Correction de l`épreuve de mathématiques du CRPE 2016 du sujet

Transcription

Correction de l`épreuve de mathématiques du CRPE 2016 du sujet
Correction de l’épreuve de mathématiques du CRPE 2016
du sujet du PG1
Denis Vekemans ∗
PREMIÈRE PARTIE
A. Volume de la piscine
1. Étude graphique
a) Par lecture graphique, il semble que lorsque la largeur de la piscine vaut 3 mètres, le volume
de cette piscine soit proche de 19 mètres cube, au mètre cube près.
b) Par lecture graphique, il semble que lorsque le volume de la piscine vaut 27 mètres cube, la
largeur de cette piscine soit proche de 3, 6 mètres, au dixième de mètre près.
c) Par lecture graphique, il semble que lorsque la largeur de la piscine vaut entre 4 et 5 mètres, le
volume de cette piscine soit approximativement compris entre 33 et 52 mètres cube, au mètre
cube près.
2. Étude algébrique
a) Le volume de la piscine V (x) (en mètres cube) est égal à l’aire du trapèze ABCD (en mètres
carré) multipliée par la distance AE (en mètres).
L’aire du trapèze ABCD (en mètres carré) est donné par la formule :
(1, 1 + 1, 5) × 1, 6 × x
= 2, 08 × x.
2
La distance AE (en mètres) est x.
(AB + CD) × AD
=
2
Le volume de la piscine (en mètres cube) est, par conséquent, V (x) = 2, 08 × x × x = 2, 08 × x2 .
2
b) D’après
s la formule précédente, si V (x) = 52 (en mètres cube), alors 2, 08 × x = 52, puis
52
x=
= 5.
2, 08
Ainsi, algébriquement, lorsque le volume de la piscine vaut 52 mètres cube, la largeur de cette
piscine est de 5 mètres.
B. Mise en eau
1. Il a été choisi x = 5. Ainsi, le volume de la piscine est de 52 mètres cube, d’après la question
A.2.b).
∗. Université du Littoral Côte d’Opale ; Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France
1
CRPE
2016
PG1
a) Le volume non rempli d’eau de la piscine (en mètres cube) est le volume du pavé droit
ADHEA′ D′ H ′ E ′ (toujours en mètres cube) qui est le produit de l’aire du rectangle ADHE
(en mètres carré) et de la hauteur AA′ (en mètres).
L’aire du rectangle ADHE (en mètres carré) est donné par la formule AB × AD = 5 × 8 = 40.
La hauteur AA′ (en mètres) est de 0, 1.
Le volume non rempli d’eau de la piscine (en mètres cube) est, par conséquent, 0, 1 × 40 = 4.
En conclusion, le volume d’eau dans la piscine (en mètres cube) est de 52 − 4 = 48.
b) Dans le tableau de proportionnalité suivant, on synthétise les données et on résout la situation :
Durée (en minutes)
1
Volume d’eau débité (en mètres cube) 18
Il faut donc un temps de
8 000
3
= 2 666 +
2
3
1
3
8 000
3
6
48 000
minutes (car 8 000 = 2 666 × 3 + 2) pour remplir
les 48 mètres cube (ou 48 000ℓ de la piscine) de la piscine.
Cependant, 2 666 +
2
3
minutes ;
c’est aussi 2 666 minutes et 2 fois 20 secondes (car
1
3
de minute c’est 20 secondes) ;
ou 2 666 minutes et 40 secondes ;
ou 44 heures 26 minutes et 40 secondes (car 2 666 = 44 × 60 + 26) ;
ou 1 jour 20 heures 26 minutes et 40 secondes que l’on peut arrondir à la minute près par
1 jour 20 heures et 27 minutes.
2. a) Le volume d’eau perdu de la piscine en une semaine (en mètres cube) est le volume d’un pavé
droit dont la base a pour aire celle du rectangle ADHE (en mètres carré) et de la hauteur
0, 05 (en mètres).
L’aire du rectangle ADHE (en mètres carré) est donné par la formule AB × AD = 5 × 8 = 40.
Le volume d’eau perdu de la piscine en une semaine (en mètres cube) est, par conséquent,
0, 05 × 40 = 2.
2
(soit environ 4, 2%, arrondi au dixième de
48
pourcent) du volume d’eau initial dans la piscine.
b) La perte hebdomadaire d’eau correspond à
3.
