural and cultural richness, but also the
loss of an economic opportunity for local people. If
the corridors were properly managed, tourism, starting with game viewing organized by a professional
concessionaire for the benefit of local people, could
be a source of revenue for communities.
Acknowledgements
This survey was implemented by IUCN (the World
Conservation Union) and NSBCP (Northern Savannah Biodiversity Conservation Programme) as part
of the NSBCP project activities funded by the World
Bank and the Global Environment Fund.
I wish to thank all the Mole National Park staff
for their help and availability during the aerial survey,
notably the wildlife and forestry officers involved in
the survey team, the motorbikers, and the traditional
hunters from the local communities. I wish to especially thank the park management, Mr F. Dubiure and
Mr Balangtaa, who facilitated the survey and made
the situation comfortable for everybody. CTK staff are
acknowledged for the aircraft and fuel availability and
for piloting the aircraft. We thank also the teachers and
directors of the schools of Tili, Datoko and Chiana for
their hospitality. I am particularly grateful to the IUCN
staff, who made all effort, far more than their normal
duty, to help coordinate in the field. I thank also Mr
M. Komoah of NSBCP and Dr A.J. Nianogo of IUCN
for organizing and funding the activities.
Mr. Adjewodah of NCRC is acknowledged for
all the useful information and advice provided. I am
grateful to Dr Nianogo for reviewing and making
useful comments on an earlier draft.
References
Adjewodah P. 2004. Habitat status, population and distribution of the African savanna elephant (Loxodonta
africana) in northeastern Ghana. NCRC, IUCN AfESG
Project SG0203. Final report. 40 p.
Adjewodah P, Beier P, Sam MK, Mason JJ. 2005. Elephant
crop damage in the Red Volta Valley, north-eastern
Ghana. Pachyderm 38:39–48.
Barnes RFW. 2002. Elephant survey of Mole National Park:
result of the dung count. Elephant Biology Monitoring
team and Wildlife Division, MIKE. 15 p.
68
Blake S, Bouché Ph, Rasmussen H, Douglas-Hamilton I.
2003. The last Sahelian elephants: ranging behaviour,
population status and recent history of the deserts elephants of Mali. Save the Elephants, Nairobi. 47 p.
Blanc JJ, Thouless CR, Hart JA, Dublin HT, DouglasHamilton I, Craig CG, Barnes RFW. 2003. African
A
elephant status report 2002: an update from the African
Elephant Database. Occasional Paper of the IUCN
Species Survival Commission, No. 29. IUCN, Gland,
Switzerland. 301 p.
Bouché Ph. 2002. Elephant survey of Mole National Park,
Ghana: report of the aerial survey. CITES-MIKE. 52 p.
Bouché Ph. 2005. Inventaire aérien de la faune dans les
sites du PAGEN : Forêt Classée et Réserve Partielle de
Faune de Comoé-Léraba ; Forêts Classées de Boulon
et de Koflandé ; Réserve de la Biosphère de la Mare
aux Hipopotames, Parc National Kaboré Tambi. Ministère de lʼEnvironnement et du Cadre de Vie, Burkina
Faso. 80 p.
Bouché Ph. 2006. Northern Ghana wildlife survey. IUCN
NSBCP. 100 p.
Bouché Ph, Lungren CG, Ouedraogo LK. 2002. Statut
et tendances des effectifs dʼéléphants dans les aires
protégées de lʼEst du Burkina Faso. Pachyderm
32:49–54.
Bouché Ph, Lungren CG. 2004. Les petites populations
dʼéléphants du Burkina Faso. Statut, distribution et
déplacements. Pachyderm 37:84–91.
Bouché Ph, Lungren CG, Hien B, Omondi P. 2004a. Recensement aérien total de lʼEcosystème W–Arly–Pendjari–Oti–Mandouri–Kéran (WAPOK). CITES-MIKE,
ECOPAS, PAUCOF, Bénin, Burkina Faso, Niger,
Togo. 114 p.
Bouché Ph, Lungren CG, Hien B. 2004b. Recensement
aérien total de la faune dans lʼécosystème naturel
Po–Nazinga–Sissili (PONASI), Burkina Faso. CITESMIKE. 95 p.
Bouché Ph, Lungren CG. 2005. Schéma dʼAménagement
pour la Sécurisation des Habitats et des Parcours de la
Faune du Parc Régional du W. ECOPAS, UE, Bénin,
Burkina Faso, Niger. 540 p.
Bouché Ph, Renkens D. 2005. Suivi de la faune de la Zone
de Chasse de Konkombouri. Burkina Faso, décembre
2004–mai 2005. Programme de Monitoring de la Zone
de Chasse de Konkombouri. Raport PMZCK/2005/02.
Burkina Safari Club. 160 p.
Buckland ST, Anderson DR, Burnham KP, Laake JL.
1993. Distance sampling: estimating abundance of
biological populations. Chapman and Hall, London,
Pachyderm No. 42 January–June 2007
Northern Ghana elephant survey
reprinted 1999 by RUWPA, University of St Andrews,
Scotland. 446 p.
Douglas-Hamilton I. 1996. Counting elephant from the air:
total counts. In: Kangwana K, ed., Studying elephants.
Handbook No. 7. African Wildlife Foundation, Nairobi.
p. 31–41.
[EBM&WD] Elephant Biology Monitoring Team and
Wildlife Division. 2001. Large herbivores survey in
Mole National Park during the 2001 dry season. Mole
National Park, Wildlife Division. 19 p.
Ghana Geographical Survey. n.d. Gambaga and Navrongo,
1/250 000 sheet.
[IUCN] World Conservation Union. 2003. Strategy for the
conservation of elephant in West Africa. IUCN SSC
AfESG, WWF. 34 p.
Jachmann H. 1991. Evaluation of four survey methods
for estimating elephant densities. African Journal of
Ecology 29:188–195.
Lungren CG, Ouedraogo F, Bouché Ph, Lungren L, Zida
C, Légma M. 2005. Etude sur les ressources en eau
de lʼécosystème naturel Pama–Arly–Singou. UICN
ADEFA, Burkina Faso. 195 p.
Mackie C. 2004. Mole aerial survey. Provisional report.
Wildlife Division, IUCN. 19 p.
Okoumassou K, Barnes R. 1998. Distribution of elephants
in north-eastern Ghana and northern Togo. Pachyderm
25:44.
Roth HH, Douglas Hamilton I. 1991. Distribution and status
of elephants in West Africa. Mammalia 55(4):489–527.
Pachyderm No. 42 January–June 2007
Sam MK. 1994. A preliminary survey of elephants in northeastern Ghana. Unpublished report. Ghana Wildlife
Department, Accra.
Sam MK, Barnes R. 1998. Elephants and human ecology
in northeastern Ghana and northern Togo. Pachyderm
25:43–44.
Sam MK, Haizel CAK, Barnes RFW. 2002. Do cattle determine elephant distribution in the Red Volta Valley
of northern Ghana? Pachyderm 33:39–42.
Thomas L, Laake JL, Strindberg S, Marques FFC, Buckland
ST, Borchers DL, Anderson DR, Burnham KP, Hedley
SL, Pollard JH, Bishop JRB. 2003. Distance 4.1. Release 2 software. Research Unit for Wildlife Population
Assessment, University of St Andrews, Scotland.
Wildlife Division. 2000. Strategy for the conservation of
elephants in Ghana. Wildlife Division, Forestry Commission, Accra. 39 p.
Wilson VJ. 1993. A zoological survey of Mole National
Park, northwestern Ghana. Part 1. Large mammals.
Forest Resource Management Programme. Game and
Wildlife Dept/IUCN Project 9786, Accra, Ghana.
World Bank. 1998. Project appraisal document on a proposed adaptable program credit and grant from the
Global Environment Fund. Trust fund to the Republic
of Ghana for a natural resource management project
in support of the first phase of a natural resource management program. Report No. 17879. World Bank,
Washington, DC. 89 p.
69
Hien et al.
Determinants of elephant distribution at Nazinga Game Ranch,
Burkina Faso
Bernard M. Hien,1 Jonathan A. Jenks,1 Robert W. Klaver, 2 Zeno W. Wicks III 3
Department of Wildlife and Fisheries Sciences, South Dakota State University, Brookings, SD 57007, USA;
email:[email protected]
2
US Geological Survey Center for Earth Resources Observation and Science (EROS), 47914 252nd Street,
Sioux Falls, SD 57198-0001, USA
3
Department of Plant Sciences, South Dakota State University, Brookings, SD 57007, USA
1
Abstract
We used seasonal ground total counts and remote sensing and GIS technology to relate elephant (Loxodonta
africana africana) distribution at Nazinga Game Ranch to environmental and anthropogenic factors. Variables used in analyses were normalized difference vegetation index, elevation, stream density, density of
poaching and human illegal activities, distance to dams, distance to rivers, distance to roads, and distance to
poaching risk. Contrary to our expectation, road traffic did not disturb elephants. Strong negative relationships
were documented between elephant abundance and stream density, distance to dams, and poaching density.
Density of poaching and other human illegal activities explained 81%, vegetation greenness 6%, and stream
density 3% of the variation in elephant density. Elephant distribution represented a survival strategy affected
by poaching, food quality and abundance, and water availability.
Additional key words: environmental and anthropogenic factors
Résumé
Nous avons utilisé des données dʼinventaires totaux terrestres, de télédétection et de Système dʼInformation
Géographique pour étudier les facteurs environnementaux et anthropogéniques qui déterminent la distribution
des éléphants au Ranch de Gibier de Nazinga. Les variables étudiées comprenaient lʼindice de végétation par
différence normalisée, lʼélévation, la densité des ruisseaux, la densité des activités illégales et de braconnage,
la situation des éléphants par rapport aux barrages, rivières, routes, et activités illégales et de braconnage. Nos
résultats ont indiqué que contrairement a notre hypothèse de base, la principale route avec son trafic ne semble
pas perturber la quiétude des éléphants. Aussi, de fortes corrélations négatives ont été observées entre les
éléphants et la densité des ruisseaux, la situation par rapport au barrage, la densité des activités illégales et de
braconnage. Lʼanalyse des variables les plus importantes à lʼaide de régression multiple a montré que la densité
des activités illégales et de braconnage, lʼindice de végétation ainsi que la densité des ruisseaux expliquent
respectivement 81 %, 6 %, et 3 % de variation de la densité des éléphants. La distribution des éléphants au
Ranch de Gibier de Nazinga semble représenter une stratégie de survie déterminée par les activités illégales
et de braconnage, lʼabondance et la qualité du fourrage et enfin le disponibilité de lʼeau.
Mots clés supplémentaires: facteurs environnementaux et anthropogéniques
Introduction
Understanding ecological parameters that influence
animal distribution can provide insight into which
areas are important for that animal population (Foley
70
2002). Fryxell and Sinclair (1988) stated a characteristic of the African savanna ecosystem was the spatial
and temporal variation in resource availability that
forces savanna wildlife to move to where food and
water can be obtained. Viljoen and Bothma (1990)
Pachyderm No. 42 January–June 2007
Elephant distribution at Nazinga, Burkina Faso
showed that seasonal variation in food availability
and quality affect ranging patterns and migration of
elephants, modified by water availability, which is
dictated by rainfall. Poole (1996) pointed out that in
dry and open savanna, elephants tend to aggregate
and reduce their home range in response to poaching
or the threat of human hostility. Our objectives in this
investigation were to determine elephant seasonal
distribution at Nazinga Game Ranch and relate it to
environmental factors and human illegal activities.
We hypothesized that because vegetation greenness
is an index of food availability, elephants would be in
the greenest areas. Secondly, we hypothesized that
elephants observed would be close to dams, rivers, and
areas of high stream density because elephants need
water daily. Lastly, we thought elephants would be
far from human illegal activities, to avoid poachers
and disturbed areas. Integrating global positioning
data from elephant counts and poaching records with
digital maps and environmental data from satellite
images can help test these hypotheses and provide
insight into variables that affect elephant distribution
at Nazinga.
Material and methods
Study area
Nazinga Game Ranch lies in the south of Burkina Faso,
on the border with Ghana (fig. 1). It covers 970 km2
and is separated into a preservation and game viewing
zone (9%), a hunting zone (86%) and a buffer zone
(5%) separating the viewing and the hunting zones. The
landscape is mostly flat, with elevation ranging from
270 m to 325 m above sea level for an average of 280
m. Soils are developed on a granite substrate and are
the tropical ferruginous type. Climate is sub-Sudanian
(Guinko 1984); rainfall averages 800 mm to 1100 mm
annually and falls in a unimodal pattern from April to
October. Average monthly temperature ranges between
18.1 °C and 38.4 °C.
The ranch is drained by the Sissili River and its
two seasonal tributaries, the Dawevele and Nazinga
Rivers. Eleven dams were built to supply wildlife
with permanent water in the dry season. Vegetation
that characterizes the ranch is a woody savanna dominated by Combretum spp., Terminalia spp., Vitellaria
paradoxa and Isoberlinia doka. Common grasses are
1 m to 3 m high and include Andropogon spp. and
Schizachyrium spp.
Pachyderm No. 42 January–June 2007
Fauna of the game ranch are diverse: 290 species
of birds (Portier 2000), 26 species of fish (Ouedraogo
1987), and 10 genera and 11 species of ungulates,
which include African buffalo (Syncerus caffer
brachyceros), roan antelope (Hippotragus equinus
koba), hartebeest (Alcelaphus buselaphus major),
waterbuck (Kobus ellipsiprymnus defassa), western
kob (Kobus kob kob), Nagor reedbuck (Redunca redunca redunca), oribi (Ourebia ourebi quadriscopa),
bush duiker (Sylvicapra grimmia coronata), bushbuck (Tragelaphus scriptus scriptus), red-flanked
duiker (Cephalophus rufilatus rufilatus), and warthog
(Phacochoerus africanus africanus). The elephant
is the only species of the order Proboscidae and the
aardvark (Orycteropus afer) of the Tubilidentata. Primates are represented by the baboon (Papio anubis),
the vervet (Cercopithecus aethiops sabaeus), and the
patas monkey (Erythrocebus patas).
Elephant data—poaching and other illegal
activities
Two total ground surveys were undertaken, in the
second decade (10-day period) of September 2002
for the wet season and in January 2003 for the dry
season. An initial time series analysis of vegetation
greenness from 2000 to 2005 indicated these dates were
representative of both seasons. The survey modified
the buffalo survey design of Ouedraogo (2001) and
separated the ranch into 11 zones (fig. 2). Elephants
were tracked three days, from 0600 to 1800 by 11
teams of three rangers each, equipped with GPS 12 XL,
binoculars, pedometers, tents, rifles, detailed maps of
habitat blocks, data sheets and food provisions. When
an elephant group was sighted, teams collected data on
the habitat, elephant social structure, and geographic
coordinates in UTM (universal transverse mercator).
Care was taken to minimize double counting of groups.
During the patrol, poaching and any human activity,
such as encounters with poachers and shepherds, cattle
presence, trees cut, thatch collected, poacherʼs camps,
shepherdʼs camps, or gunshots, were recorded and their
location in UTM coordinates indicated.
We displayed elephant locations in ArcMap display
of ArcGIS 9 (ESRI Inc., Redlands, California), and then
created a polygon around distribution points, to determine the seasonal distribution and the year-round area
elephants used. Elephant density and poaching density
were calculated in each zone by dividing the number of
events by the zone area in square kilometres.
71
Hien et al.
N
0
5
10 km
1250000
Burkina Faso
Koumbili
Kakouna
Doassan
Saro
Kadro
1240000
Kontioro
Natiedougou
Poste de Wafem
Bia
1220000
1230000
Campement Akwazena
Tassyin
640000
Kounou
GHANA
650000
Legend
dam
village
river
road
660000
670000
680000
690000
village hunting zone
conservation zone
hunting zone
buffer zone
Figure 1. Location of Nazinga Game Ranch in southern Burkina Faso.
72
Pachyderm No. 42 January–June 2007
Elephant distribution at Nazinga, Burkina Faso
N
3
0
5
1
10 km
2
4
8
7
5
9
10
6
11
Figure 2. Zones delineated for counting elephants at Nazinga Game Ranch, Burkina Faso.
Normalized difference vegetation index
data
If elephants migrate in response to seasonal rainfall
and food, then a vegetation greenness or a normalized
difference vegetation index (NDVI) should be useful for movement (Western and Lindsay 1984; Foley
2002) and seasonal distribution. NDVI is a remotely
sensed measure of vegetation quality based on the
spectral properties of green vegetation contrasting
with its soil background (Tucker 1979; ADDS 2001;
Oindo and Skidmore 2002). It is derived by dividing
the difference between near infrared and red reflectance measurements by their sum (Sellers 1989). The
formula for NDVI is (NIR – R) / (NIR + R). NIR is the
near infrared measurement and R the visible red measurement. High positive values correspond to greater
vegetation vigour (actively growing dense vegetation
cover), whereas negative values are usually associated
with bare soil, snow, clouds, or non-vegetated surfaces
(Oindo and Skidmore 2002).
West African NDVI images with a 500-m spatial
resolution and an Albers equal area conic projection were acquired from the US Geological Survey
(EROS—http://edcdaac.usgs.gov/modis/mod13a1v4.
asp). Images were from the moderate resolution
imaging spectroradiometer (MODIS). Projection of
Pachyderm No. 42 January–June 2007
the study area digital map was converted to the image projection and then masked with second-decade
images of September 2002 and January 2003. These
decades corresponded to the wet and dry seasons by
a five-year (2000–2005) time series analysis. Scaled
NDVI values (range of 0 to 250) were derived for
each season and transformed into actual NDVI values
(range of 0 to +1) using the formula:
Actual NDVI =
Scale NDVI – Offset
Scale
Actual NDVI was displayed in ArcMap and then
separated into five classes, which allowed for the
overlay of elephant data to determine NDVI values
associated with each observation. Mean NDVI in
each zone was computed using zonal statistics in the
spatial analyst menu of ArcMap.
Elevation data
West African elevation data were acquired from
USGS/EROS as well. Raster data were clipped by
setting a mask and extent in the template of spatial
analysis extension. The raster calculator was used to
produce masked grids. Afterward, elevation data were
reclassified into five elevation groupings using the
73
Hien et al.
quantile classification method. Zonal statistics were
used to compute mean elevation per zone.
Stream density
We quantified stream density by zone to compare it
with elephant distribution. Using the identity tool,
we overlaid the linear stream density network onto
the study area map. We summed stream length (km)
per zone. Stream density (km/km2) was calculated by
dividing the total stream length in the zone by area
of the zone.
Distance to roads, rivers, dams, poaching
events
About 5000 visitors each year enter Nazinga Game
Ranch from the registration post on the eastern side of
the ranch and drive 35 km on the main road to reach
the camp, where accommodations are available. Such
traffic on the main road may create disturbance that
influences elephant distribution. Rivers and dams also
may influence elephant distribution. To derive the
distance from elephant locations to roads, rivers, dams
and poaching areas, we created straight-line distance
raster models with an output cell size of 26.35 m.
Relationship between variables and
elephant density
A 2-sample t-test with season as the grouping variable
was used to test whether the average value for each
factor (NDVI, elevation, stream density, poaching
density, distance to dams, distance to rivers, distance
to the main road and distance to poaching events) in
the wet season differed from that of the dry season.
Pearson correlation was used to measure the degree
of linear association between elephant density and
each factor. We log-transformed the variable poaching
density to meet the assumption of normality and used
a backward stepwise regression to determine variables
that explained elephant density; significance level for
variable entry into the model was 0.15.
Results
Variability in the distribution
Eleven sightings with 89 individuals were made in
the wet season and 37 sightings with 230 individuals
74
in the dry season. Elephants occupied 161.29 km2 or
16.8% of the ranch area during the wet season (fig.
3). The distribution was central and west to east, with
a southern shift. In the dry season, the distribution,
which remained west to east, enlarged south-west
and then shifted north toward the Akalon permanent
water point, which increased the occupied area to
173.3 km2 or 18% of the ranch. Overlap between
wet- and dry-season distribution indicated year-round
use. Year-round use occurred along the main road and
around four permanent water points with an area of
68.9 km2, which represented 7.2% of the ranch. The
south and the north of the ranch were avoided.
Distribution relative to environmental and
illegal activities variables
Wet-season NDVI was significantly higher (P =
0.0005) than in the dry season. Elephant association to
NDVI was calculated for each season. Despite fairly
high probability values because of the low number
of observations, there was a positive relationship for
elephant density (rr = 0.82, P = 0.08) and a negative
relationship for vegetation greenness (r = –0.51, P =
0.19) during wet and dry seasons (figs. 4a, 5a). Elevation, stream density, poaching density, distance to
dams, distance to rivers, distance to the main road, and
distance to poaching and other illegal events caused
no difference (P > 0.05) in seasonal mean values.
Topography at Nazinga is relatively flat with a
difference of 68 m between lowest and highest elevations. During both seasons, elephants primarily used
the 301–312 m elevation (fig. 5b). Density was not
related linearly to elevation (r = –0.19, P = 0.51). As
for water, strong negative relationships were found
between elephant density and stream density (r =
–0.69, P = 0.009) (figs. 4c, 5c) and between elephant
density and distance to dams (r = –0.71, P = 0.006)
(figs. 4d, 5d). However, elephants were not associated (P = 0.47) with rivers, presumably because of
the presence of fishermen (figs. 4e, 5e). Poaching and
other human illegal events recorded encompassed
traps, encounters with poachers, gunshots, elephant
carcasses, carcasses of other species, poachersʼ camps,
bushmeat-smoking sites, poachersʼ trails, poachersʼ
bikes, encounters with shepherds, encounters with
herds of domestic animals, shepherdsʼ camps, cut
trees, thatch collection sites, charcoal production
sites, honey extraction sites, huts, farms, and market
Pachyderm No. 42 January–June 2007
Elephant distribution at Nazinga, Burkina Faso
Legend
dam
river
road
dry-season range
wet-season range
N
Akalon
overlap
Nazinga Game Ranch
0
5
10 km
Figure 3. Elephant seasonal dispersal at Nazinga Game Ranch, Burkina Faso, 2002–2003.
gardens. Overall density of poaching and other illegal
activities was 0.065 events/km2 during the wet season
and 0.09 events/km2 during the dry season. No seasonal difference (tt = 0.017; df = 10.8, P = 0.98) was
found. Elephants were mostly located 2–3 km from
poaching and other illegal events (fig. 5f) in areas of
low poaching density (fig. 5g). Elephant density was
correlated inversely with density of poaching and
other illegal activities (rr = –0.66, P = 0.01) but was not
correlated with distance (P = 0.35). Similar to stream
density, the linear relationship between elephant density and distance to the main road was negative (rr =
–0.57, P = 0.03), indicating that traffic on the road did
not disturb elephants. More than 63% of sightings in
wet seasons and 64% of sightings in dry seasons were
within1.6 km of the main road (fig. 5h).
