Bilan Scientifique ICARE - Institut de Combustion Aérothermique

Transcription

Bilan Scientifique ICARE - Institut de Combustion Aérothermique
BILAN SCIENTIFIQUE
2006 – 2010
INSTITUT DE COMBUSTION, AEROTHERMIQUE,
REACTIVITE & ENVIRONNEMENT
CNRS – INSIS (UPR 3021)
Bilan de l’activité de recherche et des résultats obtenus par ICARE (UPR3021) 2006 - 2010 . 1
Bilan général de l’Unité ........................................................................................................... 1
Aspects organisationnels ........................................................................................................ 1
Eléments d’appréciation du bilan scientifique d’ICARE ....................................................... 3
Organigramme général ........................................................................................................... 6
Overview of the activities of the Thematic Research Groups.................................................... 7
Thematic Research Group I : Chemical kinetics of combustion and reactive systems.............. 7
1 Research context and objectives ......................................................................................... 7
2 Research activities and key results...................................................................................... 8
2.1 Determination of fundamental parameters................................................................... 8
2.2 Formation and reduction of pollutants from combustion............................................. 8
2.3 New fuels.................................................................................................................... 10
2.4 New combustion technologies for energy production................................................ 11
Thematic Research Group II: Atmospheric reactivity ............................................................. 13
1 Research context and objectives ....................................................................................... 13
2. Research activities and key results................................................................................... 13
2.1 Atmospheric degradation of volatile and semi-volatile organic compounds and
secondary organic aerosols formation.............................................................................. 13
2.2 Gas-surface reactions ................................................................................................. 14
2.3 Reactions influencing the oxidative capacity of the troposphere............................... 16
2.4 Field measurements and instruments intercalibration................................................ 17
Thematic Research Group III : Dynamics of combustion and reactive systems ..................... 19
1. Research context and objectives ...................................................................................... 19
2 Research activities and key results.................................................................................... 20
2.1 Dynamics of laminar and turbulent flames ................................................................ 20
2.2 Dynamics of chemical explosions.............................................................................. 21
2.3 Multiphase gasification and combustion phenomena ................................................ 23
Thematic Research Group IV : Space propulsion & high-speed flows ................................... 25
1 Research context and objectives ....................................................................................... 25
2 Research activities and key results.................................................................................... 25
2.1 Space propulsion ........................................................................................................ 25
2.2 High-speed flows........................................................................................................ 28
2.3 Non-continuing research activities............................................................................. 30
Thematic Research Group V : Chemical vapor deposition and inductive processes for
materials elaboration ................................................................................................................ 31
1 Research context and objectives ....................................................................................... 31
2 Research activities and key results.................................................................................... 31
2.1 Experimental and kinetic studies of C-H-O plasmas for polycrystalline and nanosmooth diamond deposition ............................................................................................. 31
2.2 Elaboration of carbon nanoparticles in plasmas......................................................... 32
2.3 Optimization of diamond films properties for mechanical, biomechanical and
electronic applications...................................................................................................... 32
2.4 Development of inductive processes to elaborate and transform metallic materials
with specific properties .................................................................................................... 33
LISTE DES PUBLICATIONS ICARE – (2006-2010)............................................................ 34
LISTES DES THESES ICARE (2006-2010)........................................................................... 76
ANNEXE 1 : Fiches Plateformes Expérimentales................................................................... 81
ANNEXE 2 : Bilan de la Participation à l’Enseignement et la Formation par la Recherche .. 82
ANNEXE 3 : Action de Formation Permanente des Personnels de l’UPR3021 ..................... 83
ANNEXE 4 : Rapport des actions Hygiène & Sécurité de l’UPR3021 ................................... 90
Bilan de l’activité de recherche et des résultats obtenus par ICARE
(UPR3021) 2006 - 2010
Bilan général de l’Unité
L’UPR 3021 du CNRS, Institut de Combustion, Aérothermique, Réactivité et Environnement –
ICARE, a été créé le 1er janvier 2007 par la fusion de deux UPR, le Laboratoire de Combustion et
Systèmes Réactifs (LCSR) et le Laboratoire d’Aérothermique.
Ces deux laboratoires avaient chacun un passé de plus de quarante années au moment de leur
fusion. Autrement dit, ils vivaient chacun une période de départs massifs à la retraite. La fusion de
deux laboratoires historiques du CNRS a créé une opportunité unique pour rééquilibrer
mutuellement les forces en présence et faire émerger un laboratoire à expertises multiples. Les
années 2007 et 2008 ont évidemment présenté les caractéristiques générales de toute situation de
transition; un important travail de consolidation a été réalisé à partir de mi 2008, pour regrouper
les équipes de l’Unité autour des thématiques bien identifiées, pour lesquelles la légitimité
d’ICARE est bien admise et en adéquation avec ses forces vives. Les éléments qui suivent
constituent une ébauche d’analyse de ces quatre années et devraient permettre de préparer le futur.
Aspects organisationnels
L’organigramme fonctionnel ci-joint de l’organisation scientifique et administrative d’ICARE
montre la situation d’aujourd’hui issue de cette phase de consolidation. Les 2 domaines
d’intervention d’ICARE, à savoir l’Energie & Environnement et la Propulsion & Espace sont
déclinés en 4 Groupes Thématiques, soutenus par 8 équipes de recherche. Les forces de recherche
d’ICARE sont constituées aujourd’hui (au 1er septembre 2010) de 14 enseignants-chercheurs (4
PR et 10 MCF), 11 chercheurs CNRS (5 DR et 6 CR), 18 ITA CNRS, 1 IATOSS (à 25%), 20
doctorants et 7 chercheurs post-doctorants ou assimilés, ce qui fait un total de 71 personnes, dont
44 permanents. Une analyse de l’évolution du personnel d’ICARE sur une longue période sera
faite dans la partie projet du dossier unique, mais signalons d’ores et déjà ici que le nombre des
permanents d’ICARE était 56 au 1er janvier 2008. On peut également insister sur la réduction
importante du personnel d’ICARE depuis plusieurs années en rappelant qu’entre 2004 et fin 2011,
le total des départs sera de 29 permanents (17 ITA et 12 chercheurs et enseignants-chercheurs).
ICARE a donc été obligé de réagir à ces départs massifs en réduisant le périmètre de ses axes
de recherche et en arrêtant ou gelant plusieurs activités de recherche, notamment celles sur
- la réduction de schémas cinétiques (départ de JC Boettner)
- la structure des flammes à basse pression (départs C Vovelle et JL Delfau)
- les dépôts chimiques (départ L Vandenbulcke)
- les activités autour de l’installation PELICAN (départ A Lebehot)
- les activités calculs Monte-Carlo sur les écoulements hypersoniques (départ JC Lengrand)
- les activités combustion assistée par plasma (départ JP Martin)
ICARE a aussi procédé à différentes restructurations de ses équipes ; on peut notamment
mentionner les évolutions suivantes :
- Suite à l’arrêt des activités de l’équipe CVD (retraite de L Vandenbulcke août 2010) et les
départs de C Vovelle et JL Delfau, l’équipe structure de flamme a été consolidée autour de la
thématique structure des flammes laminaires à haute pression, autour de Laure Pillier (CR1)
1
et Stéphanie de Persis, transférée de l’équipe CVD. Cette jeune équipe fonctionne déjà depuis
2 années.
- Suite aux départs de JC Lengrand, M Dudeck, E Barbosa, JP Martin, les activités de l’équipe
ARCHE ont été recentrées sur les études expérimentales autour de la thématique des rentrées
atmosphériques et contrôle d’écoulements supersoniques.
On doit aussi mentionner plusieurs réorganisations dans les services communs d’ICARE, par
exemple dans son pôle de gestion administrative et financière et aussi dans le service de
conception et réalisation mécaniques, rendues nécessaires par le départ à la retraite de plusieurs
collègues de ces services.
De même, les départs de plusieurs chercheurs et l’arrêt de certaines activités a occasionné des
réaménagements importants dans l’utilisation des locaux d’ICARE. Un bon exemple, mais pas le
seul, est l’affectation de surfaces importantes pour l’implantation de l’installation HELIOS.
Plus globalement, la consolidation d’ICARE a abouti depuis deux années à une organisation
scientifique sous la forme de 4 « groupes thématiques ». Ces groupes thématiques sont :
* Cinétique chimique de la combustion et des systèmes réactifs
* Dynamique de la combustion et des systèmes réactifs
* Propulsion spatiale et écoulements à grande vitesse
* Réactivité atmosphérique
Ces groupes thématiques correspondent parfaitement au périmètre des missions d’ICARE
définies ainsi dans la fiche détaillée de la structure UPR3021 pour le mandat 01/01/2008 –
31/12/2011 :
« Développer les domaines de la combustion et la détonation, la propulsion aérospatiale et
automobile, la réactivité atmosphérique, les nouvelles ressources et matériaux pour
l’énergétique »
Les activités de ces groupes thématiques sont soutenues par les installations expérimentales
d’ICARE qui sont souvent uniques et très bien instrumentées. Elles sont décrites dans ce bilan
d’une façon détaillée (voir Annexe 1)
La lecture de la présentation ci-après des résultats scientifiques d’ICARE, organisée selon ces
4 groupes thématiques, montrera que plusieurs équipes contribuent à plus d’un groupe
thématique et qu’elles collaborent à des projets communs inter-équipes. Ce fonctionnement en
« équipe-projet » sera consolidé à partir de 2011 (voir aussi la partie Projet de ce document).
L’organigramme scientifique et fonctionnel présenté ici montre cette évolution importante,
tout en gardant la lisibilité des équipes constituées et fonctionnant comme des équipes
d’expertises identifiées. Le renforcement de la cohésion thématique d’ICARE et aussi de sa
cohésion en tant qu’unité, ne peuvent être assuré que par la consolidation de cette politique,
notamment par l’élaboration de plus de projets collectifs. Pour faciliter et soutenir cette
évolution, deux instances internes ont été mises en place dès la création d’ICARE : le Conseil
Scientifique pour augmenter la cohérence scientifique de l’Unité, et la Cellule de
Coordination des services communs de l’Unité afin d’améliorer son efficacité
organisationnelle.
2
Eléments d’appréciation du bilan scientifique d’ICARE
Le bilan scientifique détaillé d’ICARE est présenté dans ce rapport selon ces 4 Groupes
Thématiques. Les activités du groupe CVD (L. Vandenbulcke) et procédés matériaux (P. Gillon)
sont aussi présentées, mêmes si ces activités ne seront plus poursuivies à ICARE. Ces rapports
thématiques (présentés en anglais) 1 incluent le contexte et les objectifs des travaux de recherche,
précisent les résultats les plus marquants et indiquent toutes les collaborations régionales,
nationales et internationales et aussi les partenariats contractuels.
Dans le présent paragraphe, nous donnons quelques éléments d’appréciation globale du bilan des
activités d’ICARE.
Le potentiel de recherche d’ICARE est très bien valorisé en termes de publications scientifiques
(voir plus loin la liste complète des publications d’ICARE pour la période concernée). Si on ne
prend que les publications dans les revues à comité de lecture international répertoriées dans ISI
Web, les publications parues dans la période concernée sont au nombre de 182, soit 3,37
publications par mois (pour 54 mois). Rapporté au nombre de chercheurs et d’enseignantschercheurs (compte-tenu de leur présence effective dans l’Unité pendant la période concernée,
pour tenir compte des départs au cours de la période), ce chiffre correspond à une moyenne pour
la période des 54 mois de 6,38 publications par chercheur ou enseignant-chercheur, ou de 1,42
publications par an par chercheur ou enseignant-chercheur. Signalons aussi que dans 45% de ces
182 publications, on trouve la signature de l’un des doctorants d’ICARE. Les revues dans
lesquelles ICARE publie ont des facteurs d’impact (FI) importants : Voir graphe ci-dessous.
Répartition de la production scientifique
60
Nombre de publications
53
50
39
40
30
37
27
20
10
4
1
1
3
0
0
1
2
3
4
5
9
12
Facteur d'Impact moyen
Les contributions des membres d’ICARE à des congrès nationaux, européens et internationaux
sont également très nombreuses. Le nombre de publications dans des actes de congrès
internationaux est de 128 ; 62% de ces publications sont aussi signées par l’un des doctorants
d’ICARE. Enfin, on recense 25 présentations à des congrès en tant que conférencier invité.
Les membres d’ICARE jouissent d’une forte reconnaissance nationale et internationale, comme
en témoignent la présence d’un nombre très important d’entre eux dans les instances dirigeantes
des sociétés savantes nationales et internationales, dans les comités d’organisation de réunions
internationales, dans les comités éditoriaux de revues scientifiques de prestige, et aussi comme
responsable d’un nombre très appréciable de programmes de recherche nationaux et
internationaux.
1
Les rapports thématiques ont été préparés en anglais anticipant la présence éventuelle de rapporteurs
anglophones.
3
Les activités de recherche d’ICARE sont menées dans un cadre partenarial très développé. En
effet, les recherches menées à ICARE interviennent essentiellement dans deux grands domaines
ayant des enjeux et des retombées socio-économiques évidents : Energie & Environnement, d’une
part, et Espace & Propulsion, d’autre part. L’intensité de l’implication des recherches d’ICARE
dans des problématiques R&D de nos partenaires pourrait se mesurer par le nombre et la variété
de ces derniers : SNECMA, AIRBUS, MBDA, ROXEL, SNPE, ASTRIUM, CILAS, ESA, CNES,
ONERA principalement pour le domaine spatial ; EDF, GDF, RENAULT, PSA, TOTAL,
SHELL, BP, AIR LIQUIDE, IFP, CEA, ADEME, AREVA, INERIS, IRSN principalement pour
le domaine Energie & Environnement. A cette liste il faudrait évidemment ajouter tous nos
partenaires dans le cadre des coopérations européennes et internationales. Afin de quantifier les
retombées financières de ces actions de partenariat, on peut souligner que dans la période
concernée, 80 contrats ont été signés tout type de partenaires confondu pour un montant total de
6 282 887 euros,
Les activités d’ICARE sont soutenues par plusieurs Pôles de Compétitivité, comme Aerospace
Valley, DERBI, TRIMATEC, TENERRDIS, Cosmetic Valley. ICARE participe à plusieurs
programmes européens du 7ème PCRDT dans le cadre des priorités Transport ; Espace;
Environnement ; Energie. Enfin, ICARE participe ou a participé à 10 projets ANR dans la période
concernée. Par ailleurs, un soutien fort a été obtenu pour la thématique « Nouvelles Energies »
dans le cadre du CPER Etat Région 2007-2013, pour l’ensemble des trois laboratoires de la
Fédération EPEE (ICARE, GREMI, PRISME). Des soutiens importants sont aussi obtenus via les
appels d’offres de la Région Centre, très souvent amplifiés par les fonds FEDER. Plusieurs
équipes d’ICARE émargent aussi dans les programmes spécifiques du CNRS, comme le
Programme Interdisciplinaire Energie ou les programmes de l’INSU. De même, les équipes
d’ICARE sont les membres importants de plusieurs GDR, comme le GDR Propulsion à plasma
dans l’Espace (CNRS/CNES/SNECMA) ; Micropesanteur Fondamentale et Appliquée
(CNRS/CNES) ; GDRE franco-italien « Energétique et Sécurité de l’Hydrogène (CNRS/CNR
2005-2008).
La situation financière d’ICARE ne pose pas de problèmes particuliers et permet au laboratoire
de fonctionner correctement. Ceci est aussi permis grâce aux ressources propres du laboratoire qui
alimentent aussi un fonds de fonctionnement global de l’Unité pour pallier les insuffisances
chroniques du soutien de base.
A titre d’exemple, en 2008, les ressources financières d’ICARE hors salaires des permanents
étaient de 2 590 k€ et de 6 372 k€ avec les salaires des permanents. Ces mêmes chiffres étaient
respectivement de 1 960 k€ et 5 362 k€ pour 2009 (voir ci-dessous les graphiques
correspondants). On remarquera que les salaires des permanents constituent respectivement les
59% et 63% du budget consolidé de 2008 et 2009. Dans le budget non-consolidé la part des
ressources propres est de 78% en 2008 et de 71,5% en 2009.
Ressources financières d'ICARE pour 2008
Ressources financières d'ICARE pour 2008
(2 590 Keuros - hors salaires permanents)
(6 372 Keuros - avec les salaires des permanents)
22,15%
45,91%
CNRS et Univ.
Orléans
18,66%
Contrats
Contrats
4,48%
Europe
8,26%
Collectivités
territoriales
59,35%
Salaires
permanents
2,90%
ANR
7,14%
ANR
1,82%
Europe
20,32%
9,00%
CNRS et Univ.
Orléans
Collectivités
territoriales
4
Ressources financières d'ICARE pour 2009
Ressources financières d'ICARE pour 2009
(5 362 Keuros - avec les salaires des permanents)
(1 960 Keuros - hors salaires permanents)
28,53%
5,89%
CNRS et
Univ. Orléans
35,47%
Contrats
12,97%
Contrats
Collectivités
territoriales
6,01%
ANR
3,43%
Europe
1,26%
Europe
63,45%
Salaires
16,12%
Collectivités
territoriales
16,44%
ANR
10,43%
CNRS et Univ. Orléans
ICARE est également très bien intégré dans son milieu scientifique régional. Il est conventionné
avec l’Université d’Orléans et est l’un des trois laboratoires de la Fédération de Recherche EPEE.
Il a de fortes interactions de recherche avec l’Observatoire des Sciences de l’Univers du Centre, et
en particulier avec les laboratoires LPC2E, CEMHTI, CRMD, MAPMO du campus d’Orléans.
La participation des membres d’ICARE à l’enseignement au sein de l’Université d’Orléans et à
la formation par la recherche est excellente. Les enseignants-chercheurs et les ATER d’ICARE
contribuent évidemment au renforcement de ces liens depuis des années. La grande majorité des
chercheurs CNRS d’ICARE et aussi un nombre important de ses ITA enseignent dans les
différents cycles de l’Université d’Orléans. A titre d’exemple, on peut signaler que durant l’année
universitaire 2008-2009, le personnel d’ICARE a assuré 1784 heures éqTD en Licence et 870
heures éqTD en Master. 37 thèses de doctorats de l’Université d’Orléans (dont 4 en co-tutelle) ont
été préparées à ICARE et soutenues dans la période concernée. Le nombre de stagiaires de tout
niveau reçus par ICARE est également très important.
Les membres d’ICARE, enseignants-chercheurs et chercheurs sont présents dans plusieurs
instances de l’Université d’Orléans, comme la direction de l’IUT d’Orléans et de deux de ses
départements, la direction du Département de Chimie de la Faculté des Sciences, la présidence du
Conseil Scientifique de l’ENSI de Bourges, le Conseil Scientifique de l’Université d’Orléans, les
CED…L’Annexe 2 donne les détails de ces participations à l’enseignement et la formation par la
recherche. De même, il est important de souligner que le personnel d’ICARE, toutes catégories
confondues, est très actif dans la diffusion de l’information scientifique et technique et dans la
vulgarisation des savoirs, grâce à des publications ou interventions dans divers media, l’accueil de
stagiaires de divers niveaux, participation très soutenue aux manifestations comme La Fête de la
Science et d’autres opérations « portes ouvertes » et des conférences dans les collèges et les
lycées.
Les Annexes 3 et 4 résument respectivement les actions de formation permanente des personnels
de l’unité et celles concernant l’Hygiène et la Sécurité.
5
Organigramme général
6
Overview of the activities of the Thematic Research Groups
Thematic Research Group I : Chemical kinetics of combustion and
reactive systems
1 Research context and objectives
Chemical kinetic studies are necessary for understanding combustion processes. They allow
analysing new combustion concepts and predicting energy release. Furthermore, combustion
chemistry is useful for developing new fuels and understanding the formation of pollutants and
potential means of reduction in future applications (engines, burners …). The development of
detailed and reduced chemical kinetic reaction mechanisms involves the computation and
measurement of fundamental parameters (thermochemical properties, rate constants) and
development of experimental databases (ignition delays, fundamental flame propagation
velocities…) to validate the proposed kinetic schemes. Such databases are obtained under wellcontrolled laboratory conditions. ICARE has equipments available for measuring fundamental
parameters and providing experimental databases for model validations. Several ‘ideal’
complementary reactors are currently used with appropriate diagnostics:
* Heated spherical combustion chambers for the measurement of fundamental burning
velocities of gaseous and liquid fuels at high pressures by fast speed ombroscopy imaging. The
spherical bombs used at ICARE have characteristics not entirely available for similar
equipments in France: maximum heating temperature of 210°C, high operating pressure (50
bars), and large internal volume (56 L) allowing reliable laminar combustion properties
measurements (laminar flame speeds, Markstein lengths, maximum combustion overpressure)
* Burners
- A recently implemented unique high pressure counter-flow burner facility (maximum
chamber pressure 5MPa) allowing, as a first step, the stabilisation of laminar premixed counter
flow flames up to 1MPa (as well as partially premixed or diffusion flames,), with optical access
for laser diagnostics (such as Laser Induced Fluorescence, Emission, Absorption, Raman
spectroscopy, Cavity Ring Down Spectroscopy) for major and minor chemical species, radicals,
pollutants and temperature measurements.
- Flat flame burner with probe sampling for characterization and measurement of stable
chemical species by gas phase chromatography (CPG-FID-TCD) and FTIR
* Pressurized jet stirred reactors (JSR) that can operate over an extended range of temperature
(500-1500 K, covering both low and high temperature oxidation regimes), pressure (0.1- 4.0
MPa), and equivalence ratio (0.02-4). This is a unique and powerful system allowing operation
at pressures as high as those encountered in gas turbines. Chemical analyses of stable species
are performed using complementary techniques such as FTIR, GC-MS-FID-TCD, trap and
HPLC.
* High pressure shock tubes (ST) that can operate up to ca. 5000 K. They are equipped with
complementary diagnostics such as ARAS, Laser Scattering/Extinction, UV and IR absorption,
detection of OH* and CH* emission. ICARE has a large ensemble of shock tubes for chemical
kinetic studies and its ST-ARAS set-up is unique in France whereas only few are operating
worldwide.
7
2 Research activities and key results
2.1 Determination of fundamental parameters
Fundamental chemical kinetic data are needed to understand and model the combustion
processes. Among them, rate constants for elementary reactions and thermochemical properties
of chemical species are necessary to propose detailed kinetic reaction mechanisms.
2.1.1 Elementary reactions in combustion
Shock tube studies at ICARE aim at measuring elementary rate constants involving H and O
atoms using atomic resonance absorption spectroscopy (ARAS). Several studies concerned the
oxidation of hydrogen (PNIR « Carburant et moteurs », action “Hydrogène”, in collaboration
with PC2A at Lille), the decomposition of nitrous oxide and its reduction by reaction with
hydrogen, and interactions between silane and nitrous oxide (ACL59, ACL65).
2.1.2 Determination of thermo-kinetic parameters
To build chemical kinetic reaction mechanisms, in addition to reaction rate constants, the
thermochemical properties of the chemical species involved are needed. Group additivity
methods (Benson) have been generally used in the past. Since these methods showed some
limitations, ab initio calculations are preferred nowadays. Such methods have been
implemented at ICARE to compute accurately the thermochemical properties of a variety of
components such as polycyclic hydrocarbons, energetic materials (ACL28, ACL49), biodiesel
components and biomass derived chemicals (ACL27, ACL36, ACL50). These studies have
been conducted within national research programs (ANR-PNRB GALACSY, and SUPERBIO)
and international research contracts (US Air Force).
2.1.3 Chemical kinetic mechanisms
The fundamental parameters determined at ICARE are used to build chemical kinetic reaction
mechanisms that in turn are validated against experimental results. The needed experimental
databases for model validation are obtained using the techniques listed above. Jet-stirred
reactors provide data on the variation of mole fractions of reactants, stable intermediates and
products. These data are used together with ignition delays measured in shock tubes, flame
speeds, flame structures in premixed flames or opposed flow diffusion flames (through a
collaboration with the University of Toronto). Our most recent studies concerned the oxidation
kinetics of pure fuels, mixtures, commercial fuels, and surrogates, i.e. natural gas and
hydrogen-enriched mixtures (ANR project TACOMA; programme PIE-CNRS HyTAG), diesel
fuel (program PNIR-CAM1; CIFRE contracts with IFP), gasoline, E85, bio-fuels, kerosene
(contracts CALIN – Pôle de compétitivité Aerospace Valley and FP7 project Alfabird). (ACL411, ACL13-17, ACL20-26, ACL29-33, ACL38-40, ACL42-43, ACL44-47, ACL52-58,
ACL60-61, ACL64-66, ACL70-72).
2.2 Formation and reduction of pollutants from combustion
Combustion of fuels generates pollutants. Many efforts have been devoted to understand the
mechanisms of formation of pollutants (nitrogen oxides, polyaromatic hydrocarbons, soot) and
to propose means to reduce their formation. ICARE has been very much involved in these
studies.
8
2.2.1 Chemical kinetics of NOx formation and destruction
Nitrogen oxides (NOx) are important pollutants formed during combustion in air. Nitric oxide
(NO) is generally the most important. In collaboration with the Ecole des Mines at Albi, we
have studied the reduction of NO by solid fuels (ACL35). Our kinetic models have been
extended to conditions relevant to a cement plant calciner. This work showed the importance of
nitrogen and sulphur mass fractions in the fuel on the formation/reduction of NOx.
Among the intermediates formed during the oxidation of N-bound fuels, HCN (hydrogen
cyanide) is produced. It is also a key-intermediate in NO-reburning. Therefore, its kinetics of
oxidation has been reviewed; an updated reaction scheme has been proposed in collaboration
with the groups from Universities of Lyngby and Zaragoza (ACL37).
NOx formation in high pressure flames is studied, in collaboration with the PC2A, Lille (ANR
project NO-mecha, 2009-2012). It aims at revisiting the NOx formation mechanism,
particularly the recent controversy about the prompt-NO route (CH + N2 = NCN + H) in
methane and natural gas-air flames. It relies on a novel experimental approach that allows
obtaining a completely renewed database including most of the NO-sensitive species in a very
large range of flame conditions in terms of pressure (4 kPa -1 MPa) and composition. The new
high pressure counter-flow burner facility of ICARE is used coupled to laser diagnostics. LIF
and PLIF techniques have been applied with success for OH radical measurements (ACTI12) in
high pressure CH4/air flames (up to 1MPa) and measurements of NO and CH are ongoing. A
modelling work is performed in parallel in order to test the performances of the kinetic
mechanism GDFkin®3.0 (ACL176) at high pressure conditions. The formation of NOx was
also investigated in collaboration with the University of Seattle for lean prevaporived premixed
combustion conditions (ACL29).
2.2.2 Soot and precursors
2.2.2.1 Formation of PAH and soot precursors
Soot is still one of the most difficult combustion generated pollutant to reduce. The formation
of soot precursors (benzene, cyclopentadiene, PAH) was studied in a JSR and a chemical
kinetic modelling was performed within a research program of ESA-MAP "ombustion
Properties of Materials for Space Applications Phase 2 (2005-2012) in collaboration with LCD
in Poitiers, the Universities of Lund and Cottbus. Analytical procedures involving HPLC-UVFluo-MS, and GC-MS were developed to measure PAH at low concentration levels. This work
was extended to the measurement of PAH on soot obtained from the combustion of kerosene
and mixtures containing bio-fuels (ACL102).