Année Charges pour l’eau de la piscine en euros
2015
207
2016
207 × 1, 03 = 213, 21
2017
213, 21 × 1, 03 = 219, 6063
2018
219, 6063 × 1, 03 = 226, 194489
2019
226, 194489 × 1, 03 = 232, 98032367
2020
232, 98032367 × 1, 03 = 239, 9697333801
En 2020, M. Durand va dépenser 239,97 euros, arrondi au centime d’euro.
C. Dallage du sol autour de la piscine
1. Soit d le côté d’une dalle (en centimètres).
D’après l’énoncé, d est un diviseur de 120 = 23 ×3×5, de 500 = 22 ×53 mais aussi de 800 = 25 ×52 .
Denis Vekemans
–2/9–
Mathématiques
CRPE
PG1
2016
D’après le cours, d est un diviseur du P GCD(120, 500, 800) = 22 × 5 = 20.
Ainsi, d est à choisir parmi 1, 2, 4, 5, 10 ou 20.
2. a) On choisit d = 20. La surface à paver peut être décomposée de la façon suivante :
— quatre carrés de 120 cm × 120 cm, soit quatre fois 6 × 6 dalles ; au total, 144 dalles pour
ces quatre carrés ;
— deux rectangles de 120 cm × 800 cm, soit deux fois 6 × 40 dalles ; au total, 480 dalles pour
ces deux rectangles ;
— deux rectangles de 120 cm × 500 cm, soit deux fois 6 × 25 dalles ; au total, 300 dalles pour
ces deux rectangles.
Le tout cumulé, le pavage requiert 144 + 480 + 300 = 924 dalles.
b) Pour paver une dalle de 20 cm × 20 cm, il faut 4 × 4 = 16 dalles de 5 cm × 5 cm.
Si on choisit donc d = 5, il faut donc 16 × 924 = 14 784 dalles.
DEUXIÈME PARTIE
Exercice 1
Soit x le nombre choisi au départ.
2. Le programme 1 fournit la valeur (2x+3)×(2x+3)−9 = (2x+3)2 −9 = 4x2 +12x+9−9 = 4x2 +12x.
Le programme 2 fournit la valeur (4x) × (x + 3) = 4x2 + 12x.
Les deux programmes fournissent donc toujours le même résultat.
1.a) Pour x = 3, les programmes donnent 4 × 32 + 12 × 3 = 36 + 36 = 72.
35
5
25
5 2
5
=
− 15 = − .
+ 12 × −
1.b) Pour x = − 4 , les programmes donnent 4 × −
4
4
4
4
3. Un produit est nul si et seulement si l’un de ses facteurs est nul. Les programmes vont donc fournir
0 quand (4x) × (x + 3) = 0, c’est-à-dire si x = 0 ou si x = −3.
Exercice 2
Affirmation 1 fausse ! En effet, si a = b = 0, 1 et 0, 1 est bien un nombre décimal car son développement décimal s’écrit avec un nombre fini de chiffres, alors a × b = 0, 01 est à la fois inférieur à a et à
b.
Affirmation 2 vraie ! En effet, (n+1)2 −(n−1)2 = (n2 +2n+1)−(n2 −2n+1) = n2 +2n+1−n2 +2n−1 =
4n est bien un multiple de 4 car n est entier naturel.
Affirmation 3 fausse ! En effet, si n vaut 3 et 3 est bien un entier naturel, (n − 1) × (n + 1) − 1 vaut
2 × 4 − 1 = 7 qui n’est pas le carré d’un entier naturel.
Exercice 3
On note :
— R l’événement "Tirer une boule rouge" ;
— V l’événement "Tirer une boule verte" ;
— J l’événement "Tirer une boule jaune" ;
— B l’événement "Tirer une boule bleue" ;
Denis Vekemans
–3/9–
Mathématiques
CRPE
2016
PG1
— M l’événement "Tirer une boule marron".
3
4
5
7
1. D’après la loi de Laplace, P (R) =
= 0, 12, P (V ) =
= 0, 16, P (J) =
= 0, 2, P (B) =
= 0, 28,
25
25
25
25
6
et P (M ) =
= 0, 24.
25
7+n
2. Si on rajoute n boules bleues, la probabilité de l’événement B devient P (B) =
. On désire
25 + n
7+n
≥ 0, 4, i.e. 7 + n ≥
que cette probabilité soit supérieure ou égale à 0, 4, ce qui s’écrit :
25 + n
3
(25 + n) × 0, 4 = 10 + 0, 4 × n, i.e. 0, 6 × n ≥ 3, i.e. n ≥
= 5.
0, 6
Il faut rajouter au moins 5 boules bleues pour obtenir une probabilité de tirer une boule bleue
supérieure ou égale à 0, 4.