Multiple regression analysis confirmed the hypothesis that at least one variable was related to elephant density (F
F = 31.21, P < 0.0001). Three variables
(NDVI, stream density, poaching density) met 0.15
significance for entry into the model. These variables
explained 90% of the variation in elephant density (r2
= 0.90, C(p) = –0.208) (table 1). Density of poaching
and other human illegal activities explained 81%,
vegetation greenness 6% and stream density 3%.
Pachyderm No. 42 January–June 2007
Discussion
Seasonal variation in food availability and quality affects elephant ranging patterns and migration,
modified by water availability, which is dictated by
rainfall (Western 1975; Viljoen and Bothma 1990).
The elephant distribution at Nazinga Game Ranch did
not encompass the entire ranch. Elephants did not use
about half of the area south and one-third of the area
north. Elephant abundance was determined by poaching and other human illegal activities, vegetation
greenness and stream density. Elephant distribution
was likely a survival strategy affected by disturbance,
food quality and water availability.
Fires are set annually in Nazinga between November and December, which may contribute to lower
vegetation greenness in the dry season. Elephants
were associated with low vegetation quality in the dry
season and high quality in the wet season. Elephant
dispersal to areas with lower NDVI was documented
by Foley (2002). In Nazinga, elephant association
with low NDVI in the dry season, rather than being
a preference, could be explained by dams in these
areas. In the wet season, species select forage with the
highest energy levels whenever possible (Western and
75
Hien et al.
0.8
r = –0.51
P = 0.19
0.6
Elephant density
Elephant density
1.0
a
1.0
r = 0.82
P = 0.08
0.4
0.2
0.6
0.4
0.2
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
NDVI
0.8
0.6
0.4
0.2
0.0
0.8
305
310
r = –0.71
P = 0.006
0.6
0.4
0.2
12
0
1.0
e
Elephant density
Elephant density
2
4
6
8
10
Stream density (km/km2)
r = –0.22
P = 0.47
0.8
0.6
0.4
0.2
f
0.8
2
4
6
8
Distance to dam (km)
10
r = –0.28
P = 0.35
0.6
0.4
0.2
0.0
0.0
0
2
4
6
Distance to river (km)
0.5
8
g
1.0
r = –0.66
P = 0.01
Elephant density
Elephant density
295
300
Elevation (m)
0.0
0
0.8
290
d
1.0
r = –0.69
P = 0.009
Elephant density
Elephant density
285
c
1.0
1.0
r = –0.19
P = 0.51
0.0
0.0
1.0
b
0.8
0.6
0.4
0.2
0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance to poaching event (km)
h
r = –0.57
P = 0.03
0.8
0.6
0.4
0.2
0.0
0.0 0.1 0.2 0.3 0.4
Poaching density (no./km2)
0.5
0
dry
wet
8
10 12
2
4
6
Distance to main road (km)
Figure 4. Elephant density (no./km2) in Nazinga Game Ranch, Burkina Faso, 2002–2003, relative to
a) NDVI, b) elevation, c) stream density, d) distance to river, e) distance to dam, f) distance to poaching
event, g) poaching density, and h) distance to main road. NOVIT – normalized difference vegetaion index.
76
Pachyderm No. 42 January–June 2007
Elephant distribution at Nazinga, Burkina Faso
b
60
Sighting (%)
40
20
100
0
80
60
40
20
24
4–
26
1
26
2–
27
5
27
6–
28
8
28
9–
30
0
30
1–
31
2
0.
08
–0
.1
0.
05
10
6–
0.
11
0.
5
11
6–
0.
12
5
0.
56
–0
.6
0.
5
66
–0
.6
75
0.
67
6–
0.
72
0
Elevation (m)
NDVI
d
60
50
40
40
Sighting (%)
20
10
f
e
.3
>5
8–
3.
2–
5.
2
3.
7
1
2.
60
Sighting (%)
60
50
40
30
20
50
40
30
20
10
10
.1
>5
5
4.
1–
1–
1–
3
3.
1.
6.8–9.0
1–
2
0–
1
2.2–4.4 4.5–6.7
0–2.1
4
0
0
Distance to poaching event (km)
Distance to river (km)
h
g
40
30
30
Sighting (%)
40
20
10
0
20
10
.9
>3
3.
8
8–
2.
2.
7
1.
6
7–
1.
0–
0.
5
>0
.1
9
.0
07
–0
0.
0.
05
–0
.0
7
05
0.
0.
03
–
0–
0.
02
0
0.
Sighting (%)
2.
0.
7.
Distance to dam (km)
Stream density (km/km2)
Sighting (%)
7–
0–
0.
6
0.
78
61
–1
–7
20
0
04
7
.7
6
4.
3–
1–
4.
1.
2.
37
–2
2.
.0
9
99
0
30
6–
Sighting (%)
c
2.
Sighting (%)
a
Poaching density (no./km2)
Distance to main road (km)
dry
wet
Figure 5. Seasonal sightings of elephants at Nazinga Game Ranch, Burkina Faso, in relation to a) NDVI,
b) elevation, c) stream density, d) distance to river, e) distance to dam, f) distance to poaching event,
g) poaching density, and h) distance to main road. NDVI – normalized difference vegetation index.
Pachyderm No. 42 January–June 2007
77
Hien et al.
use of Nazinga Game Ranch by elephants.
However, there was limited evidence that
density of poaching and other illegal events
in the wet season was higher than in the
Pr > F
dry season. Thus water, rather than induc0.033
ing a restriction in distribution as found by
0.045
Jachmann (1988), may explain the larger
0.143
area used in the dry season. In the dry sea0.0002
son, water amount reduced considerably in
dams, which could no longer support high
concentrations of elephants. To face this
scarcity, elephants might disperse strategically, to optimize dam use. In many African savanna
regions, when water supplies become restricted during
the dry season from the evaporation of water-filled
depressions, grazing species unable to meet water
requirements solely from forage concentrate around
permanent water supplies (Western 1975). Optimal
concentration around different water points can increase the size of the area used by elephants.
As expected, there was an inverse correlation
between elephant concentration and poaching and
other illegal events, confirming the hypothesis that
elephants avoid areas of disturbance. Furthermore,
among eight independent variables, our analysis
indicated that poaching and other human illegal
activities were the most important, explaining 81%
of the variation in elephant abundance. Avoidance of
the southern and northern areas could be attributed
to disturbance of the habitat by poachers, farmers,
shepherds and honey collectors. For many years, zone
11, which had the highest poaching density (0.472
events/km2), had been the headquarters for human
illegal activities. Though it was a part of the ranch, it
was disregarded during annual wildlife surveys because managers believed that no fauna existed there.
Seasonal elephant surveys not only led to quantifying
the disturbance in the area but also indicated that fauna
that occasionally visited the area were deterred from
staying because of human disturbance. Similar effects
of poaching were mentioned by Barnes et al. (1991),
who used dropping counts to study elephant distribution in a northern Gabon forest in relation to roads
and villages. They found that elephants avoided zones
within 7 km of roads because of human disturbance.
In addition, there was a relationship between dropping density and distance to the nearest village, which
led them to suggest that the most important factor
determining elephant abundance was not vegetation
but human activity. However, in the Bia Conservation
Table 1. Stepwise regression parameters to determine factors affecting elephant distribution in Nazinga, Burkina Faso,
2002–2003
Variable
Intercept
NDVI
Stream density
Poaching density
Parameter
SE
F value
0.213
–0.195
–0.016
–0.067
0.08
0.08
0.01
0.01
6.27
5.36
2.57
37.75
NDVI – normalized difference vegetation index.
Lindsay 1984). The wet-season elephant distribution
areas have higher-quality forage, which has higher
concentrations of nitrogen and calcium (Fryxell and
Sinclair 1988). High elephant densities in Kenya
were explained as a result of dense grass cover and
green grass (Leuthold 1977). Elephant association
with higher NDVI in Nazinga during the wet season
might be linked not only to forage quality, but also
to its abundance.
Similar to Leuthold (1977), distance to dams was
strongly associated with elephant density, confirming
the hypothesis that elephants will be close to water
because of daily requirements. A positive correlation
with stream density was expected. This might not
have occurred because of poaching in areas of high
stream density (rr = 0.83) and because of a higher
number of dams in areas of low stream density. In the
final model, distance to dams was eliminated because
of the colinearity with stream density (rr = 0.69, P =
0.008). Nevertheless, the model did show that water
had an effect on elephant distribution.
In contrast to Jachmannʼs findings (1988), elephants at Nazinga Game Ranch were distributed
widely in the dry season, but not in the wet season.
Jachmann (1988) used transect dropping counts to
estimate seasonal distribution. He did not calculate
use area but concluded that Nazinga elephants had
a restricted distribution in the dry season because of
water availability and poaching. Poole (1996) also
mentioned that elephants tended to aggregate in
response to poaching or to threats of human hostility, particularly in dry open savanna, which reduced
their home range. An aggregation of elephants in the
wet season in response to the flush of annual grasses
followed by a dry-season dispersion that provided a
more even distribution was documented by Caughley
and Goddard (1975) in Zambia.
Poaching and other human illegal activities in
the wet season could have explained the restricted
78
Pachyderm No. 42 January–June 2007
Elephant distribution at Nazinga, Burkina Faso
Area in western Ghana, where the use of wire snares
dominated signs of human illegal activities, Sam
(2006) reported that water availability (r2 = 0.759, P
< 0.05) was more important than illegal activity in
determining elephant distribution.
Contrary to expectations, traffic on the main
road in Nazinga did not seem to disturb elephants
because abundance decreased when distance to the
road increased. This finding was likely due to the
permanent traffic of tourists, which deterred poachers and provided a relatively secure environment for
elephants within 1.6 km of the road. It is commonly
believed that visitors in protected areas often disturb
wildlife by displacing mammals and birds from preferred habitats. Though levels of disturbance might be
considered, our results indicated that not all species,
at least elephants, are likely to respond negatively
to tours. Klein et al. (1995), studying the effect of
ecotourism on the distribution of 38 species of waterbirds in Florida, found that resident species were less
sensitive to disturbance than were migrants. As in our
study, similar behaviour was reported by Bjornlie and
Garrot (2001) and Hardy (2001). Bjornlie and Garrot
(2001) noticed that grooming roads during winter in
Yellowstone National Park did not affect bison (Bison
bison) ecology whereas Hardy (2001) found that wintering bison and elk (Cervus elaphus) coexisted with
winter recreation, their abundance remaining stable
over 20 years, despite increasing visitation.
Conclusion
Use of counting blocks to relate elephant distribution to a variety of environmental and anthropogenic
variables was found to be efficient. We would recommend increased monitoring activities for a better
understanding of seasonal distribution and movement
of elephants. Rather than considering two seasons,
wet and dry, monitoring could be implemented four
times a year, in the hot-dry, cold-dry, warm-wet and
cold-wet seasons. Also, the study focused on Nazinga
Game Ranch. Further research should consider the
entire ecosystem: Nazinga Game Ranch, Safari Sissili
and Kabore Tambi National Park.
Among immediate and continuous management
actions that should be taken to secure wildlife, controlling poaching and other illegal activities should be of
great concern for the administration of Nazinga. Yet
law enforcement operations, such as antipoaching, to
Pachyderm No. 42 January–June 2007
be effective, require great investment in people, salaries and logistics, which Nazinga has fully acquired.
Bike patrolling, in association with foot patrolling,
has recently showed effectiveness in detecting and
preventing illegal activities at Nazinga. However, the
south-east area of the ranch is less likely to be frequented by rangers, which suggests a need to reorganize the patrolling system. As implemented in Pendjari
National Park in Benin, a continuous presence in the
field, 24 hours a day, seven days a week, could give
effective results in deterring poaching and other human illegal activities. In addition, the construction
of an additional checkpoint in the south of the ranch
would help reduce pressure from Ghanaian shepherds,
farmers and poachers. Finally, reconstructing the
south-eastern dam to increase its capacity and period
of retention would attract elephants to the south, increasing the area used by this pachyderm.
Acknowledgements
Data used in this study were collected as part of the
activities implemented by the Biodiversity Optimization Project at Nazinga Game Ranch. The project was
funded by the Global Environment Facility (GEF)
through the United Nations Development Program
(UNDP). This project also was part of a Master of
Science programme completed in 2005 by the corresponding author in the Department of Wildlife and
Fisheries Sciences, South Dakota State University,
USA, under the auspices of the Fulbright Program
(Institute of International Education). Many thanks to
the foresters and rangers at Nazinga who helped conduct the survey, to Ron Smith of EROS, who helped
acquire images, to David Terrall, who reviewed the
first manuscript. We appreciate comments made by
two reviewers on previous drafts, which helped raised
the quality of this paper.
References
[ADDS] African Data Dissemination Service. 2001. EROS
Data Center, US Geological Survey, Sioux Falls, South
Dakota. http://edcsnw4.cr.usgs.gov/adds.html. Accessed 17 November 2004.
Barnes RFW, Barnes, KL, Alers MPT, Blom A. 1991.
Man determines the distribution of elephants in the
rain forest of northeastern Gabon. African Journal of
Ecology 29:54–63.
79
Hien et al.
Bjornlie DD, Garrot RA. 2001. Effects of winter road
grooming on bison in Yellowstone National Park.
Journal of Wildlife Management 65:560–572.
Caughley G, Goddard J. 1975. Abundance and distribution of elephants in the Luangwa Valley, Zambia. East
African Wildlife Journal 13:39–48.
Foley LS. 2002. The influence of environmental factors and
human activity on elephant distribution in Tarangire
National Park, Tanzania. MSc thesis, International
Institute for Geo-information Science and Earth Observation, Enschede, The Netherlands.
Fryxell JM, Sinclair ARE. 1988. Seasonal migration by
white-eared kob in relation to resources. African Journal of Ecology 26:7–31.
Guinko S. 1984. La végétation de Haute Volta. Thèse de
Doctorat dʼEtat ès Sciences Naturelles. Université de
Bordeaux III.
Hardy AR. 2001. Bison and elk responses to winter recreation in Yellowstone National Park. MSc thesis, Montana
State University, USA.
Jachmann H. 1988. Numbers, distribution and movements
of the Nazinga elephant. Pachyderm 10:16–24.
Klein ML, Humphrey SR, Percival HF. 1995. Effects of
ecotourism on distribution of waterbirds in a wildlife
refuge. Conservation Biology 9:1454–1465.
Leuthold W. 1977. Spatial organization and strategy of
habitat utilization of elephant in Tsavo National Park,
Kenya. Zeitschrift für Saugetierkunde 42:358–377.
Oindo BO, Skidmore AK. 2002. Interannual variability of
NDVI and species richness in Kenya. International
Journal of Remote Sensing 23:285–298.
Ouedraogo, J.M. 1987. Inventaire des poissons des lacs
de barrages du Ranch de Gibier de Nazinga. Mémoire
80
de fin dʼétudes. Institut du Développement Rural, Université de Ouagadougou, Burkina Faso.
Ouedraogo, M. 2001. La population de buffle (Syncerus
caffer brachyceros) au Ranch de Gibier de Nazinga.
Communication présentée au séminaire sur la recherche
scientifique à Nazinga, tenue les 6,7,8 février 2001 à
Ouagadougou, Burkina Faso. 12 p.
Poole, J. 1996. The African elephant. In: Kangwana K,
ed., Studying elephants. African Wildlife Foundation,
Nairobi. p 1–8.
Portier B. 2000. Liste exhaustive des espèces dʼoiseaux
recensées au Ranch de Gibier de Nazinga. Projet de
Valorisation Scientifique du Ranch de Nazinga. Rapport
interne, Ouagadougou, Burkina Faso.
Sam MK. 2006. Elephant survey in the Bia Conservation
Area, western Ghana. Pachyderm 40:42–50.
Sellers PJ. 1989. Vegetation-canopy spectral reflectance
and biophysical processes. In: Asrar G, ed., Theory
and applications of remote sensing. Wiley, New York.
p 297–335.
Tucker CJ. 1979. Red and photographic infrared linear
combinations for monitoring vegetation. Remote Sensing of the Environment 8:127–150.
Viljoen PJ, Bothma JP. 1990. Daily movement of desertdwelling elephants in the northern Namib desert. South
African Journal of Wildlife Research 202:69–72.
Western D. 1975. Water availability and its influence
on the structure and dynamics of a savannah large
mammal community. East African Wildlife Journal
13:265–286.
Western D, Lindsay WK. 1984. Seasonal herd dynamic
of a savanna elephant population. African Journal of
Ecology 22:229–244.
Pachyderm No. 42 January–June 2007
Conflits hommes–éléphants dans la Reserve de Pama, Burkina Faso
Conflits hommes–éléphants dans la Reserve Partielle de Pama,
Burkina Faso
Alassane Nakandé,1 Adrien Marie Gaston Belem,2 Aimé J. Nianogo,3 Christine Jost 4
Ingénieur du développement rural, Option eaux et forêts, Burkina Faso ; e-mail : [email protected]
Institut du développement rural / Université polytechnique de Bobo Dioulasso,
01 BP 3770 Ouagadougou 01, Burkina Faso
3
UICN Burkina Faso, BP 3133 Ouagadougou 03, Burkina Faso
4
Tufts University School of Veterinary Medicine, Department of Environmental and Population Health,
Medford, Massachusetts, USA
1
2
Résumé
Les conflits hommes–éléphants restent une réalité inquiétante dans la Réserve Partielle de Pama en Burkina
Faso. Dʼune part les éléphants occasionnent des dégâts souvent importants dans les villages riverains de la
réserve, en particulier sur les cultures mais aussi sur les arbres dits de valeur. Les cultures sont attaquées à des
stades critiques tels que la maturation et la montaison avec des périodes de pointe en octobre et en novembre
pour la pluspart des cultures. Malheureusement les méthodes de lutte restent inefficaces, si bien que cette
situation prend de lʼampleur au fil des années. Dʼautre part les populations humaines à travers leurs activités
empiètent sur lʼhabitat des éléphants et contribuent ainsi à modifier leurs zones de parcours et à dégrader
leur milieu de vie. Les raisons sont entre autres liées aux systèmes de production qui se modernisent, à la
croissance démographique et aux flux de migrants dans la zone avec les besoins en ressources naturelles qui
vont grandissants.
Abstract
Human–elephant conflict remains an important problem in the Pama Reserve, Burkina Faso. Elephants often
cause severe damage to crops and high-value trees in the surrounding villages. Most crop damage occurs at
the critical vegetative stages, including during flowering and maturity, peaking in October and November.
Unfortunately, deterrent methods used are ineffective and the situation gets worse every year. Human activity is shrinking and degrading elephant habitat, including their migration routes. The causes include modern
farming methods, the growing human population, migrants into the area and a growing demand for natural
resources.
Introduction
La Réserve Partielle de Pama (RPP) est constituée
de quatre concessions de chasses (Pama Nord, Pama
Centre-Nord, Pama Sud et Pama Centre-Sud) et couvre une superficie de 2230 km2 (Bousquet 1992). Elle
est située à lʼextrême Sud-Est du Burkina Faso entre
11° et 12° de latitude Nord, 0° et 1°30 de longitude
Est. Cette réserve fait partie dʼun complexe dʼaires
protégées transfrontalières (Burkina Faso, Niger et
Bénin) contiguës qui abrite une population importante dʼéléphants estimée à 4.592 individus (Bouché
et al. 2004).
Pachyderm No. 42 January–June 2007
Autour de la périphérie de la RPP, une vingtaine
de villages ou de hameaux de cultures sont installés.
Cette situation entraîne une cohabitation difficile entre
les éléphants et les hommes liée aux dégâts occasionnés tantôt par les premiers, tantôt par les seconds. La
problématique sʼaccentue davantage avec lʼexigence
des besoins naturels de part et dʼautre en particulier la
disponibilité de lʼespace et des ressources alimentaires.
Dʼoù la nécessité de trouver des solutions adéquates
pour atténuer ces conflits et contribuer à la sauvegarde
des éléphants. Dans cet article il sera notamment question de lʼampleur des conflits hommes–éléphants et les
raisons éventuelles de leurs manifestations.
81
Nakandé et al.
Lʼobjectif global de cette étude était de contribuer
à une meilleure conservation des éléphants dans la
RPP à travers lʼanalyse de leur cohabitation avec les
communautés périphériques. Les objectifs spécifiques
étaient de caractériser les systèmes dʼexploitation agro
pastorale autour de la réserve, de décrire les dégâts
dʼéléphants sur les activités humaines et les moyens
de lutte utilisés contre les maraudes.
Milieu d’étude
La Reserve Partielle de Pama se situe dans le domaine
soudanien, avec des précipitations oscillant entre 1000
et 1200 mm et des températures moyennes de 27 °C.
Les vents (harmattan et mousson) sont les facteurs
qui déterminent les saisons. La saison des pluies est
courte et dure de juin à octobre alors que la saison
sèche est longue va de novembre à mai.
Le réseau hydrographique de la réserve est très
dense, mais en général saisonnier. Il renferme deux
principaux cours dʼeau : le fleuve Pendjari et son affluent, le fleuve Singou, dont les multiples branches
sont entre autres Bigou, Bonkouandi et Opkemboulo.
On note aussi lʼexistence de mares dont les plus importants sont Nabindo, Tinouari et Yeri-yanga. Seuls
la mare de Nabindo et le fleuve Pendjari ne tarissent
pas totalement en saison sèche.
La végétation de la RPP est de type savane arborée
présentant quelquefois des îlots de savanes arbustives et herbeuses dans sa partie nord. Les espèces
ligneuses les plus prédominantes sont entre autres :
Combretum micranthum, Combretum glutinosum,
Detarium microcarpum, Pterocarpus erinaceus.
Les herbacées sont constituées surtout de Loudetia
togoensis, Andropogon spp. et Loudetia simplex. Par
ailleurs le long des cours dʼeau est caractérisée par
des forêts galeries avec des espèces prédominantes
comme Terminalia spp., Anogeissus leiocarpa et
Daniella oliveri (Bousquet 1992).
La RPP regorge également dʼun potentiel faunique important et assez diversifié notamment les
carnivores, les antilopes de toutes tailles, les oiseaux,
les phacochères et les éléphants. Les espèces les plus
représentées sont entre autres Syncerus cafer (buffles),
Hyppotragus equinus (hippotragues), Alcephalus
busephalus (bubales majors), Sylvicarpa grimmia
(céphalophes de grimm), Ourebia ourebi (ourebis),
Phacochoerus aethiopicus, Kobus kob (cob de buffon)
(Bousquet 1992).
82
Les ressources halieutiques existent au niveau
des cours dʼeau avec des espèces très variées. Les
principales familles de poissons rencontrées sont les
Cichlidés (Tilapia spp., Hemichromis sp.), les Centropomidés (Lates niloticus), les Claridés (Clarias
gariepinus, Heterobranchus sp.) (Drabo 1997).