2.2.2.2 Soot Formation
Despite a tremendous work-effort by the research community during the last decades, soot
formation and oxidation remains one of the most challenging phenomena in the combustion
field. Due to the harmful effects of soot particles both on health and environment, governments
worldwide have strengthened the emission regulations for automotive engines. The reduction of
Diesel soot emissions were and still are a target of these regulations since this combustion
mode is prone to soot production. During the last decade, we have developed a powerful tool in
order to study soot formation and oxidation based on a shock tube coupled to laser techniques
such as extinction and Rayleigh diffusion. Based on soot sampling techniques, the organization
(TEM low resolution), structure (TEM high resolution) as well as the adsorbed phase (LDITOF-MS) were thoroughly investigated. The ICARE heated shock tube allows conducting
fundamental studies on heavy pure fuels or commercial fuels at conditions relevant to internal
combustion engines (high pressures and temperatures). These studies were conducted in the
framework of several co-operations with TOTAL, CNR-Milano within the Franco-Italian
9
GDRE on Hydrogen Combustion and Safety, and the University of Toronto. This last
cooperation aims the modelling of soot formation by coupling a detailed kinetic mechanism for
soot precursors to a global soot formation code (ACL41, ACL178-180).
2.2.2.3 Modelling of soot formation in Diesel engine conditions
A modelling study of soot formation in a Diesel engine has been performed in collaboration
with Renault and PRISME-University of Orléans in order to optimize IC engines for soot
emissions reductions. A soot model was developed and coupled to a combustion model (for
benzene, n-heptane, iso-octane, n-decane and toluene oxidation) in a 3D-CFD code (ACL62,
ACTI7).
2.3 New fuels
Because they are renewable, biofuels and synthetic fuels from bio-resources are attracting great
interest as transportation fuels but also for energy production. They may be less polluting,
sometimes more biodegradable, and could reduce net greenhouse gas emissions. However, their
application in engines and other combustion devices requires combustion models and
experimental databases for their burning under various conditions (lean combustion, high
pressure, exhaust gas recirculation…). Several studies have been recently performed at ICARE
on the kinetics of oxidation of oxygenated fuels, naphtenic hydrocarbons, and synthetic fuels
(in cooperation with the Universities of Galway and Illinois-Chicago, and under a research
contract PNIR-CAM1 with CNRS, PSA, TOTAL).
2.3.1 Combustion of hydrogen-enriched fuels, syngas, and biofuels
The optimisation of IGCC power plants (Integrated Gasification Combined Cycle) that produce
electricity from combustion of syngas (CO/H2) in gas turbines necessitates many studies on the
effect of fuel composition and dilution by carbon dioxide. A better understanding of the
combustion kinetics of such fuels and of the effects of variation of their compositions is needed.
Experimental and numerical flame structure studies have been performed at atmospheric
pressure in order to specify the effect of CO2, H2 and H2O addition in CH4 and CO flames
(ACL63). High pressure biogas (CH4/CO2) flames are currently studied. This work was
completed with laminar syngas flames velocities measurements using the Particle Imaging
Velocimetry (PIV) technique (ACTI60, ACTI62, see also below Groupe Thématique on
Combustion Dynamics). The kinetics of combustion of hydrogen-enriched fuels was also
studied through the PIE-CNRS HyTAG project and a contract with EDF. The kinetics of
oxidation of fuel mixtures containing methane, syngas, CO2, and H2O were studied (ACL23,
ACL45-47, ACL60-61). Further studies were performed through the ANR project TACOMA.
The effect of fuel dilution by water vapour and interactions with SO2 were studied in a JSR and
modelled.
2.3.2 Combustion of fatty acids methyl esters and biodiesel surrogates.
Fatty acids methyl esters are new components of Diesel fuels for which little was known until
recently. ICARE published the first kinetic study of the oxidation of rapeseed oil methyl ester
in a JSR (ACL16). The kinetic modelling was performed using several model fuels, showing
that RME behaves very similarly to large alkanes under JSR oxidation conditions. In
collaboration with the Universities of Toronto and Princeton, we studied the kinetics of
oxidation of simple methyl esters to improve our knowledge of biodiesel combustion kinetics
(ACL22, ACL30, ACL40, ACL43, ACL57). The kinetics of oxidation of ethyl esters was also
investigated in collaboration with the University of Galway (ACL64). These studies were
conducted through several research projects (Predit contract Biokin; NSF International
Research and Education in Engineering support with the University of Illinois-Chicago). Other
chemical kinetic studies are currently performed for the oxidation of biodiesel through a
10
research contract with Renault and a research project with ESA-MAP on Combustion
Properties of Partially-Premixed Spray Systems.
2.3.3 Other oxygenated fuels: alcohols, ethers, and ketones
Ethanol accounts for over 90% of all biofuels production worldwide. However, mixing stability
issues may appear with simple alcohols whereas larger alcohols would mix better with petrolderived fuels due to their longer alkyl carbon chain. Therefore, the kinetics of oxidation of
methanol, butanol isomers, 1-pentanol, and 1-hexanol were studied experimentally and
modelled. Their mixtures with hydrocarbons and methyl esters were also investigated (ACL17,
ACL55-56, ACL68, ACL70, ACL72). This research was partially performed in collaboration
with PRISME-University of Orléans, the University of Toronto, and IFP. A collaboration with
the University of Galway aimed at determining the laminar flame speeds of a series of
oxygenated species and was supported by the ULYSSES program (ACL66). The kinetics of
combustion of oxygenated gasoline additives, such as ETBE, has also been studied (ACL 52).
2.3.4. Synthetic fuels from coal, natural gas and biomass
Liquid fuels can be synthesized using an adapted Fischer-Tropsch process. We have studied the
kinetics of oxidation of reformulated jet fuels in the project CALIN (supported by the Pôle de
compétitivité Aerospace Valley). Experiments in a JSR and kinetic modelling were also
performed within the ongoing FP7 European project Alfabird (ALternative Fuels And Biofuels
for aIRcraft Development). These studies yielded a unique data base for the kinetics of
reformulated jet fuels and are continuing.
2.4 New combustion technologies for energy production
ICARE is involved in several projects related to currently emerging technologies for energy
production with a common objective to reduce the environmental impact while preserving
process efficiency. These studies are also good examples of intense co-operations within
ICARE teams contributing to Chemical kinetics and Dynamics of combustion (see below the
Groupe Thématique on Combustion Dynamics).
2.4.1. Combustion kinetics of lean mixtures
Combustion in lean conditions allows the reduction of soot and NOx emissions, however it can
generate instabilities leading to flame extinction and production of harmful oxygenated
compounds. In order to better understand the combustion reaction mechanisms in lean
conditions, an experimental and numerical study was undertaken on methane, ethylene, propane
and propene flames (ACL18) in order to constitute a detailed database on intermediate species
containing 1 to 3 carbon atoms, which control the combustion kinetics of heavier fuels.
2.4.2. Coupling of oxygen-enriched combustion and CO2 capture
This study (CNRS PIE research project COCASE in collaboration with LRGP Nancy, CORIA
Rouen and LCD Poitiers) aims at investigating a new technological solution for CO2 capture
from fossil fuel burning power plants. It consists of coupling an oxygen-enriched combustion
(typically 30-80% O2) with a CO2 capture by membrane separation processes (developed by
LRGP, Nancy). This combination offers a CO2 capture process with a largely reduced energetic
cost compared to conventional post-combustion or oxy-combustion processes. The overall
purpose of the present work is to maximize the energy production by combustion while
ensuring a correct operation of the global process in compliance with environmental
legislations. First, a feasibility study was performed with numerical simulations of the energy
11
required for this “hybrid” process. In parallel, combustion kinetics simulations were performed
at ICARE in order to determine the best suited combustion conditions (ACTI 13, AFF 6). This
numerical approach is now under experimental validation at CORIA (in a model gas turbine
chamber) and LCD (in counter flow flames).
2.4.3. NO-hydrocarbons interaction at low temperatures
Recent auto-ignition engine concepts (HCCI, LTC) use exhausts gas recirculation (EGR) to
control ignition timing. Under such conditions, EGR chemically affects ignition through
interactions of fresh fuel-air mixture and unburned species or nitrogen oxides. Several studies
were undertaken at ICARE in collaboration with engine research groups at PRISME-Univeristy
of Orléans and IFP to better understand these chemical interactions and propose chemical
kinetic models. These kinetic studies concerned simple fuels and reference fuels and
demonstrated the need for further investigations to better understand NOx-hydrocarbons
interactions (ACL5, ACL8-9, ACL17, ACL20, ACL31, ACL53, ACL67) and the chemical
impact of unburned species (ACL34, ACL51).
12
Thematic Research Group II: Atmospheric reactivity
1 Research context and objectives
Chemical processes play a central role in altering chemical species entering the atmosphere.
They may lead to the formation of ozone and other photooxidants and secondary organic
aerosols, which impact climate and air quality. They can also affect the oxidative capacity of
the atmosphere, which is one of the major determinants of the concentration of organic
compounds in the atmosphere. The laboratory kinetic and mechanistic parameters are of crucial
importance to improve the quality of the atmospheric chemical models.
The activities of the atmospheric reactivity group of ICARE span from accurately measuring
reaction rate parameters and determining chemical mechanisms to field measurements of some
keys atmospheric players. The main themes that we dealt with within last few years are:
* Atmospheric degradation of volatile and semi-volatile organic compounds and secondary
organic aerosols formation
* Gas-surface interactions (atmospheric aerosols and ‘depolluting materials’)
* Reactions influencing the oxidative capacity of the troposphere
* Field measurements and instrument intercalibration.
2. Research activities and key results
2.1 Atmospheric degradation of volatile and semi-volatile organic compounds and secondary
organic aerosols formation
2.1.1 Atmospheric degradation of Volatile organic Compounds (VOCs)
The degradation of Volatile Organic Compounds (VOCs) in the troposphere leads to the
production of a range of secondary pollutants such as ozone, peroxyacyl nitrate, secondary
organic aerosols and other components of the photochemical smog in urban areas. VOCs are
emitted directly into the atmosphere from biogenic and anthropogenic sources. The main gas
phase removal process of most VOCs is the reaction with OH radical, the oxidation by O3 and
NO3 being other important degradation pathways for unsaturated VOCs. In order to assess the
impact of these chemical species on air quality, a detailed understanding of the kinetics and
mechanisms of their atmospheric degradation is required.
The kinetics and the atmospheric oxidation mechanisms of a number of VOCs have been
studied. Using absolute and relative methods, the rate coefficients for the reactions of OH and
O3 with a series of esters (methyl methacrylate, ethyl propionate, ethyl isobutyrate…), alcohols
(6-methyl-5-hepten-2-ol, allyl alcohol …), fluorinated (trifluoroacetaldehyde hydrate,
trifluoropropene, …) and amides (N-methyl pyrrolidinone, N-formyl pyrrolidinone) have been
reported (for the first time for most of the studied compounds). Mechanistic studies have also
been conducted. Most compounds were found to have short atmospheric lifetimes leading
mainly to carbonyls as oxidation products (e.g. ACL76, 78, 79, 80, 81). This work has been
conducted within the LEFE (CNRS-INSU) and INSU-DFG programmes and Eurochamp 1 and
2 projects (FP6 and 7).
13
2.1.2 Semi-Volatile Organic Compounds (pesticides)
The wide use of pesticides in agricultural applications is of some concern since they may have a
significant environmental impact. Once a pesticide is applied in the field, it can be partitioned
into the soil, water and atmosphere. Knowledge of the environmental fate of pesticides is
important in order to assess the potential risks to human and animal health.
The atmospheric fate in the gas phase of a series of pesticides (chloropicrine, hymexazol …)
has been investigated using the large European outdoor simulation chamber (Euphore,
Valencia). The rate coefficients for the reactions with OH and ozone have been measured and
the photolysis investigated. The results obtained indicate that both photolysis and reaction with
OH radicals are the main gas phase loss processes of these pesticides in the atmosphere. The
kinetic parameters enable to conclude that the studied pesticides will be oxidized near their
emission sources and will have an impact on the local and regional scales. Some of the
degradation products have been identified and quantified which led us to derive the
atmospheric degradation mechanisms for most of the studied pesticides. For example, phosgene
(a highly toxic chemical) was found to be the major photolysis product of chloropicrine. (e.g.
ACL75, 83, 101). This work has been supported by the INTERREG IIIC programme.
2.1.3 Secondary organic aerosols (SOA) formation
The gas phase ozonolysis of a series of unsaturated biogenic or anthropogenic organic
compounds (such as myrcene, linalool, ocimene, α-farnesene, unsaturated alcohols, unsaturated
ethers…) has been investigated. The reaction rate coefficients have been determined which
enabled to calculate the tropospheric lifetimes of these species. Most of the studied compounds
have been found to be very short lived towards the reaction with ozone (less than 2 hours). The
SOA formation yields were found to be in the range 1-30 % under atmospheric conditions.
Nucleation thresholds have been determined for some of the reactions studied and aerosol
formation mechanisms involving the Criege biradical intermediates have been suggested for
some species. The chemical composition analysis of the SOA formed showed a significant
amount of organic acids. These compounds are also very reactive towards hydroxyl and nitrate
radicals. This high reactivity implies that large emissions of these species will play a significant
role in the atmospheric boundary layer in terms of photooxydant and organic secondary aerosol
formation. (e.g. ACL76, 77, 89, 93, 95, 97). These studies have been carried out within the
LEFE (CNRS-INSU) and Primequal programme and the Eurochamp 1 and 2 projects (FP6 and
7).
2.2 Gas-surface reactions
2.2.1 Fate of Polycyclic Aromatic Hydrocarbons (PAH) in atmospheric soot particles.
Two types of processes determining the atmospheric fate of soot-bound PAHs have been
studied: PAH desorption from soot surface in relation with the PAHs partitioning between gas
and particulate phases in the atmosphere and their heterogeneous oxidation reactions.
2.2.1.1 Thermal desorption of PAH from soot surface.
Kinetics of thermal desorption of three to six-ring PAH from kerosene soot surface was studied
over the temperature range 260-320 K in a flow reactor combined with an electron-impact mass
spectrometer. The soot was prepared in the laboratory under controlled conditions. Two
methods were used to measure the desorption rate constants: monitoring of the surface-bound
PAH decays by off-line HPLC measurements of their concentrations in soot samples, and
monitoring of the desorbed molecules in the gas phase by in situ mass spectrometry. The results
obtained with the two methods were in good agreement and yielded the Arrhenius expressions
for desorption kinetics of 16 PAH. The derived desorption enthalpies are close to the
corresponding sublimation enthalpies, which is consistent with the structural similarity of PAH
14
molecules and soot. The obtained experimental data were applied to the calculations of PAH
partitioning in the atmosphere using available theoretical models (ACL 90, 102, 109, 105).
2.2.1.2 Heterogeneous reactions of soot surface-bound PAH with atmospheric oxidants O3, NO2,
OH
Kinetic studies were performed in the flow reactor with off-line particulate PAH analysis by
HPLC. No measurable decay of PAHs due to the reaction with NO2 was observed under
experimental conditions which allowed to determine the upper limits of the first-order rate
constants for the heterogeneous reactions of 17 soot-bound PAHs with NO2: k < 5.0×10-5 s-1.
Regarding the heterogeneous reactions of particulate PAHs with ozone, the first-order rate
constants measured for individual PAHs ranged from 0.004 to 0.008 s-1 and were found to be
independent of the ozone concentration and temperature. The rate of the heterogeneous reaction
of PAHs with OH radicals was found to be in the range (0.02 - 0.04) s-1 at T = 290 K,
independent of the OH concentration and of the molecular structure of the PAH. The results of
this work indicate that the reactions of PAHs adsorbed on soot surface with O3 and OH can be
important pathways of particulate PAHs degradation in the atmosphere (ACL99, 104, 106).
2.2.2 Interactions of HO2 radicals with sea salt aerosol.
Laboratory study of the interactions of HO2 radicals with sea salt aerosol was carried out in
relation with the potential influence of this process on the HOx (OH + HO2) budget and
oxidizing capacity of the marine troposphere. The uptake coefficients of HO2 radicals on
synthetic sea salt, NaCl, NaBr and MgCl2×6H2O dry solid films were measured over the
temperature range 240 to 340 K and at 1 Torr pressure of helium using a discharge flow reactor
coupled to a modulated molecular beam mass spectrometer. H2O2 was observed as a main
product of HO2 interaction with salt surface indicating a heterogeneous HO2 self reaction
mechanism. The results show that the HO2 loss through heterogeneous interaction with salt
surface is not sufficiently rapid to explain the observed differences between modelled and
measured HO2 concentrations in remote coastal areas. (ACL 99)
2.2.3 Interaction of water vapour with MgCl2 × 6H2O et NaCl surfaces
This work deals with the laboratory study of interactions of water vapour with sea salt particles
and includes the measurements of the uptake of water to dry solid films of MgCl2×6H2O and
NaCl over the temperature range 240 to 340 K using a flow reactor coupled to a modulated
molecular beam mass spectrometer. The following Arrhenius expression (calculated with
specific BET surface area) was obtained for the initial uptake coefficient of H2O on
MgCl2×6H2O films: 0 (MgCl2) = (6.5  1.0)10-6 exp[(470  40)/T]. The rate of H2O
adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit
was determined for the corresponding uptake coefficient:  (NaCl)  5.610-6 at T = 300K. The
experimental data on H2O adsorption to MgCl2×6H2O salt surface was found to be well
described by Freundlich isotherm with the heterogeneity parameter close to 0.5. The isosteric
heat of adsorption was determined to be (44.7  1.2) kJ mol-1 independent of the salt surface
coverage in the range (0.8 – 30)  1015 molecule cm-2. An empirical equation is proposed for
the amount of water adsorbed on MgCl2×6H2O as a function of relative humidity. The observed
results suggest that the rate of H2O adsorption to salt surfaces is drastically dependent on the
salt sample composition and that under atmospheric conditions sea salt particles are probably
enveloped by a MgCl2×6H2O brine (ACL103).
2.2.4 Heterogeneous photochemistry.
This research activity currently being developed at ICARE is part of two ongoing projects. The
ANR project PHOTODUST "Photocatalytic properties of mineral dust" aims to investigate the
physico-chemical interactions of pure and organic coated mineral aerosols (authentic and
synthetic) with trace gases from several chemical families (NOx, O3, SO2,…) under varying
15
conditions corresponding to the real atmospheric environment (humidity, gas phase
concentration and irradiation intensity and type).
The second project (French-German, INSU-DFG programme) PHOTONA "Photochemical
Formation of nitrous acid in the atmosphere" is devoted to the identification and quantification
of heterogeneous photochemical sources of nitrous acid (HONO) in relation with the oxidizing
capacity of troposphere. Nitrous acid has attracted significant attention during the last few years
since recent field measurements have demonstrated that the photolysis of HONO can be the
dominant source of OH radicals in the lower atmosphere, the OH radical being the primary
oxidant in the atmosphere, responsible for the oxidation and removal of most natural and
anthropogenic trace gases.
2.2.5 Photo-catalytic self-cleaning and “de-polluting” materials : sink or source of pollutants ?
Recent research work has shown that materials containing titanium dioxide (TiO2) could have a
“de-polluting” effect through photocatalytic phenomena which led to the development of
environmental friendly materials by adding TiO2 to ordinary building materials such as
concrete, cement and glass. Although various photocatalytic materials are already on the
market, very little reliable information is available, except for limited technical data, regarding
their impact on air quality considering the potential formation of harmful intermediates. Within
different projects, we have undertaken a systematic study on the behaviour of typical
atmospheric pollutants when exposed to materials containing TiO2.
Experiments have been conducted on TiO2 coated glass using a new built and well equipped
outdoor 3.4 m3 simulation chamber made of Teflon. In agreement with previous studies
performed under artificial light, the results obtained show that while NO uptake on the TiO2
coated glass is enhanced under irradiation, the NO2 concentration-time profile exhibits a
maximum, suggesting that it is produced from the photocatalytic oxidation of NO and then
converted to nitrous and nitric acids. Interestingly, ozone was observed to be formed in a high
yield during the course of the experiment. In addition, the experiments have also shown a
substantial formation of nitrous acid (HONO). In combination with other experiments
performed using complementary experimental systems at IRCELYON and LISA, a chemical
mechanism has been proposed to explain the observed ozone profiles involving nitrate radicals
(ACL110). This work has been conducted within three projects (Primequal, ANR, Life+).
2.3 Reactions influencing the oxidative capacity of the troposphere
These studies concern the formation of nitric acid and organic nitrates, RONO2 (R = alkyl
group) in the minor channels (b) of the reactions between the peroxy radicals, HO2 or RO2, with
NO:
(a)
HO2 (or RO2) + NO → OH (or RO) + NO2
HO2 (or RO2) + NO → HNO3 (or RONO2)
(b)
Nitric acid and organic nitrates play an important role in the tropospheric ozone budget, as
“sink” or “reservoir” species for both NOx and HOx (OH, HO2). They, therefore, influence the
oxidative capacity of the troposphere and the concentrations of reactive greenhouse gases
(methane, ozone, hydrofluorocarbons…).
The formation yields of HNO3 or RONO2 (or branching ratios kb/ka) are determined using a
turbulent flow reactor coupled with a chemical ionisation mass spectrometer (CIMS). This
technique allows measurements in the whole range of tropospheric temperatures and pressures
(220-300 K, 70-760 Torr), and in the presence of water vapor. The combination of CIMS
16
analysis in both positive and negative modes provides a sensitive and selective detection of the
species, in particular HNO3 and RONO2 which are produced at very low yields (less than a few
percents).
2.3.1 Formation of HNO3 in the HO2 + NO reaction
The formation of HNO3 in the HO2 + NO reaction has been observed for the first time and the
HNO3 yield has been determined in the whole ranges of tropospheric temperatures and
pressures. This yield ranges from 0.5% at the Earth surface to 0.9% in the tropopause region
(ACL 82). The integration of these data in chemistry-transport atmospheric models indicates
that they have a significant impact on the concentrations of species like HOx, NOx, HNO3 and
O3, in particular in the tropical upper troposphere (ACL 85). Numerous and complex
experiments due partly to CIMS detection complications in the presence of H2O, have led to
observe a H2O enhancement of the HNO3 formation yield in the HO2 + NO reaction (for
example an increase by a factor 8 at 50% relative humidity at 298 K and 200 Torr). This effect
has been confirmed by a theoretical study, and it has been interpreted as a fast HNO3 formation
in the reaction of NO with the HO2·H2O complex (ACL 94).
2.3.2 Organic nitrate formation in the RO2 + NO reactions
The studies on organic nitrate formation in the RO2 + NO reactions focused on the short chain
alkyl nitrates C2H5ONO2 and i-C3H7ONO2. The related peroxy radicals RO2 are derived from
the atmospheric oxidation of ethane and propane, respectively, and from larger hydrocarbons.
The ongoing study concerns the formation of hydroxypropyl nitrate isomers in the reaction of
NO with the hydroxypropyl peroxy radicals derived from the OH-initiated oxidation of
propene. The formation yields of these different nitrates have been determined as a function of
pressure and also as a function of temperature for C2H5ONO2 (ACL 107, 108). All these yields,
which are lower than 3%, could be precisely determined by using a novel CIMS detection
process of the nitrates (ionisation by the F- ion). The obtained data are available to be included
in chemical mechanisms of atmospheric models, either explicitly or indirectly by contributing
to improve the structure-activity relationships used to reduce these mechanisms. The direct
integration of our data in chemistry-transport models should allow assessing the impact of the
studied organic nitrates on the VOC/NOx/ozone chemistry in urban plumes and in the whole
troposphere. These studies have been carried out within the EU FP6 SCOUT integrated project,
the LEFE programme of CNRS-INSU and the ongoing Primequal programme of the French
Ministry of Ecology (MEEDDM).
2.4 Field measurements and instruments intercalibration
2.4.1 Calibration of intrumentation for laboratory and field measurements
The indoor and outdoor ICARE atmospheric simulation chambers have been used within
different research projects to intercalibrate instrumentations used both in laboratory studies and
field measurements. The large indoor chamber equipped with in-situ FTIR was used along with
the SPIRIT instrument (SPectromètre Infra-Rouge In situ Troposphérique) developed by
LPC2E to determine the absolute intensity of the 2912.09 cm-1 line in order to derive reliable
atmospheric HCHO concentrations using SPIRALE (Spectroscopie Infra-Rouge par Absorption
de Laser Embarqué). The same chamber was used to calibrate the SAMU instrument
(Spectromètre de masse Aéroporté MULti-espèces par réactions ion-molécule, ACL 91) of
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), for in-situ atmospheric
measurements of OH and total peroxy (HO2 + organic peroxy) radicals. On the other hand, the
recently developed outdoor chamber was used to calibrate the NITROMAC instrument of the
17
Laboratoire Inter-universitaire des Systèmes Atmosphériques (LISA-Créteil) for HONO
measurements.
2.4.2 Field measurements of key atmospheric species (HONO, HCHO, VOCs, peroxy radicals)
The peroxy radical chemical amplification (PERCA) instrument of ICARE has been employed
in a field campaign aimed at studies of radical chemistry in polluted environment influenced by
urban outflow within a project supported by LEFE/INSU programme. The measurements were
performed during June-July 2007 on the agricultural site of Grignon situated 20 km to the west
of Paris. Two other campaigns were conducted recently (2009 and 2010) in the same site within
the PHOTONA project (CNRS-DFG programme) to measure HONO, O3 and NOx.
Within a collaborative project between ICARE, Fudan university and CAS, an intensive field
measurement study was conducted at a site at the Fudan University (Shanghai) during October
2009. Ambient air pollutants measured included HONO, NO, NO2, O3, carbonyls. The purpose
is to improve our understanding of the local air pollution in Shanghai in order to plan future
campaigns for understanding the interplay among local and regional air pollutants in the
Shanghai area, and the influence of regional transport on local air pollutants.
18
Thematic Research Group III : Dynamics of combustion and reactive
systems
1. Research context and objectives
The laboratory studies on the dynamics of combustion and reactive systems aim to provide data
for model and numerical simulation validations developed in the various sub-topics and also to
improve our knowledge on energy systems under conditions relevant for applications, such as
high pressure conditions. Such data and knowledge are important for energy production and
chemical propulsion systems development and optimisation but also for safety analysis of
chemically reactive systems. The studies concern combustion systems under laminar, turbulent
and accelerated flame regimes. Various unique experimental facilities and their corresponding,
mainly optical and laser, diagnostics are mobilized to determine relevant flame parameters both
in premixed and non-premixed configurations. Stretch and pressure effects as well as those of
H2 addition and CO2 dilution on laminar flame parameters, such as zero stretch flame
propagation velocities, Marsktein numbers, flame surface density and turbulent burning rates
are determined, mainly for methane-air flames; but also for other mixtures such as syngas.
Several flame configurations and experimental methodologies are used to benefit from their
respective advantages. When possible, both chemical kinetics and flame dynamics modelling
and numerical simulations are used to analyse the experimental results. For laminar diffusion
flames, an original approach is developed; it consists of taking advantage of the magnetic
susceptibility of oxygen to monitor air – fuel mixing and to improve the stability features of
diffusion flames, for example by reducing the lift-off height and therefore the emission
properties, such as CO, by the action of magnetic forces.