3. Si on rajoute p boules rouges, la probabilité de l’événement B devient P (B) =
cette probabilité soit inférieure ou égale à 0, 2, ce qui s’écrit :
7
. On désire que
25 + p
7
≤ 0, 2, i.e. 7 ≤ (25 + p) × 0, 2 =
25 + p
2
= 10.
0, 2
Il faut rajouter au moins 10 boules rouges pour obtenir une probabilité de tirer une boule bleue
5 + 0, 2 × p, i.e. 2 ≤ 0, 2 × p, i.e. p ≥
inférieure ou égale à 0, 2.
Exercice 4
1. À l’échelle 1 : 10, le segment [AB] sera représenté par un segment d’une longueur 6, 5 cm, le segment
[BC] sera représenté par un segment d’une longueur 3, 3 cm, le segment [CA] sera représenté par
un segment d’une longueur 5, 6 cm et une longueur de 39 cm sera représentée par une longueur de
3, 9 cm.
Algorithme de construction :
— tracer segment [AB] de longueur 6, 5 cm,
— tracer le cercle ΓA de centre A et de rayon 5, 6 cm,
— tracer le cercle ΓB de centre B et de rayon 3, 3 cm,
— les cercles ΓA et ΓB se coupent en deux points et on nomme C l’un de ces deux points,
— tracer le cercle de centre A et de rayon 3, 9 cm, ce cercle coupe le segment [AB] en le point R,
— tracer la perpendiculaire à la droite (AC) passant par R, cette droite coupe le segment [AC] en
le point S.
Denis Vekemans
–4/9–
Mathématiques
CRPE
2016
PG1
C
b
S
b
5.6
A
b
3.3
3.9
b
R
6.5
b
B
2. La réciproque du théorème de Pythagore dans le triangle ABC, du fait que AC 2 + CB 2 = 562 cm2 +
332 cm2 = 3136 cm2 + 1089 cm2 = 4225 cm2 = 652 cm2 = AB 2 , induit que le triangle ABC est
rectangle en C.
Ainsi, les droites (RS) et (BC) sont toutes deux perpendiculaires à la droite (AC). Par conséquent,
les droites (RS) et (BC) sont parallèles (deux perpendiculaires à une même troisième sont parallèles).
3. Dans le triangle ABC en considérant les parallèles (RS) et (BC), le théorème de Thalès donne
AC
BC
AB
=
=
AS
AR
RS
.
65 cm
56 × 39
56 cm
=
et AS =
cm = 33, 6 cm.
AS
39 cm
65
[ = AS = 33, 6 ≈ 0, 862. La calculatrice fournit alors
4. Par définition de la fonction sinus, sin ARS
AR
39
[ ≈ 59◦ , arrondi au degré près.
ARS
Puis
TROISIÈME PARTIE
Situation 1 : moyenne section
1.a) Donner deux méthodes pour dénombrer (c’est-à-dire exprimer la quantité totale) les collections
proposées.
Configuration 1 :
— le comptage (un, deux, trois, ...),
— le subitizing (reconnaissance directe de collections de petit effectif),
— la décomposition additive ("un et deux, c’est trois, et encore deux, c’est cinq" (quatrième case en
partant de la gauche) ou "un et trois, c’est quatre" (troisième case en partant de la gauche), ...).
Configuration 2 :
— le comptage (un, deux, trois, ...),
Denis Vekemans
–5/9–
Mathématiques
CRPE
PG1
2016
— la reconnaissance directe des constellations usuelles (ici, les constellations du dé),
— la décomposition additive ("deux et deux, c’est quatre" (deuxième case en partant de la gauche)
ou "deux et un, c’est trois, et encore deux, c’est cinq" (cinquième case en partant de la gauche),
...).
Donner deux erreurs que les élèves sont susceptibles de faire en réalisant les collections (il n’est plus
forcément question de dénombrer ici).
Configurations 1 et 2.
— Dans le comptage, les erreurs classiques sont
— un défaut d’énumération (le fait de pointer une et une seule fois chaque élément d’une collection),
— une méconnaissance de la chaîne orale ("un, deux, quatre, ..." au lieu de "un, deux, trois,
quatre, ..."),
— un défaut de synchronisation des deux points précédents,
— un défaut dans l’attribution du dernier mot nombre à la quantité ("j’en ai pointé quatre, donc
j’en ai cinq"),
— ...
— Dans les décompositions additives, une mauvaise connaissance des décompositions des nombres.