La population dʼéléphants dans la réserve a été
estimée à 783 individus et à 2956 individus dans les
concessions de lʼest du Burkina Faso tout décompte
fait (Bouché et al. 2004). Lʼaugmentation moyenne
annuelle sur les 17 ans a été de 4,7 % et avec des densités variant entre 0,12 et 0,42 à lʼintérieur des concessions de la réserve. La présence des éléphants favorise
le tourisme de vision qui occasionne des retombées
socio-économiques positives au profit du pays et
surtout au bénéfice des populations riveraines.
Autour de la RPP vivent des populations humaines
estimées à 35.000 habitants selon Bouché et al. (2004)
et qui mènent diverses activités notamment la production agricole et pastorale. Les principales ethnies
représentées sont les gourmantchés (majoritaires), les
peulhs et les mossis (essentiellement des migrants).
Méthodologie
Les enquêtes et les observations directes ont été les
méthodes dʼétude des conflits hommes–éléphants
dans la RPP. Dʼautres données telles que les superficies emblavées, la taille du bétail ont été récoltées avec
la collaboration des agents techniques de lʼagriculture
et de lʼélevage dont les évaluations étaient en cours
pendant cette période sur lʼensemble de la zone.
De plus la consultation des réquisitions établies
pendant la campagne agricole 1999–2000 ont permis
dʼavoir les données sur les pertes de cultures ravagées
par les éléphants. Ces pertes ont été obtenues par des
mesures de superficies détruites sur le terrain et en faisant des estimations sur la base des rendements attendus
au cour de cette même campagne. Nous avons supposé
que ces données sur toute la zone et les méthodes
dʼestimation par les services techniques reflètent dans
une moindre mesure la réalité et donc des références
à considérer. Lʼétude a duré six mois dʼaoût 1999 à
janvier 2000 et a couvert vingt trois communautés
locales en périphérie de la réserve. Un échantillonnage
stratifié a été établi proportionnellement à la taille de
la population des localités concernées. Ainsi au niveau
des petits, moyens et grands villages on a retenu respectivement 20, 40 et 60 personnes à interroger. Le choix
Pachyderm No. 42 January–June 2007
Conflits hommes–éléphants dans la Reserve de Pama, Burkina Faso
des producteurs interrogés sʼest fait de façon aléatoire
suivant une répartition par secteur ou par quartier au
sein de chaque localité. Un taux dʼéchantillonnage
arbitraire a été fixé à 5 % pour lʼensemble des localités
sur les statistiques existantes, soit 720 producteurs
soumis aux enquêtes.
Les fiches dʼenquêtes ont été conçues en référence
de celles proposées par Hoare (1999) et ont porté sur
quatre rubriques en particulier. Ce sont les volets sur
les exploitations agricoles, les pratiques de lʼélevage,
les dégâts dʼéléphants et les moyens de lutte contre
les maraudes. Il faut noter quʼune pré-enquête a été
réalisée dans deux localités dont lʼune est périphérique
à la RPP et a concerné trente personnes.
Les observations directes des dégâts ont été assez
régulières du fait que cette étude a été associée à celle
sur les parasites à partir de crottes fraîches des éléphants qui a nécessité des veillées, des visites dans
les champs à travers le pistage de ces pachydermes
aux alentours et à lʼintérieur de la réserve.
Enfin le traitement des données sʼest fait en regroupant les villages ou hameaux de culture. Ainsi
la localité de Pama regroupe huit villages (Sambouali, Nadiagou, Pama, Koualou, Tindangou, Kodjari, Kompienbiga, Kalamama), celle de Madjoari
dir villages (Madjoari, Momba, Tambarga, Mobi,
Tougou, Diassanga, Nyaptankouagou, Gnamanga,
Namouyouri, Tanli) et celle de Natiabouani cirq villages (Natiabouani, PK51, PK52, PK56, Sanba). Le
figure 1 traduit la position de ces localités étudiées.
Résultats
Activités agropastorales
CULTURES REALISEES ET SUPERFICIES EMBLAVEES
Les communautés riveraines de lʼensemble des localités qui exploitent le maïs, le haricot, le sorgho et le
mil représentent plus de 80 %. Les cultures de rente
traditionnelles (coton, arachide) sont réalisées par
environ 20 % des agriculteurs.
En terme de superficies emblavées le tableau 1 montre que les cultures vivrières traditionnelles (sorgho, mil,
maïs, haricot) sont les plus importantes dans toutes les
localités. Seulement il faut signaler que le maïs et le
haricot sont aujourdʼhui des céréales commerciales
bien plus quʼalimentaires. Les cultures de rente augmentent dans leur diversité et partant des superficies
exploitées.
Pachyderm No. 42 January–June 2007
TECHNIQUES ET MOYENS DE PRODUCTION
Le tableau 2 présente les différents moyens et techniques de production employés par les localités
riveraines de la RPP.
En outre les résultats sur les estimations du nombre de champs par ménage et de leur éloignement
par rapport à la RPP montrent que les producteurs
des localités possèdent une multitude de champs (en
moyenne 5 champs par ménage) distants les uns des
autres mais dont un certain nombre non négligeables
sont installés à proximité de la réserve (moins de 1
km). On a ainsi 25 % des personnes interrogées dans
la localité de Pama, 30 % de celles de Madjoari et
16 % de celles de Natiabouani, ce qui correspond
respectivement à environ 70, 90 et 22 champs installés à moins dʼun km de la réserve. On a même pu
observer des champs à lʼintérieur de la réserve dans la
localité de Pama (cas du village de Sambouali installé
à lʼintérieur de la RPP) et dans celle de Madjoari (cas
du village de Kodjoari).
ACTIVITES PASTORALES
La plupart des exploitants agricoles sont des éleveurs
dʼanimaux domestiques. De même les peulhs purement éleveurs autrefois entreprennent de nos jours
des activités agricoles. Dans les différentes localités
on a maintenant affaire à des agropasteurs.
Les exploitants sʼintéressent surtout à lʼélevage
de bovins, de caprins et des ovins qui représentent
respectivement 24 % ; 23,2 % ; 22 % de lʼensemble de
lʼélevage. Mais il faut remarquer que cʼest un élevage
mixte qui est pratiqué par les exploitants.
Le tableau 3 traduit lʼimportance relative du
cheptel des localités qui se composent particulièrement de la volaille, des caprins, des ovins et des
bovins. Lʼélevage reste essentiellement sédentaire
avec souvent la transhumance vers le Benin et le
Togo qui est lʼapanage des pasteurs venant du Niger
et du nord du Burkina Faso. Le pâturage illégal est
beaucoup constaté au cour de la transhumance mais
aussi avec les animaux sédentaires le plus souvent
en divagation.
Lʼimplantation des champs autour de la réserve,
la transhumance et la divagation des animaux ne se
font pas sans accroître les impacts réciproques entre
les éléphants et les activités humaines.
83
Nakandé et al.
Burkina Faso
Zone d’étude
Sietougou
MATIACOALI
FADA N’GOURMA
Naboe
Saborga Pera
NATIABOUANI
TAMBAGA
Parc National d’Arly
Reserve
Total de Singou
Reserve Partielle
de Pama
Kamse
Affy
Tougou
Tambarga
MADJOARI
FC de
Reserve
Madjoari
Partielle d’Arly
Diapare
Momba
Kortikiogo
LOGOBO
Kobotougol
Tanli
PAMA
Sambouali
Kodjoari Bariba
Kompiienbiga
Fafari
N
Padiali
Legend
village
aires de conservations
departments
20
0
20
40 km
localites d’influence de la RPP
Figure 1. La Réserve Partielle de Pama et les sites d’études.
84
Pachyderm No. 42 January–June 2007
Conflits hommes–éléphants dans la Reserve de Pama, Burkina Faso
Tableau 1. Superficies emblavées (en hectares) dans les localités
Localité
Pama
Natiabouani
Madjoari
Sorgho
1570
1125
400
Mil
Maïs
Riz
Coton Arachide
Soja
Niébé
1546
1050
450
1370
1785
450
188
247
25
769
244
1863
70
70
400
505
430
45
844
605
20
Voanzou Igname
8
68
6
2
15
25
Tableau 2. Proportion d’adoption de moyens et techniques agricoles dans les localités (en % du nombre
total de ménages)
Localité
Pama
Madjoari
Natiabouani
Daba
100,00
89,50
100,00
Charrue
84,30
78,70
90,00
Tracteur
Engrais
Pesticide
Fumier
Compost
Cordon
23,10
48,00
63,50
72,70
86,00
76,50
68,41
82,23
67,85
89,60
81,50
74,10
39,20
28,70
9,00
12,50
13,80
10,60
Tableau 3. Effectifs du cheptel dans les localités
Localité
Bovins
Asins
Ovins
Pama
Madjoari
Natiabouani
1082
4498
13491
1802
244
1227
8945
8230
12261
Impacts des éléphants sur les activités
agropastorales
ravagés. Ces superficies détruites restent importantes dans chaque localité
10902
4718
notamment quand on fait la moyenne
8411
371
des pertes, le rapport entre les produc10839
3848
tions estimées selon les rendements
attendus et le nombre de victimes.
Ainsi les pertes moyennes sont de 420 kg par victime
à Madjoari (90 victimes), 570 kg à Pama (96 victimes)
et 950 kg à Natiabouani (30 victimes).
Caprins
Porcins
PROPORTION DE PERSONNES TOUCHEES
SPECULATIONS AGRICOLES CONCERNEES PAR LES
Dans les différentes localités, tous les villages connaissent les incursions des éléphants dans leurs
champs à des degrés divers mais dans lʼensemble les
dégâts concernent plus de la majorité des producteurs
interrogées. On a ainsi 165 personnes victimes (soit
59 %) sur 280 interrogées à Pama, 210 victimes (soit
70 %) sur 300 interrogées à Madjoari et 87 victimes
(soit 62 %) sur 140 à Natiabouani. La situation est
surtout préoccupante dans la localité de Madjoari où
la proportion des victimes excède 60 % au sein de
chaque village. Effectivement les observations sur le
terrain témoignent de cette réalité.
DEGATS
IMPORTANCE QUANTITATIVE DES DEGATS
Le tableau 4 traduit les superficies endommagées au
cours de la campagne agricole 1999–2000 sur la base
des réquisitions établies. Les superficies de cultures
les plus détruites par les éléphants sont le maïs, le
sorgho et le mil bien que toutes les cultures soient
sujets aux attaques et au total on a 331,9 hectares
Pachyderm No. 42 January–June 2007
Dans lʼensemble des trois localité, les éléphants
sʼattaquent plus particulièrement aux cultures de
sorgho (25%), de maïs (17%); de mil (14%) et de
coton (13%) selon la figure 2. Il existe une légère
disparité sur la sévérité des cultures dans les localités
et cela en fonction de lʼimportance des spéculations.
De façon générale toutes les cultures sont sujettes aux
dégâts dʼéléphants.
STADES PHENOLOGIQUES CONCERNÉS PAR LES
MARAUDES
Tous les stades phénologiques des diverses cultures
sont sujets aux attaques des éléphants dans les localités. En général, les stades les plus touchés par les
dégâts sont la maturation, la montaison et dans une
moindre mesure le stade épiaison comme le montrent
la figure 3.
Les dégâts sévissent souvent à certaines périodes
de lʼannée nécessaires à savoir.
85
Nakandé et al.
PERIODES DES DEGATS
AUTRES TYPES DE DEGATS DES ELEPHANTS
La figure 4 traduit lʼimportance des dégâts aux cultures en fonction des mois de la saison pluvieuse.
Les incursions des éléphants commencent timidement dans le mois dʼaoût et atteignent leur paroxysme dans le mois dʼoctobre, évolution similaire
dans toutes les localités. On enregistre ainsi dans
lʼensemble de la zone 30 % des dégâts en octobre,
20 % en septembre et 16 % en novembre.
Par ailleurs on observe des pics précoces des
dégâts sur le mil et lʼarachide aux stades montaison
qui pourrait sʼexpliquer par lʼimportance de la feuillaison toujours jeune pouvant constituer un attrait pour
les éléphants.
En dehors des cultures objets de ravages, les éléphants
causent dʼautres types de dégâts notamment la destruction des arbres dits de valeur (Vitellaria paradoxa ou
karité, Parkia biglobosa ou néré), lʼobstruction des
pistes par le terrassement des arbres. De plus un verger
de manguiers et de goyaviers en période de fructification a été ravagé à Pama et un grenier à lʼintérieur du
village de Koualou décoiffé par un groupe dʼéléphants.
Enfin, on a fait mention que le barrissement ou la vue
de lʼéléphant par lʼâne et le cheval les conduisent à des
comportements difficiles à maîtriser compromettant
souvent les cultures attelées.
Tableau 4. Superficies et pourcentage des cultures endommagées durant la campagne agricole 1999–2000
Natiabouani
Superficie
(ha)
Sorgho
Mil
Maïs
Niébé
Coton
Arachide
Pastèque
Riz
Soja
Proportion des dégâts (%)
Total
Madjoari
Proportion
détruite (%)
Superficie
(ha)
Pama
Proportion
détruite (%)
Superficie
(ha)
Proportion
détruite (%)
8
136
23
0,0
4,5
4,0
0,0
0,0
0,0
4,5
77,3
13,1
0,0
2,6
2,3
0,0
0,0
0,0
44,95
0,5
9,5
5,2
16,5
0,6
0,0
0,0
0,0
58,2
0,6
12,3
6,7
21,4
0,7
0,0
0,0
0,0
44,65
4,5
13,9
2,4
0,0
0,1
11,4
1,8
0,0
56,7
5,7
17,7
3,0
0,0
0,1
14,5
2,2
0,0
176,0
100,0
77,2
100,0
78,7
100,0
30
25
20
15
10
5
0
sorgho
maïs
coton
haricot
mil
igname
riz
pastèque arachide
autres
Cultures
Figure 2. Proportion des dégâts aux cultures dans les trois localités.
86
Pachyderm No. 42 January–June 2007
Conflits hommes–éléphants dans la Reserve de Pama, Burkina Faso
14
semis
levée
montaison
épiaison
maturation
stock
Proportions des maruades (%)
12
10
8
6
4
2
0
sorgho
maïs
coton
haricot
mil
igname
riz
pastèque arachide
Cultures
Figure 3. Proportion des maraudes en fonction des stages phénologiques des culture dans les trois
localités ((n = 720).
Face aux dommages crées par les éléphants sur
les activités agricoles notamment, les producteurs
emploient des moyens diversifiés comme les clôtures,
lʼémission de bruit, les feux, le gardiennage et les produits odoriférants (pneus, plastiques, bouse de vache
et piments brûlés). Il est à signaler des pratiques telles
que lʼutilisation des gris-gris accrochés sur les arbres,
les sacrifices pour éloigner les éléphants et le recours à
la prestidigitation (charlatanisme, maraboutage) pour
se prémunir des dégâts. Lʼusage de tous ces moyens
donne des résultats passables voire nuls selon les
producteurs. Dʼoù le recours par certains producteurs
à des pratiques clandestines et préjudiciables à la
vie de lʼéléphant. Cʼest le cas de lʼintroduction des
produits chimiques (les pesticides, les insecticides,
les herbicides) dans les tubercules, les calebasses et
les pastèques pour empoisonner les éléphants mais
aussi des foyers de braise camouflés afin de piéger
ces derniers. Et pour dʼautres producteurs le moyen
efficace pour faire fuir les éléphants loin des champs
serait les brûlis de peaux dʼéléphants et les abattages
toute chose aussi inquiétante.
Pachyderm No. 42 January–June 2007
Cependant les communautés locales ont une
perception culturelle pleine de vertus pour lʼéléphant
(meilleur tempérament, soins à base de crottes et
dʼécorces dʼarbres rejetés, présence symbole de bonne
pluviométrie) et reconnaissent les devises engrangées
à leur profit à partir du tourisme de vision.
Discussions
En matière de technologie adoptée dans les localités
que la charrue est aujourdʼhui lʼun des principaux outils de production. Il en est de même pour lʼutilisation
importante de lʼengrais et des pesticides contrairement
aux pratiques dʼamendements organiques pour la
restauration de la fertilité des sols dans les différentes
localités. Tout ceci peut constituer un des facteurs de
dégradation des sols surtout face à lʼutilisation abusive
et incontrôlée des moyens et techniques modernes de
production dont font preuve les populations rurales.
Dʼailleurs lʼintroduction de la motorisation agricole
notamment les tracteurs manuvrés par les techniciens
peu professionnels vient encore accroître davantage
87
Nakandé et al.
8
a
proportions des maraudes (%)
7
6
5
4
3
2
1
0
e
br
m
e
br
e
mil
coton
ce
dé
m
ve
no
re
br
8
maïs
ob
em
t
sorgho
t
oc
pt
se
ût
ao
ille
ju
ai
in
ju
m
s
ar
r
r
ie
ril
av
m
vr
fé
ie
nv
ja
mois
haricot
b
proportions des maraudes (%)
7
6
5
4
3
2
1
0
ce
e
br
m
e
e
pastèque
dé
br
m
br
e
br
ve
to
no
oc
em
riz
pt
t
igname
se
ût
ao
in
ille
ju
ju
ai
m
ril
av
s
ar
m
r
r
ie
vr
ie
nv
fé
ja
mois
arachide
Figure 4. Proportion des maraudes en fonction des périodes dans les trois localités ((n = 720).
88
Pachyderm No. 42 January–June 2007
Conflits hommes–éléphants dans la Reserve de Pama, Burkina Faso
les risques dʼappauvrir rapidement les sols sans
compter le fait que cela permet de dévaster de grandes
superficies malheureusement peu valorisées.
Les techniques de production des communautés
riveraines ont connu une évolution significative grâce
à la promotion de la culture du coton et aux avantages
associés (octroi de matériels agricoles et de produits
chimiques). Lʼétude réalisée par Drabo (1997) a
pourtant révélé la très faible utilisation de la charrue
(18 % des producteurs) et lʼabsence de tracteur. Cette
situation a favorisé du coup lʼextension des superficies emblavées couplée à lʼinstallation anarchique qui
pose la question des risques potentiels de pressions
sur les éléphants très mouvementés. La compétition
pour lʼaccès aux ressources devient de plus en plus
rude avec la transhumance qui entraîne dans son
sillage une surcharge du milieu et aussi des risques
épidémiologiques (Paris 2002).
La pression foncière beaucoup plus perceptible
avec lʼafflux de migrants notamment suite à la crise
ivoirienne contraint de plus en plus les populations
humaines à exercer des actions néfastes sur la réserve
par le fait de la proximité de leurs activités de production. Ceci explique plus sérieusement la récurrence
et la recrudescence des conflits hommes–éléphants
matérialisés surtout par les dégâts dʼéléphants.
Les éléphants semblent avoir des préférences pour
certaines cultures comme le sorgho, le mil et le maïs
même si les autres cultures ne sont pas à lʼabri de
toutes attaques variables suivant les localités
Dʼautres villages témoignent avoir réduit la
production des tubercules notamment lʼigname, les
patates et les pastèques à cause des risques élevés de
leur destruction par les éléphants. Il sʼagit des villages tels que Koualou, Sambouali de la localité de
Pama, et la localité de Madjoari. Pourtant ces cultures
constituent une source de revenus qui soulagent les
producteurs de leurs besoins alimentaires et de soins
sanitaires après la commercialisation.
Les incursions des éléphants sʼeffectuent dans tous
les villages riverains et les dégâts concernent toutes
les cultures en particulier les plus exploitées comme
le confirment les études réalisées par Drabo (1997)
dans la RPP, par Sanou (2003) dans le parc de Pô, par
Marchand (2002) dans la région de Boromo, et Maïga
(1996) dans le Gourma malien. Or dans les localités
étudiées les cultures vivrières aussi enclin aux dégâts à
des stades (maturation, montaison) et périodes critiques
(octobre, septembre) présentent un intérêt alimentaire
mais aussi culturel en particulier leur usage pour les
Pachyderm No. 42 January–June 2007
sacrifices et la boisson alcoolisée. Le cas de la localité
de Madjoari la plus exposée révèle que la proximité des
champs serait un facteur aggravant les dégâts.
Ces stades sont critiques car il est probablement
difficile de reconstituer cette végétation par défaut
de temps pluvieux.
Seulement notons que les stocks sont aussi consommés par les éléphants pour la simple raison de
lʼinstallation des greniers et de lʼétalage des céréales
dans les champs. Aussi les stades semis et levés ne
sont endommagés que dans la localité de Madjoari
situation justifiable compte tenu de leur encerclement
par les aires protégées où habitent une population
importante dʼéléphants très mobiles.
Les dégâts sur le coton interviennent surtout aux
stades de la formation des gousses que convoitent plus
particulièrement les éléphants selon les producteurs.
Par contre les stades épiaisons du mil ne semblent
pas intéresser les éléphants à cause de lʼabondance de
la pubescence des feuilles qui donnent des allergies
après consommation comme lʼindiquent les paysans
à partir de leurs observations suite à des actions de
rejets et de secouements intempestifs de leur trompe.
Egalement les stades épiaisons attirent beaucoup plus
les éléphants à cause des odeurs fortes dégagées et
captées rapidement par ces pachydermes.
Avec lʼimportance des dégâts, les producteurs
font usage de tous les moyens y compris ceux préjudiciables à la vie de lʼéléphant, ce qui représente donc
une menace. Le risque est que les moyens clandestins
utilisés peuvent laisser apparaître des signes de succès et encourager de fait les producteurs à sʼinstaller
davantage à proximité de la réserve. Sinon les dégâts
seraient un facteur limitant lʼextension sauvage de
lʼagriculture sur les aires protégées.
Il y a nécessité au regard de la situation des conflits hommes–éléphants qui prévaut dans la RPP de
proposer des solutions durables afin de freiner lʼafflux
des migrants, de réduire lʼextension sauvage de
lʼagriculture et partant de la pression sur la réserve.
Conclusions et perspectives
Lʼétude sur les conflits hommes–éléphants dans la
Réserve Partielle de Pama a montré que ce phénomène
est réel et perdure au cours des années. Tous les
villages en périphérie de la réserve connaissent des
dégâts occasionnés par les éléphants suivant des
degrés variables. La sévérité des maraudes serait
liée à lʼefficacité temporaire des méthodes de lutte
89
Nakandé et al.
mais aussi et surtout à lʼinstallation des champs à
proximité de la réserve. De plus les stades critiques
des maraudes pendant lʼépiaison et la maturation réduisent considérablement les chances des producteurs
pour de bonnes récoltes. La période de pointe des
dégâts entre septembre et novembre vient accroître
les risques de famine pour les paysans. Dʼailleurs la
pression des éléphants est telle que certaines parties
de lʼenclave de Madjoari ne sont plus cultivées depuis
plusieurs années.