An important aspect of combustion dynamics studies of ICARE concern chemical explosion
dynamics and the determination of flame acceleration and transition to detonation criteria. The
recent studies in this area have mainly focused on gaseous or two-phase mixtures containing
hydrogen, essentially for safety analyses in nuclear power plants and for the perspective of
hydrogen transport in natural gas pipelines.
Several reactive multiphase systems are also studied at ICARE. In recent years, studies on
liquid fuel droplet vaporisation have focused on droplet interaction effects and progressively on
droplet cloud vaporisation and combustion. Metal combustion studies have been oriented on
novel propellants such as nano aluminum particles and their mixtures with water. Such studies
are necessary to progress in the analysis of two-phase propulsion systems for example for liquid
or solid rocket motors.
More recently, the expertise of ICARE in metal combustion studies has been used for ondemand H2 generation investigations by exploring low temperature oxidation of aluminium
particles in water. Finally, other recent orientations have consisted in syngas or hydrogen
generation from biomass or other organic materials through allo-thermal gasification processes,
such as plasma-aided gasification or hydrothermal decomposition in supercritical water.
The common features of all these studies are their use of original experimental facilities,
allowing high pressure explorations using optical diagnostics and the integration of the
chemical kinetics expertise of ICARE into the studies on the dynamics of combustion and other
reactive systems. Also, all of these studies are conducted in the frame of national and European
projects, most of the time including industrial partners or national agencies.
19
2 Research activities and key results
2.1 Dynamics of laminar and turbulent flames
2.1.1 Laminar premixed flames
2.1.1.1 Freely expanding spherical flames
One of the major fundamental properties of combustion is the laminar flame velocity, which
despite its very straightforward definition must be carefully assessed. Among the different
techniques, the outwardly spherical flame proves to be very valuable since the stretch at which
the flame is submitted is perfectly known and can be then accounted for. ICARE has designed a
high pressure spherical chamber that can be operated over a wide range of temperatures and
initial pressures. The imaging of the flame propagation is used to derive SL° correctly and to
detect the onset of flame wrinkling due to instabilities. In the framework of the ANR project
PANH-HYDROMEL (2006-2010), the effect of methane addition to hydrogen / air mixtures
has been investigated. Along with auto-ignition delay times (see §2.2.1) a detailed kinetic
mechanism has been validated which can be applicable to safety assessment (ACL12, AFF68).
The impact of the initial pressure on the flame propagation of methane-hydrogen air mixtures
has been studied in the framework of the national program PIE CNRS « Hytag » (2005-2008).
A collaboration with TOTAL aims at the determination of the effect of automotive fuel
additives on laminar flame velocities for gasoline (ACL52, 58) and F1 racing cars (confidential
project). A collaboration between ICARE, GREMI and the company CILAS is aiming at the
development of a laser based ignition device in the case of biogas mixtures (Program RégionCentre 2008-2010).
2.1.1.2 Counter flow flames
A facility allowing the study of flame propagation velocities in opposed jet flames has been
developed. The flow field has been determined by particle imaging velocimetry and flame
velocities as well as stretch rates have been extracted. Zero stretch rate flame velocities have
thus been deduced. The set-up and the methodology were first validated using well known
atmospheric pressure methane-air flames and then applied to premixed synga – air flames
(TH33, AFF63, ACTI60, ACTI62). The same technique is also coupled to the determination of
laminar flame thicknesses (or density/temperature gradients) using the laser induced Rayleigh
scattering technique in the framework of an ongoing PhD thesis.
2.1.1.3 Conical flames
In order to study the influence of CO2 addition on a methane-air flame we used the Bunsen
flame (conical flame) configuration and compared several methods of extracting laminar flame
propagation velocities. One method relies on flame cone area determination and the application
of mass conservation principle. Another method uses the velocity field obtained by the PIV
technique. The two techniques are also compared for syngas – air flames in cooperation with
the Pennsylvania State Univeristy (TH33). Laminar flame stability domains with CO2 addition
are also determined; it is shown that high pressures allow obtaining stable flames at lower
equivalence ratios (ACTI26, ACTI27, ACTI55, ACTI72).
2.1.2 Laminar diffusion flames with and without magnetic forces
Magnetic forces can be used to control the stability of laminar diffusion flames capitalising on
the magnetic susceptibility of oxygen. Permanent magnets (ACL126) and an electromagnet
(ACL140) are used at ICARE for this purpose together with laser flame tomography and laser
velocimetry. Dynamics of laminar methane – air flames with and without magnetic forces have
been compared. In parallel, numerical simulations have been performed taking into account the
heat release, magnetic forces and the radiation effects (ACTI35, ACTI71). The results show
20
that for lifted fames, the lift-off height is reduced by the application of magnetic forces
(ACL126, ACTI43). For high velocity flames, a stabilising effect of the magnetic forces on the
fuel-air mixing layer instabilities has been demonstrated (ACL140, ACTI54, ACTI58). An
extension of this research towards oxygen enriched air flames is ongoing.
2.1.3 Turbulent flames
2.1.3.1 Non-premixed turbulent flames
Turbulent hydrogen – air non premixed flames (or hydrogen enriched methane – air flames) are
of interest because of their lowest risk potential in burners or gas turbines, compared to
premixed hydrogen mixtures. An experimental study has been conducted on the
characterisation of high pressure H2/air and H2 enriched methane – air flames in the framework
of a joint PhD with the Polytecnico di Milano (TH1). A specific burner has been developed for
this purpose and adapted to the ICARE high pressure turbulent combustion facility. The role of
pressure and hydrogen enrichment rate has been identified on flame dynamics and sooting
characteristics. These flames have also been studied numerically using the FLUENT code with
adapted mixing and turbulence models and chemical kinetics for the studied flames (ACL, 116,
130).
2.1.3.2 Premixed turbulent flames
During the last years, research at ICARE on turbulent premixed flames has concentrated on the
structure and dynamics of high pressure methane-air flames, either enriched by hydrogen or
diluted by CO2. The high pressure turbulent combustion facility of ICARE has been used for
this purpose together with relevant diagnostics such as LDV and PIV and laser induced Mie
and Rayleigh scattering techniques. For H2 enriched flames, the increase of the flame surface
density both by the increase of pressure and the enrichment rate has been demonstrated and
analysed using several turbulent combustion models (ACTN1, COM22, ACL118, ACL119,
ACL125, ACL129). For CO2 diluted flames, the pressure effect remained the same, but the
detailed structure of the flame was found insensitive to the dilution rate, except of course the
reduction of the laminar flame propagation velocity and the ensuing reduction of the global
combustion rate (TH6; ACTI27, ACL128). These studies were mainly conducted in the
framework of the FP5 project AFTUR (2003-2008) and the PIE CNRS project HyTAG (20052007), both coordinated by ICARE. This research axis is presently continuing namely in the
context of turbulent syngas – air flames studies and by using biplanar laser induced Rayleigh
scattering technique in order to resolve the 3D effects when determining the instantaneous
flame front thicknesses.
2.2 Dynamics of chemical explosions
2.2.1 Fundamental explosion properties
2.2.1.1 Methane – hydrogen and natural gas – syngas mixtures
Among the fundamental properties of combustion, SL° is very important not only as a tool of
chemical kinetic validation (see §2.1.1) but also because it leads to other parameters very
important in chemical explosions: flammability limits, maximum overpressure rise, appearance
of instabilities, Markstein length, etc. By using a detailed kinetic mechanism coupled with the
experimental data, the Zeldovich number can then be derived. These fundamental studies are
mandatory in order to analyze the different regimes a flame can undergo (see §2.2.2). These
parameters have been determined for different hydrogen based mixtures for a wide range of
initial conditions in terms of pressure, temperature and equivalence ratios. These studies have
21
been carried out in collaboration with IRSN for H2 – air – water vapor (2005-2009; 2009-2012)
and INERIS/IRSN for natural gas and syngas mixtures (2008-2011). Moreover, by using high
pressure shock tubes and detonation tubes, auto-ignition delay times and dynamic parameters of
detonation have been determined in the case of H2-CH4-air mixtures. These data along with the
aforementioned ones have been used in order to validate a kinetic mechanism applicable to
detonation evaluation (TH26, ACL12; ACTI24-25, ACTI61, COM1, COM29, COM31;
AFF67, AFF68, AFF70).
2.2.1.2 Hydrogen – N2O mixtures
Silane-nitrous oxide mixtures are widely used in some industries such as semiconductor
manufacturing and also constitute a safety hazard in nuclear waste storage. Since the
decomposition of silane is faster than that of N2O and involves the formation of H2, the H2-N2O
system might be an important sub-system of the silane oxidation mechanism. A fundamental
study has been performed in order to assess the explosion properties of such mixtures and autoignition delay times, laminar flame velocities and detonation properties have been determined
(TH28; ACL48, 65; ACTI46, 47, 56, 65, 73, 74, 75; AFF5, 62).
2.2.1.3 Hydrogen – dust mixtures
A new study has been initiated in collaboration with IRSN (2010-2013) which is aimed at a
better assessment of the explosion hazards in the International Thermonuclear Experimental
Reactor (ITER). During normal operating conditions, several kilograms of dust (graphite,
tungsten and beryllium) can be produced due to the erosion of the ITER chamber walls. A
cloud of combustible particles can then be formed and it is critical to assess its explosive
properties such as the maximum overpressure, the maximum pressure rise rate in case of
combined mixtures of hydrogen and dust. In the framework of a PhD thesis these parameters
are assessed as well as the flammability limits of these mixtures for various dust concentration,
average particle size, and initial temperature and pressure (AFF73).
2.2.2 Strongly accelerated flames and transition to detonation
2.2.2.1 Criteria for flame acceleration
For more than a decade, ICARE has been involved in different programs with industrial
partners (EDF, AREVA) as well as organisms (CEA, IRSN) concerned about the safety of
nuclear power plants. In order to address the case of a severe accident involving hydrogen
explosions, a highly instrumented facility (ENACCEF) has been developed in order to study the
risk of flame acceleration and to propose a criteria that can identify potentially destructive
mixtures. The criterion that has been proposed is based on different properties of the mixture
(expansion factor, Lewis and Zeldovich numbers). The effect of hydrogen concentration
gradients on this criterion has been studied (TH26; ACTI24-25). Moreover, in the framework
of the OECD committee on the safety of nuclear installations, this study has been chosen as a
test case for more than 15 countries in the framework of International Standard Problem (ISP49). Within the ANR project PAN-H Hydromel aiming at evaluating explosion hazards related
to the transport of hydrogen using the existing network for natural gas, one solution we
explored was to mitigate its explosive properties by adding methane. For this purpose, the
inhibitor effect of methane for strongly reactive mixtures has been investigated (COMM28),
using also the fundamental explosion parameters acquired in §2.2.1.
2.2.2.2 Flame / water droplet interactions
In the case of a severe accident in a nuclear power plant, the safety procedures include the use
of water sprays in order to abate the radioactive aerosols and reduce the pressure inside the
reactor building. A two phase mixture of H2/air/steam/water droplets is then formed which
could be inside the flammability limits. In addition, the presence of water can create a short
electric circuit which can act as an ignition source. It is therefore crucial to understand whether
22
the water spray will extinguish the flame or on the contrary accelerate it. This work has been
conducted in collaboration with IRSN and AREVA (TH26; ACL176; ACTI44, 79). The
behavior of the flame of H2-air-H2Ovap mixtures near the flammability limits is investigated as
a function of the initial temperature (ACTI61, 78).
2.2.2.3 Detonation properties of liquid fuels
In order to select a liquid fuel that is easily stored and capable of achieving a transition from
deflagration to detonation in a very short distance, for pulsed detonation engines applications,
the sensitivity to detonation of heptane when mixed with oxygen or air was studied (see also
Thematic Research Group IV §2.1.2.1). A detailed kinetic mechanism has been proposed to
describe its explosive properties (ACL44). During this study, a novel technique of enhancement
of DDT have been proposed by coupling a Schelkin spiral and hot gas jet injection as well as
the construction of an electro-spray device capable of producing droplets with an average
diameter below 0.5 µm. In this case, detonation transition was successfully obtained (TH23,
ACTI45).
2.3 Multiphase gasification and combustion phenomena
2.3.1 Vaporisation of liquid droplets and clouds
This research axis concerns the vaporisation of liquid fuel droplets after the primary and
secondary atomisation phases, and is important for reactive mixture formation analysis in liquid
fuel combustion systems, such as liquid rocket engines or lean prevaporized premixed gas
turbine applications. Our global objectives are to experimentally characterize and model the
vaporization properties of various liquid fuel droplets at high pressure and temperature
conditions. High pressure enhanced natural convection effects are reduced by conducting the
experiments under reduced gravitational acceleration conditions. During the last years,
emphasis was put on droplet interaction effects. A specific apparatus was developed to observe
and characterise high temperature vaporisation of a droplet network. This set-up is also adapted
for parabolic flight experiments in order to achieve reduced gravity conditions. n-Heptane
droplets are deposited at the intersections of two cross wires of 0.014 mm in diameter, reducing
drastically the fibre effect on the droplet vaporisation characteristics, as was inevitably
observed with the classical large diameter fibre suspended droplet experiments. By comparing
the two techniques, the effect of the heat transfer from the fibre was clearly identified and
quantified. Correlations for the vaporisation rate were proposed allowing the unification of
earlier results. Droplet interaction effects were investigated for n-decane droplets. The
vaporisation rate of the centre droplet in a 3D droplet network was measured and a reduction of
about 60% was observed compared to single droplet vaporisation rates under identical
surrounding conditions. These results, conducted within the CNRS-CNES coordinated action
(GDR) on “Transport phenomena in microgravity” allows detailed comparisons with the
numerical simulations of the literature (ACTI15, 23, 51). This work is presently extended to the
vaporisation of droplet clouds.
2.3.2 Combustion of aluminum particles
Studies on the combustion of metallic particles such as aluminium and magnesium are
motivated by their use, actual or potential, in solid rocket propulsion applications. In the
continuation of our past work on this topic, a study was conducted in cooperation with
SME/SNPE (2006-2008) concerning the combustion properties of nanosized aluminium
particle clouds. A new experimental set-up was developed which allows determining the flame
propagation velocities in a cloud of aluminium nanoparticles. Emission spectroscopy
measurements also permitted to estimate gas and condensed phase temperatures. Experiments
23
were conducted parametrically in terms of particles nature and concentrations and the
behaviour of clouds of nanoparticles versus micron sized particles were determined. An
associated numerical modeling and simulation study permitted to estimate the particle burning
time versus the particle size and showed that the agglomeration of nanoparticles may hinder
their beneficial size effect (TH11; AFF60; ACTI36-39; AFF65; ACTI68; ACLN6, ACL132).
A prospective study on the development of “frozen propellants based on passivated aluminium
nanoparticles and water” was conducted in cooperation with CNES and SME. When initiated
by a hot wire, this novel propellant exhibits a stable and autonomous combustion even in an
inert atmosphere. Its burning rate was determined under various conditions for the propellant
composition, nature and size distribution of the particles and the initial pressure, using the high
pressure droplet combustion facility of ICARE. This “Cold Solid Propellant” was also
successfully tested at the CRB/SNPE test facilities under real fire conditions (ACTI40;
ACLN7).
The previous study has clearly shown the feasibility of the (2Al + 3H2O  Al2O3 + 3H2)
reactions under low temperature conditions. We capitalized on this information to study low
temperature (40°C<T<90°C) reactions between nanosized aluminum particles and water as an
innovative on demand H2 generation process. We have examined the effects of water
temperature, chlorine content and pH and the particles nature on the hydrogen yield. We have
shown that the reaction (Al + 2H2O  AlO(OH) + 3/2 H2) starts after an induction period
corresponding to the hydration-dissolution-precipitation time of the alumina layer covering the
aluminium particle and the generation of H2 occurs steadily until complete conversion of the
metal. The induction period and the maximum H2 yield were determined for all explored
conditions (ACTI48). This study is presently ongoing by investigating alternative ways of depassivating (or activating) the low temperature reactions of nano and microsized aluminium
particles in water.
2.3.3 Biomass gasification by allothermal processes
A promising way to convert various biomass resources into new fuels (such as syngas or
hydrogen) concerns the gasification of their non-comestible ligno-cellulosic fractions but also
of various agricultural, forestry and municipal residues and wastes, including those having high
humidity. The syngas produced can be either used as a gaseous fuel in gas engines or gas
turbines or mixed with natural gas, or converted into liquid fuels by catalytic processes such as
the well known Fischer-Tropsch process. For wet biomass or organic resources, conventional
auto-thermal gasification processes are too much energy consuming as it is necessary to dry
them prior to their partial oxidation or gasification. Allo-thermal gasification processes consist
in aiding the gasification process by some additional external energy source and are alternative
technologies that are developed presently. If optimized they may increase the H2/CO ratio in
the produced gas, increase its LHV and also help gas cleaning especially abating tars. One such
process is plasma aided gasification of liquid bioresources such as bio-oils issuing from the
pyrolysis of the original biomass. In the context of the ANR/PNRB project GALACSY (20062009), coordinated by CEA Cadarache, ICARE determined the thermo-chemical parameters of
a model bio-oil (see §2.1.2 in Thematic Research Group I) and modeled the injection of the biooil into the plasma (Bodele, E., Gökalp I., Numerical study of liquid spray formation by interaction
between a plasma and liquid Jet. ILASS Europe 2008 Lake Como, Italy 8-10 Septembre 2008)
Another innovative gasification process adapted for wet biomass is hydrothermal
decomposition or gasification of biomass in supercritical water. In the context of the
ANR/PNRB project SUPERBIO (2008-2010) and the Region Centre project SUPERGAZ
(2010-2011), both coordinated by ICARE, several partners including CEA-Marcoule, Veolia,
UNGDA, ICMCB of Bordeaux, LaTEP of PAU and CEMHTI and CRMD in Orleans, are
characterizing and optimizing this process applied to wet residues of alcohol distillation
processes and wet organic municipal waste and also macro-algae. The role of ICARE in these
projects is again the determination of the thermo-chemical parameters of model resources such
24
as glucose (see §2.1.2 in Thematic Research Group I) and the observation and analysis of the
supercritical gasification processes of various organic resources using the Hydrothermal
Diamond Anvil Cell set-up equipped with optical diagnostics, jointly developed with the
McGill University, Montreal, Canada (AFF72; ACL133-135). This research axis is ongoing
and is now aiming to design and optimize a continuous flow pilot reactor in cooperation with
the orleanaise partners of ICARE.
Thematic Research Group IV : Space propulsion & high-speed flows
1 Research context and objectives
This topic encompasses two kinds of closely related activities, namely rocket and spacecraft
propulsion on the one hand and high-speed flights in upper layers of planetary atmospheres on
the other hand. The first activity concerns the development of chemical engines for launchers
and ion thrusters for satellites and space probes. The second one covers hypersonic aircraft and
supersonic flight of capsules during entry stage in atmosphere of e.g. the Earth, Mars and Titan.
Experimental works are carried out in dedicated ground-based test-chambers, which form a
singular facility set within Europe. The PIVOINE chamber with cryogenic pumping system is
employed for electric propulsion studies. An ensemble of large wind-tunnels with cold gas jet
as well as high-enthalpy flows allow reentry and flow control studies. Besides, several high
performance numerical tools have been developed such as 3D Euler and Navier-Stokes codes
for reactive compressible flows and a 3D code for linear stability analysis of a laminarturbulent boundary layer.
2 Research activities and key results
2.1 Space propulsion
2.1.1 Electric propulsion
Research activities of the Electric Propulsion team are mostly focused on the in-depth
examination of the physics of various low-pressure discharges. The aims are twofold and
concern on the one hand, the improvement of existing thrusters for satellites and interplanetary
spacecrafts and, on the other hand, the design of innovative ion sources for the next generation
of electric propulsion devices.
2.1.1.1 Physics of Hall effect thrusters
A Hall effect thruster is an advanced propulsion device that uses a low-pressure magnetized
discharge to ionize and accelerate a propellant gas. All activities related to this subject are
performed in the frame of a joint-research program (GDR 3161, Propulsion à Plasma dans
l’Espace) between the CNRS, the CNES, the Snecma company and several Universities.
* Transport phenomena of ions and atoms within the E×B discharge as well as in the plume
near-field of various thrusters are investigated by means of Laser Induced Fluorescence
spectroscopy (TH14). Measurements of the ion velocity allow to reconstruct the electric field
distribution. Parts of these studies were carried out in the frame of the ANR project Teliopeh.
Last year, we managed to reveal the time evolution of the electric field at low-frequency by
way of a pulse-counting technique. Recently, we characterized the ion azimuthal trajectory and
25
we proposed a comprehensive picture of the atom flow in a Hall thruster (ACL138, 139, 148,
149, 153, 154, 157, 159, 160 ; ACLN10, ASCL7).
* The influence of the magnetic field topology, a key parameter, is examined by measuring
discharge properties (electron parameters, ion energy, plasma potential…) and thruster
performances for various configurations of the Snecma-built PPS®1350-ML thruster (ACL149.
In a few months, the PPS-Flex, a dedicated source especially built to provide “exotic” field
maps, will be available.
* The electron density and temperature as well as the plasma potential are determined in the
plume far field using Langmuir probes and emissive probes. Such data are crucial for critically
assessing plasma-spacecraft interactions. We are currently developing a technique for timeresolved measurements as well as an original setup to realize measurements in the high-energy
core of the discharge (ACL136; ACLN11).
* The construction of scaling laws and the development of sizing methodology presently
represent a large part of the ICARE activities in the electric propulsion area. Dedicated
experiments are carried out in the recently-built NExET test-bench with a low-power thruster
equipped with magnets. Besides, in the frame of the EU FP7 HiPER project, we are responsible
for the design of a 20 kW Hall thruster able to deliver 1 N of thrust (ACL137).
* Other activities are the following: thermal imaging of HET cavity and assessment of power
deposited to the dielectric walls (ACL144, 145), analysis of electron turbulence and plasma
fluctuations (ACL152; ACLN11) and development of plasma plume diagnostics for facilities of
the European Space Agency.
2.1.1.2 Investigation of innovative Hall thruster designs
In order to improve the performance level of a HET, we suggested in 2006 to add energy in the
thruster cavity by means of a Radio Frequency wave. The idea of a RF-enhanced HET was
investigated within an EU FP6 INTAS project (2006-2009) that included several Russian
laboratories. The consortium demonstrated that localized energy injection has a significant
impact on the thrust and the beam divergence. A low-power thruster with inductive RF
coupling is now under development at ICARE to pursue along that promising path. Such a
concept may also be of great interest for propellants with high ionization energy.
2.1.1.3 Ion-ion plasma-based thrusters
Both Hall effect thrusters and gridded ion engines, although based on two different ion
acceleration strategies, suffer from two main drawbacks: the need of an external electron gun to
neutralize the ion beam and the creation of slow ions that interact with the spacecraft elements
like solar panels. A new concept termed PEGASES and patented in 2007 by P. Chabert from
the Ecole Polytechnique, avoids the two obstacles thanks to the use of both positive and
negative ions. In 2009 we initiated a collaborative research program with the LPP to further
develop the PEGASES concept and to build, on a long range, a flight demonstrator. These
activities are presently supported by Astrium. Our task mostly consists in studying the
continuous (opposed to pulsed) production of a high-density ion-pair plasma from an
electronegative gas. For that purpose, an inductively-coupled RF reactor equipped with a
versatile magnetic trap was constructed. In addition, a second prototype of the PEGASES with
an acceleration stage will soon be tested in the cryogenic NExET bench which was especially
built for these experiments.
2.1.1.4 Other activities in the field of plasma physics
Cooperation with LPIIM (Marseille): Investigation by LIF spectroscopy of de-excitation of
metastable atoms on a metal surface in a low-pressure multipolar device.
Cooperation with LPP (Ecole Polytechnique): Study of neutral depletion phenomenon in a
helicon device; measurements of Ar atom temperature as a function of the magnetic field
strength and comparison with numerical simulations.
26
Cooperation with the University of Opole (Poland): Hyperfine structure of several Xe and Kr
atomic lines (ACL14)]; physics of expanding plasmas (ACL147, 161; ACLN9).
2.1.2 Chemical propulsion
2.1.2.1 Studies on propulsion by detonation waves
This study is part of collaboration between ICARE and MBDA France and concerns both
pulsed and continuous detonation wave engines. One aim is the evaluation, via numerical
simulation, of the performance of a continuous detonation wave engine (CDWE). In CDWE,
the propellants are injected into an annular cylindrical chamber and form a layer of fresh
mixture, which is consumed by one or more detonation waves. Detonation waves continuously
propagate in the azimuthal direction and generate hot gases exhausted through the other end of
the chamber. CDWE has two important features: i) in the detonation waves, combustion occurs
at a higher pressure than the average pressure in the chamber thus resulting in a potential gain
in performance compared to the constant pressure thermodynamic cycle; ii) the flow structure
is such that the flow becomes supersonic at the exit of a cylindrical chamber which allows the
use of a nozzle without geometrical throat.
Three numerical models are developed to study a CDWE fed with hydrogen-oxygen
mixtures: i) a global model to estimate the performances of an ideal CDWE; this model was
used to demonstrate the theoretical advantage of a CDWE over a conventional engine; ii) a
model based on 2D Euler equations, with which a parametric study was performed by
varying the injection conditions and chamber geometry (ACLN4); and iii) a model based
on 3D Euler equations coupled with a method of adaptive mesh refinement (AMR) is
employed to simulate the flow in the chamber. In addition, propulsion by pulsed detonation
waves is also studied. In one study, detonation properties of n-heptane in air or oxygen are
determined as an example of storable liquid fuel for pulsed detonation applications (see
§2.2.2.3 in Thematic Research Group III). Another study was conducted in cooperation
with CNES, MBDA and ROXEL in order to determine the detonation properties of liquid
oxygen and liquid hydrogen mixtures. Two experimental facilities have been developed:
one for non-reactive atomization studies and the other for detonation studies (TH29). In
particular, the effect of the size distribution of LOX droplets on the initiation and
propagation of the detonation wave is determined ACTI32).
2.1.2.2 Safety of storable liquid propellant systems
A study was conducted on the reactivity of hydrazine with various lubricants used in the micro
pumps of spacecraft propulsion systems, in collaboration with CNES and the company CSTM.
The objectives were to verify the non-explosive character of the mixture between hydrazine and
the lubricants and to study the chemical behaviour of the lubricant subjected to a hydrazine
saturated atmosphere. Presently, desorption kinetics of helium in ergols (monomethyldydrazine
and MON) is studied. The objective is to gain understanding on the behaviour helium
pressurized ergols during temperature variations and pressure drops which may create bubles in
the propellant transport channels.
2.1.2.2 Laminar-turbulent transition predictions of a hypersonic spacecraft forebody
This study is developed in the framework of the LEA program conducted by ONERA and
MBDA France, with the objective of building and launching a scramjet powered hypersonic
vehicle able to fly from Mach 4 to Mach 8, fuelled with either hydrogen or a mixture of
methane and hydrogen. For this type of engine, a well-adapted air inlet is a crucial issue and
depends on the state of the boundary layer on the forebody, which serves as a compression
ramp. It is highly desirable to have a turbulent boundary layer. Hence, it is important to know
whether natural transition occurs or not, and if not how to initiate it.