— Dans une procédure comme la correspondance terme à terme qui n’extrait pas la quantité (qui
n’est donc pas de dénombrement, mais qui cependant relève d’une procédure tout à fait pertinente
pour résoudre la tâche), la taille des objets, par exemple, peut perturber l’élève et engendrer des
erreurs.
Configutaion 1
si on imagine un élève dont la procédure réside dans le fait de calquer la
configuration de la collection initiale, il faut réellement réussir à faire abstraction de la taille des
objets pour reconnaître la même constellation pour le modèle et sa production. Conséquence,
l’élève risque de proposer une production qui encombrerait l’espace autant que le modèle et non
pas de même cardinal.
Configutaion 2
si on imagine un élève dont la procédure réside dans le fait de superposer un
objet sur chaque point de la constellation du dé. Au vu des tailles des objets et des points, un
objet risque de cacher deux points et non pas un.
1.b) Les deux élèves semblent avoir compris la consigne : ils constituent des collections de même cardinal
que le modèle.
Apparemment, Louise a déjà conscience que deux collections peuvent avoir même cardinal sans avoir
la même disposition ce qui n’est pas le cas pour Kévin.
De plus, Louise a sans doute procédé par comptage alors que Kévin a sans doute réalisé la tâche sans
dénombrer. Il n’est pas possible de comparer les pertinences de chacune de ces deux procédures, mais
cependant, elles dénoncent des approches différentes de la situation.
2. Facilités qu’apporte le choix d’utilisation d’une boîte :
— tant qu’une cloison reste vide, c’est que la réalisation de cette collection n’a pas été effectuée (ceci
aide donc pour organiser la tâche de l’élève),
Denis Vekemans
–6/9–
Mathématiques
CRPE
2016
PG1
— les séparations permettent aux collectons de rester en place et ne sont normalement plus déplacées
par la suite (l’enseignement peut donc visualiser rapidement si l’élève effectue correctement la
tâche ou pas, sans forcément lui demander d’expliquer en cas de réussite, et ceci facilite aussi la
gestion de classe),
— ...
Inconvénients qu’apporte le choix d’utilisation d’une boîte :
— l’utilisation d’une boîte rend impossible la superposition des objets sur chaque représentation
(verticale) de ces objets (ce qui invite probablement à procéder en utilisant le nombre),
— les objets positionnés par l’élève vont se superposer (comme dans le quatrième compartiment de
la boîte en partant de la gauche) et il va être difficile pour l’enseignant de valider rapidement
la réponse de l’élève (il aurait été plus judicieux de choisir des objets plus petits pour éviter les
superpositions),
— ...
Situation 2 : cycle 3
1.a) Quentin procède en proposant un premier essai pour considérer douze têtes : six chameaux et six
dromadaires, ce qui lui totalise dix-huit bosses (les bosses sont représentées :
et
T
TT
pour deux bosses
pour une bosse ; mais aussi dénombrées : 2 pour deux bosses et 1 pour une bosse). Il fait ensuite
un deuxième essai en remplaçant un dromadaire par un chameau (trace de correction sur le sixième
dromadaire en partant de la gauche) qui lui totalise alors dix-neuf bosses (le 18 est barré pour laisser
place au 19). Et il finit par remplacer encore un dromadaire par un chameau (trace de correction sur
le cinquième dromadaire en partant de la gauche) qui lui totalise alors vingt bosses (le 19 est barré
pour laisser place au 20). Enfin, il conclut correctement en affirmant qu’il faut quatre dromadaires
(et donc huit chameaux, mais ceci est tacite car non exigé) pour totaliser vingt bosses.
1.b) Avec 152 têtes et 216 bosses, la technique de Quentin peut être reproduite (sans les représentations
des têtes et bosses, ce qui serait extrêmement long)
— Essai avec 76 dromadaires et 76 chameaux
76 + 152 = 228 bosses (j’ai considéré que le premier
essai de Quentin consistait à prendre moitié chameaux, moitié dromadaires),
— Essai avec 77 dromadaires et 75 chameaux
77+150 = 227 bosses (j’ai considéré que sa procédure
allait consister à remplacer itérativement un chameau par un dromadaire, mais rien ne permet de
dire qu’il n’aurait pas fait évoluer sa procédure),
— Essai avec 78 dromadaires et 74 chameaux
78 + 148 = 226 bosses,
— Essai avec 79 dromadaires et 73 chameaux
79 + 146 = 225 bosses,
— Essai avec 80 dromadaires et 72 chameaux
80 + 144 = 224 bosses,
— Essai avec 81 dromadaires et 71 chameaux
81 + 142 = 223 bosses,
— Essai avec 82 dromadaires et 70 chameaux
82 + 140 = 222 bosses,
— Essai avec 83 dromadaires et 69 chameaux
83 + 138 = 221 bosses,
— Essai avec 84 dromadaires et 68 chameaux
84 + 136 = 220 bosses,
— Essai avec 85 dromadaires et 67 chameaux
85 + 134 = 219 bosses,
Denis Vekemans
–7/9–
Mathématiques
CRPE
2016
PG1
— Essai avec 86 dromadaires et 66 chameaux
86 + 132 = 218 bosses,
— Essai avec 87 dromadaires et 65 chameaux
87 + 130 = 217 bosses,
— Essai avec 88 dromadaires et 64 chameaux
88 + 128 = 216 bosses.