Les systèmes dʼexploitation agricole et pastorale
actuels viennent compliquer davantage la cohabitation entre les hommes et les éléphants. Lʼexploitation
agricole basée sur des moyens et des techniques de
plus en plus modernes accentuera la compétition pour
lʼaccès aux ressources vitales notamment lʼespace et
lʼeau. La problématique est dʼautant plus compliquée
dʼabord avec lʼafflux de migrants suite à la crise
ivoirienne mais aussi aux conditions de transhumance
peu sécurisantes, si bien que des propositions de solutions sʼimposent.
En effet lʼorientation des producteurs vers dʼautres
filières prometteuses serait nécessaire afin de réduire
lʼélan de lʼextension des superficies emblavées. Il
sʼagit entre autre de :
• renforcer et appliquer dʼautres méthodes de
lutte contre les incursions des éléphants dans les
champs;
• lʼorganisation de la filière de lʼapiculture au regard des potentialités quʼoffre le milieu en terme
de plantes mellifères et pollinifères. Les produits
de cette activité sont facilement écoulés avec une
valeur marchande considérable à cause de leurs
vertus et utilisations diverses ;
• la professionnalisation de pêcheurs à tous les
niveaux du circuit commercial permettra de convertir certains producteurs au regard des potentialités halieutiques existantes ;
• la promotion de la petite irrigation et de la culture
maraîchère au niveau des points dʼeau ;
• la mise en œuvre de système de production
faunique source dʼemploi et de retombées
économiques réelles pour les communautés riveraines ;
• lʼintensification de lʼélevage à travers lʼembouche
et la formation des producteurs en technique de
fauche et conservation de fourrage.
Egalement des actions en amont doivent être
réalisées comme le déménagement des villages installés à lʼintérieur de la réserve, la délimitation dʼune
90
zone tampon sans équivoque mais aussi poursuivre
la recherche sur les impacts socio-économiques des
conflits afin de pouvoir prendre des décisions adéquates pour la sauvegarde de lʼéléphant.
Remerciements
Nos sincères reconnaissances à Lamine Sébogo qui
nous a beaucoup encouragé dans cette initiative et par
son ouverture sans toute considération que humain, et
ensuite à Dr Mipro Hien pour son soutien scientifique
au cours de cette étude.
Nous tenons à exprimer toute notre gratitude aux
institutions en particulier lʼUICN, le Laboratoire National de lʼElevage du Burkina Faso, Tufts Cumming
School of Veterinary Medicine, United States Fish
and Wildlife Service et les universités (Université
polytechnique de Bobo Dioulasso et Tufts University
School of Veterinary Medicine) qui ont apporté leurs
appuis financiers et techniques à la réalisation de cette
étude. Egalement nous affirmons notre reconnaissance
à Dr R. Bernard Doulkom pour son soutien et tous les
conseils prodigués à notre profit. Nous ne pouvons nous
empêcher de remercier vivement Rachel Brodlie, Rhea
Hanselmann, Mme Nikiema du Laboratoire National
de lʼElevage pour leur apport technique et leur disponibilité tout au de lʼétude. Nos sincères remerciements
vont à Emmanuel M Héma, étudiant en thèse doctorat
es-sciences pour son appui scientifique. Enfin, toutes
nos gratitudes sont manifestées à lʼendroit de la direction régionale de lʼenvironnement et du cadre de vie de
lʼEst du Burkina, aux producteurs des périphéries de
la Réserve Partielle de Pama et aux pisteurs pour leur
hospitalité et leur compréhension durant cette étude.
References bibliographiques
Bouché P, Lungren CG, Hien B, Omondi P. 2004. Recensement aérien total de lʼécosystème W–Arli–Pendjari–Oti-Mandouri–Kéran (WAPOK). Ouagadougou,
Burkina Faso.
Bousquet B. 1992. Guide des parcs nationaux dʼAfrique
: Afrique du Nord, Afrique de lʼOuest. Delachaux de
Niestlé, Neuchtel Paris. Paris, France. 361 p.
Chardonnet B. 2000. Etude des effectifs et de la répartition
saisonnière des éléphants des aires classées de lʼEst du
Burkina Faso. Pachyderm 28 : 16–31.
Drabo A. 1997. Etude de lʼinterface éléphants : populations
riveraines de la Réserve partielle de faune de Pama.
Mémoire. Université polytechnique de Bobo-DiouPachyderm No. 42 January–June 2007
Conflits hommes–éléphants dans la Reserve de Pama, Burkina Faso
lasso / Institut du développement rural. Bobo Dioulasso,
Burkina Faso. 114 p.
Hoare RE. 1999. Data collection and analysis protocol
for human–elephant situation in Africa. A document
prepared for IUCN African Elephant Specialist Groupʼs
Human–Elephant Taskforce. Zimbabwe. 37 p.
Maiga MH. 1996. Enquête socio-économiques sur les interactions hommes–éléphants dans le Gourma malien.
Institut supérieur de formation en Recherche Appliquée
(ISFRA) / WWF. Université du Mali, Bamako, Mali.
45 p.
Marchand F. 2002. Etude des conflits hommes–éléphants
dans la région de Boromo. Rapport intermédiaire
dʼactivités, Projet dʼAppui aux Unités de Conservation de la Faune (PAUCOF). Ouagadougou, Burkina
Faso. 18 p.
Pachyderm No. 42 January–June 2007
Paris A. 2002.Etats des lieux quantitatifs et spatialisés de la
transhumance en périphérie du Parc W, Burkina Faso.
DESS (Diplôme dʼEtude Supérieure et Spécialisée),
CIRAD (Centre de coopération internationale en Recherche agronomique) / EMVT (Elevage Médecine
Vétérinaire Tropicale) / Projet ECOPAS (Ecosystèmes
Protégés en Afrique Soudano-sahélienne). Campus de
Baillarguet. Montpellier, France. 41 p.
Sanou I. 2003. Etude des mouvements des éléphants et
évaluation des conflits hommes–éléphants entre le Parc
National de Pô dit Kaboré Tambi (PNKT) et la frontière
Ghana / Burkina Faso. Mémoire. Université polytechnique de Bobo-Dioulasso/ Institut du devéloppement
rural. Bobo Dioulasso, Burkina Faso. 65 p.
91
Obanda et al.
FIELD NOTE
Composition of intestinal ciliate fauna of free-ranging African
elephants in Tsavo West National Park, Kenya
Vincent Obanda, Isaac Lekolool, John Kariuki, Francis Gakuya
Kenya Wildlife Service, Veterinary Department, PO Box 40241, Nairobi 00100, Kenya
Email: [email protected]; fax: +254 20 603792; tel: +254 20 600800/602345
Abstract
This study aimed at surveying intestinal protozoan ciliates of the African elephant (Loxodonta africana) in
Tsavo West National Park, Kenya. Faecal samples of seven elephants chemically immobilized for translocation were collected opportunistically and flotation-sedimentation techniques used to assess the presence of
ciliates. Identification of ciliates was based on morphological features such as shape, presence and morphology of external spines and lobes, micro- and macronuclei, and internal skeletal plates. Seven ciliate families
and 27 genera were found in the faecal samples of the elephants. The families included Blepharocorythidae,
Buetschliidae, Cycloposthiidae, Isotrichidae, Ophryoscoleciidae, Paraisotrichidae and Troglodytellidae. The
dominant families were Buetschliidae with nine ciliate genera and Cycloposthiidae with eight. These ciliates
in the caecum and colon of elephants are similar to those in the rumen and reticulum of ruminants. They digest
plant fibres (principally cellulose and hemicellulose) that otherwise could not be used since elephants have
no fibre-digesting enzymes of their own. This preliminary information will guide comparative studies on the
rumen ciliate diversity and population of various hosts in different regions.
Résumé
Cette étude voulait analyser les protozoaires ciliés présents dans lʼintestin des éléphants africains (Loxodonta
africana) du Parc national de Tsavo-ouest, au Kenya. On a profité de lʼimmobilisation chimique de sept éléphants qui devaient être déplacés pour récolter des échantillons de crottes et lʼon a utilisé des techniques de
flottaison-sédimentation pour évaluer la présence de ciliés. Lʼidentification des ciliés sʼest faite sur la base
de caractéristiques morphologiques telles que la forme, la présence et la morphologie de crêtes ou de lobes
externes, de micro- et macronucléus, et de plaques squelettiques internes. Sept familles de ciliés et 27 genres
furent découverts dans les échantillons fécaux des éléphants. Les familles incluent les Blepharocorythidae,
les Buetschliidae, les Cycloposthiidae, les Isotrichidae, les Ophryoscoleciidae, les Paraisotrichidae et les
Troglodytellidae. Les familles dominantes étaient les Buetschliidae, avec neuf genres de ciliés et les Cycloposthiidae, avec huit. Ces ciliés présents dans le caecum et le colon des éléphants sont semblables à ceux que
lʼon trouve dans le rumen et lʼergastoplasme des ruminants. Ils digèrent les fibres végétales (principalement la
cellulose et lʼhémicellulose) qui, sans cela, ne pourraient pas être utilisées puisque les éléphants ne produisent
pas dʼenzymes leur permettant de digérer les fibres par eux-mêmes. Cette information préliminaire pourra
servir de guide pour des études comparatives de la diversité et les populations des ciliés du rumen de divers
hôtes dans différentes régions.
92
Pachyderm No. 42 January–June 2007
Composition of intestinal ciliate fauna of free-ranging African elephants
Introduction
Ciliates are the most abundant protozoa in the stomach
contents of both wild and domestic ruminants and
camelids (Gocmen et al. 2001). However, they are
also found in non-ruminant herbivores like the elephant, where they are involved in host metabolism
and digestion of plant material (Regensbogenova
et al. 2004). Ciliate protozoa are classified on the
basis of the micro- and macronucleus and the presence and morphology of exterior spines and lobes or
internal skeletal plates as well as the shape and size
of cells (Williams and Coleman 1992). The ciliate
composition is determined by phylogenetic factors,
geographical distribution areas, type and amount of
feed consumed (Dehority 1978). Feed-related stress,
such as starvation and physiological condition of the
host, also influences the fauna (Ogimoto and Imai
1981; Williams and Coleman 1992). Although some
investigations have been conducted in various geographical areas on the ciliate population occurring in
ruminants, knowledge about the overall distribution of
protozoa in different animal hosts in different regions
around the world is limited (Gocmen et al. 2001). Due
to the nutritional importance of ciliates in elephants,
this study sought to investigate the composition of
intestinal microfauna of elephants in Tsavo West
National Park, Kenya, during a translocation exercise.
Since the composition of ciliates is determined by
geographical area, this work will provide preliminary
data that can be used in pretranslocation assessment
and nutritional optimization in captive elephants. The
protozoa ciliates were identified to the genus level.
Materials and methods
Study area
Tsavo West National Park (2°42´S, 38°10´E) covers
7065 km2 stretching from Mtito Andei along the Nairobi–Mombasa highway to the Tanzanian border. The
parkʼs habitats include open plains alternating with savanna bush and semi-desert scrub, acacia woodlands,
belts of riverine vegetation and palm thickets.
Sample processing
Faecal samples of seven elephants from five different
families, chemically immobilized for translocation,
were collected opportunistically. Faecal samples
Pachyderm No. 42 January–June 2007
were collected from the rectum and placed in airtight
plastic jars. Simple test-tube flotation and sedimentation techniques were used to assess the presence of
the ciliates. In simple test-tube flotation, 3 g of faecal sample was mixed with 50 ml of flotation fluid
(saturated solution of sodium chloride) in container 1.
The resulting faecal suspension was filtered through
a tea strainer into container 2. The faecal suspension
from container 2 was then poured into a test tube.
The test tube was placed in a rack and gently topped
with faecal suspension until it left a convex meniscus
at the top of the tube. A clean cover slip was gently
placed on top of the test tube and the tube let stand
for 20 minutes. The cover slip was then lifted gently
together with the drop of fluid adhering to it, and
immediately placed on a microscope slide. A drop of
Lugolʼs iodine was applied at the edge of the cover
slip and then observed under a light microscope at
x200 and x400 magnification. This process was repeated for the same sample, but stained with acidified
methylene blue.
In the sedimentation technique 5 g of faeces was
mixed in a beaker with 200 ml of water. The mixture
was poured through a tea strainer and the debris in
the strainer discarded. It was left to stand for 10 minutes and then 70% of the filtrate poured off and the
beaker refilled with the same volume of water. This
process was repeated 3–5 times, until the supernatant
was clear. Most of the final supernatant was carefully
decanted off and the sediment in the beaker poured
into a Petri dish. Using a Pasteur pipette, a drop of
the sediment was placed on a microslide and a drop
of stain added. A coverslip was placed on top and
observation made under light microscope at x200 and
x400 magnification.
Ciliate species were identified through cellular
morphological features using acidified methylene
blue staining nucleus, cytoplasmic granules and
cytoplasmic processes, with Lugolʼs iodine used to
stain skeletal plates (Dehority 1993).
Results
All the elephants sampled were positive for intestinal
microfauna. Seven ciliate families and 27 genera were
identified in the faecal samples of the elephants. The
families were Blepharocorythidae, Buetschliidae,
Cycloposthiidae, Isotrichidae, Ophryoscoleciidae,
Paraisotrichidae and Troglodytellidae. The dominant
families were Buetschliidae with nine ciliate genera
93
Obanda et al.
and Cycloposthiidae with eight. The ciliate families
and genera are shown in table 1.
Discussion
This is the first documentation of ciliate microfauna
of African elephants in the Tsavo West ecosystem. The
microbial ecosystem is well studied for the rumen of
domesticated animals like cattle, sheep and goats, but
it is poorly studied in wild ruminants, and scarcely in
hind-gut fermenters like the elephant. According to
Mohr et al. (1982) African elephants appear to have a
more complex ciliate assemblage than other celluloseeating mammals so far studied and this concurs with
the finding of seven families and 27 genera of ciliates
in Tsavo West elephants. Although a large number of
protozoal species have been found to exist in different
Table 1. Distribution of ciliate families and genera
found in Tsavo West elephants
Family
Genus
Blepharocorythidae
Blepharocorys
Buetschliidae
Alloiozona
Ampullacula
Blepharoconus
Blepharoprosthium
Buetschlia
Cucurbella
Didesmis
Polymorphella
Prodonopsis
Cycloposthiidae
Cycloposthium
Ditoxum
Prototapirella
Rhabdothorax
Tetratoxum
Triadinium
Tripalmaria
Triplumaria
Isotrichidae
Dastricha
Isotricha
Ophryoscoleciidae
Entodinium
Epidinium
Eudiplodinium
Ophryoscolex
Ostracodinium
Paraisotrichidae
Paraisotricha
Troglodytellidae
Troglodytella
94
animals and under different conditions, the number
of species in a specific animal is generally limited
to 35 or fewer (Dehority and Orpin 1997). The high
amount of ciliate diversity in Tsavo West elephants
may be attributed to the elephantsʼ free-ranging state
since gut microfauna have been reported to be less
varied in captive elephants than in wild elephants
(Smith et al. 1982).
The order Entodiniomorphida consists of endosymbiotic ciliates inhabiting the fermentative digestive
organs of most mammalian herbivores (Williams and
Coleman 1992). The order has three suborders, Archistomatia, Blepharocorythina and Entodiniomorphina
(Lynne and Small 1997). The blepharocorythines are
monofamilial (Blepharocorythidae) and possess a complicated oral apparatus consisting of a conical vestibulum, a dorsal overture, an external adoral ciliary band,
and a triangular vestibulary ciliary band (Wolska 1971).
The Archistomatia also contain only a single family,
the Buetschliidae, which are characterized by a simple
vestibulum, a holotrichous covering of longitudinal
somatic kineties and fully developed concretement
vacuoles (Wolska 1964). The Entodiniomorphina are
the most diverse group with nine families. Some of the
entodiniomorphids found in Tsavo West elephants are
the Blepharocorythidae, Cycloposthiidae, Ophryoscoleciidae and Troglodytellidae. They are characterized
by reduced somatic ciliation, forming tufts or bands,
a semi-rigid pellicle covering extensive non-ciliated
areas, and an adoral band of cilia around the cytostome
(Cameron et al. 2003). The families Buetschliidae,
Isotrichidae and Paraisotrichidae are holotrichs that
have typical uniform and simple body ciliation.
The presence of both holotrichs and entodiniomorphs in Tsavo West elephant gut may be due to
the elephant diet, which most probably requires a
wide enzymatic profile. The enzymes responsible for
cellulose and hemicellulose degradation have been
reported in the holotrich protozoa but the levels are
low compared with those present in entodiniomorphid
protozoa (Williams and Coleman 1985).
Intestinal ciliates vary with the host species and
the geographic area because transfaunation of ciliates
has been assumed to occur only by direct contact
between hosts (Ito et al. 1994). Hence, some of these
ciliates have been reported in different animals and
different geographic areas. The genus Paraisotricha
had been reported in Kenyan elephants (Mohr et al.
1982), while Prototapirella and Troglodytella species
have been reported in free-ranging lowland gorillas
Pachyderm No. 42 January–June 2007
Composition of intestinal ciliate fauna of free-ranging African elephants
(Gorilla gorilla gorilla) in Central African Republic
(Freeman et al. 2004). The genus Troglodytella has
always been associated with gorilla and chimpanzee
(Pan troglodytes) (Swezey 1934). Cycloposthium,
Prototapirella, Tripalmaria and Triplumaria were
the genera found in Tsavo West elephants. The genus
Triplumaria had been reported to include 11 new
ciliate species found in the Asian elephant (Elephas
maximus) and African elephant (Timoshenko and
Imai 1995).
The dominant families observed in these elephants
were Buetschliidae and Cycloposthiidae, which are
generally considered to be endosymbionts of equids
(Williams and Coleman 1992). However, the family
Isotrichidae, consisting of Dastricha and Isotricha,
is found to occur more widely in domesticated than
in wild ruminants (Clark 1977).
Various interacting factors have been found to
determine the generic composition and overall size
of the gut ciliate population. The more important
include the geographical location, type of host, the
diet consumed and protozoal interspecies antagonisms
(Williams 1986). The variety of ciliates is larger in
grazing than in browsing animals in Europe (Giesecke
1970), but there is a greater variety of ciliate species
in browsing animals in Africa (Van Hoven 1983). This
implies that a mixed feeder host such as an elephant,
and especially the African elephant, will have innumerable assemblage as seen in Tsavo West elephants.
The geographical location seems advantageous for
African elephants due to great feed diversity, and it
influences the holotrich ciliates. A study conducted in
Kenya to determine if protozoal fauna of indigenous
African wild ruminantsʼ diet influenced the numbers
and types of protozoa established that the percentage
of the genus Entodinium was higher in concentrate
selectors than in roughage eaters (Dehority and
Odenyo 2003). This concurs with the low presence
of Entodinium in Tsavo West elephants since they are
bulk roughage eaters.
The findings from this study are baseline information that can be a useful index to the nutritional
state of the elephants. Presence or absence of ciliate
protozoa can be used to remotely confirm or negate
a nutritional disturbance (Hungate 1978). In addition,
comparative studies of the rumen ciliate population
of various hosts in different regions will provide
information on phylogenetic relations between the
ciliates and the hosts (Imai 1988).
Pachyderm No. 42 January–June 2007
Acknowledgements
We would like to thank the Director, Kenya Wildlife
Service, the capture team, and the KWS Elephant
Programme for supporting this work.
References
Cameron SL, Wright A-D, OʼDonoghue JP. 2003. An
expanded phylogeny of the Entodiniomorphida (Ciliophora: Litostomatea). Acta Protozoologica 42:1–6.
Clark RTJ. 1977. Protozoa in the rumen ecosystem. In:
Clark RTJ, Bauchop T, eds., Microbial biology of the
gut. Academic Press, New York. p. 251–275.
Dehority BA. 1978. Specificity of rumen ciliate protozoa in cattle and sheep. Journal of Protozoology
25:509–513.
Dehority BA. 1993. Laboratory manual for classification
and morphology of rumen ciliate protozoa. CRC Press.
Boca Raton, Florida. 120 p.
Dehority BA, Odenyo AA. 2003. Influence of diet on the
rumen protozoal fauna of indigenous African wild
ruminants. Journal of Eukaryotic Microbiology 50(3):
220–223.
Dehority BA, Orpin CG. 1997. Development of, and natural fluctuations in, rumen microbial populations. In:
Hobson PH, Stewart CS, eds., The rumen microbial
ecosystem, 2nd ed. Chapman and Hall, London. p.
196–245.
Freeman AS, Kinsella JM, Cipolleta C, Deem SL, Karesh W.
2004. Endoparasites of western lowland gorillas (Gorilla gorilla gorilla) at Bai Hakou, Central African Republic. Journal of Wildlife Diseases 40(4):775–781.
Giesecke D. 1970. Comparative microbiology of the alimentary tract. In: Philipson AT, Annison EF, Armstrong
DG, Balch CC, Comline RS, Hardy RN, Hobson PN,
Keynes RD, eds., Physiology of digestion and metabolism in the ruminant. Oriel Press, Newcastle-upon-Tyne,
England. p. 306–318.
Gocmen B, Dehority BA, Talu GH, Rastgeldy S. 2001. The
rumen ciliate fauna of domestic sheep (Ovis ammon
aires) from the Turkish Republic of Northern Cyprus.
Journal of Eukaryotic Microbiology 48(4):455–459.
Hungate RE. 1978. The tureen protozoa. In: Krier JP, ed.,
Parasitic protozoa, vol. 2. Academic Press, New York.
p. 655–695.
Imai S. 1988. Ciliate protozoa in the rumen of Kenyan zebu
cattle (Bos taurus indicus) with the description of four
new species. Journal of Protozoology 35:130–136.
95
Obanda et al.
Ito A, Imai S, Ogimoto K. 1994. Rumen ciliate composition
and diversity of Japanese beef black cattle in comparison with those of Holstein-Friesian cattle. Journal of
Veterinary Medical Science 56:707–714.
Lynne DH, Small E. 1997. A revised classification of the
phylum Ciliophora (Dolfein, 1901). Revista de la Sociedad Mexicana Historia Natural 47:65–78.
Ogimoto K, Imai S. 1981. Atlas of rumen microbiology.
Japan Scientific Societies Press, Tokyo. 231 p.
Mohr JE, Jollie KG, Smith TP. 1982. Ciliates of elephant
caecums. Journal of Protozoology 29:482.
Regensbogenova M, Kisidayova S, Michalowski T, Javorsky P, Moon-van der Staay SY, Moon-van der Staay
GWM, Hackstein JHP, McEwan NR, Jouany J-P, Newbold JC, Pristas P. 2004. Rapid identification of rumen
protozoa by restriction analysis of amplified 18SrRNA
gene. Acta Protozoologica 43:219–224.
Smith TP, Jollie KG, Mohr JL. 1982. Gut protozoans of zoo
elephants. Journal of Protozoology 29:482.
Swezey WW. 1934. Cytology of Troglodytella abrassarti,
an intestinal ciliate of the chimpanzee. Journal of Morphology 56:621–630.