27
A numerical code based on the local modal linear stability theory has been developed and
validated (TH16). This code applied to different flight conditions (Mach number, altitude, angle
of attack...), allows to detect different instability mechanisms and to predict the transition with
the semi-empirical "eN" method. An original method has been proposed for the integration of
amplification rates (ACL156). The stability code was also used to predict the transition during
ground tests in two different hypersonic wind tunnels at ITAM, Novosibirsk, Russia : the blowdown T-313 wind tunnel (adiabatic wall, Mach 4 and 6), and the AT-303 impulse wind tunnel
(isothermal wall, Mach 6 and 8).
The preparation of experiments, their realization and the comparison between calculations and
experimental results have been conducted during another thesis (ACTI122, ACTI123, TH34).
The flow field around the forebody for the different experimental conditions has been simulated
in order to provide the mean flow profiles for the stability calculations, and to design the
gauges for the experiments. The application of empirical criteria allowed designing efficient
roughness parameters to trigger transition during the less favorable Mach 8 tests.
In addition, a partnership with Tatiana Elizarova from the Russian Academy of Sciences is
currently undertaken for the application of the Quasi-Gas Dynamics approach to the direct
numerical simulation of the transition on the LEA forebody.
2.1.2.3 The MILES approach for compressible, multicomponent reacting flows
Since about ten years, a numerical activity is conducted at ICARE for the simulation of
turbulent flows with complex physics using higher order methods. The final goal is to simulate
the turbulent mixing and combustion of a hydrogen jet in co-flowing air, under conditions
typical for supersonic combustion chambers. This activity is supported by CNRS-IDRIS with
computational time offered on massively parallel supercomputers.
Two numerical codes have been developed for fundamental studies aiming at comparing
different numerical schemes for the simulation of turbulent reacting flows (ACLN2). A Direct
Numerical Simulation code based on higher order compact schemes with spectral-like
resolution has been written and applied to different test cases (TH8). The code is 3D, vectorized
and parallelized through task sharing with OpenMP. A second code based on WENO scheme of
order 3 to 9 has also been developed in 2D for the simulation of shocked flows. The extension
of the WENO code to 3D along with its compilation on various platforms is now achieved. This
dissipative code allows the large eddy simulation of compressible, shocked, reacting turbulent
flows with (LES) or without (MILES) explicit subgrid models; hence the possibility to analyze
the relative performances and merits of these approaches for the physics of complex flows.
2.2 High-speed flows
2.2.1 Atmospheric reentry
Activities of ICARE in this area are oriented towards the development of experimental research
topics in connection with the ICARE facilities (Phedra, Marhy and Edith), whereas the
numerical developments are conducted thanks to the collaborations established with the “Fluid
Dynamics and Thermophysics” team of Marseille and the LEEM of Evry.
2.2.1.1 Supersonic plasma flows in thermal non equilibrium
Vehicles moving at high speed in a planetary atmosphere generate shock waves capable of
emitting radiation. Due to high temperatures and low pressures, non-equilibrium effects occur
behind the shock wave. They can lead to strong radiative fluxes that form a large part of the
overall heat flux. This activity focuses on the study of radiative models of the created plasma
and on the coupling between the involved physico-chemical processes. For high velocities, the
28
presence of electrons leads to additional physico-chemical processes: electronic collisions can
be very efficient for electronic excitation and ionization of atoms, and electronic and vibrational
excitation of molecules. The Phedra facility allows reproducing some of theses properties.
Besides, it provides experimental data, which are useful to validate calculations of the emission
spectra, non-equilibrium effects and modelling of the thermodynamic and transport properties.
In the framework of the ANR project RAHYEN (2008-2011), our principal task is the
development of an exhaustive and accurate spectroscopic database for terrestrial and Martian
entries and the development of reliable physical models to simulate radiation and thermochemical non-equilibrium in atmospheric entry flows. To comply with the objectives, we have
developed IR and VUV spectral diagnostics techniques and we have developed a theoretical
spectral database necessary to analyze experimental results (ACL141, ACT I118).
2.2.1.2 Modelling of expanding plasmas
For polyatomic gases at high temperature, degrees of freedom other than the translational one
must be taken into account and assigned a specific temperature: rotational, vibrational and
electronic. Under atmospheric reentry conditions, the thermal nonequilibrium can reach 20%
between translational temperature and rotational, vibrational or electronic ones. In wind
tunnels, model flows are generated by mean of arc-jet nozzles, and from the inlet to the outlet
of the throat, the flow can be heated from room temperature to more than 10 000K at transsonic speeds. Currently we are able to simulate a flow for realistic conditions of entry. The
modeling of the Joule heating source gives quite consistent temperatures with the overall
energy balance. More precise comparisons will be possible as soon as temperature
measurements will be available. Different models of arc (more or less stable) were tested and
compared. The dissipation of the energy, especially in chemical reactions has been
demonstrated for a power ranging from 6 to 10 kW. The calculations also helped to highlight
the influence of the heating source on the stability of the plasma jet. These computations have
been applied to different atmospheres: Earth (N2, N2-O2), Titan (N2-CH4) and Mars (CO2N2). The strong coupling between different species and their internal energies (electronic,
vibrational and rotational) has been recently achieved (TH24). The evolution towards
thermodynamic equilibrium between the translational and electronic temperatures in the collar
has been demonstrated and validated for pure gas as Argon. We also considered the problem of
the presence of species that once in their excited state, contribute significantly to the properties
of the plasma. To examine the importance of these effects, a first study on Argon at low
pressure in the arc-jet was carried out with four states: Ar, Ar (4s), Ar (4p) and Ar+ (ACL140,
150, 151, 163; ASCL8-10).
2.2.2 Supersonic flow control
Two approaches are developed at ICARE for supersonic flow control: the uses of plasma
actuators and the application of standard mechanical methods.
2.2.2.1 Flow control with plasmas
This activity was initiated in 2004 concerning the effects of a surface electrical discharge over a
flat plate. The discharge is created by two electrodes glued on the surface of the plate.
Experiments were performed in the MARHy wind tunnel operating with air at Mach 2 under
low density conditions. Heating of the cathode has been observed by an infrared camera. This
heating, due to ionic bombarding and recombination at the surface is higher as the electrical
potential increases. Pitot probe measurements demonstrated a thickening of the boundary layer
when the upstream electrode is the cathode. The effect is weak or even inexistent when the
downstream electrode is active. It is thus inferred that the discharge effect is directly connected
to the heating of the plate. When the upstream part of the plate is hot, the boundary layer is
more influenced by the heating. This study was supported by the Region Centre and the EPEE
29
federation; it also benefited from collaboration with the Laboratorio de Fluidodinámica,
Universidad de Buenos Aires (TH15; ACL146, ACL155, ACL158, ACL162, ACTI84,
ACTI87, ACTI89, ACTI90, ACTI104, ACTI105, ACTI110, ACTI118, ACTI119, ACTI120,
ACTN4, ACTN5, ACTN6).
2.2.2.2 Thrust vectorization of an axisymmetric nozzle
An experimental and numerical investigation is ongoing to examine the possibilities of fluidbased thrust vectorization in an axisymmetric nozzle through the injection of a secondary gas
into a supersonic primary stream. Experiments are performed in the super/hypersonic windtunnel EDITH with a Mach 3 nozzle. By way of a Schlieren flow vizualisation technique it was
so far shown that side gas flow injection induces a shock inside the nozzle, the latter being at
the origin of a change in the main stream direction. This activity is the subject of a PhD thesis
in the framework of a cooperation with the LEEM (Université d’Evry); it is supported by the
CNES (ACTI127).
2.3 Non-continuing research activities
Three research programs have come to an end with the retirement of J. P. Martin,
J. C. Lengrand and A. Lebehot in years 2008 and 2009.
2.3.1 Plasma-aided combustion.
The aim of this program was to investigate theoretically and experimentally the kinetics and
mechanisms of non-conventional combustion at the presence of electronically excited singlet
oxygen molecules. This work was the subject of a collaboration with Lehrsthul
Strömungsmechanik und für Strömungstecknik (LSS) at the University of Magdeburg); it was
supported by an INTAS program (ACL143, ACTI81, ACTI82, ACTI93, ACTI94, ACTI95,
ACTI96, ACTI107, TH25).
2.3.2 Simulation of rarefied gas flows by the Monte Carlo method.
The code DISIRAF was updated in order to take into account physical models of internal
modes relaxation to simulated rarefied hot gases in thermal non equilibrium. This study was
financially supported by CNES.
2.3.3 Interaction of atomic oxygen with surfaces.
This research activity was conducted in the plasma wind tunnel Pelican which is now
dismantled.
30
Thematic Research Group V : Chemical vapor deposition and inductive
processes for materials elaboration
The CVD and other material sciences activities of ICARE are presented here. They will not be
continued in the coming years because the CVD activities ended with the retirement of L.
Vandenbulcke (in August 2010). S. de Persis has integrated the Flame Structure Team since
2008 and she is now fully involved in combustion studies. In addition, the activities of Pascale
Gillon in the materials science area are now conducted only in cooperation with GREMI.
1 Research context and objectives
The research activities in the materials sciences area at ICARE concerned the following topics:
* Gas phase in situ characterizations were performed by i) optical emission spectroscopy
(collaboration with V. Lago, ICARE); ii) by molecular beam mass spectrometry for plasma
assisted and thermal chemical vapor depositions (collaboration with J.L. Delfau and C. Vovelle,
ICARE); and iii) by microwave interferometry (national collaboration with Laboratoire de
Physique des Milieux Ionisés et Applications, Nancy) and double Langmuir probes
* Modelling studies concerned mainly i) the investigation of reaction mechanisms that develop
in the gas phase during a CVD process; ii) the use of a three-step procedure of constructionanalysis-reduction, in order to better understand reaction mechanisms and to integrate them in
reactor; and iii) the use and development of chemical kinetics tools stemming from the
combustion field, but almost unknown in CVD, in order to model reactive gas-phases.
* Elaboration of thin films and nanoparticles in Plasma Assisted Chemical Vapor Deposition
reactors under reduced pressure
* Solid characterizations in collaboration with several regional and national laboratories and
concerning observations and characterizations using TEM, HRTEM, XPS, IMS, EELS, Raman
spectroscopy, IR and UV, X ray diffraction and tribological tests
* Development of inductive processes to elaborate and transform metallic materials with
specific properties.
2 Research activities and key results
2.1 Experimental and kinetic studies of C-H-O plasmas for polycrystalline and nano-smooth
diamond deposition
CH4–CO2 microwave plasmas have been studied by optical emission spectroscopy, microwave
interferometry, Langmuir probing and molecular beam mass spectrometry. The variations of
plasma parameters and the concentration variations of both stable species and radicals in the
plasma have been reported as a function of the power density and the total inlet flow rate.
While the power density influences directly the plasma kinetics, the flow rate changes the
residence time in the plasma and then the degree of conversion of the chemical system that is
the extent to which the gas composition moves toward its steady-state composition.
This is studied by modelling of plasma kinetics taking into account the coupled fluid dynamics
of the gaseous species and the gas-phase chemistry including electron dissociation and surface
recombination at the reactor wall. The experimental and modelling studies are used to correlate
the relative concentration of important hydrocarbon radicals and etching radicals in the plasma
and the gradients of all these species in front of the surface to the deposition domain, the
structure (polycrystalline or nanocrystalline) and the quality of diamond films, which is the
ratio of sp3 to (sp3 + sp2)-hybridized carbon in the film.
31
All results show the plasma kinetic effect on the diamond deposition domain and the diamond
deposition quality and structure, due to different degrees of conversion of the chemical system.
The deposition of diamond coating from CH4–CO2 is shown to be a versatile process that
permits deposition of a great variety of diamond films. However it requires particular attention
because of the variation of the deposition conditions and then diamond quality and structure of
the deposits depending on the extent of conversion of the inlet species to various intermediate
and finally stable species formed in the plasma chemical system (ACL172, 176, 177, 180;
COM27, 33)
2.2 Elaboration of carbon nanoparticles in plasmas
A decrease in electron density and a strong increase of electron energy, which induce the
enhancement of excitation rates, have been observed in CH4-CO2 plasmas when the inlet
methane concentration is high enough and the input microwave power sufficiently low.
Together with the decrease in the electron density with plasma duration, they are characteristic
of dust formation in these plasmas. In these conditions, the formation of hydrocarbon radicals
which are well known precursors of soot and the formation of first stable aromatics have been
reported, as observed by molecular beam mass spectrometry. Modelling of the chemistry in the
plasma has been carried out, which can also predict the formation of low concentrations of
polyaromatic hydrocarbons. These species could be involved in the homogeneous nucleation
process of carbon. As a function of the plasma duration, various carbon nanostructures are
observed in the particles collected downstream of the plasma.
For short durations, nanodiamond grains are formed with the size range 15-100 nm. They are
composed of diamond nanocrystals of about 2-10 nm in size; these values are generally
observed for all diamond nanocrystals formed in extraterrestrial and terrestrial conditions.
For longer plasma durations, sp(2)-hybridized carbons are obtained. Their structure varies from
soot to more ordered graphitic carbons nearly similar to 'onions' and structures similar to those
observed in tokamaks. The control of the size and the microstructure of the nanodiamond grains
are especially important as this could open possibilities for applications in a wide range of
fields (ACL178, 179; COM31, 32; AP4).
2.3 Optimization of diamond films properties for mechanical, biomechanical and electronic
applications
2.3.1 Polarized micro-Raman spectroscopy for studying stresses in as-grown and tensile-tested
diamond films
The determination of the stress/strain level in diamond films was carried out here by polarized
Raman spectroscopy. For as-grown polycrystalline films, a classical shift and splitting of the
Raman spectra was evidenced. A polarized Raman study in two directions allowed confirming
the isotropic biaxial nature of the stresses which are principally from thermal origin. In case of
stresses measured after a tensile test, the polarized Raman study permitted us to evidence the
anisotropic nature of the biaxial stresses. These stresses were unambiguously determined by the
averaging method of Anastassakis. Very high compressive values were obtained in the
direction perpendicular to the tensile one while the stresses from thermal origin were just overcompensated in the tensile direction. These high anisotropic stresses resulting from the initial
thermal stresses and the plastic deformation of the substrate after the tensile test explain the
surprising positive Raman shifts of the splitted diamond bands after such a tensile test. While
these high anisotropic stresses are determined with a fairly good accuracy, the average Raman
spectrum of the film could not be modelled by the averaging procedure of Anastassakis. The
influence of the numerous possible orientation of each grain relatively to the stress directions
32
was shown experimentally, especially in perpendicular direction to the tensile one, the direction
of high compressive stresses. This local crystallographic influence however does not hamper
studying the local stresses, as shown near the edge of a diamond film which had partially
peeled off after a tensile test. Polarized micro-Raman spectroscopy is therefore of particular
interest for evaluating the stress variations in such regions and then for inferring information
about the adhesion of the films after mechanical tests.
2.3.2 Superlow Friction of Nano-smooth Diamond Coatings
The friction behaviour of nano-smooth diamond coatings under high vacuum and with various
added gases has been studied to elucidate the influence of different test environments.
Glycerol, water, hydrogen and deuterium were introduced into the vacuum chamber at room
temperature and 80°C. Specifically, the friction of nano-smooth fine-grained diamond coatings
deposited on titanium alloys substrates by a MWPECVD method was studied. These nanosmooth diamond coatings display a smooth surface roughness in the 15-35 nm range coupled
with high hardness and Young’s modulus. Their structure is revealed by transmission electron
microscopy studies. While the friction coefficient is high under ultra high vacuum with
diamond/diamond couples, ultralow friction with no wear is obtained in presence of OHcontaining gases. Superlow friction (friction below 0.01) was also observed in presence of H2
and D2. The gas phase lubrication allows a better identification of the friction mechanism from
advanced surface characterizations. The use of these green lubricants evidences the potentiality
of these coatings for decreasing the energy consumption in various mechanical systems
(ACL173, 174, 175, 180; ACTI111; ACTN8; COM26, 28, 29, 30).
2.4 Development of inductive processes to elaborate and transform metallic materials with
specific properties
Massive metallic alloys of 5 to 12 elements such as the amorphous Zr-based alloys or the high
entropy alloys present remarkable properties either on the mechanic, tribologic or adherence
point of view. Their elaboration by fusion is particularly tricky as it is essential to produce a
homogeneous liquid phase which respects the exact composition and a high purity level. We
have developed an induction furnace with a levitation cold crucible working under inert gas
atmosphere. In a first step, the metals are introduced in the furnace and degassed under vacuum
before being melted. The cold crucible induction melting is particularly well adapted in the case
of several elements alloys elaboration: it provides fast melting limiting the evaporation of the
light elements while melting the refractory ones, homogeneity is obtained by the
electromagnetic stirring and purity is improved by the use of a cold crucible. Alloys are
analyzed by XRD and EBM to qualify the materials quality and structure. The foundry step is
obtained by adding a pouring system at the bottom of the cold crucible. The molten alloy is
then superheated in levitation before being poured into moulds of different shapes. We
collaborate with the GREMI group to adapt a PVD process to deposit thin films of alloys from
massive targets realized by induction melting. The process and different alloy compositions
have been patented (AP3). Both thin films of amorphous alloys (ACL165) and high entropy
alloys have been manufactured and their properties studied (ACL169, ACL173). These studies
were conducted in cooperation with GREMI, CRMD and CEMHTI in Orléans, with LMPM in
Poitiers and also with the Pôle de Compétitivité Cosmetic Valley and companies such as Téfal,
Delphi, SASA, Titacreuset.
33
LISTE DES PUBLICATIONS ICARE – (2006-2010)
(Cette liste est classée par groupes thématiques)
Thématique Cinétique Chimique de la Combustion
ACL : Articles dans des revues internationales ou nationales avec comité de lecture
ACL : 1
ACL : 2
ACL : 3
ACL : 4
ACL : 5
ACL : 6
ACL : 7
ACL : 8
ACL : 9
ACL : 10
ACL : 11
ACL : 12
ACL : 13
Catoire L., Chaumeix N., Pichon S. and Paillard C., “Visualizations of gasphase NTO/MMH reactivity”, Journal of Propulsion and Power, 22 (1), pp.
120-126, (2006).
Catoire L., Paulmier S. and Naudet V., “Experimental determination and
estimation of closed cup flash points of mixtures of flammable solvents”,
Process Safety Progress, 25 (1), pp. 33-39, (2006).
Catoire L., Paulmier S. and Naudet V., “Estimation of closed cup flash points
of combustible solvent blends”, Journal of Physical and Chemical
Reference Data, 35 (1), pp. 9-14, (2006).
Dagaut P. and Cathonnet M., “The ignition, oxidation, and combustion of
kerosene: A review of experimental and kinetic modeling”, Progress in
Energy and Combustion Science, 32 (1), pp. 48-92, (2006).
Dagaut P. and Dayma G., “Mutual Sensitization of the oxidation of nitric
oxide and a natural gas blend in a JSR at elevated pressure: Experimental and
detailed kinetic modeling study”, Journal of Physical Chemistry A, 110
(21), pp. 6608-6616, (2006).
Dagaut P. and Dayma G., “Hydrogen-enriched natural gas blend oxidation
under high-pressure conditions: Experimental and detailed chemical kinetic
modeling”, International Journal of Hydrogen Energy, 31 (4), pp. 505-515,
(2006).
Dagaut P., El Bakali A. and Ristori A., “The combustion of kerosene:
Experimental results and kinetic modelling using 1-to 3-component surrogate
model fuels”, Fuel, 85 (7-8), pp. 944-956, (2006).
Dayma G. and Dagaut P., “Effects of air contamination on the combustion of
hydrogen - Effect of NO and NO2 addition on hydrogen ignition and
oxidation kinetics”, Combustion Science and Technology, 178 (10-11), pp.
1999-2024, (2006).
Moreac G., Dagaut P., Roesler J.F. and Cathonnet M., “Nitric oxide
interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm”,
Combustion and Flame, 145 (3), pp. 512-520, (2006).
Nicolle A. and Dagaut P., “Occurrence of NO-reburning in MILD combustion
evidenced via chemical kinetic modeling”, Fuel, 85 (17-18), pp. 2469-2478,
(2006).
Yahyaoui M., Djebaili-Chaumeix N., Dagaut P., Paillard C.E. and Gail S.,
“Kinetics of 1-hexene oxidation in a JSR and a shock tube: Experimental and
modelin study”, Combustion and Flame, 147 (1-2), pp. 67-78, (2006).
Chaumeix N., Pichon S., Lafosse F. and Paillard C.E., “Role of chemical
kinetics on the detonation properties of hydrogen/natural gas/air mixtures”,
International Journal of Hydrogen Energy, 32 (13), pp. 2216-2226, (2007).
Dagaut P., “Kinetics of jet fuel combustion over extended conditions:
Experimental and modeling”, Journal of Engineering for Gas Turbines and
Power-Transactions of the Asme, 129 (2), pp. 394-403, (2007).
34
ACL : 14
ACL : 15
ACL : 16
ACL : 17
ACL : 18
ACL : 19
ACL : 20
ACL : 21
ACL : 22
ACL : 23
ACL : 24
ACL : 25
ACL : 26
ACL : 27
Dagaut P. and Gail S., “Kinetics of gas turbine liquid fuels combustion: Jet-A1
and bio-kerosene”, Proceedings of the Asme Turbo Expo, Vol 2, pp. 93-101,
2007.
Dagaut P. and Gail S., “Chemical kinetic study of the effect of a biofuel
additive on Jet-A1 combustion”, Journal of Physical Chemistry A, 111 (19),
pp. 3992-4000, (2007).
Dagaut P., Gail S. and Sahasrabudhe M., “Rapeseed oil methyl ester oxidation
over extended ranges of pressure, temperature, and equivalence ratio:
Experimental and modeling kinetic study”, Proceedings of the Combustion
Institute, 31, pp. 2955-2961, (2007).
Dayma G., Hadj-Ali K. and Dagaut P., “Experimental and detailed kinetic
modeling study of the high pressure oxidation of methanol sensitized by nitric
oxide and nitrogen dioxide”, Proceedings of the Combustion Institute, 31,
pp. 411-418, (2007).
Delfau J.L., Biet J., Idir M., Pillier L. and Vovelle C., “Experimental and
numerical study of premixed, lean ethylene flames”, Proceedings of the
Combustion Institute, 31, pp. 357-365, (2007).
Dollet A. and De Persis S., “Pressure-dependent rate coefficients of chemical
reactions involving Si2H4 isomerization from QRRK calculations”, Journal
of Analytical and Applied Pyrolysis, 80 (2), pp. 460-470, (2007).
Dubreuil A., Foucher F., Mounaim-Rousselle C., Dayma G. and Dagaut P.,
“HCCI combustion: effect of NO in EGR”, Proceedings of the Combustion
Institute, 31, pp. 2879-2886, (2007).
Gail S. and Dagaut P., “Oxidation of m-xylene in a JSR: Experimental study
and detailed chemical kinetic modeling”, Combustion Science and
Technology, 179 (5), pp. 813-844, (2007).
Gail S., Thomson M.J., Sarathy S.M., Syed S.A., Dagaut P., Dievart P.,
Marchese A.J. and Dryer F.L., “A wide-ranging kinetic modeling study of
methyl butanoate combustion”, Proceedings of the Combustion Institute,
31, pp. 305-311, (2007).
Le Cong T. and Dagaut P., “Kinetics of natural gas, natural gas/syngas
mixtures oxidation and effect of burnt gas recirculation: Experimental and
detailed modeling”, Proceedings of the Asme Turbo Expo 2007, Vol 1, pp.
387-395, 2007.
Mati K., Ristori A., Gail S., Pengloan G. and Dagaut P., “The oxidation of a
diesel fuel at 1-10 atm: Experimental study in a JSR and detailed chemical
kinetic modeling”, Proceedings of the Combustion Institute, 31, pp. 29392946, (2007).
Mati K., Ristori A., Pengloan G. and Dagaut P., “Oxidation of 1methylnaphthalene at 1-13 atm: Experimental study in a JSR and detailed
chemical kinetic modeling”, Combustion Science and Technology, 179 (7),
pp. 1261-1285, (2007).
Ogura T., Sakai Y., Miyoshi A., Koshi M. and Dagaut P., “Modeling of the
oxidation of primary reference fuel in the presence of oxygenated octane
improvers: Ethyl tert-butyl ether and ethanol”, Energy & Fuels, 21 (6), pp.
3233-3239, (2007).
Osmont A., Catoire L., Gokalp I. and Swihart M.T., “Thermochemistry of C-C
and C-H bond breaking in fatty acid methyl esters”, Energy & Fuels, 21 (4),
pp. 2027-2032, (2007).
35
ACL : 28
ACL : 29
ACL : 30
ACL : 31
ACL : 32
ACL : 33
ACL : 34
ACL : 35
ACL : 36
ACL : 37
ACL : 38
ACL : 39
ACL : 40
Osmont A., Catoire L., Gokalp I. and Yang V., “Ab initio quantum chemical
predictions of enthalpies of formation, heat capacities, and entropies of gasphase energetic compounds”, Combustion and Flame, 151, pp. 262-273,
(2007).
Rutar T., Lee J.C.Y., Dagaut P., Malte P.C. and Byrne A.A., “NOx formation
pathways in lean-premixed-prevapourized combustion of fuels with carbon-tohydrogen ratio between 0.25 and 0.88”, Proceedings of the Institution of
Mechanical Engineers Part a-Journal of Power and Energy, 221 (A3), pp.
387-398, (2007).
Sarathy S.M., Gail S., Syed S.A., Thomson M.J. and Dagaut P., “A
comparison of saturated and unsaturated C-4 fatty acid methyl esters in an
opposed flow diffusion flame and a jet stirred reactor”, Proceedings of the
Combustion Institute, 31, pp. 1015-1022, (2007).
Sivaramakrishnan R., Brezinsky K., Dayma G. and Dagaut P., “High pressure
effects on the mutual sensitization of the oxidation of NO and CH4-C2H6
blends”, Physical Chemistry Chemical Physics, 9 (31), pp. 4230-4244,
(2007).
Yahyaoui M., Djebaili-Chaumeix N., Dagaut P., Paillard C.E. and Gall S.,
“Experimental and modelling study of gasoline surrogate mixtures oxidation
in jet stirred reactor and shock tube”, Proceedings of the Combustion
Institute, 31, pp. 385-391, (2007).
Yahyaoui M., Djebaili-Chaumeix N., Dagaut P., Paillard C.E., Heyberger B.
and Pengloan G., “Ignition and oxidation of 1-hexene/toluene mixtures in a
shock tube and a jet-stirred reactor: Experimental and kinetic modeling study”,
International Journal of Chemical Kinetics, 39 (9), pp. 518-538, (2007).
Alseda D., Montagne X. and Dagaut P., “Homogeneous Charge Compression
Ignition: Formulation effect of a Diesel fuel on the initiation and the
combustion potential of olefin impact in a Diesel base fuel”, Oil & Gas
Science and Technology-Revue de l'Institut Francais du Petrole, 63 (4),
pp. 419-432, (2008).
Cances J., Commandre J.M., Salvador S. and Dagaut P., “NO reduction
capacity of four major solid fuels in reburning conditions - Experiments and
modeling”, Fuel, 87 (3), pp. 274-289, (2008).
Catoire L., Yahyaoui M., Osmont A. and Gokalp I., “Thermochemistry of
Compounds Formed during Fast Pyrolysis of Lignocellulosic Biomass”,
Energy & Fuels, 22 (6), pp. 4265-4273, (2008).
Dagaut P., Glarborg P. and Alzueta M.U., “The oxidation of hydrogen cyanide
and related chemistry”, Progress in Energy and Combustion Science, 34
(1), pp. 1-46, (2008).