2.a) Ramia représente tout d’abord chacune des douze têtes par un cercle : ces cercles sont alignés sur
une première ligne. Elle associe ensuite d’office une bosse à chaque tête qu’elle situe juste en dessous
de la tête (en effet, chaque animal possède au minimum une bosse) : ces douze bosses se situent sur
une deuxième ligne. Enfin, elle complète (on ne sait pas comment, mais on peut imaginer qu’elle
surcompte en les représentant) par les huit bosses manquantes sur une troisième ligne jusqu’à obtenir
les vingt bosses. Pour conclure, il ne lui reste plus qu’à dénombrer les animaux à une bosse et ceux
à deux bosses, ce qu’elle exécute correctement en proposant "Il y a 4 dromadaires et 8 chameaux".
2.b) Avec 546 têtes et 700 bosses, la technique de Ramia peut être reproduite (sans les représentations
des têtes et bosses, ce qui serait extrêmement long)
— On associe 546 bosses en en attribuant une à chaque tête,
— il reste 700 − 546 = 154 bosses à attribuer,
— et ceci donne 154 chameaux et 546 − 154 = 392 dromadaires.
Situation 3 : cours moyen 2
— Domaine de compétences : la proportionnalité.
On se place dans l’hypothèse où les élèves ont réussi à identifier une situation relevant de proportionnalité (le volume d’eau est proportionnel à la hauteur d’eau dans le pavé droit, mais est-ce si
évident). Qui plus est, l’énoncé met en fonction non pas directement la situation de proportionnalité,
mais la propriété de proportionnalité des écarts (la hausse de volume d’eau est proportionnelle à la
hausse de hauteur d’eau dans le pavé droit).
On situe aussi dans l’hypothèse où les élèves ont compris que le pavé droit représenté est une réduction
de l’aquarium (sinon, une hausse de 4 cm pour répondre à la première question est sans fondement).
Enfin, on imagine que le niveau d’eau peut monter de 14 cm "sans déborder".
— Trois procédures envisageables pour un élève de CM2 :
1. La règle de trois : "Verser quatre litres d’eau dans l’aquarium génère une hausse de deux
centimètres du volume d’eau. Verser deux litres d’eau (la moitié de quatre litres) dans l’aquarium
génère donc une hausse d’un centimètre du volume d’eau (la moitié de deux centimètres). Verser six
litres d’eau (le triple de deux litres) dans l’aquarium génère donc une hausse de trois centimètres
du volume d’eau (le triple d’un centimètre)."
Cette règle de trois utilise la propriété multiplicative de la fonction linéaire et un retour à l’unité
(on se ramène à la hausse de volume générée par une hausse d’un centimètre).
2. Le coefficient de proportionnalité : "Une hausse de 2 cm de la hauteur d’eau génère un
accroissement du volume de 4ℓ. Pour aller de 4 à 2, on divise par 2 (les unités (ℓ/cm) sont laissées
de côtés car elles ne parleraient certainement pas à l’élève de CM2). Ainsi, une hausse de volume
de 6ℓ, engendre une hausse de 3 cm (obtenu en divisant 6 par 2) sur la hauteur d’eau."
Denis Vekemans
–8/9–
Mathématiques
CRPE
PG1
2016
3. Une procédure mixte maniant à la fois la propriété additive de linéarité et la propriété
multiplicative de linéarité : "Verser quatre litres d’eau dans l’aquarium génère une hausse de
deux centimètres du volume d’eau. Mais six litres, c’est quatre litres plus la moitié de quatre
litres. Cela engendre donc une hausse de la hauteur d’eau de deux centimètres plus la moitié de
deux centimètres, soient trois centimètres."
Denis Vekemans
–9/9–
Mathématiques