Timoshenko O, Imai S. 1995. Eleven new ciliate species of
the genus Triplumaria (Ciliophora, Entodiniomorphida)
96
from Asian elephant (Elephas maximus) and African
elephant (Loxodonta africana). Journal of Protozoology
Research 5(4):157–175.
Van Hoven W. 1983. Rumen ciliates with description of
two new ciliates from three African reedbuck species.
Journal of Protozoology 30:688–691.
Williams AG. 1986. Rumen holotrich ciliate protozoa.
Microbiological Reviews 50(1):25–49.
Williams AG, Coleman GS. 1985. Hemicellulose degrading
enzymes in rumen ciliate protozoa. Current Microbiology 12:85–90.
Williams AG, Coleman GS. 1992. The rumen protozoa.
Brock/Springer Series in Contemporary Bioscience.
Springer-Verlag, New York.
Wolska M. 1964. Infraciliature of Didesmis ovalis Fior. and
Blepharozoum trizonum (Hsiung)—Fam. Buetschliidae (Ciliata, Rhabdophorina). Acta Protozoologica
6:153–158.
Wolska M. 1971. Studies on the family Blepharocorythidae,
Hsiung VI. Phylogenesis of the family and description
of the new genus Circodinium gen. n. with the species
C. minimum (Gassovsky, 1918). Acta Protozoologica
15:171–194.
Pachyderm No. 42 January–June 2007
Managing elephant population growth by immunocontraception
M
DISCUSSION
Prospects for managing African elephant population growth by
immunocontraception: a review
A.A. Perdok,1 W.F. de Boer,1* T.A.E. Stout2
Resource Ecology Group, Wageningen University and Research Centre, Droevendaalsesteeg 3a,
6708 PB Wageningen, The Netherlands
2
Utrecht University, Department of Equine Sciences, Yalelaan 114, 3584 CM Utrecht, The Netherlands
* corresponding author, e-mail: [email protected]; tel: +31 317 482691; fax: +31 317 419000
1
Abstract
Immunocontraception has been proposed as a tool for managing African elephant populations threatening to
ʻoutgrowʼ a wildlife reserve. To date, however, the only immunocontraceptive technique tested on elephant
cows is porcine zona pellucida (pZP) vaccination, in which solubilized pZP is injected together with an adjuvant to induce formation of circulating antizona pellucida antibodies, which block fertilization. A review of
the literature on the use of pZP vaccination in free-ranging mammals reveals that the contraceptive efficacy
ranges between 22% and 100% (15 trials, 2 in elephants). A pZP vaccine can be delivered by dart, but at
present more than one inoculation is needed to ensure contraceptive antibody titres. Initial studies in elephants
suggest that pZP vaccination is safe, even in pregnant animals, does not pass through the food chain and is
reversible, at least in the short term. However, little is known about possible long-term side effects. Elephants
are social animals that live in matriarchal herds, and inhibiting individual fertility and herd growth may have
unforeseen longer-term consequences on behaviour and social structure. There is also a fear that immunization
may favour weaker animals by preferentially sterilizing individuals capable of mounting a vigorous immune
response, or that animals may become resistant to vaccination. In short, while pZP vaccination appears to be
a promising tool for controlling elephant population growth, questions about the long-term side effects need
to be answered before use on a large scale can be recommended.
Résumé
Lʼimmuno-contraception est un des moyens proposés pour la gestion des populations dʼéléphants qui menacent
de dépasser les capacités dʼune réserve de faune. A ce jour pourtant, la seule technique dʼimmuno-contraception
testée sur des femelles éléphants est le vaccin porcin contre la zone pellucide (pZP), une injection de pZP soluble
et dʼun adjuvant pour induire la formation dʼanticorps contre la zone pellucide, qui bloque la fertilisation. Une
révision de la littérature traitant de lʼutilisation de la vaccination pZP chez des mammifères en liberté révèle
que lʼeffet contraceptif a une efficacité qui va de 22% à 100% (15 essais, deux chez lʼéléphant). Un vaccin
pZP peut être administré par fléchette, mais pour le moment, il faut plus dʼune inoculation pour garantir le
taux dʼanticorps contraceptifs. Les premières études montrent que la vaccination pZP est sans danger pour
les éléphants, même pour les femelles enceintes, quʼelle ne passe pas par la chaîne alimentaire et quʼelle est
réversible, en tout cas à court terme. Cependant, on sait peu de choses de ses effets secondaires à long terme.
Les éléphants sont des animaux sociables qui vivent en groupes matriarcaux, et le fait dʼempêcher la fertilité
Pachyderm No. 42 January–June 2007
97
Perdok et al.
individuelle et la croissance du groupe peut avoir à long terme des conséquences imprévues sur le comportement et la structure sociale. On peut aussi craindre que lʼimmunisation puisse favoriser des animaux plus
faibles en stérilisant de préférence les individus capables de manifester une réponse immunitaire vigoureuse,
ou que les animaux deviennent résistants au vaccin. En brèf, si le vaccin pZP semble un outil prometteur
pour contrôler la croissance des populations dʼéléphants, il faut dʼabord répondre aux questions sur les effets
secondaires à long terme avant de pouvoir en recommander lʼusage à grande échelle.
Introduction
In 1967, it was decided that the Kruger National Park
(KNP) elephant population should be restricted to approximately 7000 individuals, the estimated carrying
capacity of the park (Van Aarde et al. 1999; Whyte
et al. 1999). As a direct consequence, in excess of
17,200 elephants were culled or relocated between
1967 and 1996 (Van Aarde et al. 1999). However, in
1995 the park stopped culling as a result of public
disapproval (Cumming et al. 1997; Fayrer-Hosken et
al. 1997, 1999; Van Aarde et al. 1999), and the number
of elephants has been rising ever since. Worryingly,
some studies have concluded that the resulting high
elephant densities will lead to habitat destruction
(Cumming et al. 1997; Fayrer-Hosken et al. 1999;
Whyte et al. 1999; Fayrer-Hosken et al. 2000) and
threaten the survival of other species (Cumming et al.
1997; Whyte et al. 1999), thereby reducing biological diversity (Cumming et al. 1997; Van Aarde et al.
1999; Whyte et al. 1999). Although this conclusion
is disputed (Van Aarde et al. 1999), KNP and other
wildlife reserve managements now widely accept that
a high elephant density may negatively influence a
parkʼs other flora and fauna, and they are investigating measures to maintain stable ʻoptimumʼ elephant
populations (Van Aarde et al. 1999).
Effectively, there are only two ways to actively
manage the size of an animal population: increase the
rate of removal, usually by death, or reduce the rate
of addition, usually births (Kirkpatrick and Rutberg
2001). Currently, the numbers of elephants in the
larger southern African parks are too large for relocation to be considered practical and culling is subject
to an ongoing ethical debate (Whyte et al. 1999). For
these reasons, attention has recently focused on the
development of techniques for reducing the birth rate,
usually by contraception.
Similar problems with overabundant wild or feral
species in protected reserves have previously arisen in
the USA. Once hunting and trapping ceased to be considered acceptable by the public, non-lethal ways of
98
controlling population growth were sought and studies on non-invasive contraceptive techniques were
initiated (Kirkpatrick and Rutberg 2001). Although
a number of different approaches were examined,
namely 1) non-hormonal chemicals, 2) steroid hormones, 3) non-steroid hormones, 4) barrier methods
and 5) immunocontraception, the first four were, for
various reasons, found unsuitable (Kirkpatrick and
Rutberg 2001). As a result, immunocontraception
was singled out for further investigation. Since some
forms of immunocontraception, notably porcine zona
pellucida (pZP) vaccination, have proven reliable and
safe for controlling population growth in ungulates
and horses, they were obvious candidates when starting contraception studies in elephants.
Review and discussion
Immunocontraception
Immunocontraception is based on the same principles
as disease prevention by vaccination. In this instance,
however, vaccination stimulates the immune system
to produce antibodies against endogenous molecules
that play an essential role in either gamete production
or fertilization, rather than against micro-organisms
(Fayrer-Hosken et al. 2000; Kirkpatrick and Rutberg
2001). Although there may be many possible target
molecules for immunocontraception, the two that have
received most attention are zona pellucida (ZP) proteins and gonadotrophin-releasing hormone (GnRH).
GnRH is the hypothalamic neuropeptide that controls
the reproductive endocrine system; successful vaccination against GnRH powerfully inhibits reproductive
function, essentially returning treated animals to a
pharmacological prepuberty (Stout and Colenbrander
2004). Vaccination against ZP proteins makes use of
the fact that ZP, an extracellular matrix surrounding
the oocyte (Kirkpatrick and Turner 1991; Muller et al.
1997; Barber and Fayrer-Hosken 2000b), plays critical
roles in regulating sperm binding, penetration and fertilization (Barber and Fayrer-Hosken 2000a). Although
Pachyderm No. 42 January–June 2007
Managing elephant population growth by immunocontraception
M
the exact mechanism of infertility induced by ZP vaccination may differ between species and individuals,
it appears that antibodies raised against ZP proteins
either directly block sperm–ZP binding or disrupt ZP
formation and thereby indirectly inhibit the ability of
sperm to bind and penetrate (Muller et al. 1997; Miller
et al. 2000; Kirkpatrick and Rutberg 2001); in either
case the end result is temporary infertility (Barber and
Fayrer-Hosken 2000a; Powel and Monfort 2001). On
the other hand, because ZP vaccination blocks fertilization, vaccinated females should continue to experience
regular ovarian cycles, including oestrus and ovulation
(Barber and Fayrer-Hosken 2000a).
Porcine zona pellucida is currently the active
ingredient of choice for ZP vaccination of wildlife
species because it can be harvested in large quantities
from the ovaries of slaughtered pigs and the antibodies
induced recognize ZP epitopes in many target species
(Fayrer-Hosken et al. 1997, 1999; Barber and Fayrer-Hosken 2000a, 2000b). Initial evidence that pZP
vaccination might be an effective contraceptive for
elephants was provided by an immunohistochemical
study demonstrating that antibodies raised against
pZP in rabbits also recognize epitopes in elephant
ZP (Fayrer-Hosken et al. 1997, 1999, 2000). Recent
studies have examined the possibility of producing
synthetic subunit ZP vaccines. They would offer better biosecurity by lowering the risk of transmitting
micro-organisms between species and could more
specifically target molecules involved in sperm–ZP
binding and therefore reduce the risk of inducing
generalized ovarian destruction.
An important part of both the GnRH and the
pZP vaccines, and indeed vaccines in general, is
the adjuvant. The adjuvant enhances the efficacy of
vaccination by stimulating the immune system to
produce larger concentrations of antibodies against
the target antigen. Not surprisingly then, the efficacy
of both GnRH (Stout and Colenbrander 2004) and
pZP (Lyda et al. 2005) vaccination varies markedly
depending on the adjuvant used. On the other hand,
effective adjuvants are often ʻaggressiveʼ and may
induce significant injection-site swellings, including abscess formation, or systemic reactions such as
fever and anaphylaxis. For example, although Freundʼs complete adjuvant (FCA) (Muller et al. 1997;
Kirkpatrick and Rutberg 2001; Lyda et al. 2005) is a
highly effective accompaniment to pZP vaccination it
has been associated with significant adverse reactions,
such as injection site and systemic granulomatous inPachyderm No. 42 January–June 2007
flammation (Harrenstien et al. 2004). FCA also has a
second specific disadvantage in that it can trigger false
positive tuberculosis test results in vaccinated animals
(Lyda et al. 2005). For these reasons, more recent pZP
vaccination studies have concentrated on less aggressive adjuvants, such as Freundʼs incomplete adjuvant
(FIA), Freundʼs modified adjuvant (FMA) (Lyda et al.
2005) or a synthetic trehalose dicorynomycolate (STDCM) adjuvant (Fayrer-Hosken et al. 1997, 1999;
Bertschinger et al. 2003).
Brief history of ZP vaccination
Zona pellucida vaccine was first patented as a contraceptive agent in 1976, and the first field trials in
free-ranging feral horses followed in 1988–1989
(Kirkpatrick et al. 1997; Kirkpatrick and Rutberg
2001; Kirkpatrick and Turner 2003). In the early
years, studies focused predominantly on whether
ZP immunization was contraceptive, and how many
inoculations were required to achieve infertility.
Subsequent studies investigated other aspects of immunization such as long-term side effects on health
and behaviour, and more efficient delivery methods
(Kirkpatrick and Rutberg 2001; Miller et al. 2001).
The first elephants to be treated with pZP were
zoo animals. The initial study aimed to establish an
effective dose and inoculation protocol, and the results
were sufficiently promising for the South African
National Parks Board, KNP and the Humane Society
of the United States to design a field trial to examine
the safety and efficacy of pZP vaccination in wild elephants (Fayrer-Hosken et al. 1997, 2000; Kirkpatrick
and Rutberg 2001; Bertschinger et al. 2003). While the
results of the field trial, at least in terms of short-term
safety and efficacy, were also promising (FayrerHosken et al. 1997, 2000), there are still considerable
hurdles to negotiate. For example, Whyte (2003) predicted that to stabilize a large elephant population, 75%
of all breeding females would need to be continuously
contracepted; even this assumes no compensatory
improvement in fertility among non-contracepted
animals. Moreover, repeated immunization of large
numbers of elephants may be financially impossible
for many parks or conservation agencies. Nevertheless, research into more efficient vaccination protocols
and the effects on behaviour continues (Delsink et
al. 2003), because immunocontraception may be an
affordable management option for smaller parks with
100 cows or fewer (Bertschinger et al. 2003).
99
Perdok et al.
Prerequisites for an immunocontraceptive
To objectively assess the suitability of putative contraceptives for use in wildlife species, it is essential
to be clear about the prerequisites to which a ʻgold
standardʼ contraceptive should conform (Frayne and
Hall 1999; Kirkpatrick and Rutberg 2001). Here we
will examine pZP vaccination, and in particular initial
results from elephant studies, in terms of whether the
following criteria for an acceptable contraceptive are
met (Kirkpatrick and Turner 1991; Kirkpatrick and
Rutberg 2001):
• contraceptive effectiveness of at least 90%
• the capacity for remote delivery with no (or minimal) handling of animals
• reversibility of contraceptive effects
• safety for use in pregnant animals
• absence of significant health side effects
• no passage of the contraceptive agent through the
food chain
• minimal effects upon individual and social behaviour
• low cost
Contraceptive efficacy of at least 90%
Reported contraceptive efficacy of pZP vaccination
varies considerably, although results can be difficult
to compare because they are often expressed differently, for example, as a percentage of animals failing
to become pregnant or as a percentage reduction in
the pregnancy rate between a treated and a control
population (table 1). In non-elephant species, contraceptive efficacy of pZP vaccination has varied
dramatically with reports of between 78% and none
of the treated animals giving birth during the treatment period (Kirkpatrick et al. 1990, 1997; Turner
et al. 1992, 1996a, 1996b; McShea et al. 1997). The
two elephant studies reported to date have recorded
post-vaccination pregnancy rates of 44% and none
among immunized cows (Fayrer-Hosken et al. 2000;
Delsink et al. 2003).
Capacity for remote delivery with no or
minimal handling of animals
Essentially, there are two ways to immunize a wild
animal without needing to restrain it: oral delivery or
remote delivery using an injection dart or a biodegradable ʻbulletʼ. The major drawbacks of oral vaccine
100
delivery are the need to ensure that the vaccine is not
destroyed by the digestive system (Muller et al. 1997;
Kirkpatrick and Rutberg 2001) and difficulty in ensuring that a targeted individual receives the vaccine.
The risk of inadvertently contracepting a non-target
animal or species would also be unacceptably high
(Kirkpatrick and Rutberg 2001). For vaccination by
dart or bullet, the antigen (such as pZP) and adjuvant
must be loaded to ensure effective delivery following
impact (Muller et al. 1997). Even then, one of the
great disadvantages in large populations requiring
prolonged contraception is the need to administer multiple boosters to individual animals (Fayrer-Hosken
et al. 1999; Kirkpatrick and Rutberg 2001; Pimm and
Van Aarde 2001; Bertschinger et al. 2003; Delsink et
al. 2003). To overcome this obstacle, recent studies
have focused on developing single-administration
immunization protocols (Kirkpatrick et al. 1997;
Turner et al. 1997; Kirkpatrick and Rutberg 2001).
The key to such protocols has been the development
of biodegradable and non-toxic microspheres or pellets into which not only can the antigen and adjuvant
be loaded (Muller et al. 1997; Frayne and Hall 1999;
Kirkpatrick and Rutberg 2001), but for which the rate
of degradation can be engineered to enable release
of a dose of vaccine after a predictable delay (Kirkpatrick and Rutberg 2001; Kirkpatrick 2003). In early
trials with pZP vaccine in biodegradable polymers, a
single inoculation achieved anti-pZP antibody titres
or degree of contraception comparable with two
inoculations of conventional vaccine (Turner et al.
2001; Liu et al. 2005). Moreover, since Liu et al.
(2005) were able to raise anti-ZP antibody levels in
horses to contraceptive levels for at least 43 weeks,
the development of an additional pellet that would
release antigen nine months after introduction would
allow two years of contraception to be achieved from
a single inoculation (Kirkpatrick and Rutberg 2001).
Proof that longer-lasting contraception from a single
administration is possible was provided by a study
in which contraception lasting about six years was
achieved in grey seals injected with pZP packaged in
liposomes (Kirkpatrick and Rutberg 2001). On a cautionary note, there are concerns that single-inoculation
vaccines designed to immunize for longer periods
by slow continuous release of antigen may lead to
immunotolerance, instead of maintaining antibody
concentrations at contraceptive levels (Kirkpatrick
et al. 1997).
Pachyderm No. 42 January–June 2007
Managing elephant population growth by immunocontraception
M
Reversibility of contraceptive effects
An important prerequisite for a wildlife contraceptive
is reversibility. Ideally, it should be possible to allow a
population to resume reproduction at short notice, such
as immediately following an unexpected population
crash. In theory, contraception resulting from pZP or
other antifertility vaccines will be reversed automatically once circulating antibody concentrations drop
below a threshold (Barber and Fayrer-Hosken 2000b.
And in studies with horses, pZP vaccination for up to
four years has been shown to be reversible (Turner,
Kirkpatrick, et al. 1996; Kirkpatrick et al. 1997; Miller
et al. 2000; Kirkpatrick and Rutberg 2001; Miller et al.
2001; Powel and Monfort 2001). Observations of pZP
vaccination in elephants have also confirmed the return
of fertility approximately one year after a course of
three vaccinations (Whyte et al. 1998; Fayrer-Hosken
et al. 2000). However, in horses vaccinated for longer
periods of time, recovery of fertility was delayed for up
to four years (McShea et al. 1997; Miller et al. 2000),
because pZP immunization resulted in a decline in the
subsequent ovulation rate (Kirkpatrick et al. 1997). It is
even more sobering to consider that in some rodent and
primate species, ZP vaccination has been associated
with ovarian damage characterized by depletion of the
primordial follicle pool and disruption of foliculogenesis, likely to result in permanent infertility (Paterson
et al. 1998, 1999).
Safe for use in pregnant animals
An immunocontraceptive vaccine should be safe in pregnant animals since, in a species with a long non-seasonal
gestation, it is almost impossible to avoid injecting some
pregnant animals; abortion, dystocia or birth of abnormal
or weakened offspring would all be unacceptable side
effects. Fortunately, studies on horses, deer, burros and
elephants all indicate that pZP vaccination has no visible
or measurable detrimental effects on ongoing pregnancies, and harms neither the foetus nor its dam (Turner,
Liu, et al. 1996; Kirkpatrick et al. 1997; Fayrer-Hosken
et al. 1999, 2000; Turner et al. 1999; Kirkpatrick and
Rutberg 2001; Delsink et al. 2003).
Absence of significant health side effects
Injection site reactions following pZP vaccination
(Turner et al. 1996; Nettles 1997) can be serious
enough to result in lameness and abscesses (Turner
Pachyderm No. 42 January–June 2007
et al. 1997; Fayrer-Hosken et al. 1999). However, no
other dramatic effects on health have been reported
and, to date, there is no evidence that porcine viruses
or other microbes have been transmitted by ZP vaccines. Nevertheless, the potential risks of disease
transmission by such a biological product have
stimulated work on synthetic vaccines (Kirkpatrick
and Rutberg 2001).
One major caveat regarding the safety of pZP
vaccine is that relatively little is known about the
long-term effects of repeated treatment or the associated changes in ovarian activity on overall health
and behaviour (Kirkpatrick et al. 1992, 1997; Miller
et al. 2001; Pimm and Van Aarde 2001). Elephants
may present a particular challenge in this respect,
because of their extreme longevity and complex social
organization.
No passage of the contraceptive agent
through the food chain
Conventional pZP vaccine does not appear to pass
through the food chain (Kirkpatrick et al. 1990; Turner
Liu, et al. 1996; Kirkpatrick and Rutberg 2001). The
risk of a slow-release biodegradable ZP vaccine
inducing contraception after ingestion is also likely
to be minimal.
Minimal effects upon individual and social
behaviour
One big concern in elephants is the possible effect
of contraception on individual and social behaviour.
The use of reproductive steroid hormones as contraceptives proved unacceptable in wildlife because of
marked effects on behaviour, such as separation of
treated animals from the family herd (Fayrer-Hosken
et al. 2000; Kirkpatrick and Rutberg 2001). To date,
there have been no reports of obvious detrimental
effects of pZP vaccination on social behaviour
(Kirkpatrick et al. 1997; Fayrer-Hosken et al. 2000;
Kirkpatrick and Rutberg 2001; Powel and Monfort
2001). On the other hand, ZP vaccination does affect
reproductive behaviour. In this respect, it is generally
assumed that vaccination will not alter reproductive
hormone secretion (Powel and Monfort 2001) and
that treated females will therefore experience normal
ovarian cycles (Barber and Fayrer-Hosken 2000).
However, while some studies have indeed recorded
normal oestrous cyclicity following ZP vaccination
101
102
5% pregnant in treated group
54% pregnant in control group
0% pregnant group a
78% pregnant group b
start: 65 µg pZP + FCA
booster 1: 65 µg pZP + FIA (4 wk)
a) start: 65 µg pZP + adj
booster 1 (4 wk) & 2 (10 mo) 65 µg pZP
+ adjuvant
b) start 65 µg pZP + adjuvant
booster next year group b
start 65 µg pZP + adjuvant
a) booster 65 µg pZP + adjuvant
b) 2x booster 65 µg pZP + adjuvant
83
10
0
0
9
44
10a/10b
9
6a/68b
19
127
30
9b
74
28
horses
deer
2 years
2nd year
deer
white-tailed
deer
Kirkpatrick et al. 1997
2 years
0% burros pregnant group a
33% burros pregnant group b
54% burros pregnant in control group
a) 1st inj.: 65 µg pZP + FCA
2nd inj.: 65 µg pZP + FIA (3 wk)
b) 130 µg pZP + FCA
booster: 65 µg pZP + FIA (10/12 mo)
11
16
27
feral burros
Turner, Liu, et al. 1996
booster 2nd year: 65 µg pZP + FIA
microspheres 65 µg pZP (release 4–6 wk)
b) start: 65 µg pZP + FCA (0.5 cc)
booster 1 (1 mo): 65 µg pZP + FIA
a) start: 65 µg pZP + FCA (0.5 cc)
during treatment 100% reduction
control 94% (average) produced fawns
start: 65 µg pZP (0.5 cc) + FCA (0.5 cc)
booster(s): 65 µg pZP (0.5 cc) + FIA
(0.5 cc)
different booster regimes: 1, 2 or 3 inj.