Dagaut P. and Togbe C., “Oxidation kinetics of butanol-gasoline surrogate
mixtures in a jet-stirred reactor: Experimental and modeling study”, Fuel, 87
(15-16), pp. 3313-3321, (2008).
Dagaut P. and Togbe C., “Experimental and modeling study of the kinetics of
oxidation of ethanol-gasoline surrogate mixtures (E85 surrogate) in a jetstirred reactor”, Energy & Fuels, 22 (5), pp. 3499-3505, (2008).
Dayma G., Gail S. and Dagaut P., “Experimental and kinetic modeling study
of the oxidation of methyl hexanoate”, Energy & Fuels, 22 (3), pp. 14691479, (2008).
36
ACL : 41
ACL : 42
ACL : 43
ACL : 44
ACL : 45
ACL : 46
ACL : 47
ACL : 48
ACL : 49
ACL : 50
ACL : 51
ACL : 52
ACL : 53
De Iuliis S., Chaumeix N., Idir M. and Paillard C.E., “Scattering/extinction
measurements of soot formation in a shock tube”, Experimental Thermal
and Fluid Science, 32 (7), pp. 1354-1362, (2008).
Gail S., Dagaut P., Black G. and Simmie J.M., “Kinetics of 1,2dimethylbenzene oxidation and ignition: Experimental and detailed chemical
kinetic modeling”, Combustion Science and Technology, 180 (10-11), pp.
1748-1771, (2008).
Gail S., Sarathy S.M., Thomson M.J., Dievart P. and Dagaut P.,
“Experimental and chemical kinetic modeling study of small methyl esters
oxidation: Methyl (E)-2-butenoate and methyl butanoate”, Combustion and
Flame, 155 (4), pp. 635-650, (2008).
Imbert B., Lafosse F., Catoire L., Paillard C.E. and Khasainov B.,
“Formulation reproducing the ignition delays simulated by a detailed
mechanism: Application to n-heptane combustion”, Combustion and Flame,
155 (3), pp. 380-408, (2008).
Le Cong T. and Dagaut P., “Experimental and detailed kinetic modeling of the
oxidation of methane and methane/syngas mixtures and effect of carbon
dioxide addition”, Combustion Science and Technology, 180 (10-11), pp.
2046-2091, (2008).
Le Cong T. and Dagaut P., “Effect of Water Vapor on the Kinetics of
Combustion of Hydrogen and Natural Gas: Experimental and Detailed
Modeling Study”, Proceedings of the Asme Turbo Expo 2008, Vol 1, pp.
319-328, 2008.
Le Cong T., Dagaut P. and Dayma G., “Oxidation of natural gas, natural
gas/syngas mixtures, and effect of burnt gas recirculation: Experimental and
detailed kinetic modeling”, Journal of Engineering for Gas Turbines and
Power-Transactions of the Asme, 130 (4), (2008).
Mevel R., Lafosse F., Catoire L., Chaumeix N., Dupre G. and Paillard C.E.,
“Induction delay times and detonation cell size prediction of hydrogen-nitrous
oxide-diluent mixtures”, Combustion Science and Technology, 180 (10-11),
pp. 1858-1875, (2008).
Osmont A., Catoire L., Klapotke T.M., Vaghjiani G.L. and Swihart M.T.,
“Thermochemistry of species potentially formed during NTO/MMH
hypergolic ignition”, Propellants Explosives Pyrotechnics, 33 (3), pp. 209212, (2008).
Osmont A., Yahyaoui M., Catoire L., Gokalp I. and Swihart M.T.,
“Thermochemistry of C-O, (CO)-O, and (CO)-C bond breaking in fatty acid
methyl esters”, Combustion and Flame, 155 (1-2), pp. 334-342, (2008).
Piperel A., Montagne X. and Dagaut P., “The trapping system for the
recirculated gases at different locations of the exhaust gas recirculation (EGR)
pipe of a homogeneous charge compression ignition (HCCI) engine”,
Measurement Science & Technology, 19 (10), (2008).
Yahyaoui A., Djebaili-Chaumeix N., Dagaut P. and Paillard C.E., “Ethyl
Tertiary Butyl Ether Ignition and Combustion Using a Shock Tube and
Spherical Bomb”, Energy & Fuels, 22 (6), pp. 3701-3708, (2008).
Anderlohr J.M., Piperel A., Da Cruz A.P., Bounaceur R., Battin-Leclerc F.,
Dagaut P. and Montagne X., “Influence of EGR compounds on the oxidation
of an HCCI-diesel surrogate”, Proceedings of the Combustion Institute, 32,
pp. 2851-2859, (2009).
37
ACL : 54
ACL : 55
ACL : 56
ACL : 57
ACL : 58
ACL : 59
ACL : 60
ACL : 61
ACL : 62
ACL : 63
ACL : 64
ACL : 65
ACL : 66
ACL : 67
Dagaut P. and Hadj-Ali K., “Chemical Kinetic Study of the Oxidation of
Isocetane (2,2,4,4,6,8,8-Heptamethylnonane) in a Jet-stirred Reactor:
Experimental and Modeling”, Energy & Fuels, 23, pp. 2389-2395, (2009).
Dagaut P., Sarathy S.M. and Thomson M.J., “A chemical kinetic study of nbutanol oxidation at elevated pressure in a jet stirred reactor”, Proceedings of
the Combustion Institute, 32, pp. 229-237, (2009).
Dagaut P. and Togbe C., “Experimental and Modeling Study of the Kinetics of
Oxidation of Butanol-n-Heptane Mixtures in a Jet-stirred Reactor”, Energy &
Fuels, 23 (7), pp. 3527-3535, (2009).
Dayma G., Togbe C. and Dagaut P., “Detailed Kinetic Mechanism for the
Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl
Heptanoate”, Energy & Fuels, 23, pp. 4254-4268, (2009).
Dubois T., Chaumeix N. and Paillard C.E., “Experimental and Modeling
Study of n-Propylcyclohexane Oxidation under Engine-relevant Conditions”,
Energy & Fuels, 23, pp. 2453-2466, (2009).
Javoy S., Mevel R. and Paillard C.E., “A Study of N2O Decomposition Rate
Constant at High Temperature: Application to the Reduction of Nitrous Oxide
by Hydrogen”, International Journal of Chemical Kinetics, 41 (5), pp. 357375, (2009).
Le Cong T. and Dagaut P., “Experimental and Detailed Modeling Study of the
Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and
Natural Gas, Impact on NOx”, Energy & Fuels, 23 (1), pp. 725-734, (2009).
Le Cong T. and Dagaut P., “Oxidation of H-2/CO2 mixtures and effect of
hydrogen initial concentration on the combustion of CH4 and CH4/CO2
mixtures: Experiments and modeling”, Proceedings of the Combustion
Institute, 32, pp. 427-435, (2009).
Marchal C., Delfau J.L., Vovelle C., Moreac G., Mounaim-Rousselle C. and
Mauss F., “Modelling of aromatics and soot formation from large fuel
molecules”, Proceedings of the Combustion Institute, 32, pp. 753-759,
(2009).
Matynia A., Delfau J.L., Pillier L. and Vovelle C., “Comparative study of the
influence of CO2 and H2O on the chemical structure of lean and rich
methane-air flames at atmospheric pressure”, Combustion Explosion and
Shock Waves, 45 (6), pp. 635-645, (2009).
Metcalfe W.K., Togbe C., Dagaut P., Curran H.J. and Simmie J.M., “A jetstirred reactor and kinetic modeling study of ethyl propanoate oxidation”,
Combustion and Flame, 156 (1), pp. 250-260, (2009).
Mevel R., Javoy S., Lafosse F., Chaumeix N., Dupre G. and Paillard C.E.,
“Hydrogen-nitrous oxide delay times: Shock tube experimental study and
kinetic modelling”, Proceedings of the Combustion Institute, 32, pp. 359366, (2009).
Pichon S., Black G., Chaumeix N., Yahyaoui M., Simmie J.M., Curran H.J.
and Donohue R., “The combustion chemistry of a fuel tracer: Measured flame
speeds and ignition delays and a detailed chemical kinetic model for the
oxidation of acetone”, Combustion and Flame, 156 (2), pp. 494-504, (2009).
Piperel A., Dagaut P. and Montagne X., “Impact of acetaldehyde and NO
addition on the 1-octene oxidation under simulated HCCI conditions”,
Proceedings of the Combustion Institute, 32, pp. 2861-2868, (2009).
38
ACL : 68
ACL : 69
ACL : 70
ACL : 71
Sarathy S.M., Thomson M.J., Togbe C., Dagaut P., Halter F. and MounaimRousselle C., “An experimental and kinetic modeling study of n-butanol
combustion”, Combustion and Flame, 156 (4), pp. 852-864, (2009).
Sun H.Y., Catoire L. and Law C.K., “Thermal Decomposition of
Monomethylhydrazine: Shock Tube Experiments and Kinetic Modeling”,
International Journal of Chemical Kinetics, 41 (3), pp. 176-186, (2009).
Togbe C., Ahmed A.M. and Dagaut P., “Experimental and Modeling Study of
the Kinetics of Oxidation of Methanol-Gasoline Surrogate Mixtures (M85
Surrogate) in a Jet-Stirred Reactor”, Energy & Fuels, 23, pp. 1936-1941,
(2009).
Vovelle C., Delfau J.L. and Pillier L., “Laminar hydrocarbon flame structure”,
Combustion Explosion and Shock Waves, 45 (4), pp. 365-382, (2009).
ACL : 72
Dagaut P. and Togbe C., “Experimental and modeling study of the kinetics of
oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor”, Fuel, 89 (2),
pp. 280-286, (2010).
ACL : 178 Mathieu O., Frache G., Djebaieli-Chaumeix N., Paillard C.E., Krier G., Muller
J.F., Douce F. and Manuelli P., “Characterization of adsorbed species on soot
formed behind reflected shock waves”, Proceedings of the Combustion
Institute, 31, pp. 511-519, (2007).
ACL : 179 Mathieu O., Frache G., Djebaili-Chaumeix N., Paillard C.E., Krier G., Muller
J.F., Douce F. and Manuelli P., “Laser desorption-ionization time-of-flight
mass spectrometry for analyses of heavy hydrocarbons adsorbed on soot
formed behind reflected shock waves”, Proceedings of the Combustion
Institute, 32, pp. 971-978, (2009).
ACL : 180 Mathieu O., Djebaili-Chaumeix N., Paillard C.E. and Douce F., “Experimental
study of soot formation from a diesel fuel surrogate in a shock tube”,
Combustion and Flame, 156 (8), pp. 1576-1586, (2009).
ACTI : Communications avec actes dans un congrès international.
ACTI : 1
ACTI : 2
ACTI : 3
ACTI : 4
ACTI : 5
Hadj Ali K., Minetti R., Ribaucour M., Chaumeix N. and Dagaut P., “Study of
dimethylether oxidation and auto-ignition in the negative temperature
coefficient”, 19th international Symposium on Gas Kinetics, Orléans,
France, 22-27 July, (2006).
Alseda D., Montagne X. and Dagaut P., “Homogeneous Charge Compression
Ignition: formulation effect of a Diesel fuel on the initiation and the
combustion. Potential of acetal impact in a Diesel base fuel - SAE 2007-240018”, 8th International Conference on Engines and Automobile, Capri,
Italy, September 16-20, (2007).
Biet J., Delfau J.-L., Pillier L. and Vovelle C., “Influence of CO2 and H2 on
the Chemical Structure of a Premixed, Lean Methane-Air Flame”, 3rd
European Combustion Meeting (ECM2007), Chania, Crete, (2007).
Black G., Pichon S., Curran H.J., Simmie J.M., Donohue R. and DjebailiChaumeix N., “An experimental and modelling study of the combustion of
acetone”, 3rd European Combustion Meeting (ECM2007), Crete, Greece,
11-13 April, (2007).
De Iuliis S., Chaumeix N. and Paillard C.-E., “Scattering-extinction
measurements of soot formation in a shock tube”, 5th Mediteranean
Combustion Symposium, Monastir, Tunisia, (2007).
39
ACTI : 6
ACTI : 7
ACTI : 8
ACTI : 9
ACTI : 10
ACTI : 11
ACTI : 12
ACTI : 13
Dubois T., Chaumeix N., Douce F., Manuelli P. and Paillard C.-E.,
“Experimental study of the oxidation of surrogates for diesel fuels at HCCI
conditions”, 3rd European Combustion Meeting (ECM2007), Crete, Greece,
11-13 April, (2007).
Marchal C., Delfau J.-L., Vovelle C., Moréac G., Ravet F. and MounaimRousselle C., “Modelling of benzene Formation in Rich premixed Flames”,
SAE Technical Paper Series 2007-01-0052, (2007).
Mathieu O., Djebaili-Chaumeix N., Douce F., Manuelli P. and Paillard C.-E.,
“Study of early soot formation from alkyl-aromatic fuels”, 3rd European
Combustion Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).
Matynia A., Delfau J.-L., Pillier L. and Vovelle C., “Comparative study of the
influence of CO2 and H2O on the chemical structure of lean and rich
methane/air flames at atmospheric pressure”, 6th International Seminar on
Flame Structure, Brussels, Belgium, (2008).
Dubois T., Chaumeix N., Barret A. and Paillard C.-E., “Experimental and
Modeling study of cyclohexane oxidation under engine relevant conditions”,
4th European Combustion Meeting (ECM2009), Vienna, Austria, 14-17
April, (2009).
Mathieu O., Wen J.Z., Djebaili-Chaumeix N., Paillard C.-E. and Thomson M.,
“Modeling study of the soot formation process from toluene pyrolysis behind
reflected shock-waves”, 4th European Combustion Meeting (ECM2009),
Vienna, Austria, 14-17 April, (2009).
Matynia A., Pillier L., Idir M., Delfau J.-L., Chauveau C. and Vovelle C.,
“Study of high pressure counter-flow methane flames”, 4th European
Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).
Pillier L., De Persis S., Cabot G., Bounaceur R., Liu Y., Boukhalfa A., Most
J.-M., Gökalp I. and Favre E., “Coupling of oxygen-enriched combustion and
CO2 capture by membrane processes”, 4th European Combustion Meeting
(ECM2009), Vienna, Austria, 14-17 April, (2009).
COM : Communications orales sans actes dans un congrès international ou national.
COM : 1
COM : 2
COM : 3
Chaumeix N., Pichon S., Lafosse F. and Paillard C.-E., “Role of Chemical
Kinetics on the Detonation Properties of Hydrogen/Natural Gas/ Air
Mixtures”, Workshop Energy and Hydrogen Safety, Pisa, Italy, (2006).
Dubois T., Chaumeix N. and Paillard C.-E., “Etude expérimentale et de
modélisation de l’oxydation du n-propylcyclohexane dans des conditions
proches des moteurs HCCI”, Réunion annuelle de cinétique et photochimie,
Strasbourg, France, 9-10 Juin, (2008).
Catoire L., Chambreau S.D. and Vaghijiani G., “Room Temperature Ionic
Liquid-Based Systems for Chemical Propulsion”, High Energy Materials,
Biarritz, France, (2009).
AFF : Communications par affiche dans un congrès international ou national.
AFF : 1
Biet J., Delfau J.-L., Idir M., Pillier L. and Vovelle C., “Structure of Premixed,
Laminar, Lean Ethylene Flames at Atmospheric Pressure and Modelling”, 19th
International Symposium on Gas Kinetics, (eds. P. Dagaut and A.
Mellouki), p. 249, Orléans, France, (2006).
40
AFF : 2
AFF : 3
AFF : 4
AFF : 5
AFF : 6
AFF : 7
AFF : 8
AFF : 9
AFF : 10
Darius D., Chaumeix N. and Paillard C.-E., “Pyrolysis and Oxidation of ndecane, n-propylbenzene and kerosene surrogate behind reflected shock
waves”, International Workshop on Combustion Generated Fine Carbon
Particles, Anacapri, Italy, 13-16 Mai, (2007).
Dubois T., Chaumeix N. and Paillard C.-E., “Etude expérimentale et de
modélisation de l’oxydation de molécules références des gazoles dans des
conditions proches des moteurs HCCI”, Réunion du Groupe Français de
Cinétique et Photochimie, Marseille, France, 4 - 5 Juin, (2007).
Matynia A., Delfau J.-L., Pillier L. and Vovelle C., “Analyse de l'influence
des ajouts de CO2 et H2 sur les structures de flammes prémélangées
méthane/air riches”, Journées des Doctorants en Combustion, Groupement
Français de Combustion, Orléans, France, (2007).
Mével R., Lafosse F., Catoire L., Chaumeix N., Dupré G. and Paillard C.-E.,
“Etude cinétique des délais d’auto-inflammation de mélanges H2-N2O-Ar”,
Réunion du Groupe Français de Cinétique et Photochimie, Marseille,
France, 4 - 5 Juin, (2007).
Boukhalfa A., Cabot G., Favre E., Gökalp I. and Pillier L., “PHYCAP:
Procédé Hybride de Capture du Dioxyde de Carbone”, Colloque Energie,
Programme Interdisciplinaire Energie du CNRS, Futuroscope, Poitiers,
France, (2008).
Dubois T., Chaumeix N. and Paillard C.-E., “Experimental and kinetic
modelling study of n-propylcyclohexane oxidation under engine relevant
conditions”, 32nd International Symposium on Combustion, Montreal,
Canada, (2008).
De Persis S., Pillier L., Gökalp I., Osorio V., Gabot G., Boukhalfa A., Most J.M., Belassaioui B. and Favre E., “COCASE: Optimisation du couplage des
procédés de combustion et de capture du CO2 par membranes"”, Colloque
Energie, Programme Interdisciplinaire Energie du CNRS, Nantes, France,
(2009).
Echard F., Dubois T., Chaumeix N. and Paillard C.-E., “The effect of fuel
structure on the burning velocity of naphtenic Compounds”, 6th
Mediterranean Combustion Symposium, Porticcio, Corsica, France, 7-11
juin, (2009).
Matynia A., Pillier L., Idir M., Delfau J.-L., Chauveau C. and Vovelle C.,
“Study of high pressure counter-flow methane flames”, 6th Mediterranean
Combustion Symposium, Porticcio, Corsica, France, 7-11 juin, (2009).
INV : Conférences données à l’invitation du Comité d’organisation dans un congrès
national ou international.
INV : 1
INV : 2
Dagaut P., “Chemical Kinetics of Sustainable Fuels Combustion: Bio-Diesel
and Surrogates”, 4th COE 21 International Symposium on HumanFriendly Materials Based on Chemistry: Frontier of Human-friendly
Materials and Processes for Sustainable Society, The University of Tokyo,
Japan, October 10-11, (2006).
Djebaili-Chaumeix N., “Étude cinétique de formation des suies dans les
conditions de moteurs automobiles”, Réunion du Groupe Français de
Cinétique et Photochimie,, LCE, Marseille, 4-5 juin, (2007).
41
INV : 3
INV : 4
INV : 5
INV : 6
INV : 7
INV : 8
INV : 9
INV : 10
Dagaut P., “Chemical Kinetics of Bio-Fuels Combustion: Bio-Diesel,
Biokerosene, and Surrogates”, British Section of the Combustion Institute
Annual Meeting, "Transportation Biofuels", Leeds University, Great
Britain, March 19, (2008).
Dagaut P., “Combustion of Alternative Fuels for Aeronautics: A Chemical
Kinetic Perspective”, International conference on alternative fuels, The
Royal Aeronautical Society, London, 24-26 November, (2008).
Dagaut P., “Kinetics of combustion of renewable fuels for energy production
and transportation”, 6th International Seminar on Flame Structure, Vrije
Universiteit Brussel, Belgium, September 14-17, (2008).
Paillard C.-E., “La place de la combustion dans la production d’énergie.
Analyse cinétique de concepts susceptibles de réduire l’émission de
polluants”, Conférence annuelle de Cinétique et Photochimie, Strasbourg,
9-10 juin, (2008).
Vovelle C., Delfau J.-L. and Pillier L., “Laminar Flame Structure”, 6th
International Seminar on Flame Structure, Brussels, Belgium, (2008).
Chaumeix N., “Kinetics of Soot Formation at Combustion Engines
Conditions”, 6th Mediterranean Combustion Symposium, Ajaccio, France,
June 7-11, (2009).
Dagaut P., “Combustion of bio- and biomass-derived fuels to address security
of supply and efficiency challenges: A chemical kinetic prospective”, British French Flame Days: Challenges in Combustion Technology: Security of
Supply, Efficiency and Development, the IFRF French section and British
Flame, Lille, 9-10 March, (2009).
Dagaut P., “The combustion of sustainable fuels for air and ground
transportation: A chemical kinetic perspective”, 20th National Conference
on Combustion and Energy, Kun Shan University, Tainan, Taiwan, 20
March, (2010).
DO : Directions d’ouvrages ou de revues.
DO : 1
Dagaut P. ed., Proceedings of the Combustion Institute: Elsevier, 32, (1-2),
p. 3238, (2009).
42
Thématique Réactivité Atmosphérique
ACL : Articles dans des revues internationales ou nationales avec comité de lecture
ACL : 73
ACL : 74
ACL : 75
ACL : 76
ACL : 77
ACL : 78
ACL : 79
ACL : 80
ACL : 81
ACL : 82
ACL : 83
ACL : 84
ACL : 85
Butkovskaya N., Pouvesle N., Kukui A. and Le Bras G., “Mechanism of the
OH-initiated oxidation of glycolaldehyde”, Journal of Physical Chemistry
A, 110, pp. 13492-13499, (2006).
Butkovskaya N., Pouvesle N., Kukui A., Mu Y. and Le Bras G., “Mechanism
of the OH-initiated oxidation of hydroxyacetone over temperature range 236298 K”, Journal of Physical Chemistry A, 110 (21), pp. 6833-6843, (2006).
Feigenbrugel V., Le Person A., Le Calve S., Mellouki A., Munoz A. and
Wirtz K., “Atmospheric fate of dichlorvos: Photolysis and OH-initiated
oxidation studies”, Environmental Science & Technology, 40 (3), pp. 850857, (2006).
O'connor M.P., Wenger J.C., Mellouki A., Wirtz K. and Munoz A., “The
atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal”,
Physical Chemistry Chemical Physics, 8 (44), pp. 5236-5246, (2006).
Sadezky A., Chaimbault P., Mellouki A., Rompp A., Winterhalter R., Le Bras
G. and Moortgat G.K., “Formation of secondary organic aerosol and
oligomers from the ozonolysis of enol ethers”, Atmospheric Chemistry and
Physics, 6, pp. 5009-5024, (2006).
Solignac G., Magneron I., Mellouki A., Munoz A., Reviejo M.M. and Wirtz
K., “A study of the reaction of OH radicals with N-methyl pyrrolidinone, Nmethyl succinimide and N-formyl pyrrolidinone”, Journal of Atmospheric
Chemistry, 54 (2), pp. 89-102, (2006).
Solignac G., Mellouki A., Le Bras G., Barnes I. and Benter T., “Reaction of Cl
atoms with C6F13CH2OH, C6F13CHO, and C3F7CHO”, Journal of
Physical Chemistry A, 110 (13), pp. 4450-4457, (2006).
Teruel M.A., Lane S.I., Mellouki A., Solignac G. and Le Bras G., “OH
reaction rate constants and UV absorption cross-sections of unsaturated
esters”, Atmospheric Environment, 40 (20), pp. 3764-3772, (2006).
Thiault G. and Mellouki A., “Rate constants for the reaction of OH radicals
with n-propyl, n-butyl, iso-butyl and tert-butyl vinyl ethers”, Atmospheric
Environment, 40 (29), pp. 5566-5573, (2006).
Butkovskaya N., Kukui A. and Le Bras G., “Study of the HNO3 forming
channel of the HO2 + NO reaction as a function of pressure and temperature
in the ranges 72-600 Torr and 223-323 K”, Journal of Physical Chemistry
A, 111, pp. 9047-9053, (2007).
Le Person A., Mellouki A., Munoz A., Borras E., Martin-Reviejo M. and
Wirtz K., “Trifluralin: Photolysis under sunlight conditions and reaction with
HO radicals”, Chemosphere, 67 (2), pp. 376-383, (2007).
Solignac G., Mellouki A., Le Bras G., Yujing M. and Sidebottom H., “The gas
phase tropospheric removal of fluoroaldehydes (CxF2x +1CHO, x=3, 4, 6)”,
Physical Chemistry Chemical Physics, 9 (31), pp. 4200-4210, (2007).
Cariolle D., Evans M.J., Chipperfield M.P., Butkovskaya N., Kukui A. and Le
Bras G., “Impact of the new HNO3-forming channel of the HO2 + NO
reaction on tropospheric HNO3, NOx, HOx and ozone”, Atmospheric
Chemistry and Physics, 8, pp. 4061-4068, (2008).
43
ACL : 86
ACL : 87
ACL : 88
ACL : 89
ACL : 90
ACL : 91
ACL : 92
ACL : 93
ACL : 94
ACL : 95
ACL : 96
ACL : 97
Cometto P.M., Dalmasso P.R., Taccone R.A., Lane S.I., Oussar F., Daele V.,
Mellouki A. and Le Bras G., “Rate coefficients for the reaction of OH with a
series of unsaturated alcohols between 263 and 371 K”, Journal of Physical
Chemistry A, 112 (19), pp. 4444-4450, (2008).
El Dib G., Chakir A., Daele V. and Mellouki A., “Gas-phase reaction of the Cl
atoms with dimethylbenzaldehyde isomers”, Chemical Physics Letters, 455
(4-6), pp. 151-155, (2008).
El Dib G., Chakir A. and Mellouki A., “UV absorption cross-sections of a
series of dimethylbenzaldehydes”, Journal of Physical Chemistry A, 112
(37), pp. 8731-8736, (2008).
Eyglunent G., Le Person A., Dron J., Monod A., Voisin D., Mellouki A.,
Marchand N. and Wortham H., “Simple and reversible transformation of an
APCI/MS/MS into an aerosol mass spectrometer: Development and
characterization of a new inlet”, Aerosol Science and Technology, 42 (3), pp.
182-193, (2008).
Guilloteau A., Nguyen M.L., Bedjanian Y. and Le Bras G., “Desorption of
Polycyclic Aromatic Hydrocarbons from Soot Surface: Pyrene and
Fluoranthene”, Journal of Physical Chemistry A, 112 (42), pp. 1055210559, (2008).
Kukui A., Ancellet G. and Le Bras G., “Chemical ionisation mass
spectrometer for measurements of OH and peroxy radical concentrations in
moderately polluted atmospheres”, Journal of Atmospheric Chemistry, 61,
pp. 133-154, (2008).
Le Person A., Eyglunent G., Daele V., Mellouki A. and Mu Y., “The near UV
absorption cross-sections and the rate coefficients for the ozonolysis of a
series of styrene-like compounds”, Journal of Photochemistry and
Photobiology a-Chemistry, 195 (1), pp. 54-63, (2008).
Sadezky A., Winterhalter R., Kanawati B., Rompp A., Spengler B., Mellouki
A., Le Bras G., Chaimbault P. and Moortgat G.K., “Oligomer formation
during gas-phase ozonolysis of small alkenes and enol ethers: new evidence
for the central role of the Criegee Intermediate as oligomer chain unit”,
Atmospheric Chemistry and Physics, 8 (10), pp. 2667-2699, (2008).
Butkovskaya N., Rayez M.T., Rayez J.C., Kukui A. and Le Bras G., “Water
vapor effect on the HNO3 yield in the HO2 + NO reaction: experimental and
theoretical evidence”, Journal of Physical Chemistry A, 113, pp. 1132711342, (2009).
Coeur-Tourneur C., Tomas A., Guilloteau A., Henry F., Ledoux F., Visez N.,
Riffault V., Wenger J.C. and Bedjanian Y., “Aerosol formation yields from
the reaction of catechol with ozone”, Atmospheric Environment, 43 (14), pp.
2360-2365, (2009).
Cometto P.M., Daele V., Idir M., Lane S.I. and Mellouki A., “Reaction Rate
Coefficients of OH Radicals and Cl Atoms with Ethyl Propanoate, n-Propyl
Propanoate, Methyl 2-Methylpropanoate, and Ethyl n-Butanoate”, Journal of
Physical Chemistry A, 113 (40), pp. 10745-10752, (2009).
Le Person A., Solignac G., Oussar F., Daele V., Mellouki A., Winterhalter R.
and Moortgat G.K., “Gas phase reaction of allyl alcohol (2-propen-1-ol) with
OH radicals and ozone”, Physical Chemistry Chemical Physics, 11 (35), pp.
7619-7628, (2009).
44
ACL : 98
ACL : 99
ACL : 100
ACL : 101
ACL : 102
ACL : 103
ACL : 104
ACL : 105
ACL : 106
ACL : 107
ACL : 108
ACL : 109
ACL : 110
Loukhovitskaya E., Bedjanian Y., Morozov I. and Le Bras G., “Laboratory
study of the interaction of HO2 radicals with the NaCl, NaBr, MgCl2 x
6H(2)O and sea salt surfaces”, Physical Chemistry Chemical Physics, 11
(36), pp. 7896-7905, (2009).
Nguyen M.L., Bedjanian Y. and Guilloteau A., “Kinetics of the reactions of
soot surface-bound polycyclic aromatic hydrocarbons with NO2”, Journal of
Atmospheric Chemistry, 62, pp. 139-150, (2009).
Wang H.T., Hu C.J., Mu Y.J. and Mellouki A., “Measurement of Near-UV
Absorption Cross Sections of CS2”, Spectroscopy and Spectral Analysis, 29
(6), pp. 1586-1589, (2009).
Yusa V., Coscolla C., Mellouki W., Pastor A. and De La Guardia M.,
“Sampling and analysis of pesticides in ambient air”, Journal of
Chromatography A, 1216 (15), pp. 2972-2983, (2009).
Andrade-Eiroa A., Leroy V., Dagaut P. and Bedjanian Y., “Determination of
Polycyclic Aromatic Hydrocarbons in Kerosene and Bio Kerosene Soot”,
Chemosphere, 78 (11), pp. 1342-1349, (2010).
Bedjanian Y. and Loukhovitskaya E., “Water interaction with MgCl2×6H2O
and NaCl surfaces: measurements of the uptake coefficient”, Journal of
Atmospheric Chemistry, 63 (2), pp. 97-108, (2010).
Bedjanian Y. and Nguyen M.L., “Kinetics of the reactions of soot surfacebound polycyclic aromatic hydrocarbons with O3”, Chemosphere, 79 (4), pp.
387-393, (2010).
Bedjanian Y., Nguyen M.L. and Guilloteau A., “Desorption of Polycyclic
Aromatic Hydrocarbons from Soot Surface: Five- and Six-Ring (C-22, C-24)
PAHs”, Journal of Physical Chemistry A, 114 (10), pp. 3533-3539, (2010).
Bedjanian Y., Nguyen M.L. and Le Bras G., “Kinetics of the reactions of soot
surface-bound polycyclic aromatic hydrocarbons with the OH radicals”,
Atmospheric Environment, 14, pp. 1754-1760, (2010).
Butkovskaya N., Kukui A. and Le Bras G., “Pressure and temperature
dependence of ethyl nitrate formation in the C2H5O2 + NO reaction”,
Journal of Physical Chemistry A, 114, pp. 956-964, (2010).
Butkovskaya N., Kukui A. and Le Bras G., “Pressure dependence of isopropyl nitrate formation in the i-C3H7O2 + NO reaction”, Zeitschrift für
Physikalische Chemie, 224, pp. 1025-1038, (2010).
Guilloteau A., Bedjanian Y., Nguyen M.L. and Tomas A., “Desorption of
Polycyclic Aromatic Hydrocarbons from a Soot Surface: Three- to Five-Ring
PAHs”, Journal of Physical Chemistry A, 114 (2), pp. 942-948, (2010).
Monge M.E., George C., D’anna B., Doussin J.-F.O., Jammoul A., Wang J.,
Eyglunent G.G., Solignac G.R., Daële V.R. and Mellouki A., “Ozone
Formation from Illuminated Titanium Dioxide Surfaces”, Journal of the
American Chemical Society, 132 (24), pp. 8234-8235, (2010).
ACLN : Articles dans des revues avec comité de lecture non répertoriées dans des bases de
données internationales.
ACLN : 1
Mellouki A., “Atmospheric fate of unsaturated ethers”, Environmental
Simulation Chambers: Application to Atmospheric Chemical Processes,
62, (eds. I. Barnes and K. J. Rudzinski), pp. 163-169, 2006.
45
COM : Communications orales sans actes dans un congrès international ou national.
COM : 4
COM : 5
COM : 6
COM : 7
COM : 8
COM : 9
COM : 10
COM : 11
COM : 12
COM : 13
Eyglunent G., Marchand N., Monod A., Wortham H., Le Person A., Mellouki
A., Solignac G., Le Bras G., Chiappini L., Picquet-Varrault B., Perraudin E.
and Doussin J.F., “Développement d’un nouveau spectromètre de masse pour
l’analyse de l’aérosol organique : application à l’étude de la composition de
l’aérosol organique secondaire obtenu en chambre de simulation”, Réunion du
Groupe Français de Cinétique et Photochimie et du Groupement Français de
Combustion, Nancy-France, 2006.
Le Person A., Mellouki A., Solignac G., Daële V., Le Bras G., Chiappini L.,
Picquet-Varrault B., Perraudin E., Doussin J.F., Eyglunent G., Marchand N.,
Monod A. and Wortham H., “Etudes des cinétiques et mécanismes des
réactions d’ozonolyse de composés aromatiques (styrène, indène, αméthylstyrène et 2-méthylstyrène) et mesures de leurs spectres d’absorption
UV-visible”, Réunion du Groupe Français de Cinétique et Photochimie et du
Groupement Français de Combustion, Nancy-France, 2006.
Mellouki A., “Environmental smog chambers for studying atmospheric
processes”, Photocat2006, Agadir Morocco, 2006.
Picquet-Varrault B., Chiappini L., Eyglunent G., Le Person A., Marchand N.,
Mellouki A., Perraudin E. and Solignac G., “Secondary Organic Secondary
Organic Aerosol from the ozonolysis of Aromatic Compounds: smog chamber
experiments and multi-tools particle-phase chemical analysis”, European
Geophysical Union Annual Symposium, Vienna-Austria, 2006.
Rickard A.R., Pilling M.J., Davey J.B., Smith S.C., Bloss W.J., Heard D.E.,
Wirtz K., Carrascosa A., Solignac G. and Mellouki A., “Development and
validation of the tropospheric degradation mechanisms of ethylene glycol
mono-vinyl and di-vinyl ethers”, European Geophysical Union Annual
Symposium, Vienna-Austria, 2006.
Butkovskaya N., Kukui A. and Le Bras G., “Formation of nitric acid in the gas
phase HO2 + NO reaction studied by high pressure turbulent flow
reactor/chemical ionisation mass spectrometry”, Meeting of the working
committee of the Hungarian Academy of Sciences on Photochemistry and
Reaction Kinetics, Gyöngyöstarjan-Hungary, 2007.
Cometto P.M., Dalmasso P., Taccone R.A., Nieto J., Lane S.I., Mellouki A.
and Le Bras G., “Tropospheric degradation of unsaturated alcohols by reaction
with OH radicals: rate constants in the 263-371K range and Atmospheric
implication”, XVe Argentine Meeting of Physical Chemistry and Inorganic
Chemistry, Tandi-Argentina, 2007.
Eyglunent G., Bernard F., Catoire V., Robert C., Mebarki Y., Daële V., Kukui
A. and Mellouki A., “Ozonolyse de l’éthylène : mesure du rendement en
formaldéhyde par IRTF et Spectroscopie Infra- Rouge à haute résolution”,
Réunion annuelle du Groupe de Cinétique et Photochimie, Marseille-France,
2007.
Guilloteau A., Nguyen M.L. and Bedjanian Y., “Désorption thermique des
Hydrocarbures Aromatiques Polycycliques de la surface de suie”, Réunion
annuelle du groupe de cinétique et photochimie, Marseille - France, 2007.
Vera Espallardo T., Munoz A., Mellouki A., Rodenas M. and Vazquez M.,
“The use of Euphore facility for studying the atmospheric fate of pesticides”,
XIII Symposium in Pesticide Chemistry, Piacenza-Italy, 2007.
46
COM : 14
COM : 15
COM : 16
COM : 17
COM : 18
COM : 19
COM : 20
COM : 21
Eyglunent G., Daële V., Sabatier J. and Mellouki A., “Développement d’une
chambre de simulation atmosphérique à irradiation naturelle à Orléans
(HELIOS)”, Colloque Expérimentation et Instrumentation, Toulouse-France,
2008.
Kukui A., Butkovskaya N. and Le Bras G., “Oxidation reactions at the low
temperatures of the upper troposphere”, Workshop on Atmospheric Chemical
Mechanisms, University of California, Davis-USA, 2008.
Le Bras G., “HNO3 formation in the HO2 + NO reaction (pressure,
temperature and H2O effect)”, IGAC/SPARC workshop on Laboratory
Atmospheric Kinetics, Cambridge-UK, 2008.
Vera Espallardo T., Munoz A., Ródenas M., Vázquez M., Borras E., Marques
M., Mellouki A. and Sidebottom H., “Atmospheric fate of Hymexazol:
simulation chamber studies”, 11th Symposium on Chemistry and Fate of
Modern Pesticides, Marseille-France, 2008.
Bernard F., Cazaunau M., Winterhalter R., Sadezky A., Daële V., Moortgat
G.K. and Mellouki A., “Etudes de la dégradation atmosphérique de quelques
COVs biogéniques”, Réunion annuelle du Groupe de Cinétique et
Photochimie, Paris-Créteil-France, 2009.
Butkovskaya N., Kukui A. and Le Bras G., “Water vapor enhancement of the
HNO3 yield in the HO2 + NO reaction and its impact on the atmospheric
composition”, European Geophysical Union Annual Symposium, ViennaAustria, 2009.
Butkovskaya N., Kukui A. and Le Bras G., “Pressure and temperature
dependence of the ethyl nitrate formation in the C2H5O2 + NO reaction”,
Workshop on Atmospheric Chemistry : kinetics and spectroscopy, BayreuthGermany, 2010.
Kukui A., Butkovskaya N. and Le Bras G., “Chemical ionisation mass
spectrometer for atmospheric measurements of OH and peroxy radicals”,
Colloque Interdisciplinaire en Instrumentation, Le Mans-France, 2010.
AFF : Communications par affiche dans un congrès international ou national.
AFF : 11
AFF : 12
AFF : 13
AFF : 14
AFF : 15
Butkovskaya N., Kukui A., Pouvesle N. and Le Bras G., “Further
parametrization in the formation of nitric acid in the gas phase HO2 + NO
reaction”, 2nd SCOUT Annual Meeting, Jülich-Germany, 2006.
Butkovskaya N., Pouvesle N., Kukui A. and Le Bras G., “Mechanism of the
gas phase reaction of glycoladehyde with OH radicals in the presence of O2
over temperature range 233-296 K”, 19th International Symposium On Gas
Kinetics, Orléans-France, 2006.
El Dib G., Chakir A. and Mellouki A., “Kinetics of Cl atoms reaction with
dimethyl benzaldehyde isomers at room temperature”, 19th International
Symposium On Gas Kinetics, Orléans-France, 2006.
Guilloteau A., Solignac G. and Mellouki A., “Reaction of Nmethylpyrrolidine with OH radicals and O3 and its UV absorption spectra”,
19th International Symposium On Gas Kinetics, Orléans-France, 2006.
Holloway A.L., Sidebottom H., Mellouki A., Le Bras G. and Wirtz K., “A
kinetic and mechanistic study of the atmospheric oxidation of 1,3-diketones”,
19th International Symposium On Gas Kinetics, Orléans-France, 2006.
47
AFF : 16
AFF : 17
AFF : 18
AFF : 19
AFF : 20
AFF : 21
AFF : 22
AFF : 23
AFF : 24
AFF : 25
AFF : 26
AFF : 27
AFF : 28
Le Person A., Oussar F., Solignac G., Daële V., Mellouki A., Moortgat G.K.
and Sidebottom H., “Kinetic and mechanistic study of the ractions of O3 with
two unsaturated alcohols”, 19th International Symposium on gas kinetics,
Orléans-France, 2006.
Morgan E., Sidebottom H., Mellouki A., Daële V. and Le Bras G., “Kinetic
and mechanistic studies of the reactions of the hydroxyl radicals with
halogenated and oxygenated unsaturated compounds”, 19th International
Symposium On Gas Kinetics, Orléans-France, 2006.
Morris R., Kelly T., Sidebottom H., Mellouki A. and Le Bras G., “Kinetics
and mechanistic study of the reaction of OH radicals and Cl atoms with
fluorinated alcohols under atmospheric conditions”, 19th International
Symposium On Gas Kinetics, Orléans-France, 2006.
O'connor M.P., Termine-Roussel B., Wenger J.C., Doussin J.F. and Mellouki
A., “Kinetics and mechanism for the atmospheric oxidation of unsaturated C6
aldehydes”, 19th International Symposium On Gas Kinetics, Orléans-France,
2006.
Sadezky A., Winterhalter R., Kanawati B., Moortgat G.K., Mellouki A.,
Chaimbault P., Rompp A. and Le Bras G., “Formation of secondary organic
aerosol and oligomers from the ozonolysis of unsaturated ethers and small
alkenes”, 19th International Symposium On Gas Kinetics, Orléans-France,
2006.
Sadezky A., Winterhalter R., Rompp A., Moortgat G.K., Mellouki A.,
Chaimbault P. and Le Bras G., “Formation of secondary organic aerosol and
oligomers from the ozonolysis of unsaturated ethers”, European Geophysical
Union Annual Symposium, Vienna-Austria, 2006.
Solignac G., Guilloteau A., Mellouki A., Jensen N., Larsen B. and Hjorth J.,
“N-methyl-pyrrolidine : spectre d’absorption et reaction avec OH et O3”,
Réunion du Groupe Français de Cinétique et Photochimie et du Groupement
Français de Combustion, Nancy-France, 2006.
Bernard F., Daële V., Mellouki A., Morris R., Borras E. and Sidebottom H.,
“Secondary organic aerosol formation and chemical composition”, Surface
Emissions and Prediction of Atmospheric Composition Changes - Summer
School, île d’Oléron, France, 2007.
Bernard F., Daële V., Mellouki A., Morris R. and Sidebottom H., “Oxydation
du myrcène : ozonolyse et réaction avec OH”, Réunion annuelle du Groupe de
Cinétique et Photochimie, Marseille-France, 2007.
Butkovskaya N., Kukui A. and Le Bras G., “Nitric acid formation in the HO2
+ NO reaction : parametrisation in the pressure and temperature ranges of the
troposphere”, 3rd SCOUT Annual Meeting, Heraklion-Greece, 2007.
Butkovskaya N., Pouvesle N., Kukui A. and Le Bras G., “Compléments
d’étude de la formation de HNO3 dans la reaction HO2 + NO”, Réunion du
Groupe Français de Cinétique et Photochimie et du Groupement Français de
Combustion, Nancy-France, 2007.
Mellouki A., Le Bras G., Daële V., Le Person A. and Bernard F., “Génération,
vieillissement et analyse des aérosols organiques secondaires”, Qualité de l’air
et particules - PRIMEQUAL, Rouen-France, 2007.
Mellouki A., Solignac G., Guilloteau A., Le Person A., Jensen N., Larsen B.
and Hjorth J., “Aerosol formation from the atmospheric oxidation of nitrogen
containing VOCs”, 2nd ACCENT Symposium, Urbino-Italy, 2007.
48
AFF : 29
AFF : 30
AFF : 31
AFF : 32
AFF : 33
AFF : 34
AFF : 35
AFF : 36
AFF : 37
AFF : 38
AFF : 39
AFF : 40
AFF : 41
Morris R., Kelly T., Sidebottom H., Le Bras G. and Mellouki A.,
“Atmospheric degradation of halogenated alcohols and aldehydes: a possible
source of halogenated carboxylic acids”, Volatile Organic Compounds (VOC)
in the Urban Atmosphere – Sources, Transformation and Impact, Wroclaw Pologne, 2007.
Morris R., Sidebottom H., Mellouki A., Le Bras G., Bernard F. and Vera
Espallardo T., “Atmospheric degradation processes for a range of fluorinated
organics”, 2nd ACCENT Symposium, Urbino-Italy, 2007.
Sadezky A., Winterhalter R., Kanawati B., Rompp A., Mellouki A., Le Bras
G., Chaimbault P. and Moortgat G.K., “The central role of Crieggee
intermediate in the formation of oligomers in SOA from the gas phase
ozonolysis of small unsaturated VOC”, European Geophysical Union Annual
Symposium, Vienna-Austria, 2007.
Solignac G., Guilloteau A., Le Person A. and Mellouki A., “Aerosol formation
from the atmospheric oxidation of Nitrogen-containing VOCs”, Aerosols Properties, Processes and Climate (APPC) Workshop, Heraklion-Greece,
2007.
Bedjanian Y., Lukhovitskaya E., Nguyen M.L. and Le Bras G., “Etudes au
laboratoire des interactions hétérogènes entre radicaux HO2 et aérosols
marins”, Réunion annuelle du groupe de cinétique et photochimie, StrasbourgFrance, 2008.
Bernard F., Winterhalter R., Sadezky A., Eyglunent G., Daële V., Moortgat
G.K. and Mellouki A., “Etude de la réaction de l’ozone avec une série de
composés organiques volatils biogéniques”, Réunion annuelle du Groupe de
Cinétique et Photochimie, Strasbourg-France, 2008.
Bernard F., Winterhalter R., Sadezky A., Eyglunent G., Daële V., Moortgat
G.K. and Mellouki A., “Study of the reaction of ozone with a series of
biogenic VOCs”, 1st Sino-French Joint Workshop on Atmospheric
Environment, Urban and Regional Air Quality: Emissions, Processes,
Monitoring and Regulations, Beijing-China, 2008.
Bernard F., Winterhalter R., Sadezky A., Eyglunent G., Daële V., Moortgat
G.K. and Mellouki A., “Study of the reaction of ozone with a series of
biogenic VOCs”, European Geosciences Union (EGU), General Assembly
2008, Vienna-Austria, 2008.
Butkovskaya N., Kukui A. and Le Bras G., “Effect of humidity on nitric acid
formation in the gas-phase HO2 + NO reaction”, 4nd SCOUT Annual
Meeting, Postdam-Germany, 2008.
Butkovskaya N., Kukui A. and Le Bras G., “Experimental study of the water
effect on nitric acid formation in the HO2 + NO reaction”, 10th International
Global Atmospheric Chemistry (IGAC) Symposium, Annecy-France, 2008.
Butkovskaya N., Kukui A. and Le Bras G., “Effect of humidity on nitric acid
formation in the gas-phase HO2 + NO reaction”, Réunion du Groupe Français
de Cinétique et Photochimie, Strasbourg-France, 2008.
Eyglunent G., Bernard F., Daële V. and Mellouki A., “Loss of NOx by
photocatalyst TiO2 under atmospheric conditions”, First Sino-French Joint
Workshop on Atmospheric Environment, Urban and Regional Air Quality:
Emissions, Processes, Monitoring and Regulations, Beijing-China, 2008.
Eyglunent G., Morris R., Daële V., Sidebottom H. and Mellouki A., “The
atmospheric chemistry of a series of fluorinated VOCs”, 10th International
Global Atmospheric Chemistry (IGAC) Symposium, Annecy-France, 2008.
49
AFF : 42
AFF : 43
AFF : 44
AFF : 45
AFF : 46
AFF : 47
AFF : 48
AFF : 49
AFF : 50
AFF : 51
AFF : 52
AFF : 53
Guilloteau A., Nguyen M.L., Bedjanian Y. and Le Bras G., “Experimental
study of PAH desorption from soot surface in relation with PAH partitioning
in the atmosphere”, 10th International Global Atmospheric Chemistry (IGAC)
Symposium, Annecy, France, 2008.
Guilloteau A., Nguyen M.L., Bedjanian Y. and Le Bras G., “Experimental
study of PAH desorption from soot surface in relation with PAH partitioning
in the atmosphere”, 1st Sino-French Joint Workshop on Atmospheric
Environment, Beijing-China, 2008.
Le Person A., Liang P., Daële V., Mellouki A. and Le Bras G., “Études des
cinétiques des réactions d’alcools insaturés initiées par les atomes Cl”,
Réunion annuelle du Groupe de Cinétique et Photochimie, Strasbourg-France,
2008.
Sadezky A., Winterhalter R., Kanawati B., Rompp A., Spengler B., Mellouki
A., Le Bras G., Chaimbault P. and Moortgat G.K., “Oligomer Formation
during gas−phase ozonolysis of small alkenes and enol ethers: evidence for the
central role of the Criegee Intermediate as oligomer chain unit”, 10th
International Global Atmospheric Chemistry (IGAC) Symposium, AnnecyFrance, 2008.
Bernard F., Eyglunent G., Cazaunau M., Grosselin B., Mu Y., Daële V.,
Mellouki A. and Le Bras G., “Investigation of biogenic VOCs oxidation under
atmospheric simulation chamber conditions”, EUROCHAMP1 final meeting,
Binz Rügen-Germany, 2009.
Coeur-Tourneur C., Tomas A., Guilloteau A., Henry F., Ledoux F., Visez N.,
Riffault V., Wenger J., Bedjanian Y. and Foulon V., “Secondary organic
aerosol formation from the reaction of catechol with ozone”, European
Geosciences Union General Assembly, Vienna-Austria, 2009.
Coeur-Tourneur C., Tomas A., Guilloteau A., Henry F., Ledoux F., Visez N.,
Riffault V., Wenger J.C., Bedjanian Y. and Foulon V., “Secondary organic
aerosol formation from the reaction of catechol with ozone”, Réunion annuelle
du groupe de cinétique et photochimie, Paris-France, 2009.
Vasiliev E.S., Loukhovitskaya E., Morozov I., Bedjanian Y. and Le Bras G.,
“Uptake of ClO et HO2 radicals on sea salt surface”, Conférence
Internationale des Jeunes Chercheurs « La composition de l'atmosphère.
Processus climatiques », Zvenigorod, Russia, 2009.
Bedjanian Y. and Loukhovitskaya E., “Interaction de vapeur d'eau avec les
surfaces de MgCl2 × 6H2O et NaCl”, Réunion annuelle du groupe de cinétique
et photochimie, Wimereux-France, 2010.
Bedjanian Y., Nguyen M.L. and Le Bras G., “Réactions hétérogènes
d'hydrocarbures aromatiques polycycliques adsorbés sur les suies avec les
oxydants atmosphériques”, Réunion annuelle du groupe de cinétique et
photochimie, Wimereux-France, 2010.
Bernard F., Quilgars A., Cazaunau M., Grosselin B., Daële V., Mellouki A.,
Winterhalter R. and Moortgat G.K., “Ozonolysis of biogenic organic volatile
compounds and formation of secondary organic aerosol”, European
Geosciences Union (EGU), General Assembly 2010, Vienna-Austria, 2010.
Butkovskaya N., Kukui A. and Le Bras G., “Formation des nitrates d’alcoyles
à courte chaîne dans les réactions RO2 + NO : effet de la pression et de la
température”, Réunion annuelle du Groupe Français de Cinétique et
photochimie en phase gazeuse, Wimereux-France, 2010.
50
AFF : 54
AFF : 55
AFF : 56
AFF : 57
Cazaunau M., Bernard F., Grosselin B., Daële V., Mellouki A., Liang P.,
Zhang Y., Liu J., Mu Y., Zhou B., Ye X. and Chen J., “HONO and other trace
gases in Shanghai”, European Geosciences Union (EGU), General Assembly
2010, Vienna-Austria, 2010.
Chai F., Gao J., Wang S., Mu Y., Mellouki A., Yu P. and Zhang Y.,
“Observational Study on Seasonal Variation of Gaseous Pollutants and Fine
Particle at a Rural Site in the Yangtze River Delta”, European Geosciences
Union (EGU), General Assembly 2010, Vienna-Austria, 2010.
Lendar M., Bernard F., Cazaunau M., Daële V. and Mellouki A., “Constantes
de vitesse de la réaction de OH avec 1-pentanol, 2-pentanol et 3-pentanol”,
Réunion annuelle du groupe français de cinétique et de photochimie,
Wimereux -France, 2010.
Loukhovitskaya E., Savelieva E. and Bedjanian Y., “Adsorption of water on
the surface of MgCl2×6H2O”, XIV Conférence Internationale des Jeunes
Chercheurs « La composition de l'atmosphère. Effets climatiques », 2010.
INV : Conférences données à l’invitation du Comité d’organisation dans un congrès
national ou international.
INV : 11
INV : 12
INV : 13
INV : 14
INV : 15
INV : 16
INV : 17
INV : 18
INV : 19
INV : 20
Bedjanian Y., “Heterogeneous reactions of atmospheric trace gases with
hydrocarbon flame soot”, ASEFI: Atmospheric soot: environmental fate and
impact, 2006.
Le Bras G., “Fate and impact of volatile organic compounds in the
atmosphere”, Photocat2006, Agadir Morocco, 2006.
Le Bras G., “Kinetics and mechanism of HOx (OH, HO2) reactions at the low
temperatures of the upper troposphere”, 19th International Symposium On
Gas Kinetics, Orléans-France, 2006.
Le Bras G., “Oxidation of oxygenated VOCs at the low temperatures of the
UTLS: experimental studies”, The routes for organics oxidation in the
atmosphere and its implication to the atmosphere, Alpe d’Huez-France, 2006.
Mellouki A., “Caractérisation et réactivité des composés atmosphériques”,
Colloque de restitution PRIMEQUAL 2, Programme de recherche
interorganisme pour une meilleure qualité de l’air à l’échelle locale,
Strasbourg-France, 2006.
Mellouki A., “Gas phase oxidation of oxygenated VOCs”, The routes for
organics oxidation in the atmosphere and its implication to the atmosphere,
Alpe d’Huez-France, 2006.
Mellouki A., “Apport de l’étude des processus en laboratoire”, Séminaire
INSU La recherche au service des préoccupations sociétales, Paris-France,
2007.
Mellouki A., “Pesticides dans l'Atmosphère : Etudes des Cinétiques et
mécanismes de dégradation en laboratoire et mesures dans l’aTmosphère
(PACT)”, Colloque de restitution « Evaluation et réduction des risques liés à
l’utilisation des pesticides, Reims-France, 2007.