52
43
95
white-tailed deer
Turner, Kirkpatrick,
et al. 1996
McShea et al. 1997
pZP treated 100% reduction
control does 86% produced fawns
65 µg pZP (0.5 cc) + FCA (0.5 cc)
2
7
9
white-tailed
deer
Turner et al. 1992
group a: 0% and 10% does produced
fawns (2 yrs)
group b: 78% and 22% does produced
fawns (2 yrs)
control group: 82% and 89% does
produced fawns
both groups experienced reduced twinning
82% pregnant control
22% pregnant
39% produced fawns groups a, b
90% produced fawns before experiment
microspheres less successful
grp 1: 50% (1 yr), 51% (2 yr), 0% (3 yr)
produced foals
grp 2: 62% (1 yr), 37% (2 yr), 12% (3 yr)
produced foals
control: 33% (1 yr), 33% (2 yr), 50% (3
yr) produced foals
untreated: 45, 4% produced foals in 3rd year
start: 65 µg pZP (0.5 cc) + FCA (0.5 cc)
grp 1: 2x boosters: 65 µg pZP + FIA
(0.5 cc)
grp 2: 1x boosters: 65 µg pZP + FIA
(0.5 cc)
6
26
32
feral horses,
3 years
Kirkpatrick et al. 1990
Effectiveness
Results
Control
Immunization protocol
Treated
Sample size
Total
Species/duration
Reference
Table 1. Overview by reference and year of pZP immunocontraception studies listed by species, duration, sample size, immunization protocol, and contraceptive effectiveness
Perdok et al.
Pachyderm No. 42 January–June 2007
feral horses
Pachyderm No. 42 January–June 2007
7(19)
10
37
156
83
b) start: 65 µg pZP + FCA (0.5cc)
c) 65 µg pZP + FCA (0.5cc) +
microspheres
d) placebo group and e) untreated group
a) start: 65 µg pZP + FCA (0.5 cc)
booster: 65 µg pZP + FIA (0.5 cc)
19
start: 600 µg pZP + 5 mg S-TDCM
18
booster 1: 600 µg pZP + 5 mg S-TDCM
(6 wk)
booster 2: 600 µg pZP + 5 mg S-TDCM
(6 mo)
start: 600 µg pZP + 5 mg S-TDCM
0
10
booster 1: 600 µg pZP + 5 mg S-TDCM
(2 wk)
booster 2: 600 µg pZP + 5 mg S-TDCM
(4 wk)
600 µg pZP + 5 mg S-TDCM
3
4
73
FCA– Freund’s complete adjuvant; FIA–Freund’s incomplete adjuvant; FMA–Freund’s modified adjuvant; pZP–porcine zona pellucida; S-TDCM–synthetic trehalose
dicorynomycolate adjuvant
100% reproductive control
start: 600 µg pZP + FMA
booster 1: 400 µg pZP + FIA (3 wk)
booster 2: 400 µg pZP + FIA (6 wk)
0
23
23
elephants
2 yr
Delsink et al. 2003
mares reproductively successful:
a) 12.8%
b) 10.6%
c) 11.3%
a) 2x 65 µg pZP/FCA
b) 2x 65 µg pZP/FCA + carbopol
c) 1x 65 µg pZP/FCA + microsphere
(no FCA)
microsphere release in pulses
0
222
222
feral horses
Turner et al. 2001
treated group produced 0.25 fawn/doe
control group produced 1.88 fawn/doe
87% reduction (during 4-yr study)
overall fertility reduction 72% (9 yr)
47
deer
4-yr study
Miller et al. 2001
1 yr: 36% pregnant
2 yr: 9% pregnant
3 yr: 11% pregnant
overall fertility reduction 89% (3 yr)
overall fertility reduction 76% (6 yr)
0% pregnant treated, but cyclicity
maintained
20% pregnant in treated group after 2 yrs
44% pregnant in treated groupal. 2000;
89% pregnant in control group
a) 4.5% mares reproductively successful
b) 28.6% mares reproductively
successful
c) 20% mares reproductively successful
d) 55% mares reproductively successful
e) 53% mares reproductively successful
start: 500 µg pZP + FCA
booster 1: (4 wk) 300 µg pZP + FIA
booster 2: (8 wk) 300 µg pZP + FIA
booster 2nd & 3rd year: 300 µg pZP + FIA
36
11 (1 yr)
8 (2 yr)
3 (3 yr)
19
deer
6-yr study
Miller et al. 2000
start: 500 µg pZP + FCA
8
11 (1 yr)
booster 1: 300 µg pZP + FIA (4 wk)
8 (2 yr)
booster 2 yr and 3 yr: 300 µg + FIA
4 (3 yr)
only does with low antibody titre levels received boosters
this means that all does were immunocontracepted
2nd year
elephants
Fayrer-Hosken et
2 years
Bertschinger et al. 2003
Turner et al. 1997
Managing elephant population growth by immunocontraception
M
103
Perdok et al.
(Fayrer-Hosken et al. 2000; Kirkpatrick and Rutberg
2001), others have recorded abnormalities such as:
• altered ovarian function in horses (Kirkpatrick et
al. 1992) and deer (Miller et al. 2001)
• altered cyclicity in primates (Nettles 1997) and
deer (Muller et al. 1997)
• reduced ovulation rate in horses (Kirkpatrick et
al. 1992, 1997)
• decreased oestrogen production in baboons (Miller
et al. 2001) and horses (Kirkpatrick et al. 1997)
• altered ovarian structure in primates (Nettles
1997)
• follicular inflammation in deer (McShea et al.
1997)
• acyclicity in horses (Muller et al. 1997)
The effects on cyclicity tend to become more severe
with the duration of elevated anti-pZP antibody titres,
but it is not clear whether failure to cycle is advantageous or disadvantageous for health and behaviour.
With regard to social behaviour, African elephants
live in stable groups consisting of related adult females
and their offspring. Young bulls leave the herd shortly
after reaching sexual maturity and go off to live in bull
groups or in solitude (Rasmussen and Schulte 1998).
Adult males really interact with the matriarchal herds
only when a female is in oestrus and ready for mating
(Moss 1983). One obvious consequence of contraception
is that the number of offspring born into a herd will decrease or stop, and as yet, it is not clear whether this will
affect group behaviour (Rasmussen and Schulte 1998;
Fayrer-Hosken et al. 1999). The other major change
expected after ZP vaccination is an increased frequency
of oestrous cycles, and therefore of interaction with
adult bulls. The oestrous cycle of an elephant cow lasts
12 to 18 weeks (Rasmussen and Schulte 1998). During
this cycle the cow has a 2- to 10-day period of sexual
receptivity when she will show oestrous behaviour, accept mating and may conceive (Moss 1983; Rasmussen
and Schulte 1998). A female elephant announces her
sexual receptivity in advance through chemical, auditory
and behavioural signals, increasing the likelihood that
a desirable bull will present himself for mating; bulls
will travel great distances to find an oestrous female
(Rasmussen and Schulte 1998).
In the event of pregnancy, the cow will not cycle
again for at least another two years, the length of
gestation (Rasmussen and Schulte 1998). Because
sexually receptive periods usually end with mating and pregnancy (Rasmussen and Schulte 1998),
104
repeated oestrous cycles are not a normal feature of
wild elephant reproduction. It is, therefore, not clear
how an increase in the number of oestrous cycles due
to immunocontraception will affect male behaviour,
or how much the disruption caused by more frequent
bull attention will affect the matriarchal groups. In
brush-tail possums, increased numbers of oestrous
females led to an increase in the number of visiting
males (Ji et al. 2000), whereas in deer an increase
in the number of oestrous females led to a reduction
in interest among the dominant males (Miller et al.
2001). The effects on female elephants of repeated
oestrus and failure to produce a calf at the expected
interval are similarly difficult to predict.
Low cost
For large-scale use in wildlife populations an ideal
contraceptive should be low cost. Indeed, Whyte et
al. (1998) warned that immunocontraception may be
unsuitable for use in large elephant populations or
large conservation areas because of the logistics and
costs. Pimm and Van Aarde (2001) calculated that
the costs of controlling the KNP elephant population by pZP immunocontraception would exceed the
total management budget for South African National
Parks. On the other hand, Fayrer-Hosken et al. (2001)
point out that the cost and the speed of field delivery have not really been assessed in large groups of
elephants, and that pZP immunocontraception has
proven affordable for managing herds of horses and
deer. Certainly, development of a one-shot vaccine
would dramatically simplify the logistics and reduce
the costs of immuno-contraception (Fayrer-Hosken
et al. 2001).
Genetic selection and resistance
Immunocontraception may be selective. In theory,
healthy animals with a vigorous immune response
are more likely to become infertile than individuals
with a weak or compromised immune system (Muller
et al. 1997; Nettles 1997; Miller et al. 2001). If this
is true in practice, immunocontraception would essentially favour animals with poor disease resistance,
and encourage reproduction among the least ʻgenetically fitʼ. However, while Muller et al. (1997) claim
that genetics play an important role in the antibody
response to vaccination, Kirkpatrick et al. (1997)
maintain that an individualʼs response to pZP is
Pachyderm No. 42 January–June 2007
Managing elephant population growth by immunocontraception
M
more closely related to dose, adjuvant and route of
administration than to immune competence. In the
longer term, it is also possible that natural selection
may favour individuals genetically resistant to a
contraceptive agent, although the risk of resistance
could be minimized by developing multiple vaccines
with slightly different activities for use in rotation or
combination (Magiafoglou et al. 2003).
Opinion and recommendations
The current challenge is to determine whether immunocontraception can be responsibly and economically
used to manage African elephant populations. If pZP
can be proven to satisfy all the listed criteria, it needs
to be considered a realistic alternative for managing
elephant population growth. Unfortunately, this is a
utopian view that does not take into account the moral
and social dilemmas associated with the elephantʼs
status as a highly intelligent and sensitive keystone
species, or its inhabitance of areas that are also home
to millions of the worldʼs poorest people.
In both elephants and other species, the apparent
success of immunocontraception varies greatly (table
1). These differences in efficacy may be largely attributable to differences in immunization protocol; more
boosters generally result in more effective contraception. However, repeated immunization of individual
wild elephants would be problematic because it requires identification with a radio collar, and tracking
at set intervals. Not only would this be difficult and
costly, but repeated darting is likely to be stressful to
the animals and may make them more wary of people or
aggressive towards them. The development of a oneinoculation vaccine is thus an imperative if immunocontraception is to become a realistic proposition for
medium to large elephant populations.
There are also arguments about how accurate calculations of contraceptive effectiveness really are. Some
studies report efficacy in terms of a reduction in pregnancy rates or population growth rate in comparison
with a control population, while others use the number
of vaccinated females that give birth. While both methods have their pros and cons, the choice of one over
the other is the basis of some ongoing disagreements.
For example, Pimm and Van Aarde (2001) have suggested that Fayrer-Hosken et al. (2000) exaggerated the
effectiveness of pZP contraception in elephants because
their control group had unusually high pregnancy rates
Pachyderm No. 42 January–June 2007
(16/18 = 89%). In a larger sample of 813 adult cows
culled in KNP between 1979 and 1994 an average of
51% (range 36–77%) of adult females were pregnant.
Pimm and Van Aarde (2001) argue that this lower
figure is a much more realistic basis for comparison,
since it is closer to what would be predicted on the
basis of the 22-month gestation and 44-month calving
interval typical of African elephants.
One of the most important reasons for not yet
recommending widespread implementation of pZP
vaccination in elephants is the uncertainty surrounding
long-term safety and reversibility: a number of studies
have reported either ovarian damage (Paterson et al.
1999) or reduced or delayed return to ovarian function
(Muller et al. 1987) after ZP vaccination. Clarity over
the effects of longer-term administration is particularly
pertinent to elephants because of their extreme longevity. Moreover, even if vaccination does not directly
damage the ovaries, there are indications that long
non-reproductive periods may accelerate the onset of
reproductive senescence in elephant cows (Hermes et
al. 2004). While it is similarly difficult to predict the
effects of long periods of infertility on elephant social
behaviour, it is clear that repeatedly vaccinating all the
adult females in a matriarchal group would eventually
lead to the collapse of that herd. Any large-scale contraceptive programme for elephants will therefore have
to be carefully designed and regularly updated to avoid
collapse of herds due to dwindling numbers.
Of course, the costs and logistics of immunocontraception are likely to remain the greatest obstacle to
implementation in large elephant populations. And while
a reliable one-inoculation immunization protocol will
obviously simplify the operation and dramatically reduce
costs, it is possible that elephant immunocontraception
may still be viable only in smaller conservation areas,
where elephant numbers are low but population growth
and densities are relatively high (Slotow et al. 2005; Van
Aarde and Jackson 2007).
In conclusion, available evidence suggests that
pZP vaccine is an effective contraceptive for elephants that can be delivered remotely, is safe to use
in pregnant animals, does not pass through the food
chain, and is reversible, at least after short durations of
vaccination. However, before ZP vaccination can be
recommended for wide-scale use in elephant population control additional studies are needed to elucidate
effects on health, behaviour and reversibility after
longer periods of administration.
105
Perdok et al.
References
Barber MR, Fayrer-Hosken RA. 2000a. Possible mechanisms of mammalian immunocontraception. Journal
of Reproductive Immunology 46:103–124.
Barber MR, Fayrer-Hosken RA. 2000b. Evaluation of
somatic and reproductive immunotoxic effects of the
porcine zona pellucida vaccination. Journal of Experimental Zoology 286:641–646.
Bertschinger HJ, Kirkpatrick JF, Fayrer-Hosken RA,
Grobler D, Van Altena JJ. 2003. Immunocontraception of African elephants using porcine zona pellucida
vaccine. In: Colenbrander B, De Gooijer J, Paling R,
Stout SS, Stout T, Allen WR, eds., Managing African
elephant populations: act or let die? Proceedings of an
Expert Consultation on the Control of Wild Elephant
Populations. Organized by the Faculty of Veterinary
Medicine, Utrecht University, The Netherlands, held at
Beekbergen, 7–8 November 2003. p. 45–47.
Cumming DHM, Brock Fenton M, Rautenbach IL, Taylor
RD, Cumming GS, Cumming MS, Dunlop JM, Ford
AG, Hovorka MD, Johnston DS, Kalcounis M, Mahlangu Z, Portfors CVR. 1997. Elephants, woodlands and
biodiversity in southern Africa. South African Journal
of Science 93:231–236.
Delsink AK, Bertschinger HJ, Kirkpatrick JF, DeNys
H, Grobler D, Van Altena JJ, Turkstra J. 2003. Contraception of African elephant cows in two private
conservancies using porcine zona pellucida vaccine,
and the control of aggressive behaviour in elephant
bulls with a GnRH vaccine. In: Colenbrander B, De
Gooijer J, Paling R, Stout SS, Stout T, Allen WR,
eds., Managing African elephant populations: act or
let die? Proceedings of an Expert Consultation on the
Control of Wild Elephant Populations. Organized by
the Faculty of Veterinary Medicine, Utrecht University,
The Netherlands, held at Beekbergen, 7–8 November
2003. p. 69–72.
Fayrer-Hosken RA, Bertschinger HJ, Kirkpatrick JF,
Grobler D, Lamberski N, Honneyman G, Ulrich T.
1999. Contraceptive potential of the porcine zona pellucida vaccine in the African elephant. Theriogenology
52:835–846.
Fayrer-Hosken RA, Brooks P, Bertschinger HJ, Kirkpatrick
JF, Turner JW, Liu IKM. 1997. Management of African
elephant populations by immunocontraception. Wildlife
Society Bulletin 25(1):18–21.
Fayrer-Hosken RA, Grobler D, Van Altena JJ, Bertschinger
HJ, Kirkpatrick JF. 2000. Immunocontraception of
African elephants, a humane method to control animal
106
populations without behavioural side effects. Nature
407:149.
Fayrer-Hosken RA, Grobler D, Van Altena JJ, Bertschinger
HJ, Kirkpatrick JF. 2001. Fayrer-Hosken et al. reply.
Nature 411:766.
Frayne J, Hall L. 1999. The potential use of sperm antigens
as targets for immunocontraception: past, present and
future. Journal of Reproductive Immunology 43:1–33.
Harrenstien LA, Munson L, Chassy LM, Liu IKM, Kirkpatrick JF. 2004. Effects of porcine zona pellucida immunocontraceptives in zoo felids. Journal of Zoo and
Wildlife Medicine 35(3):271–279.
Hermes R, Hildebrandt TB, Göritz F. 2004. Reproductive
problems directly attributable to long-term captivity:
assymmetric reproductive aging. Animal Reproduction
Science 82–83:49–60.
Ji W, Clout MN, Sarre SD. 2000. Response of male brushtail possums to sterile females: implications for biological control. Journal of Applied Ecology 37:926–934.
Kirkpatrick JF. 2003. Elephant contraception: looking beyond
the pharmacology. In: Colenbrander B, De Gooijer J,
Paling R, Stout SS, Stout T, Allen WR, eds., Managing
African elephant populations: act or let die? Proceedings
of an Expert Consultation on the Control of Wild Elephant
Populations. Organized by the Faculty of Veterinary
Medicine, Utrecht University, The Netherlands, held at
Beekbergen, 7–8 November 2003. p. 43–44.
Kirkpatrick JF, Liu IKM, Turner JW Jr. 1990. Remotelydelivered immunocontraception in feral horses. Wildlife
Society Bulletin 18:326–330.
Kirkpatrick JF, Liu IKM, Turner JW Jr, Naugle R, Keiper
R. 1992. Long-term effects of porcine zonae pellucida
immunocontraception on ovarian function in feral
horses (Equus caballus). Journal of Reproduction and
Fertility 94:437–444.
Kirkpatrick JF, Rutberg AT. 2001. Fertility control in animals, from mortality control to fertility control (chapter
12). In: Salem D, Rowan A, eds., The state of the animals. Humane Society Press. p. 183–198.
Kirkpatrick JF, Turner A. 2003. Absence of effects from
immunocontraception on seasonal birth patterns and
foal survival among Barrier Island wild horses. Journal
of Applied Animal Welfare Science 6:301–308.
Kirkpatrick JF, Turner JW. 1991. Reversible contraception
in nondomestic animals. Journal of Zoo and Wildlife
Medicine 22:392–408.
Kirkpatrick JF, Turner JW Jr., Liu IKM, Fayrer-Hosken R,
Rutberg AT. 1997. Case studies in wildlife immunocontraception: wild and feral equids and white-tailed deer.
Reproduction, Fertility and Development 9:105–110.
Pachyderm No. 42 January–June 2007
Managing elephant population growth by immunocontraception
M
Liu IK, Turner JW Jr., Van Leeuwen EM, Flanagan DR,
Hedrick JL, Muruta K, Lane VM, Morales-Levy MP.
2005. Persistence of anti-zonae pellucidae antibodies following a single inoculation of porcine zonae pellucidae
in the domestic equine. Reproduction 129(2):181–190.
Lyda RO, Hall R, Kirkpatrick JF. 2005. A comparison of
Freundʼs complete and Freundʼs modified adjuvants
used with a contraceptive vaccine in wild horses
(Equus caballus). Journal of Zoo and Wildlife Medicine
36(4):610–616.
Magiafoglou A, Schiffer M, Hoffman AA, McKechnie SW.
2003. Immunocontraception for population control:
will resistance evolve? Immunology and Cell Biology
81:152–159.
McShea WJ, Monfort SL, Hakim S, Kirkpatrick J, Liu I,
Turner JW Jr., Chassy L, Munson L. 1997. The effect of
immunocontraception on the behavior and reproduction
of white-tailed deer. Journal of Wildlife Management
61:560–569.
Miller LA, Crance K, Gaddis S, Killian GJ. 2001. Porcine
zona pellucida immunocontraception: long-term health
effects on white-tailed deer. Journal of Wildlife Management 65:942–945.
Miller LA, Johns BE, Killian GJ. 2000. Long-term effects
of pZP-immunocontraception on reproduction in whitetailed deer. Vaccine 18:568–574.
Moss CJ. 1983. Oestrous behaviour and female choice in
the African elephant. Behaviour 86:167–196.
Muller LI, Warren RJ, Evans DL. 1997. Theory and practice
of immunocontraception in wild mammals. Wildlife
Society Bulletin 25:504–514.
Nettles VF. 1997. Potential consequences and problems
with wildlife contraceptives. Reproduction Fertility
and Development 9:137–143.
Paterson M, Wilson MR, Jennings ZA, Van Duin M, Aitken
RJ. 1999. Design and evaluation of a ZP3 peptide vaccine in a homologous primate model. Molecular Human
Reproduction 5(4):342–352.
Paterson M, Wilson MR, Van Duin M, Aitken RJ. 1998.
Evaluation of the contraceptive potential of recombinant
human ZP3 and human ZP3 peptides in a primate
model: their safety and efficacy. American Journal of
Reproductive Immunology 40(3):198–209.
Pimm SL, Van Aarde RJ. 2001. African elephants and
contraception. Nature 411:766.
Powel DM, Monfort SL. 2001. Assessment: effects of
porcine zona pellucida immunocontraception on estrous
cyclicity in feral horses. Journal of Applied Animal
Welfare Science 4:271–284.
Rasmussen LEL, Schulte BA. 1998. Chemical signals in the
Pachyderm No. 42 January–June 2007
reproduction of Asian (Elephas maximus) and African
(Loxodonta africana) elephants. Animal Reproduction
Science 53:19–34.
Slotow R, Garai ME, Reilly B, Page B, Carr RD. 2005.
Population dynamics of elephants re-introduced to small
fenced reserves in South Africa. South African Journal
of Wildlife Research 35:23–32.
Stout TAE, Colenbrander B. 2004. Suppressing reproductive
activity in horses using GnRH vaccines, antagonists or
agonists. Animal Reproduction Science 83: 633–643.
Turner JW Jr, Kirkpatrick JF, Liu IKM. 1996. Effectiveness, reversibility, and serum antibody titres associated
with immunocontraception in captive white-tailed deer.
Journal of Wildlife Management 60:45–51.
Turner JW Jr, Liu IKM, Flanagan DR, Rutberg AT, Kirkpatrick JF. 2001. Immunocontraception in feral horses:
one inoculation provides one year of infertility. Journal
of Wildlife Management 65:235–241.
Turner JW Jr, Liu IKM, Kirkpatrick JF. 1992. Remotely
delivered immunocontraception in captive white-tailed
deer. Journal of Wildlife Management 56:154–157.
Turner JW Jr, Liu IKM, Kirkpatrick JF. 1996. Remotely
delivered immunocontraception in free-roaming feral
burros (Equus asinus). Journal of Reproduction and
Fertility 107:31–35.
Turner JW Jr, Liu IKM, Rutberg AT, Kirkpatrick JF. 1997.
Immunocontraception limits foal production in freeroaming feral horses in Nevada. Journal of Wildlife
Management 61:873–880.
Van Aarde R, Jackson TP. 2007. Megaparks for meta-populations: addressing the causes of locally high elephant
numbers in southern Africa. Biological Conservation
134:289–297.
Van Aarde R, Whyte I, Pimm S. 1999. Culling and the
dynamics of the Kruger National Park African elephant
population. Animal Conservation 2:287–294.
Whyte IJ. 2003. The feasibility of current options for the management of wild elephant populations. In: Colenbrander B,
De Gooijer J, Paling R, Stout SS, Stout T, Allen WR, eds.,
Managing African elephant populations: act or let die?
Proceedings of an Expert Consultation on the Control of
Wild Elephant Populations. Organized by the Faculty of
Veterinary Medicine, Utrecht University, The Netherlands,
held at Beekbergen, 7–8 November 2003. p. 15–16.
Whyte IJ, Biggs HC, Gaylard A, Braack LEO. 1999.
A new policy for the management of the Kruger National Parkʼs elephant population. Koedoe 42:111–132.
Whyte I, Van Aarde R, Pimm SL. 1998. Managing the
elephants of Kruger National Park. Animal Conservation 1:77–83.
107
Krummenacher, Zschokke
Inbreeding and outbreeding in African rhinoceros species
Toya S. Krummenacher, Samuel Zschokke*
Section of Conservation Biology (NLU), University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel,
Switzerland
* corresponding author; email: [email protected]; fax: +41 61 267 0832
Abstract
Effective breeding strategies in ex situ conservation require an optimal balance between inbreeding and outbreeding, as both can lead to a decrease in population fitness. Thus optimizing breeding strategies to maintain
genetic diversity entails a profound knowledge of the actual situation (including conservation units). This study
examines the consequences of inbreeding and outbreeding in captive populations of two threatened species,
the white and the black rhinoceros (Ceratotherium simum and Diceros bicornis), based on data from recent
studbooks (2004). We also assessed the conservation units of the black rhinoceros, whose classification into
subspecies remains a matter of discussion. Theory predicts that juvenile mortality increases with increasing
degree of inbreeding. We calculated inbreeding coefficients and examined possible correlations with juvenile
mortality rates. To assess the conservation units of the black rhinoceros, we compared juvenile mortality rates
of outbred animals with those of non-outbred animals and additionally performed a geographical distance
analysis. With both approaches we aimed to draw breeding borderlines between putative conservation units to
preserve genetic diversity. Our assessment of the current inbreeding situation based on records in international
studbooks was severely limited by small sample sizes in both the white and the black rhinoceros. For the same
reason we could not evaluate the conservation units in the black rhinoceros. Nonetheless, we conclude that
inbreeding and outbreeding must be followed closely in both species, as their consequences can be severe.
Additional key words: Ceratotherium simum, Diceros bicornis, distance analysis, evolutionary significant
units, juvenile mortality, conservation units, studbook
Résumé
Les stratégies efficaces de reproduction ex situ exigent un équilibre optimal entre les croisements consanguins
(inbreeding) ou non (outbreeding), étant donné que chacun peut entraîner une dégradation de la santé de la
population. Lʼoptimisation des stratégies de croisement, pour maintenir la diversité génétique, suppose une connaissance approfondie de la situation exacte des croisements (y compris les unités de conservation). Cette étude
recherche les conséquences de lʼinbreeding et de lʼoutbreeding dans les populations captives de deux espèces
menacées, les rhinocéros blancs et les noirs (Ceratotherium simum et Diceros bicornis), basées sur les données
reprises dans les livres dʼorigine (2004). Nous avons aussi évalué les unités de conservation des rhinocéros
noirs dont la classification en sous-espèces reste matière à discussion. La théorie prédit que la mortalité juvénile
augmente avec le taux dʼinbreeding. Nous avons donc calculé les coefficients dʼinbreeding et examiné les corrélations possibles avec le taux de mortalité juvénile. Pour évaluer les unités de conservation des rhinos noirs,
nous avons comparé le taux de mortalité juvénile des animaux résultant de croisements non consanguins avec
celui dʼanimaux consanguins et nous avons aussi réalisé une analyse de la distance géographique. Par ces deux
approches, nous avons voulu tracer les limites des croisements entre des unités de conservation putatives, pour
préserver la diversité génétique. Notre évaluation de la situation de lʼinbreeding actuel, basée sur des rapports
des livres dʼorigine internationaux, a été gravement limitée étant donné la très petite taille des échantillons, aussi
bien chez les rhinos blancs que chez les noirs. Cʼest pour cette raison aussi que nous nʼavons pas pu évaluer les
unités de conservation des rhinocéros noirs. Néanmoins, nous concluons quʼil faut suivre de près lʼinbreeding
et lʼoutbreeding chez les deux espèces car leurs conséquences peuvent être très sérieuses.
108
Pachyderm No. 42 January–June 2007
Inbreeding and outbreeding in African rhinoceros species
Mots clés supplémentaires : Ceratotherium simum, Diceros bicornis, analyse de la distance, unités évolutives significatives, mortalité juvénile, unités de conservation, livre dʼorigine
Introduction
The conservation of threatened and endangered species is an important task as many of these species will
not survive without appropriate protection and management strategies. Both African rhinoceros species
are threatened: the black rhinoceros (Diceros bicornis)
is classified as Critically Endangered in the IUCN
2004 Red List of Threatened Species, the southern
white rhinoceros (Ceratotherium simum simum) is
classified as Near-Threatened, and the northern white
rhinoceros (Ceratotherium simum cottoni) as Critically Endangered (Baillie et al. 2004).
Species conservation can take place either in their
natural habitats (in situ conservation) or in captivity
(ex situ conservation) (Convention on Biological
Diversity 1992). Since in situ and ex situ conservation do not exclude one another, both approaches are
used today to attempt to assure the future existence
of many threatened or endangered species. Both
African rhinoceros species are bred in captivity in
zoos worldwide and their global breeding is coordinated by Dr med. vet. Andreas Ochs, with the help of
international studbooks kept for both species (Ochs
2005a, 2005b).
In captive breeding, it is essential to closely
monitor and coordinate mating to maintain a viable
captive population for the long term (World Zoo and
Aquarium Association 2005). Uncoordinated breeding may lead to inbreeding (among relatives) (Hartl
2000) or outbreeding (between genetically distant
individuals) (Lynch 1997). Any can have negative
effects, termed inbreeding and outbreeding depression
(Lynch 1997), on the survival and reproduction of
animals in the wild. Outbreeding might happen in the
wild due to human-made corridors, as well as in captivity (Wright 1977; Lasley 1978). In inbreeding, the
negative effects appear because deleterious recessive
alleles become homozygous (Falconer 1989; Lynch
1997). Causes for the negative effects of outbreeding
are more complex. One reason is the breakdown of
biochemical or physiological compatibility between
the genes in gene complexes of a population due to
incompatible genes from another population being
incorporated. Another cause is the displacement of
the genes adapted to the environment of a population
Pachyderm No. 42 January–June 2007
through an overwhelming immigration of genes from
another population not adapted to this environment,
leading to a hybrid genotype with reduced fitness in
any environment (Lynch 1997).
The aim of any breeding guideline is to avoid
inbreeding and outbreeding, and thus to evade their
possible effects. One way to avoid outbreeding effects
is to have well-founded knowledge of the existing
subgroups or subspecies within a species, since outbreeding can occur by breeding between individuals
belonging to distant subgroups or subpopulations because they usually are genetically distant animals.
It is not difficult to avoid outbreeding in the white
rhinoceros since its two subspecies—the southern
white rhinoceros, C.s. simum, and the northern
white rhinoceros, C.s. cottoni—are known and
accepted. Separated breeding of these subspecies
should continue to maintain the genetic variability
for each subspecies separately. The situation in the
black rhinoceros is more complicated because there
is considerable disagreement concerning the number
and status of subspecies. Depending on the author,
there are between 4 and 16 black rhinoceros subspecies (fig. 1) (Zukowsky 1964; Groves 1967, 1983,
1993; Du Toit 1987; Du Toit et al. 1987; Fouraker and
Wagener 1996; Rookmaker 1998; Emslie et al. 1999).
In captive breeding, only the two subspecies Diceros
bicornis minor and Diceros bicornis michaeli (based
on the subgroups of Du Toit et al. 1987) are currently
considered. To avoid the negative effects of outbreeding and to maintain the genetic diversity in the black
rhinoceros, it is essential to assess the subgroups or
subspecies that should be preserved. These subgroups
or subspecies are also called conservation units or
evolutionary significant units, since taxonomic subspecies are not always the smallest entities that should
be preserved (Ryder 1986).
The aims of this study are to present current information on international captive breeding in both
African rhinoceros species, and to give pragmatic
information on the conservation units of the black
rhinoceros, which could then be used to conserve
the species. To achieve this, we analysed inbreeding
coefficients and juvenile mortality (mortality in the
first two months) based on studbook data on the two
African rhinoceros species. To assess the conservation
109
Krummenacher, Zschokke
a
b
North-western
Eastern
South-western
South-central
c
d
e
f
D.b. longipes
D.b. bicornis
D.b. michaeli
D.b. minor
Figure 1. Subspecies of the black rhinoceros (number of different subspecies in parenthesis) according to
a) Zukowsky 1964 (16), b) Du Toit et al. 1987 (4), c) Groves 1993 (9), d
d) Rookmaker 1998 (6), e) Emslie et
al. 1999 (4), and f) International studbook (Ochs 2005b) (2). Each grey tone and each pattern represents a
different subspecies; the four most consistent are D.b. michaeli = dotted pattern, D.b. minor = diagonally
striped, D.b. longipes = horizontally striped, D.b. bicornis = gridlike pattern. In b the authors defined subgroups, which seem to coincide with the subspecies. Therefore the patterns in this figure are similar, but
not identical. The stars in southern Africa in f represent artificially introduced populations of D.b. michaeli.
Distributions shown are based on written descriptions and are not precise.
110
Pachyderm No. 42 January–June 2007
Inbreeding and outbreeding in African rhinoceros species
units of the black rhinoceros we reviewed the existing literature, analysed outbreeding between putative
subspecies and performed a geographical distance
analysis. Since both species have been bred in captivity for over 150 years, we expected inbreeding in both
species and consequently also an increase in juvenile
mortality with increasing inbreeding coefficient
(Wright 1977; Lasley 1978). In the black rhinoceros
subspecies we expected to find outbred animals, or
hybrids between the putative subspecies, with a higher
juvenile mortality than non-outbred animals.
Material and methods
Our study was based on the 10th editions of the International studbook for the African white rhinoceros
and the International studbook for the African black
rhinoceros (Ochs 2005a, 2005b). For both studbooks,
only entries before the official deadline, 31 December
2004, were considered. These datasets gave a total
sample size of 1494 individuals for the white rhinoceros and 919 individuals for the black rhinoceros.
Both studbooks are divided into two subspecies. The
studbook of the white rhinoceros consists of 1466 C.s.
simum and 28 C.s. cottoni individuals. The studbook
for the black rhinoceros contains 162 D.b. minor and
757 D.b. michaeli individuals.
As a first step, an electronic dataset was created
for each studbook, which was then controlled and
corrected for errors; this was often accomplished
with the support of curators in the different zoos. The
datasets were then analysed with the computer program Studbook v3.9 (Zschokke 2005). This program
calculates inbreeding coefficients using the Additive
Relationship Method (Ballou 2003).
The inbreeding coefficient in a studbook pedigree
is the probability that the two alleles at homologous
loci are identical as descendants from a known common ancestor of the parents (Wright 1922, 1969;
Jacquard 1975). Founder animals are defined as
wild-born animals not known to be related to any
other individuals of the population, except their own
offspring (Lacy 1989).
For the definition of conservation units in the
black rhinoceros, the relevant literature on the subject
was compiled (Zukowsky 1964; Groves 1967, 1983,
1993; Du Toit et al. 1987; Du Toit 1987; Emslie et
al. 1999; Fouraker and Wagener 1996; Rookmaker
1998). Out of these hypotheses we selected five that
to us seemed the most useful and testworthy because
Pachyderm No. 42 January–June 2007
they showed the most coincident distribution of the
putative subspecies or subgroups (Groves 1967, 1993;
Du Toit et al. 1987; Emslie et al. 1999; Rookmaker
1998). For each of the tested subspeciation theories,
we assigned all founder animals to a possible subspecies or subgroup according to its capture location.
Based on this information, each zoo-born individual was then assigned to one or more subspecies
according to the amount of corresponding founder
genes it carried. Inbreeding coefficients and juvenile
mortality (mortality in the first two months) of zooborn animals were computed for each population.
We analysed the relationship between inbreeding
coefficients and juvenile mortality (as binary variable:
survived or died) with a logistic regression for each
species. Further, we controlled for effects other than
inbreeding coefficients that are known to influence juvenile mortality in other species with a multifactorial
logistic regression model. These factors were 1) parity
(first offspring of a dam against all other offspring of
same dam), 2) mean zoo generation (average of the
number of zoo generations of both its parents plus
one) and 3) age of dam.
To define possible breeding borderlines between
the putative subspecies of the black rhinoceros we
used a correlation analysis (χ2-test) to test whether
outbred animals (descending from parental individuals belonging to different putative subspecies) had a
significantly higher juvenile mortality than non-outbred animals (descending from parents belonging to
one putative subspecies), that is, whether they were
affected by outbreeding depression.
Geographic distance can lead to genetic distance
when populations are isolated from each other and,
for example, when genetic drift or local adaptation
occurs. Therefore, geographical distance should be
considered when assessing conservation units. We
consequently compiled the coordinates of the capture
locations of the founder animals obtained from the
studbooks. Using vector geometry, we assigned a
distance vector to each zoo-born animal, equivalent
to the geographical distance between the origins of
the parental animals. The relationship between juvenile mortality (binary variable) and distance vectors
was analysed with a logistic regression model. We
expected juvenile mortality to increase with the geographical distance between the origins of the parental
individuals.
111
Krummenacher, Zschokke
Results
Conservation units of the black rhinoceros
White rhinoceros (Ceratotherium simum)
In all theories examined concerning subspecies or
subgroups in the black rhinoceros, we found no
significant increase in juvenile mortality in any of
the possible hybrids compared with their parental
subspecies. In consequence, no assessment of conservation units based on juvenile mortality of the hybrid
offspring was possible.
As an illustrative example we present the results
for the IUCN subspeciation theory (Emslie et al.
1999).
Most founders of the zoo population could be
assigned to one of the three possible subspecies, as
the fourth one proposed by Emslie et al. (1999) is not
present in the studbook population. The three subspecies to which founders could be assigned to were D.b.
minor (48 animals from south-eastern Africa—eastern
South Africa to southern Tanzania), D.b. michaeli
(132 animals from eastern Africa—Kenya, northern
Tanzania, Uganda) and D.b. bicornis (3 animals
from south-western Africa—western South Africa
to Angola). A further 9 founders were assigned to
a fourth group, called D.b. michaeli/minor because
it was uncertain whether they belong to D.b. minor
or D.b. michaeli. Table 1 shows the assignment of
the zoo-born animals to the different groups and the
juvenile mortality rate for each subgroup.
Comparing juvenile mortality, we did not find
any significant differences between these groups (all
χ2 < 0.02, df = 1, all P > 0.9). Thus no correlation
between juvenile mortality and subspeciation could
be proved for this subspeciation theory, or for the
other theories tested.
Of the 1494 animals listed in the studbook, 752
(50.3%) were zoo-born. Out of these 752 only 16
(2.1%) animals were inbred, with inbreeding coefficients ranging from 0.125 to 0.25. All 16 inbred
individuals belonged to the subspecies C.s. simum.
Similarly, the vast majority (746) of the zoo-born animals belonged to C.s. simum, whereas only 6 (0.8%)
were listed as C.s. cottoni, and one of these 6 was
actually a hybrid between the two subspecies.
The average juvenile mortality rate of non-inbred
white rhinoceros individuals was 14.7%, whereas the
average juvenile mortality rate of inbred individuals
was 18.7%. We found no significant effect of inbreeding on juvenile mortality (logistic regression: χ2 =
0.29, P = 0.58). Keeping the same juvenile mortality
rate of the inbred animals, it would need at least 640
inbred zoo-born animals to find a significant effect of
inbreeding on juvenile mortality. If the total number
of inbred zoo-born animals is kept constant, the
juvenile mortality rate would need to be as high as
37.5% to detect a significant effect of inbreeding on
juvenile mortality. Furthermore, we did not find any
effect of the other variables examined (parity, mean
zoo generation, age of dam) on juvenile mortality in
the white rhinoceros.
Black rhinoceros (Diceros bicornis)
Of the 919 listed animals in the studbook, 512 (55.7%)
individuals were born in captivity. Out of these only
30 (5.9%) were inbred animals, with inbreeding coefficients ranging from 0.0156 to 0.25.
The average juvenile mortality rate of non-inbred
black rhinoceros individuals was 20.3%, whereas
the average mortality rate of inbred individuals was
26.7%. We found no significant effect of inbreeding
on juvenile mortality (logistic regression: χ2 = 0.56,
P = 0.45). At constant juvenile mortality rate of inbred
animals, the total number of inbred zoo-born individuals would have to be at least 300 to find a significant
effect of inbreeding on juvenile mortality. Keeping
the total number of inbred individuals equal, it would
require a juvenile mortality rate as high as 36.7%.
Moreover, we could not find any significant influence of the other tested factors (parity, mean zoo
generation, age of dam) on juvenile mortality.
112
Distance analysis
The logistic regression for the distance analysis of
the black rhinoceros showed no correlation between
geographical distance and juvenile mortality (χ2 = 0.2,
df = 1, P = 0.7). Hence, we could not show outbreeding depression based on geographical distance.
Discussion
Due to the small number of inbred individuals in
both African rhinoceros species, it was not possible
to find a statistically significant relationship between
inbreeding and juvenile mortality. Furthermore,
we did not find a significant correlation between
Pachyderm No. 42 January–June 2007
Inbreeding and outbreeding in African rhinoceros species
are being introduced into
zoo populations and used
Subspecies, group
Number of Juvenile
individuals mortality for breeding today (over the
last five years more than 40
rate (%)
white rhinoceros and 4 black
D.b. michaeli
330
21.2
rhinoceros were introduced to
D.b. minor
71
19.7
the captive population from
D.b. bicornis
4
(0.0)
the wild).
D.b. michaeli/minor
3
(0.0)
This introduction of new
Hybrid D.b. michaeli x D.b. minor
71
23.6
genetic material prevents
Hybrid D.b. michaeli x D.b. michaeli/minor
24
20.8
Hybrid D.b. minor x D.b. bicornis
1
(0.0)
captive populations from
Hybrid D.b. minor x D.b. michaeli x D.b. michaeli/minor
8
(0.0)
inbreeding and therefore
reduces the risk of inbreedThe juvenile mortality rate (mortality in the first two months) in percentages is listed
for each putative subspecies and for the observed hybrids the number of zoo-born
ing depression. However,
individuals. Numbers in parenthesis are unreliable due to low sample size. Source:
coordinated breeding, and
Emslie et al. 1999
not primarily the introduction
of wild-born animals, should
outbreeding and juvenile mortality in the black rhi- be the principal strategy to avoid inbreeding and
noceros. Therefore, it was not feasible to assess the outbreeding and their effects (Frankham et al. 2002;
conservation units of this species. As the example of World Zoo and Aquarium Association 2005). Captive
the IUCN subspeciation (Emslie et al. 1999) shows, breeding for conservation should be propagated as
the number of outbred animals in certain cases was such and should not rely on the constant import of
as low as one (or even none, when considering other new wild-born animals. We are certainly aware of
subspecies theories), which does not allow any sta- the difficulties complicating the breeding of African
tistical comparisons. We faced a similar sample size rhinoceros in captivity (Roth 2006), which makes
problem when analysing the influence of geographical implementing this policy difficult. However, recent
distance between the parental origins on the juvenile research and developments in the field will hopefully
mortality of the offspring.
improve this situation (Roth 2006), leading to higher
Even though we could not statistically support breeding success and fewer introductions from the
the existence of inbreeding or outbreeding depression wild to the zoo population.
in the two African rhinoceros species, it cannot be
Moreover, it is important that inbreeding and
concluded that they do not exist. Such a proof would outbreeding situations, and in particular the subsperequire a larger number of inbred (at least 640 for the ciation of the black rhinoceros, are followed closely
white rhinoceros and 300 for the black rhinoceros) in the future. Inbreeding can act swiftly (Keller and
and outbred animals. Of course, obtaining a large Waller 2002), and the degree to which a species reacts
number of inbred or outbred individuals is not, and to inbreeding varies among species (Zschokke and
should never be, a goal of any breeding programme, Krummenacher, in preparation). In this study we also
since both inbreeding and outbreeding depression are found this reaction to inbreeding to be relatively weak
known from many species to lead to a decrease in fit- for the African rhinoceros in comparison with that
ness (Wright 1977; Lasley 1978; Zschokke and Krum- of other mammals and about as strong as could be
menacher, in preparation), which in populations with expected considering their body mass. Furthermore,
finite size can be fatal (Keller and Waller 2002).
the genetic diversity present in the different subspeThe small number of inbred and outbred animals cies or subgroups of the black rhinoceros must be
in the captive populations of white and black rhi- preserved as the conservation of genetic resources is
noceros seems to reflect good breeding coordination a main goal in conservation biology (Convention on
with regard to avoiding inbreeding and outbreeding, Biological Diversity 1992). However, at the moment
and thus their respective effects. However, in the when outbreeding depression becomes detectable, the
African rhinoceros species, especially in the white gene pools of the subspecies or subgroups of the black
rhinoceros, this is probably not the only reason for rhinoceros may already be blended and thus the valulow numbers of inbred animals; wild-born animals able genetic diversity of the subspecies intermixed.
Table 1. Offspring assignment according to the IUCN subspeciation theory
Pachyderm No. 42 January–June 2007
113
Krummenacher, Zschokke
Conclusion
Therefore, we conclude with an appeal to the breeding
coordinators and studbook participants to continue
closely monitoring the development of inbreeding
and outbreeding in African rhinoceros species, and if
necessary to react on it with adequate changes in the
breeding strategy. Moreover, we strongly agree with
the demand for developing an international breeding
strategy specific for each species (Foose and Wiese
2006), which should be followed by all institutions
keeping African rhinos. Additionally, we endorse
further molecular research as carried out recently
by Harley et al. (2005), so that more precise genetic
information on subspeciation will be revealed, as this
is critically important to avoid outbreeding between
subspecies.