Mellouki A., “Atmospheric Chemical Processes Related to Air Quality and
Climate Change”, Fourth China Forum on Environment and Development
(CIFED4), Beijing-Chine, 2008.
Le Bras G., “Recent advances in gas phase chemistry influencing the oxidative
capacity of the troposphere”, ESF-INTROP conference on Tropospheric
chemistry, Portoroz-Slovénie, 2009.
51
INV : 21
Mellouki A., “New aspects of atmospheric oxidation of oxygenated volatile
organics: Unsaturated Compounds”, Workshop on Chemistry in the Earth's
Atmosphere, Tokyo-Japan, 2009.
DO : Directions d’ouvrages ou de revues.
DO : 2
Mellouki A. and Ravishankara A.R. eds., “Regional Climate Variability and
its Impacts in the Mediterranean Area”, NATO Science Series, Dordrecht:
Springer, (2007).
AP : Autres productions : bases de données, logiciels enregistrés, traductions, comptes
rendus d’ouvrages,
AP : 1
AP : 2
Mellouki A. and Daële V. "Atmospheric Fates & Impact of Pesticides
(AFIP)", http://www.era-orleans.org/AFIP/portail.html, 2007.
Mellouki A. "Chemical Kinetics Database on oxygenated VOCs gas phase
reactions", http://www.era-orleans.org/eradb/, 2009.
52
Thématique Dynamique de la Combustion et des Systèmes Réactifs
ACL : Articles dans des revues internationales ou nationales avec comité de lecture
ACL : 111 Birouk M. and Gokalp I., “Current status of droplet evaporation in turbulent
flows”, Progress in Energy and Combustion Science, 32 (4), pp. 408-423,
(2006).
ACL : 112 Osmont A., Gokalp I. and Catoire L., “Evaluating missile fuels”, Propellants
Explosives Pyrotechnics, 31 (5), pp. 343-354, (2006).
ACL : 113 Sarou-Kanian V., Rifflet J.C., Millot F. and Gokalp I., “Aluminum
combustion in wet and dry CO2: Consequences for surface reactions”,
Combustion and Flame, 145 (1-2), pp. 220-230, (2006).
ACL : 114 Shafirovich E., Salomon M. and Gokalp I., “Mars hopper versus Mars rover”,
Acta Astronautica, 59 (8-11), pp. 710-716, (2006).
ACL : 115 Sizaret S., Fedioun I., Barbanson L. and Chen Y., “Crystallization in flow - II.
Modelling crystal growth kinetics controlled by boundary layer thickness”,
Geophysical Journal International, 167 (2), pp. 1027-1034, (2006).
ACL : 116 Tabet-Helal F., Sarh B., Menou A. and Gokalp I., “A comparative study of
turbulence modelling in hydrogen-air nonpremixed turbulent flames”,
Combustion Science and Technology, 178 (10-11), pp. 1887-1909, (2006).
ACL : 117 Bocanegra P.E., Chauveau C. and Gokalp I., “Experimental studies on the
burning of coated and uncoated micro and nano-sized aluminium particles”,
Aerospace Science and Technology, 11 (1), pp. 33-38, (2007).
ACL : 118 Cohe C., Halter F., Chauveau C., Gokalp I. and Gulder O.L., “Fractal
characterisation of high-pressure and hydrogen-enriched CH4-air turbulent
premixed flames”, Proceedings of the Combustion Institute, 31, pp. 13451352, (2007).
ACL : 119 Halter F., Chauveau C. and Gokalp I., “Characterization of the effects of
hydrogen addition in premixed methane/air flames”, International Journal of
Hydrogen Energy, 32, pp. 2585-2592, (2007).
ACL : 120 Osmont A., Catoire L. and Gokalp I., “Thermochemistry of methyl and ethyl
esters from vegetable oils”, International Journal of Chemical Kinetics, 39
(9), pp. 481-491, (2007).
ACL : 121 Sarou-Kanian V., Rifflet J.C., Millot F. and Gokalp I., “Dissolution kinetics of
carbon in aluminum droplet combustion: Implications for aluminized solid
propellants”, Combustion and Flame, 149 (4), pp. 329-339, (2007).
ACL : 122 Birouk M., Abou Al-Sood M.M. and Gokalp I., “Droplet evaporation in a
turbulent environment at elevated pressure and temperature conditions”,
Combustion Science and Technology, 180 (10-11), pp. 1987-2014, (2008).
ACL : 123 Dobrego K.V., Kozlov I.M., Vasiliev V.V., Martin J.P. and Gillon P.,
“Influence of fuel fraction gradient on triple flame velocity in plain and axissymmetrical channels”, International Journal of Heat and Mass Transfer,
51 (7-8), pp. 1962-1969, (2008).
ACL : 124 Gilard V., Gillon P., Blanchard J.N. and Sarh B., “Influence of a horizontal
magnetic field on a co-flow methane/air diffusion flame”, Combustion
Science and Technology, 180 (10-11), pp. 1920-1935, (2008).
ACL : 125 Halter F., Chauveau C. and Gokalp I., “Investigations on the flamelet inner
structure of turbulent premixed flames”, Combustion Science and
Technology, 180 (4), pp. 713-728, (2008).
53
ACL : 126 Osmont A., Catoire L. and Gokalp I., “Physicochemical properties and
thermochemistry of propellanes”, Energy & Fuels, 22 (4), pp. 2241-2257,
(2008).
ACL : 127 Washburn E.B., Trivedi J.N., Catoire L. and Beckstead M.W., “The
simulation of the combustion of micrometer-sized aluminum particles with
steam”, Combustion Science and Technology, 180 (8), pp. 1502-1517,
(2008).
ACL : 128 Cohe C., Chauveau C., Gokalp I. and Kurtulus D.F., “CO2 addition and
pressure effects on laminar and turbulent lean premixed CH4 air flames”,
Proceedings of the Combustion Institute, 32, pp. 1803-1810, (2009).
ACL : 129 Halter F., Chauveau C., Gokalp I. and Veynante D., “Analysis of flame
surface density measurements in turbulent premixed combustion”,
Combustion and Flame, 156 (3), pp. 657-664, (2009).
ACL : 130 Tabet F., Sarh B. and Gokalp I., “Hydrogen-hydrocarbon turbulent nonpremixed flame structure”, International Journal of Hydrogen Energy, 34
(11), pp. 5040-5047, (2009).
ACL : 131 Yilmaz B., Ozdogan S. and Gokalp I., “Numerical Study on Flame-Front
Characteristics of Conical Turbulent Lean Premixed Methane/Air Flames”,
Energy & Fuels, 23, pp. 1843-1848, (2009).
ACL : 132 Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and
Gökalp I., “Experimental and numerical studies on the burning of aluminum
micro and nanoparticle clouds in air”, Experimental Thermal and Fluid
Science, 34 (3), pp. 299-307, (2010).
ACL : 133 Escot Bocanegra P., Reverte C., Aymonier C., Loppinet-Serani A., Barsan
M.M., Butler I.S., Kozinski J.A. and Gökalp I., “Gasification study of winery
waste using a hydrothermal diamond anvil cell”, The Journal of
Supercritical Fluids, 53 (1-3), pp. 72-81, (2010).
ACL : 134 Gillon P., Blanchard J.N. and Gilard V., “Magnetic field influence on coflow
laminar diffusion flames”, Russian Journal of Physical Chemistry B, Focus
on Physics, 4 (2), pp. 279-285, (2010).
ACL : 135 Osmont A., Catoire L., Escot Bocanegra P., Gokalp I., Thollas B. and
Kozinski J.A., “Second generation biofuels: Thermochemistry of glucose and
fructose”, Combustion and Flame, 157 (6), pp. 1230-1234, (2010).
ACL : 181 Joseph-Auguste C., Cheikhravat H., Djebaili-Chaumeix N. and Deri E., “On
the use of spray systems: An example of R&D work in hydrogen safety for
nuclear applications”, International Journal of Hydrogen Energy, 34 (14),
pp. 5970-5975, (2009).
ACL : 182 Mevel R., Lafosse F., Chaumeix N., Dupre G. and Paillard C.E., “Spherical
expanding flames in H-2-N2O-Ar mixtures: flame speed measurements and
kinetic modeling”, International Journal of Hydrogen Energy, 34 (21), pp.
9007-9018, (2009).
ACLN : Articles dans des revues avec comité de lecture non répertoriées dans des bases de
données internationales.
ACLN : 2
Gougeon L. and Fedioun I., “DNS/MILES of reacting air/H-2 diffusion jets”,
Direct and Large-Eddy Simulation VI, 10, pp. 93-100, 2006.
54
ACLN : 3
ACLN : 4
ACLN : 5
ACLN : 6
ACLN : 7
Davidenko D., Jouot F., Kudryavtsev A., Dupré G., Gökalp I., Daniau E. and
Falempin F., “Continuous detonation wave engine studies for space
application”, Progress in Propulsion Physics, 1, (eds. L. T. DeLuca et al.),
Torus Press, pp. 353-366, 2009.
Davidenko D.M., Gökalp I. and Kudryavtsev A.N., “Numerical Simulation of
Continuous Detonation in a Layer of Hydrogen-Oxygen Mixture with Periodic
Conditions”, Deflagrative and detonative combustion, (eds. G. D. Roy and
S. M. Frolov), Torus Press, pp. 295-310, Moscow, 2009.
Davidenko D.M. and Mével R., “Numerical Simulation of Detonation in a
Hydrogen-Nitrous Oxide-Argon Mixture Using a Realistic Thermochemical
Model”, Progress in Pulsed and Continuous Detonations, (eds. G. D. Roy
and S. M. Frolov), Torus Press, pp. 277-294, Moscow, 2009.
Escot Bocanegra P., Sarou-Kanian V., Davidenko D., Chauveau C. and
Gökalp I., “Studies on the burning of micro- and nanoaluminium particle
clouds in air”, Progress in Propulsion Physics, 1, (eds. L. DeLuca et al.),
Torus Press, pp. 47-62, 2009.
Franson C., Orlandi O., Perut C., Fouin G., Chauveau C., Gökalp I. and
Calabro M., “New high energetic composite propellants for space applications
: refrigerated solid propellant (RSP)”, Progress in Propulsion Physics, 1,
(eds. L. DeLuca et al.), Torus Press, pp. 31-46, 2009.
ASCL : Articles dans des revues sans comité de lecture.
ASCL : 1
ASCL : 2
ASCL : 3
ASCL : 4
ASCL : 5
ASCL : 6
Mameri A., Fedioun I. and Boumaza M., “Simulation numérique d’une
flamme d’Hydrogène dans l’air - confrontation avec l’expérience”, Revue des
Energies Renouvelables, 9 (3), pp. 229-236, (2006).
Mameri A., Gökalp I. and Boukeffa D., “Simulation numérique de la
stabilisation d’une flamme turbulente de méthane en régime pauvre par ajout
d’hydrogène”, Revue des Energies Renouvelables, 10 (1), pp. 39 - 48,
(2007).
Tabet-Helal F., Sarh B. and Gökalp I., “Etude par simulation numérique des
caractéristiques d’une flamme de diffusion turbulente avec co-courant d’air
d’un mélange de CH4 - H2”, Revue des Energies Renouvelables, 10 (2), pp.
173 - 180, (2007).
Tabet-Helal F., Sarh B. and GöKalp I., “A comparative study of turbulence
modelling in diluted hydrogen non-premixed flames”, IFRF Combustion
Journal, pp. 1-41, (2008).
Soldi B., Gökalp I., Zeroual A., Aït Lachgar M. and Aymard A., “Conception
et réalisation d’un système de production d’hydrogène à l’aide d’un dispositif
de catalyse”, Revue des Energies Renouvelables, 12 (1), pp. 149 - 162,
(2009).
Soldi B., Gökalp I., Zeroual A. and Aymard A., “Modélisation d’une
électrolyse d’eau à membrane polymère pour la production d’hydrogène”,
Revue des Energies Renouvelables, 12 (2), pp. 201 - 214, (2009).
ACTI : Communications avec actes dans un congrès international.
55
ACTI : 14
ACTI : 15
ACTI : 16
ACTI : 17
ACTI : 18
ACTI : 19
ACTI : 20
ACTI : 21
ACTI : 22
ACTI : 23
ACTI : 24
ACTI : 25
ACTI : 26
ACTI : 27
Chauveau C., Davidenko D., Sarh B., Gökalp I., Avrashkov V. and Fabre C.,
“PIV Measurements in an Underexpanded Hot Free Jet”, 13th International
Symposium Applications of Laser Techniques to Fluid Mechanics, Lisbon,
Portugal, 26-29 June, (2006).
Chauveau C., Halter F. and Gökalp I., “Vaporization in three-dimensional
droplet arrays : Effects of the fuel vapor saturation.”, 10th International
Conference on Liquid Atomization and Spray Systems, ICLASS06, Kyoto,
Japan, August 27- September 1, (2006).
Davidenko D.M. and Gökalp I., “Autoignition delay time correlations for
methane-hydrogen mixtures in air”, 19th International Symposium on Gas
Kinetics (GK2006), Orléans, France, 22-27 July, (2006).
Davidenko D.M., Gökalp I., Dufour E. and Magre P., “Systematic numerical
study of the supersonic combustion in an experimental combustion chamber”,
14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies
Conference, AIAA-2006-7913, Canberra, Australia, 6-9 Novembre, (2006).
Delmaere T., Gillon P. and Sarh B., “On the magnetic field influence on the
lift of a laminar diffusion flame”, International workshop on non
equilibrium processes in combustion and plasma based technologies,
Minsk, Belarus, (2006).
Gillon P., Khaldi F., Gilard V., Blanchard J.-N., Delmaere T. and Sarh B.,
“Magnetic field influence on combustion”, International workshop on non
equilibrium processes in combustion and plasma based technologies,
Minsk, Belarus, (2006).
Gougeon L., Lardjane N. and Fedioun I., “Actual performance of improved
WENO schemes on a selection of test cases”, EFMC6 Euromech
conference, Stockholm, 27th-30th June, (2006).
Lardjane N., Gougeon L. and Fedioun I., “Effective performances of improved
WENO schemes”, 10th International Workshop on the Physics of
Compressible Turbulent Mixing (IWPCTM10), Paris, 17-21 July, (2006).
Tabet-Helal F., Sarh B. and Gökalp I., “Comparative Study of Turbulence
Modelling in Variable Density Jets and Diffusion Flames”, 6th Euromech
Fluid Mechanics Conference, Stockholm, June 26-30, (2006).
Chauveau C., Birouk M. and Gökalp I., “Why d²-law does not hold during
droplet vaporization in microgravity conditions?”, 21st Annual Conference
on Liquid Atomization and Spray Systems (ILASS-Europe), Mugla,
Turkey, September 10-12, (2007).
Cheikhravat H., Chaumeix N., Yahyaoui M. and Paillard C.-E., “Influence of
hydrogen distribution on flame acceleration”, 3rd European Combustion
Meeting (ECM2007), Chania, Crete, (2007).
Cheikhravat H., Yahyaoui M., Djebaili-Chaumeix N. and Paillard C.-E.,
“Influence of Hydrogen distribution on flame propagation”, 21st ICDERS,
Poitiers, France, July 23-27, (2007).
Cohé C., Kurtuluş D.F., Chauveau C. and Gökalp I., “Investigation of laminar
lean premixed methane-air flames at high pressures”, 3rd European
Combustion Meeting (ECM2007), on CD, Chania, Greece, 11-13 April,
(2007).
Cohé C., Kurtuluş D.F., Chauveau C. and Gökalp I., “Effect of Pressure and
CO2 Dilution on the Stability and the Flickering of Conical Laminar Premixed
Flames”, 21st International Colloquium on the Dynamics of Explosions
and Reactive Systems, Poitiers, France, July 23-27, (2007).
56
ACTI : 28
ACTI : 29
ACTI : 30
ACTI : 31
ACTI : 32
ACTI : 33
ACTI : 34
ACTI : 35
ACTI : 36
ACTI : 37
ACTI : 38
ACTI : 39
Davidenko D., Chauveau C., Sarh B., Gökalp I., Avrashkov V. and Fabre C.,
“Experimental studies of underexpanded hot jets: free jet velocity field and jet
impact on a flat plate”, 2nd European Conference for Aero-Space Sciences
(EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).
Davidenko D., Gökalp I., Dufour E. and Magre P., “Methodology and
problems of numerical simulation of the supersonic combustion in an
experimental combustion chamber”, 2nd European Conference for AeroSpace Sciences (EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).
Davidenko D., Gökalp I. and Kudryavtsev A., “Numerical simulation of the
continuous rotating hydrogen-oxygen detonation with a detailed chemical
mechanism”, West-East High Speed Flow Field Conference (WEHSFFC
2007), Moscow, Russia, 19-22 November, (2007).
Davidenko D., Gökalp I. and Kudryavtsev A., “Numerical modeling of the
rotating detonation in an annular combustion chamber fed with hydrogenoxygen mixture”, 3rd European Combustion Meeting (ECM2007), Chania,
Crete, 11-13 April, (2007).
Davidenko D., Jouot F., Kudryavtsev A., Dupré G., Gökalp I., Daniau E. and
Falempin F., “Continuous detonation wave engine studies for space
application”, 2nd European Conference for Aero-Space Sciences
(EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).
Davidenko D.M., Chauveau C., Sarh B., Gökalp I., Avrashkov V. and Fabre
C., “Experimental Studies of Underexpanded Hot Jets : Free Jet Velocity Field
and Jet Impact on a Flat Plane.”, European Conference for Aerospace
Sciences, Elsevier France-Editions Scientifiques Medicales Elsevier,
Bruxelles, 2-6 juillet, (2007).
Davidenko D.M., Kudryavtsev A.N. and Gökalp I., “Numerical simulation of
H2/O2 continuous spin detonation with a detailed chemical mechanism”, 21st
ICDERS, Poitiers, France, July 23-27, (2007).
Delmaere T., Gillon P. and Sahr B., “Numerical study of the magnetic
influence on entrainment in laminar jets”, 21st ICDERS, Poitiers, France, July
23-27, (2007).
Escot-Bocanegra P., Sarou-Kanian V., Chauveau C. and Gökalp I., “Studies
on the burning of micro- and nano-aluminum particle clouds”, 3rd European
Combustion Meeting (ECM2007), on CD, Chania, Greece, 11-13 April,
(2007).
Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and
Gökalp I., “Experimental studies on the propagation velocity and temperature
of flames in aluminum micro- and nanoparticle clouds”, 21st International
Colloquium on the Dynamics of Explosions and Reactive Systems,
Poitiers, France, July 23-27, (2007).
Escot Bocanegra P., Sarou-Kanian V., Davidenko D., Chauveau C. and
Gökalp I., “Studies on the burning of micro and nano aluminum particle
clouds in air”, 2nd European Conference for Aero-Space Sciences
(EUCASS 2007), Brussels, Belgium, 1-6 July, (2007).
Escot Bocanegra P., Sarou-Kanian V., Thomé F., Chauveau C. and Gökalp I.,
“Experimental Studies On The Burning Of Complex Aluminium Particles For
Space Propulsion Applications”, 7th International Symposium on Launcher
Technologies, Barcelona, Spain, 2-5 April, (2007).
57
ACTI : 40
ACTI : 41
ACTI : 42
ACTI : 43
ACTI : 44
ACTI : 45
ACTI : 46
ACTI : 47
ACTI : 48
ACTI : 49
ACTI : 50
ACTI : 51
ACTI : 52
ACTI : 53
Franson C., Orlandi O., Chauveau C., Fouin G. and Renouard J., “Al/H2Oand
Al/H2O/H2O2 frozen mixtures as examples of new composite propellants for
space application”, 7th International Symposium on Launcher
Technologies, Barcelona, Spain, 2-5 April, (2007).
Franson C., Orlandi O., Perut C., Fouin G., Chauveau C., Gökalp I. and
Calabro M., “New high energetic composite propellants for space applications
: Refrigerated Solid Propellant (RSP)”, 2nd European Conference for AeroSpace Sciences (EUCASS 2007), Bruxelles, Belgium, 1-6 July, (2007).
Gilard V., Delmaere T., Gillon P., Sarh S. and Blanchard J.N., “Magnetic
influence on the behaviour of methane diffusion flames”, 3rd European
Combustion Meeting (ECM2007), Chania, Crete, 11-13 April, (2007).
Gillon P., Gilard V. and Blanchard J.-N., “Magnetic influence on lift-off of
diffusion flames”, 21st ICDERS, Poitiers, France, July 23-27, (2007).
Joseph-Auguste C., Cheikhravat H., Djebaïli-Chaumeix N. and Deri E., “On
the use of spray systems: an example of R&D work in hydrogen safety for
nuclear safety”, International conference on Hydrogen Safety, San
Sebastian, Spain, (2007).
Lafosse F., Chaumeix N. and Paillard C.-E., “The effect of a hot gas jet behind
incident shock wave on the detonation initiation”, 3rd European Combustion
Meeting (ECM2007), Crete, Greece, 11-13 April, (2007).
Mével R., Lafosse F., Catoire L., Chaumeix N., Dupré G. and Paillard C.-E.,
“Auto−ignition delay times and detonation cell size of hydrogen−nitrous
oxide−argon mixtures”, 21st ICDERS, Poitiers, France, July 27-31, (2007).
Mével R., Lafosse F., Catoire L., Chaumeix N., Dupré G. and Paillard C.-E.,
“Autoignition delays of hydrogen - nitrous oxide – argon mixtures”, 3rd
European Combustion Meeting (ECM2007), Crete, Greece, 11-13 April,
(2007).
Sarou-Kanian V., Ouazar S., Escot Bocanegra P., Chauveau C. and Gökalp I.,
“Low Temperature Reactivity of Aluminum Nanopowders with Liquid
Water”, 3rd European Combustion Meeting (ECM2007), on CD, Chania,
Greece, 11-13 April, (2007).
Tabet-Helal F., Sarh B., Birouk M. and Gökalp I., “A comparative study of
turbulence modelling and combustion modelling in hydrogen-air nonpremixed turbulent flame”, 2nd ECCOMAS Thematic Conference on
Computational Combustion, (ed. D. Roekaerts), Delft, Netherlands, (2007).
Tabet-Helal F., Sarh B., Birouk M. and Gökalp I., “Numerical investigation on
the near field region of a turbulent non premixed (CH4-H2-N2)/Air flame”,
3rd European Combustion Meeting (ECM2007), (ed. G. Skevis), #8.6,
Chania, Greece, 11-13 April, (2007).
Chauveau C., Halter F., Lalonde A. and Gökalp I., “An experimental study on
the droplet vaporization: effects of heat conduction through the support
fiber.”, 22nd Annual Conference on Liquid Atomization and Spray
Systems (ILASS-Europe'08), Como, Italy, September 8-10, (2008).
Davidenko D.M., Gökalp I. and Kudryavtsev A., “Numerical study of the
continuous detonation wave rocket engine”, 15th AIAA International Space
Planes and Hypersonic Systems and Technologies Conference, AIAA2008-2680, Dayton, Ohio, 28 April - 1 May, (2008).
Gilard V., Gillon P. and Blanchard J.-N., “Experimental investigation of
magnetic effect on diffusion flames”, 13th International Symposium on Flow
Visualization/FLUVISU12, Nice, France, (2008).
58
ACTI : 54
ACTI : 55
ACTI : 56
ACTI : 57
ACTI : 58
ACTI : 59
ACTI : 60
ACTI : 61
ACTI : 62
ACTI : 63
ACTI : 64
ACTI : 65
ACTI : 66
ACTI : 67
Gillon P., Blanchard J.-N. and Gilard V., “Magnetic Field Influence on
Coflow Laminar Diffusion Flames”, 6th International Seminar on Flame
Structure ISFS, Brussels, Belgique, (2008).
Kurtuluş D.F., Cohé C., Chauveau C. and Gökalp I., “Flowfield
Measurements using PIV in High Pressure Lean Premixed Laminar Flames”,
10th International Combustion Symposium, ICS-2008, (2008).
Mével R., Davidenko D., Lafosse F., Dupré G. and Paillard C., “Prediction of
detonation cell size in hydrogen-nitrous oxide-argon mixtures using chemical
kinetics correlations and 2-d numerical simulation code”, 7th International
Symposium on Hazards, Prevention, and Mitigation of Industrial
Explosions, St. Petersburg, Russia, 7-11 July, (2008).
Yozgatligil A., Chauveau C., Gökalp I., Ersoy M., Olgun Z., Anaç S., Oran
Ö., Özensoy B. and Gögce Ö.Ö., “Initial observations on combustion
characteristics of levitated turkish lignite particles”, 10th International
Combustion Symposium, ICS-2008, Sakarya, Turkey, October 9-10, (2008).
Blanchard J.-N., Chahine M., Gillon P. and Gilard V., “Methane/Air laminar
diffusion flames in magnetic gradients”, 22nd ICDERS, Minsk, Belarus, July
27-31, (2009).
Blanchard J.-N., Gilard V. and Gillon P., “Experimental investigation on
methane/air diffusion flame submitted to the influence of magnetic field
gradients”, 6th Mediterranean Combustion Symposium, Ajaccio, France,
(2009).
Bouvet N., Pillier L., Davidenko D., Chauveau C. and Gökalp I., “Particle
Image Velocimetry for the Determination of Fundamental Flame Velocities:
Methodology Validation and Application to Methane-Air Mixtures”, 4th
European Combustion Meeting (ECM2009), Vienna, Austria, (2009).
Cheikhravat H., Chaumeix N. and Paillard C.-E., “Behavior of premixed
hydrogen - air - steam flames near flammability limits”, 6th Mediteranean
Combustion Symposium, Ajaccio, Corse, France, 7-11 June, (2009).
Davidenko D., Bouvet N., Pillier L. and Chauveau C., “Numerical Simulation
of a Strained Laminar Flame Burner and Comparison with the Experiment”,
4th European Combustion Meeting (ECM2009), Vienna, Austria, (2009).
Davidenko D., Escot Bocanegra P., Chauveau C. and Gökalp I., “Global
combustion model of micro- and nanosized aluminum particles in air”, High
Energy Materials (HEM2009), Biarritz, France, 5-7 Octobre, (2009).
Davidenko D., Eude Y. and Falempin F., “Numerical Study on the Annular
Nozzle Optimization for Rocket Application”, 16th AIAA/DLR/DGLR
International Space Planes and Hypersonic Systems and Technologies
Conference, AIAA-2009-7390, Bremen, Germany, 19-22 October, (2009).
Davidenko D., Mével R. and Dupré G., “Reduced kinetic mechanisms for the
simulation of detonation in H2-N2O-Ar mixtures”, 4th European
Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).
Davidenko D.M., Eude Y. and Falempin F., “Optimization of supersonic
axisymmetric nozzles with a center body for aerospace propulsion”, 3rd
European Conference for Aero-Space Sciences (EUCASS 2009),
Versailles, France, 6-9 July, (2009).
Dobrego K.V., Kozlov I.M., Gnesdilov N.N., Shmelev E.S., Gillon P. and
Blanchard J.-N., “Experimental and numerical investigation of non-stationary
combustion in highly porous media”, 6th mediterranean combustion
symposium, Ajaccio, France, (2009).
59
ACTI : 68
ACTI : 69
ACTI : 70
ACTI : 71
ACTI : 72
ACTI : 73
ACTI : 74
ACTI : 75
ACTI : 76
ACTI : 77
ACTI : 78
ACTI : 79
ACTI : 80
Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and
Gökalp I., “Experimental and Numerical Studies on the of Aluminium Micro
and Nanoparticule Clouds in Air”, Mediterranean Combustion Symposium,
Ajaccio, France, June 7-11, (2009).