Acknowledgements
We thank Dr med. vet. Andreas Ochs and his studbook
compiler, Hannelore Mercado, for providing us with
the studbooks of the African rhinoceros species. We
also thank all the curators who helped us to improve
the studbook data and Prof. Bruno Baur and two
anonymous reviewers for discussion and comments
on the manuscript.
References
Baillie JEM, Hilton-Taylor C, Stuart SN, eds. 2004. 2004
IUCN Red List of Threatened Species: a global species
assessment. IUCN, Gland and Cambridge.
Ballou J. 2003. Calculating inbreeding coefficients from
pedigrees. In: Schonewald CM, Chambers SM, MacBryde B, Thomas WL, eds., Genetics and conservation: a reference for managing wild animal and plant
populations, 2nd ed. Benjamin/Cummings, Menlo Park,
California. p. 517–520.
Convention on Biological Diversity. 1992. Articles 8 and
9. Secretariat of the Convention on Biological Diversity, United Nations Environment Programme, Rio de
Janeiro.
Du Toit RF. 1987. The existing basis for the subspecies
classification of black and white rhinos. In: Proceedings of the African Rhinoceros Workshop. Pachyderm
9:3–7.
Du Toit RF, Foose TJ, Cumming DHM, eds. 1987. Proceedings of the African Rhino Workshop. Pachyderm 9.
Emslie R, Brooks M, IUCN/SSC African Rhino Specialist
114
Group, compilers. 1999. African rhino: status survey
and action plan. IUCN, Gland and Cambridge.
Falconer DS. 1989. Introduction to quantitative genetics,
3rd ed. Longman, London.
Foose TJ, Wiese RJ. 2006. Population management of
rhinoceros in captivity. International Zoo Yearbook
40:174–196.
Fouraker M, Wagener T, eds. 1996. AZA rhinoceros husbandry resource manual. American Zoo and Aquarium
Association, International Rhino Foundation, Fort
Worth Zoological Park, Fort Worth, Texas.
Frankham R, Ballou JD, Briscoe DA. 2002. Introduction
to conservation genetics. Cambridge University Press,
Cambridge.
Groves CP. 1967. Geographic variation in the black rhinoceros Diceros bicornis (Linnaeus, 1758). Zeitschrift für
Säugetierkunde 32(5):267–276.
Groves CP. 1983. Phylogeny of the living species of rhinoceros. Zeitschrift für zoologische Systematik und
Evolutionsforschung 21(4):293–313.
Groves CP. 1993. Testing rhinoceros subspecies by multivariate analysis. In: OA Ryder, ed., Rhinoceros biology
and conservation. Zoological Society of San Diego, San
Diego, California. p. 92–100.
Harley EH, Baumgarten I, Cunningham J, OʼRyan C. 2005.
Genetic variation and population structure in remnant
populations of black rhinoceros, Diceros bicornis, in
Africa. Molecular Ecology 14(10):2981–2990.
Hartl DL. 2000. A primer of population genetics. Sinauer
Associates, Sunderland, Massachusetts.
Jacquard A. 1975. Inbreeding: one word, several meanings.
Theoretical Population Biology 7(3):338–363.
Keller LF, Waller DM. 2002. Inbreeding effects in
wild populations. Trends in Ecology and Evolution
17(5):230–241.
Lacy RC. 1989. Analysis of founder representation in pedigrees: founder equivalents and genome equivalents. Zoo
Biology 8(2):111–123.
Lasley JF. 1978. Genetics of livestock improvement, 3rd ed.
Prentice-Hall, Englewood Cliffs, New Jersey.
Lynch M. 1997. Inbreeding depression and outbreeding
depression. In: W Stewart Grant, ed., Genetic effects
of straying of non-native hatchery fish into natural
populations: proceedings of the workshop. National
Oceanic and Atmospheric Administration Technical
Memorandum NMFS-NWFSC-30. NOAA, US Department of Commerce, Washington, DC. p.13.
Ochs A. 2005a. International studbook for the African
white rhinoceros, 10th ed. Zoologischer Garten Berlin,
Berlin.
Pachyderm No. 42 January–June 2007
Inbreeding and outbreeding in African rhinoceros species
Ochs A. 2005b. International studbook for the African
black rhinoceros, 10th ed. Zoologischer Garten Berlin,
Berlin.
Rookmaker LC. 1998. The rhinoceros in captivity. SPB
Academic Publishing, The Hague.
Roth TL. 2006. A review of the reproductive physiology
of rhinoceros species in captivity. International Zoo
Yearbook 40:130–143.
Ryder OA. 1986. Species conservation and systematics:
the dilemma of subspecies. Trends in Ecology and
Evolution 1(1):9–10.
World Zoo and Aquarium Association. 2005. New world
zoo and aquarium conservation strategy. Joint Annual
Conference of ARAZPA and SEAZA, Melbourne.
Pachyderm No. 42 January–June 2007
Wright S. 1922. Coefficients of inbreeding and relationship.
American Naturalist 56(645):330–338.
Wright S.1969. Evolution and the genetics of populations, 2:
The theory of gene frequencies. University of Chicago
Press, Chicago.
Wright S. 1977. Evolution and the genetics of populations,
3: Experimental results and evolutionary deductions.
University of Chicago Press, Chicago.
Zschokke S. 2005. Studbook v.3.9 for Macintosh. University of Basel, Basel.
Zukowsky L. 1964. Die Systematik der Gattung Diceros
Gray, 1821. Der Zoologische Garten (Neue Folge)
30(1/2):1–178.
115
Emslie
RHINO NOTES
Rhino issues at CITES CoP14
Richard H. Emslie
IUCN SSC African Rhino Specialist Group
Document 37.2: Black rhinoceros
export quotas for Namibia and
South Africa
Kenya introduced document CoP14 Doc. 37.2 requesting a repeal of Resolution Conf. 13.5, which
set an annual export quota of five black rhinos for
both Namibia and South Africa. Kenya mentioned
that the debate at CoP13 had been controversial.
In an associated document CoP14 Inf. 39, Kenya
expressed concerns regarding new information that
had come to light regarding aspects of management
and monitoring in Namibiaʼs largest population, and
potential declines in calving in this population due to
water supply problems. They also queried a reduction of official Namibian population estimates for its
biggest population in 2004 since CoP13 (when the
quotas were approved). This also resulted in a drop
in the total Namibian estimate for 2004. Kenya also
claimed there had been an increase in poaching in
South Africa.
In the light of these points, Kenya went on to question the sustainability of the quotas in both countries.
Kenya further argued that poaching pressure in other
countries and some areas within Kenya had increased,
and that this possibly was due to misleading messages
following the granting of black rhino hunting quotas
at CoP13. Furthermore, Kenya argued that alternatives had not been fully explored, contending that
translocating animals to other countries would help
conservation and foster tourism. Kenya noted some
concerns had been raised at the AfRSG meeting in
June 2006 about implementing the hunting quotas
in South Africa. Kenya also expressed concern that
the money from hunts might not be going back to
conservation.
116
In response, Namibia introduced document CoP14
Inf. 43, which responded in some detail to the issues
raised. Namibia reminded Parties of the debate at
CoP13, which explained that the motivation to hunt
a small number of specific male black rhinos was a
management tool to enhance demographic performance and long-term genetic conservation. Namibia
and South Africa replied to Kenyaʼs allegations and
arguments from the floor. It was noted that while
debate at CoP13 has been controversial, Parties nevertheless overwhelmingly supported adoption of the
quotas. It was explained that the maximum quota of
five individuals per year per country (actual offtakes
being less than this) represented only 0.4% of their
populations and was well below the 1% level widely
believed to be sustainable. Namibia contended that
such quotas were therefore precautionary.
Namibia explained that the population estimate for
their biggest population had been reduced as a result
of new survey results. The new estimate was in part
due to an improvement in the block count method
being used (better stratification and removal of one
overcounting bias that had operated in the 2002 and
2003 block counts). Namibia also mentioned that any
discrepancies in the estimate for the largest park presented at CoP13 and subsequently revised down were
within the confidence levels around the estimates.
They added that given the small quotas asked for,
the same decision would have been made at CoP13,
irrespective of whether the lower revised estimate
had been used. It was explained that block counting,
which has largely replaced waterhole photographic
monitoring in Namibiaʼs largest population, provided
a useful security audit function. Namibia noted that if
the population in its largest population had actually
declined significantly through poaching, the block
Pachyderm No. 42 January–June 2007
Rhino notes
counts would have detected rhino carcasses, which
they didnʼt.
In its information document, Namibia presented
demographic evidence collected during the block
count in its biggest population, to indicate that the
performance of this population, while not stellar,
was reasonable, with calving rates improving. Using
indicators, TRAFFICʼs information document CoP14
Inf. 41 showed that Namibia and South Africa had
good records in effective law enforcement. South
Africa disputed Kenyaʼs assertion that poaching
had significantly increased, if poaching levels were
considered as a percentage of the population. South
Africa pointed out that when put into context of the
large number of rhinos they conserved (14,900), the
18 rhinos poached last year was only 0.12% of the
population and therefore this was not a threat to longterm sustainability—and that the poached rhinos were
white, not black.
South Africa questioned how it could be claimed
their hunting was not sustainable when their population of black rhinos had increased by 8.3% between
2003 and 2005.
Namibia explained they had not yet hunted any
rhinos and also questioned how their quota would
not be sustainable, seeing as their numbers were also
increasing throughout the country. The TRAFFIC
information document CoP Inf. 41 and Namibia also
argued that there was no evidence for Kenyaʼs CITES
ʻsignalʼ hypothesis, which did not logically fit in with
the fact that the end user marked did not distinguish
between black rhino and white rhino horn and the
observed doubling in South Africaʼs white rhino
numbers since their annotated downlisting (including
advertising continued export of hunting trophies).
The danger of confusing correlation with cause was
mentioned, and the point was made that declines in
some areas highlighted by Kenya were most probably
the result of other factors such as political instability,
lack of political will, and low conservation budgets.
Namibia argued that Kenyaʼs new information was
in fact old information, and that steps had been taken
to address concerns raised in the documents Kenya
referred to.
Since the AfRSG meeting, the concerns raised
about the South African black rhino hunting permit
allocation and approval system have also been dealt
with internally through the SADC Rhino Management Group. The issue was debated at length at its
November 2006 meeting, and a follow-up working
Pachyderm No. 42 January–June 2007
group chaired by the AfRSG Scientific Officer drew
up a revised permit approval and application system.
This has been written up and before being forwarded
by South Africaʼs Department of the Environment
and Tourism (DEAT) for official ratification has been
submitted for comment to RMG (Rhino Monitoring
Group) representatives from South African National
Parks, DEAT, and the nine provincial conservation
agencies. At the time of writing, comment has been
received from all but two of these agencies, and it has
been favourable.
The proposed revised system is now fully in
line with recommended best practices suggested by
AfRSG, and it will no longer allow the hunting of
ʻvagrantʼ rhinos.
CITES CoP14 Doc.54 also showed that just over
half of the black rhino hunting money to date has gone
back to formal conservation agencies, with some additional funding going to a community reserve.
In view of 1) the time granted to Kenya, Namibia
and South Africa to state their cases in Committee I;
2) the significant amount of associated documentation
relevant to the issue, namely Documents 37.2 and
54, and Information Documents 39, 41 and 43 (all of
which are downloadable from the CITES website);
and 3) in the interest of moving business along, the
Chair of Committee I allowed only four interventions
from the floor.
The Democratic Republic of the Congo and Rwanda supported the proposal, agreeing that cross-border
translocation of surplus individuals could further
conservation and promote tourism. However, in their
interventions, neither Party explained how only males
of a non-indigenous subspecies (which may be very
old and not live long or survive translocation) would
breed or enhance conservation or boost tourism.
Botswana and Japan, however, considered that
Kenyaʼs allegations had been adequately addressed
by Namibia and South Africa and rejected the Kenyan
proposal. Botswana noted that black rhinos had been
reestablished in their country with rhinos provided
by South Africa and Namibia (in the latter case, via
a swap deal with South Africa to ensure the correct
subspecies was translocated). They suggested that
countries wishing to reestablish rhinos should contact
major range States who may have surplus rhinos for
restocking.
Kenya expressed concerns that due to insufficient
time remaining in the session, the debate had been
truncated. Following a vote requested by Kenya, the
117
Emslie
proposal was rejected, with 81.25% voting against
(votes in favour 15, against 65, abstentions 11).
Document 54: Interpretation and
implementation of the convention—
rhinoceroses
The Secretariat introduced document CoP14 Doc.
54 and referred the delegates to the proposed draft
decisions and draft amendments to Resolution Conf.
9.14 (Rev. CoP13).
The Secretariat noted that the information on the
national and continental conservation status of African and Asian rhino species, legal and illegal trade
in rhino specimens, incidents of illegal killing of
rhinos, and conservation and management strategies
and actions, compiled by the IUCN/SSC African and
Asian Rhino Specialist Groups (summarized in Annex
1 of CITES CoP14 Doc.54) was in compliance with
Decision 13.25.
The Secretariat noted that the joint AfRSG/
AsRSG/TRAFFIC report entitled ʻAfrican and
Asian Rhinoceroses—Status, Conservation and
Tradeʼ included the information that the Standing
Committee requested from TRAFFIC on rhino horn
stockpile volumes, seizures and poaching. TRAFFIC
also released an informative associated information
document at CoP14 (Inf. 41) entitled ʻRhino-Related
Crimes in Africa: An Overview of Poaching, Seizure
and Stockpile Data for the Period 2000–2005ʼ. Both
documents can be downloaded from the CITES
website. The Secretariat thanked IUCN and TRAFFIC for having shared this information, as well as all
those who contributed to it, particularly range States
of rhinos, and to the donors who supported the work.
It was mentioned that the Rhino Specialist Groups
and TRAFFIC, moreover, had had much difficulty
in raising the funds necessary to hold meetings and
to do the work necessary.
The Secretariat remarked that the summary report
by IUCN and TRAFFIC in Annex 1 of Doc. 54 was
factually rich, up-to-date and comprehensive, and
that it should allow range States of African and Asian
rhinos and the Conference of the Parties to make
well-informed decisions on managing and conserving
rhinos, to assess general compliance with Resolution Conf. 9.14 (Rev. CoP13), and to agree on future
reporting. It was noted that the report contained all
the information requested in Decision 13.25 and a
118
useful section, ʻCITES rhino matters: a report backʼ,
that follows up on the impact of a number of recent
decisions by the Conference of the Parties concerning rhinos.
Germany, on behalf of the European Community and its Member States, fully endorsed the draft
decisions and draft amendments to the Resolution,
requesting that the financial implications of adopting
these be reflected in the costed programme of work
for the triennium 2009–2011, in order to provide
a sustainable basis for funding future work on this
issue. They wished the issue of rhino conservation
to remain on the Standing Committeeʼs programme
of work until CoP15 and requested an amendment
requiring the Secretariat to report on progress towards
implementing all three proposed Decisions at the
57th and 58th meetings of the Standing Committee
as well as at the 15th meeting of the Conference of
the Parties.
Qatar, supported by China, Japan, Namibia, Nepal,
South Africa, Swaziland, the United States of America
and TRAFFIC, endorsed the draft decisions and draft
amendments to the Resolution. However, Qatar was
concerned that it would be difficult for the Secretariat
to secure the funds needed to progress. The United
States suggested that budgetary implications be
referred to the Budget Working Group, while South
Africa asked that these costs be reflected in the costed
programme of work.
TRAFFIC commended the document, referred the
delegates to their associated document CoP14 Inf. 41,
and drew attention to progress in implementing Resolution Conf. 9.14 (Rev. CoP13). Kenya was in broad
support of the draft decisions and draft amendments
to Resolution 9.14 (Rev. CoP13) but considered that
the Resolution needed further strengthening, including inserting text to require that Parties destroy their
stocks of rhino horn, unless they were being held for
educational purposes. They further considered that
range State consultation over the findings presented in
Annex 1 to document CoP14 Doc. 54 had been insufficient and suggested amendments to the Resolution
to reflect this. However, this was due to unexpectedly
tight deadlines for the first report, and efforts will be
made to allow sufficient time for consultation with
range States in future.
Kenya proposed extensive amendments to the
draft decisions. In response, the Chair suggested
a working group might be necessary, but Namibia
responded that they did not agree with Kenyaʼs
Pachyderm No. 42 January–June 2007
Rhino notes
proposed changes (either procedurally or in terms of
their content) and did not support the establishment
of a working group. Namibia was supported from
the floor by Botswana, Japan, the United Republic
of Tanzania, Zambia and Zimbabwe. The draft decisions and amendments in document CoP14 Doc. 54,
with the amendment proposed by Germany, were then
agreed to by consensus.
The issue of funding for the Specialist Groups and
TRAFFIC was raised in the Budget Working Group,
but the large discrepancy between a fully costed
CITES work programme and the amount of money
in the CITES trust fund was a problem. It is therefore
likely that the Specialist Groups and TRAFFIC will
once again have to try to raise the necessary funds.
Pachyderm No. 42 January–June 2007
Possible amalgamation of CITES
Appendix I species resolutions
At the request of a previous CoP, the Secretariat had
produced a draft document that sought to synthesize
and amalgamate the various CITES Appendix I species resolutions and hunting quotas into single documents. This would have involved scrapping Res. 9.14
(rev.), which had just been amended in Committee I.
Debate from the floor overwhelming rejected amalgamating the species resolutions and hunting quotas,
and it was decided by consensus not to proceed with
the suggested combined resolution.
119
GUIDELINES FOR CONTRIBUTORS
Aim and scope
Pachyderm publishes papers and notes concerning
all aspects of the African elephant, the African rhino
and the Asian rhino with a focus on the conservation
and management of these species in the wild. At the
same time, the journal is a platform for disseminating
information concerning the activities of the African
Elephant, the African Rhino, and the Asian Rhino
Specialist Groups of the IUCN Species Survival
Commission.
Submission of manuscripts
Submit manuscripts electronically by email. Alternatively, submit a hard copy and CD by mail.
Email contributions should be sent to:
[email protected]
copied to: [email protected] and
[email protected]
Contributions by post to:
The Editor, Pachyderm
IUCN/SSC AfESG
PO Box 68200 – 00200
Nairobi, Kenya
tel: +254 20 890605–12; fax: +254 20 890615
and email address of the corresponding author, to
whom proofs and editorial comments will be sent.
Research papers: Should be not more than 5000
words and be structured as follows: 1) Title (as preceding), 2) Abstract of not more than 250 words (informative type, outlining information from the Introduction,
Materials and methods, Results, Discussion, but not
detailed results), 3) additional key words (if any), not
appearing in the title, 4) Introduction, 5) Materials and
methods, 6) Results, 7) Discussion, 8) Conclusions if
appropriate, 9) Acknowledgements (optional, brief),
10) References (no more than 25), Tables, 12) Figure
and photo captions, 13) Figures and photos.
Papers may be reports of original biology research or
they may focus more on the socio-economic aspects
of conservation, including market surveys.
Preferably provide figures and maps in their original
form, for example, Excel files, maps as eps or tif files
(17 x 15 cm, 600 dpi). Indicate clearly the author or
source of figures, maps and photographs.
Field notes: The journal welcomes notes from the
field. They may contain figures and tables but should
be brief.
Preparation of manuscripts
Opinion and review papers: Are frequently published. Please query for suitability.
Manuscripts are accepted in both English and French
languages. Where possible, the abstract should be
provided in both languages.
Book reviews: Pachyderm invites reviews of newly
published books, which should be no more than 1500
words long.
Title and authors: The title should contain as many
of the key words as possible but should not be more
than 25 words long. Follow with the name(s) of the
author(s) with insitutional affiliation and full postal
Letters to the editor: Letters are welcome that comment on articles published in Pachyderm or on any
other issue relating to elephant and rhino conservation
in the wild.
120
Pachyderm No. 39 June–December 2005
Guidelines
Journal conventions
Nomenclature
Use common names of animals and plants, giving
scientific names in italics on first mention.
Use an ʻsʼ for the plural form for animals: rhinos,
elephants.
Spelling
Use British spelling, following the latest edition
of the Concise Oxford Dictionary or the Oxford
Dictionary of English, using ʻzʼ instead of ʻsʼ in words
like ʻrecognizeʼ, ʻorganizationʼ, ʻimmobilizedʼ; but
ʻanalyseʼ, ʻparalyseʼ.
Numbers
Use SI units for measurement (m, km, g, ha, h)
with a space between the numeral and the unit of
measurement. Give measurements in figures, for
example 12 mm, 1 km, 3 ha, except at the beginning
of a sentence.
Spell out numbers under 10 if not a unit of measurement unless the number is part of a series containing
numbers 10 or over, for example: 14 adult males, 23
adult females and 3 juveniles.
In the text, write four-digit numbers without a comma;
use a comma as the separator for figures five digits
or more: 1750, 11,750. The separator will be a full
stop in French papers.
References
Use the author-year method of citing and listing
references.
Pachyderm No. 39 June–December 2005
In the text, cite two authors: ʻ(X and Y 1999)ʼ or ʻX
and Y (1999)ʼ; cite more than two authors ʻ(X et
al. 1996)ʼ or ʻX et al. (1996)ʼ. Note that there is no
comma between the author(s) and the year.
In the reference list, cite publications as in the following examples. List in alphabetical order. Write out
journal titles in full.
Adams JX. 1995b. Seizures and prosecutions. TRAFFIC
Bulletin 15(3):118.
Dobson AP, May RM. 1986. Disease and conservation. In:
Soulé ME, ed., Conservation biology: the science of
scarcity and diversity. Sinauer Associates, Sunderland,
MA. p. 123–142.
Struhsaker TT, Lwanga JS, Kasenene JM. 1996. Elephants,
selective logging and forest regeneration in the
Kibale Forest, Uganda. Journal of Tropical Ecology
12:45–64.
Sukumar R. 1989. The Asian elephant: ecology and management. Cambridge Studies in Applied Ecology and
Resource Management. Cambridge University Press,
Cambridge.
Cite unpublished material as follows:
Tchamba MN. 1996. Elephants and their interactions with
people and vegetation in the Waza–Logone region,
Cameroon. PhD thesis, University of Utrecht, The
Netherlands. 142 p.
Woodford MH. 2001. [Title]. [Journal
Journal or publisher]. Forthcoming. [if publication date is known]
Woodford MH. [Title]. [Journal
Journal or publisher]. In press. [if
publication date is not known]
Not accepted as references are papers in preparation or
submitted but not yet accepted.
ʻPers. comm.ʼ accompanied by name of the person and
the date is cited in the text but not given in the reference list.
121
ISSN 1026 2881