Gilard V., Gillon P. and Blanchard J.-N., “Effects of a Magnetic Field on the
Stabilization of a Lifted Diffusion Flame”, 4th European Combustion
Meeting (ECM2009), Vienna, Austria, (2009).
Gillon P., Sarh B. and Delmaere T., “A numerical study of the magnetic
influence on coaxial jets flow”, 22nd ICDERS, Minsk, Belarus, July 27-31,
(2009).
Haidn O., Davidenko D. and Gökalp I., “Clean Smart Grid: Primary
Frequency Control Applying H2/O2 Rocket Combustor Technology”, 7th
International Energy Conversion Engineering Conference, AIAA 20094569, Denver, Colorado, 3-5 August, (2009).
Kurtuluş D.F., Cohé C., Chauveau C. and Gökalp I., “Characterisation of Lean
Premixed Laminar Flames in High Pressure using PIV”, 4th European
Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).
Mével R., Davidenko D., Dupré G. and Paillard C., “Numerical study of the
structure of detonation in very lean hydrogen-nitrous oxide mixtures”, 22nd
ICDERS, Minsk, Belarus, July 27-31, (2009).
Mével R., Davidenko D., Lafosse F., Dupré G. and Paillard C.-E.,
“Experimental and numerical detonation cell in H2-N2O-Ar mixtures”, 4th
European Combustion Meeting (ECM2009), Vienna, Austria, 14-17 April,
(2009).
Mével R., Lafosse F., Chaumeix N., Dupré G. and Paillard C.-E., “Flame
Speed measurements in H2-N2O-Ar mixtures”, 4th European Combustion
Meeting (ECM2009), Vienna, Austria, 14-17 April, (2009).
Tabet F., Boland A., Mlaouah A., Sarh B. and Gökalp I., “Investigation of
turbulence models capability in predicting mixing in the near-field region of
hydrogen enriched natural gas turbulent non-premixed flames”, 4th European
Combustion Meeting (ECM2009), Vienna, Austria, April 14-17, (2009).
Yozgatligil A., Chauveau C. and Gökalp I., “Combustion characteristics of
levitated lignite particles”, 4th European Combustion Meeting (ECM2009),
Vienna, Austria, 14-17 April, (2009).
Cheikhravat H., Chaumeix N., Bentaib A. and Paillard C.-E., “Flammability
limits of Hydrogen/Air mixtures”, 2nd International Meeting of the Safety
and Technology of Nuclear Hydrogen Production, Control and
Management - ANS2010, San Diego, USA, 13-17 June, (2010).
Cheikhravat H., Chaumeix N., Bentaib A. and Paillard C.-E., “Evaluation of
the Water Spray Impact on Premixed Hydrogen-Air-Steam Flames
Propagation”, American Nuclear Society, San Diego, USA, 13-17 June,
(2010).
Haidn O., Davidenko D. and Gökalp I., “Clean Smart Grid: H2/O2 Rocket
Combustor Technology for Primary Frequency Control”, International
Conference on Combustion and Energy Utilization (ICCEU2010), Mugla
University, Turkey, 4-8 May, (2010).
ACTN : Communications avec actes dans un congrès national.
60
ACTN : 1
ACTN : 2
ACTN : 3
Cohé C., Halter F., Chauveau C. and Gökalp I., “Etude des flammes de
prémélanges pauvres à l’aide de l’imagerie plane par diffusion Rayleigh
induite par laser”, Congrès Francophone de Techniques Laser, CFTL
2006, Toulouse, 19 - 22 septembre, (2006).
Gilard V., Blanchard J.-N., Sarh B. and Gillon P., “Etude du comportement du
lift lors de la combustion du mélange CH4/air soumis à un gradient
magnétique”, 18ème Congrès Français de Mécanique, Grenoble, France,
(2007).
Sarh B., Gillon P., Delmaere T., Chahine M. and Biard M., “Etude du
décrochement d'une flamme laminaire sous l'effet d'un champ magnétique”,
19ème Congrès Français de Mécanique, Marseille, France, (2009).
COM : Communications orales sans actes dans un congrès international ou national.
COM : 22
COM : 23
COM : 24
COM : 25
COM : 26
COM : 27
COM : 28
COM : 29
COM : 30
Halter F., Chauveau C. and Gökalp I., “Average and Instantaneous Structure
of Hydrogen Added Methane-Air Turbulent Premixed Flames”, 29th Meeting
on Combustion of the Italian Section of the Combustion Institute, Pisa,
Italy, (2006).
Tabet-Helal F., Sarh B. and Gökalp I., “Hydrogen-hydrocarbon Turbulent
Nonpremixed Flame Structure and Pollutants Formation”, 29th Meeting on
Combustion of the Italian Section of the Combustion Institute, Pisa, Italy,
(2006).
Davidenko D.M., “Calcul parallèle d'écoulements réactifs compressibles”, 7e
journée Calcul Scientifique et Modélisation des Universités d'Orléans et
de Tours (CaSciModOT), Orléans, 6 décembre, (2007).
Cohé C., Chauveau C., Gökalp I. and Kurtulus D.F., “CO2 addition and
pressure effects on laminar and turbulent lean premixed CH4 air flames”, 32th
International Symposium on Combustion, Mc Gill University, Montreal,
Canada, August 3-8, (2008).
Davidenko D.M., “Simulation des détonations dans le milieu gazeux sur des
plateformes de calcul parallèle”, 9e journée Calcul Scientifique et
Modélisation des Universités d'Orléans et de Tours (CaSciModOT),
Orléans, 12 décembre, (2008).
Haidn O., Davidenko D. and Gökalp I., “Clean Primary Frequency Control for
Turkish Electric Grids Applying Rocket Combustor Technology”,
International Workshop on Energy from Space for a Sustainable
Environment, Istanbul, Turkey, (2008).
Biet J., Chaumeix N. and Paillard C.-E., “Influence of addition of methane on
hydrogen flame acceleration”, Joint Meeting of the Scandinavian-Nordic
and French Sections of the Combustion Institute, Copenhagen, Denmark,
9-10 November, (2009).
Coudoro K., Chaumeix N. and Bentaib A., “Fundamental properties of natural
gas combustion in closed vessels”, Annual Meeting of the Flacs User
Group, Paris, France, 2 novembre, (2009).
Davidenko D.M., “Theoretical Study on the Continuous Detonation Mode
Application to the Rocket Propulsion at ICARE-CNRS”, European-Russian
Scientific Workshop on RDWE for Space Propulsion, ENSMA,
Futuroscope, France, 6-8 December, (2009).
61
COM : 31
Coudoro K., Chaumeix N. and Bentaib A., “Vitesses fondamentales de
Combustion des mélanges Gaz naturel/Air dans une enceinte sphérique”,
Réunion du Groupement Francais de Combustion, 15 janvier, (2010).
AFF : Communications par affiche dans un congrès international ou national.
AFF : 58
AFF : 59
AFF : 60
AFF : 61
AFF : 62
AFF : 63
AFF : 64
AFF : 65
AFF : 66
AFF : 67
AFF : 68
AFF : 69
Davidenko D.M. and Gökalp I., “A method of kinetic mechanism reduction
and its application to the methane-hydrogen fuel oxidation”, 31st
International Symposium on Combustion, Heidelberg, Germany, 6-11
August, (2006).
Davidenko D.M., Gökalp I., Dufour E. and Magre P., “Modeling of air
vitiation effects on hydrogen autoignition in a supersonic combustion
chamber”, 31st International Symposium on Combustion, Heidelberg,
Germany, 6-11 August, (2006).
Escot Bocanegra P., Sarou-Kanian V., Chauveau C. and Gökalp I., “Studies
on the burning of nanoaluminium particle clouds”, 31th Symposium
(International) on Combustion, Work-In-Progress Poster, Heildelberg,
Germany, 6 - 11 August, (2006).
Gougeon L. and Fedioun I., “Advanced numerical simulation of high-speed
multi-component reacting flows”, 31st International Symposium of
Combustion, Heildelberg, Germany, 6-10 august, (2006).
Mével R., Davidenko D., Lafosse F., Dupré G., Dupré G. and Paillard C.-E.,
“Detonation cell size in hydrogen-nitrous oxide-argon mixtures”, 32nd
International Symposium on Combustion, Montreal, Canada, (2007).
Bouvet N., Pillier L., Davidenko D., Chauveau C. and Gökalp I., “Laminar
Flame Velocity Determination Using Particle Image Velocimetry And The
Counterflow Flame Burner: Application To Syngas Combustion”, 32nd
International Symposium on Combustion, Mc Gill University, Montreal,
Canada, (2008).
Davidenko D., Gökalp I. and Kudryavtsev A., “Numerical simulation of the
transverse detonation in a layer of hydrogen-oxygen mixture with periodic
conditions”, 32nd International Symposium on Combustion, Montreal,
Canada, 3-8 August, (2008).
Escot Bocanegra P., Davidenko D., Sarou-Kanian V., Chauveau C. and
Gokalp I., “Experimental and numerical study of the flame propagation in
aluminium micro- and nano-particle clouds”, 32nd International Symposium
on Combustion, Montreal, Canada, 3-8 August, (2008).
Gilard V., Gillon P., Blanchard J.-N. and Sarh B., “Magnetic field influence
on a methane /air diffusion flame”, 32nd International Symposium on
Combustion, Montréal, Canada, (2008).
Coudoro K., Chaumeix N. and Bentaib A., “Laminar Combustion properties
of Hydrogen / Methane / Air Mixtures”, 6th Mediterranean combustion
symposium, Ajaccio, France, 7-11 juin, (2009).
Yahyaoui M., Coudoro K., Chaumeix N. and Paillard C.-E., “Laminar
Combustion Properties of Hydrogen / Methane / Air”, 6th Mediterranean
combustion symposium, Ajaccio, France, 7-11 juin, (2009).
Coudoro K., Chaumeix N. and Bentaib A., “Etude expérimentale et
modélisation de la propagation de flamme en mileu confiné et semi confiné”,
Journée de la Coopération scientifique IRSN/CNRS, Cadaraches, France,
19 mars, (2010).
62
AFF : 70
AFF : 71
AFF : 72
AFF : 73
AFF : 78
Coudoro K., Chaumeix N. and Bentaib A., “Etude expérimentale et
modélisation de la propagation de flamme en mileu confiné et semi confiné”,
Journée des thèses INERIS, Compiègne, France, 25 juin, (2010).
Coudoro K., Chaumeix N. and Bentaib A., “Experimental study and modeling
of flame propagation in confined obstructed areas”, Ecole de Combustion
2010, Porticcio, France, (2010).
Escot Bocanegra P., Barsan M.M., Butler I.S., Kozinski J.A. and Gokalp I.,
“Hydrothermal gasification of distillery wastes”, Proceedings of the 18th
European Biomass Conference and Exhibition (EBCE), Lyon, France, 3-7
May, (2010).
Sabard J., Chaumeix N., Catoire L. and Bentaib A., “Etude de l'explosion de
mélanges diphasiques hydrogène et poussières métalliques”, Ecole de
Combustion 2010, Porticcio, France, (2010).
Ponty L., Bouvet N., Halter F., Chauveau C. and Gökalp I., “Characterization
of premixed laminar syngas flame using PIV and Rayleigh scattering
diagnostics.”, Sixth Mediterranean Combustion Symposium, Porticcio,
Corsica, France, June 7-11, (2009).
INV : Conférences données à l’invitation du Comité d’organisation dans un congrès
national ou international.
INV : 22
INV : 23
Gillon P., “Applications of magnetic fields: from electromagnetic processing
of new materials to influence on combustion phenomena”, EPM 2006, Sendai,
Japon, (2006).
Djebaili-Chaumeix N., “Studies on Hydrogen Safety at ICARE”, Workshop
GDRE-H2, Turin, Italy, 20 juin, (2008).
63
Thématique Propulsion et Ecoulements à Grande Vitesse
ACL : Articles dans des revues internationales ou nationales avec comité de lecture
ACL : 136 Albarede L., Mazouffre S., Bouchoule A. and Dudeck M., “Low-frequency
electron dynamics in the near field of a Hall effect thruster”, Physics of
Plasmas, 13 (6), (2006).
ACL : 137 Barral S., Jayet Y., Veron E., Mazouffre S., Echegut P. and Dudeck A., “Hall
Effect Thruster with an ALN chamber”, Plasma 2005, 812, (eds. M. J.
Sadowski et al.), pp. 427-430, 2006.
ACL : 138 Boniface C., Garrigues L., Hagelaar G.J.M., Boeuf J.P., Gawron D. and
Mazouffre S., “Anomalous cross field electron transport in a Hall effect
thruster”, Applied Physics Letters, 89 (16), (2006).
ACL : 139 Gawron D., Mazouffre S. and Boniface C., “A Fabry-Perot spectroscopy study
on ion flow features in a Hall effect thruster”, Plasma Sources Science &
Technology, 15 (4), pp. 757-764, (2006).
ACL : 140 Izrar B., Dudeck M., Andre P., Elchinger M.F. and Aubreton J., “Supersonic
argon flow in an arc plasma source”, Plasma 2005, 812, pp. 355-358, (2006).
ACL : 141 Lago V., Barbosa E., Passarinho F. and Martin J.P., “Electron and vibrational
temperatures in hypersonic CO2-N2 plasma jets”, Plasma Sources Science &
Technology, 16 (1), pp. 139-148, (2007).
ACL : 142 Mazouffre S., Pawelec E., Bich N.T. and Sadeghi N., “Doppler-free
spectroscopy measurements of isotope shifts and hyperrine components of
near-IR xenon lines”, Plasma 2005, 812, (eds. M. J. Sadowski et al.), pp. 457460, 2006.
ACL : 143 Bourig A., Lago V., Martin J.P., Pliavaka K., Gorbatov S., Chemukho A. and
Naumov V., “Generation of Singlet Oxygen in HV pulsed + DC atmospheric
pressure for Oxygen-enhanced combustion”, International Journal of
plasma Environmental Science & Technology, 1 (1), (2007).
ACL : 144 Mazouffre S., Dannenmayer K. and Perez-Luna J., “Examination of plasmawall interactions in Hall effect thrusters by means of calibrated thermal
imaging”, Journal of Applied Physics, 102 (2), (2007).
ACL : 145 Mazouffre S., Echegut P. and Dudeck M., “A calibrated infrared imaging
study on the steady state thermal behaviour of Hall effect thrusters”, Plasma
Sources Science & Technology, 16 (1), pp. 13-22, (2007).
ACL : 146 Menier E., Leger L., Depussay E., Lago V. and Artana G., “Effect of a dc
discharge on the supersonic rarefied air flow over a flat plate”, Journal of
Physics D-Applied Physics, 40 (3), pp. 695-701, (2007).
ACL : 147 Pawelec E., Caubet-Hilloutou V. and Mazouffre S., “Fabry-Perot lineshape
analysis in an optically thick expanding plasma”, Plasma Sources Science &
Technology, 16 (3), pp. 635-642, (2007).
ACL : 148 Adam J.C., Boeuf J.P., Dubuit N., Dudeck M., Garrigues L., Gresillon D.,
Heron A., Hagelaar G.J.M., Kulaev V., Lemoine N., Mazouffre S., Luna J.P.,
Pisarev V. and Tsikata S., “Physics, simulation and diagnostics of Hall effect
thrusters”, Plasma Physics and Controlled Fusion, 50 (12), (2008).
ACL : 149 Gawron D., Mazouffre S., Sadeghi N. and Heron A., “Influence of magnetic
field and discharge voltage on the acceleration layer features in a Hall effect
thruster”, Plasma Sources Science & Technology, 17 (2), (2008).
64
ACL : 150 Kaminska A., Lopez B., Barbosa E., Izrar B. and Dudeck M., “Nonequilibrium effects in an argon DC arc plasma source”, High Temperature
Material Processes, 12 (1-2), pp. 121-141, (2008).
ACL : 151 Kaminska A., Lopez B., Izrar B. and Dudeck M., “Modelling of an argon
plasma jet generated by a dc arc”, Plasma Sources Science & Technology,
17 (3), (2008).
ACL : 152 Lazurenko A., Coduti G., Mazouffre S. and Bonhomme G., “Dispersion
relation of high-frequency plasma oscillations in Hall thrusters”, Physics of
Plasmas, 15 (3), (2008).
ACL : 153 Mazouffre S., Gawron D., Kulaev V., Luna J.P. and Sadeghi N., “A laser
spectroscopic study on Xe+ ion transport phenomena in the E x B discharge of
a Hall effect thruster”, Plasma 2007, 993, (eds. H. J. Hartfuss et al.), pp. 447454, 2008.
ACL : 154 Mazouffre S., Gawron D., Kulaev V. and Sadeghi N., “Xe+ Ion Transport in
the Crossed-Field Discharge of a 5-kW-Class Hall Effect Thruster”, Ieee
Transactions on Plasma Science, 36 (5), pp. 1967-1976, (2008).
ACL : 155 Sosa R., Kelly H., Grondona D., Marquez A., Lago V. and Artana G.,
“Electrical and plasma characteristics of a quasi-steady sliding discharge”,
Journal of physics. D. Applied physics., 41 (3), (2008).
ACL : 156 Ferrier M., Fedioun I., Orlik E. and Davidenko D., “Modal Linear Stability of
the Near-Wall Flow on a Hypersonic Forebody”, Journal of Spacecraft and
Rockets, 46 (1), pp. 51-66, (2009).
ACL : 157 Garrigues L., Perez-Luna J., Lo J., Hagelaar G.J.M., Boeuf J.P. and Mazouffre
S., “Empirical electron cross-field mobility in a Hall effect thruster”, Applied
Physics Letters, 95 (14), (2009).
ACL : 158 Leger L., Depussay E. and Lago V., “D. C. Surface Discharge Characteristics
in Mach 2 Rarefied Airflow”, Ieee Transactions on Dielectrics and
Electrical Insulation, 16 (2), pp. 396-403, (2009).
ACL : 159 Mazouffre S., Gawron D. and Sadeghi N., “A time-resolved laser induced
fluorescence study on the ion velocity distribution function in a Hall thruster
after a fast current disruption”, Physics of Plasmas, 16 (4), (2009).
ACL : 160 Mazouffre S., Kulaev V. and Luna J.P., “Ion diagnostics of a discharge in
crossed electric and magnetic fields for electric propulsion”, Plasma Sources
Science & Technology, 18 (3), (2009).
ACL : 161 Mazouffre S. and Pawelec E., “Metastable oxygen atom velocity and
temperature in supersonic CO2 plasma expansions”, Journal of Physics DApplied Physics, 42 (1), (2009).
ACL : 162 Parisse J.D., Leger L., Depussay E., Lago V. and Burtschell Y., “Comparison
between Mach 2 rarefied airflow modification by an electrical discharge and
numerical simulation of airflow modification by surface heating”, Physics of
Fluids, 21 (10), (2009).
ACL : 163 Andre P., Aubreton J., Clain S., Dudeck M., Duffour E., Elchinger M.F., Izrar
B., Rochette D., Touzani R. and Vacher D., “Transport coefficients in thermal
plasma. Applications to Mars and Titan atmospheres”, European Physical
Journal D, 57 (2), pp. 227-234, (2010).
65
ACLN : Articles dans des revues avec comité de lecture non répertoriées dans des bases de
données internationales.
ACLN : 8
Kurzyna J., Makowski K., Lazurenko A., Mazouffre S., Dudeck M.,
Bonhomme G. and Peradzynski Z., “Search for the frequency content of hall
effect thruster HF electrostatic wave with the Hilbert-Huang method”, Plasma
2005, 812, (eds. M. J. Sadowski et al.), pp. 411-414, 2006.
ACLN : 9 Mazouffre S., Pawelec E., Tran Bich N. and Sadeghi N., “Doppler-free
spectroscopy measurements of isotope shifts and hyperfine components of
near infrared xenon lines”, Plasma 2005, 812, (eds. M. J. Sadowski et al.),
American Institute of Physics, p. 457, 2006.
ACLN : 10 Mazouffre S., Gawron D., Kulaev V., Pérez-Luna J. and Sadeghi N., “A laser
spectroscopy study on Xe+ ion transport phenomena in the ExB discharge of a
Hall effect thruster”, Plasma 2007, 993, (eds. H.-J. Hartfuss et al.), American
Institute of Physics, p. 447, 2007.
ACLN : 11 Kurzyna J., Makowski K., Peradzynski Z., Lazurenko A., Mazouffre S. and
Dudeck M., “Where is the breathing mode ? High voltage Hall effect thruster
studies with EMD method”, Plasma 2007, 993, (eds. H. J. Hartfuss et al.), pp.
443-446, 2008.
ASCL : Articles dans des revues sans comité de lecture.
ASCL : 7
Gawron D., Mazouffre S., Albarède L. and Sadeghi N., “Examination of Hall
effect thruster acceleration layer characteristics by laser spectroscopy and
retarding potential analyzer”, 42nd Joint Propulsion Conference, (ed.
AIAA), pp. 06-4473, Sacramento, Californie, (2006).
ASCL : 8 Lopez B., Barbosa E., Dudeck M., Izrar B. and Kaminska A., “Modelling of a
DC arc plasma source for the simulation of mars atmosphere around a
spacecraft”, European Space Agency, (Special Publication) ESA SP, 629 SP,
November 2006, (2006).
ASCL : 9 André P., Clain S., Dudeck M., Izrar B., Rochette D., Touzani R. and Vacher
D., “First step in theoretical approach in study of mars and titan atmospheres
with an inductively coupled plasma torch”, European Space Agency, (Special
Publication) ESA SP, 667 SP, (2009).
ASCL : 10 Lopez B., Izrar B. and Dudeck M., “Modeling of a DC arc plasma source for
the simulation of mars atmospheric entry”, European Space Agency, (Special
Publication) ESA SP, 667 SP, (2009).
ACTI : Communications avec actes dans un congrès international.
ACTI : 81
ACTI : 82
Bourig A., Lago V., Martin J.-P., Pliavako K., Pliavako F., Gorbatov S.,
Chernukho A. and Naumov V., “Generation of singlet oxygen in HV pulsed
cross discharge at atmospheric and reduced pressure for oxygen-enhanced
combustion”, The fifth International Symposium on Non Thermal Plasma
Technology, Oléron, 23 au 29 juin 2006, (2006).
Bourig A., Martin J.-P., Lago V., Thévenin D. and Zähringer K., “Hydrogen
combustion in presence of excited oxygen produced by non thermal plasma:
Experimental and numerical study”, Nonequilibrium Processes in
Combustion and Plasma Based Technologies, Intern. Workshop, Contrib.
Papers, Luikov HMTI, 51-55, Minsk, Belarus, (2006).
66
ACTI : 83
ACTI : 84
ACTI : 85
ACTI : 86
ACTI : 87
ACTI : 88
ACTI : 89
ACTI : 90
ACTI : 91
ACTI : 92
ACTI : 93
ACTI : 94
Ferrier M., Fedioun I. and Davidenko D., “Boundary layer transition
prediction on a hypersonic vehicle forebody”, 14th AIAA/AHI Space Planes
and Hypersonic Systems and Technologies Conference, AIAA-2006-8092,
pp. 1867-1878, Canberra, Australia, 6-9 Novembre, (2006).
Lago V., Grondona D., Kelly H., Sosa R., Marquez A. and Artana G., “Sliding
Discharge Characteristics”, Proceedings of the International Symposium on
Electrohydrodonamics (ISEHD2006), 4-6 December, (2006).
Léger L., Artana G., Gallot-Lavallée O. and Moreau E., “Electrical properties
of a sliding discharge in supersonic air flow”, International Symposium on
Electro-hydrodynamics, Buenos Aires, Argentine, December, (2006).
Mazouffre S., Gawron D. and Sadeghi N., “Potentiel distribution in the near
field of a Hall effect thruster: A laser spectroscopy study”, 18th European
Conference on Atomic & Molecular Physics of Ionized Gases, Lecce,
Italie, (2006).
Menier E., Artana G., Léger L., Lago L., Depussay E. and Lengran J.C.,
“Modification of a rarefied supersonic flow over a flat plate using an electrical
discharge”, 25th international symposium on rarefied gas dynamics, SaintPetersbourg, Russie, 21-28 juillet 2006, (2006).
Menier E., Depussay E., Lago V., Leger L. and Artana G., “Influence of a
high-voltage discharge on the supersonic rarefied flow along a flat plate”,
Proceedings of the International Symposium ISEHD2006, Buenos Aires,
Argentina, 4-6 December, (2006).
Menier E., Lengrand J.C., Depussay E., Lago V. and Léger L., “Direct
Simulation Monte Carlo method applied to the Ionic Wind in Supersonic
Rarefied Conditions”, 3rd AIAA Flow Control Conference, San Francisco,
(2006).
Menier E., Lengrand J.C. and Lago V., “DSMC estimate of the ionic wind
effect on a supersonic low-density flow”, 25th International Conference on
Rarefied Gas Dynamics, St-Petersburg, Russie, 15-21 juillet 2006, (2006).
Barbosa E., Lopez E., Dudeck M., Kaminska A. and Izrar B., “Numerical
Simulation of Non-Equilibrium Hypersonic Flow in a Convergent-Divergent
Nozzle: Application to Mars Atmospheric Entry Simulation”, 8th
International Symposium on Experimental and Computational
Aerothermodynamics of Internal Flows, Paper reference: ISAIF8-0041,
Lyon, July, (2007).
Bonhomme G., Lemoine N., Brochard F., Lazurenko A., Mazouffre S. and
Dudeck M., “Characterization of High Frequency plasma oscillations in a Hall
effect thruster”, 30th International Electric Propulsion Conference, p. 247,
Florence, Italy, (2007).
Bourig A., Lago V., Martin J.-P., Pliavaka K., Pliavako F. and Gorbatov S.,
“Plasma generation of excited oxygen for combustion enhancement”, 18th
Intern. Symp. on Plasma Chemistry – ISPC'2007, Kyoto, Japan, 26-31
August, (2007).
Bourig A., Martin J.P., Lago V., Thévenin D. and Zähringer K., “Modelling of
the production of excited oxygen molecules in a crossed discharge (barrier
discharge and CW discharge”, 18th International Symposium on Plasma
Chemistry, Kyoto, Japan, (2007).
67
ACTI : 95
ACTI : 96
ACTI : 97
ACTI : 98
ACTI : 99
ACTI : 100
ACTI : 101
ACTI : 102
ACTI : 103
ACTI : 104
ACTI : 105
ACTI : 106
Bourig A., Martin J.P., Lago V., Thévenin D., Zähringer K., Pliavaka K.F.,
Pliavako F.V. and Gorbatov S.V., “Application of a non-self-sustained
nanosecond pulsed discharge to a diffusion flame”, Aerospace Thematic
Workshop "Fundamentals of Aerodynamic Flow and Combustion
Control by Plasmas", Varenna, Italy, 28-31 May, (2007).
Bourig A., Martin J.P., Thévenin D., Lago V. and Zähringer K., “Plasma
assisted combustion ; application to a diffusion flame”, Aerospace Thematic
Workshop on "Fundamentals of Aerodynamic-Flow and Combustion
Control by Plasmas", Varenna, Italy, 28 to 31 May, (2007).
Coduti G., Lazurenko A., Cavoit C., Krasnosselskikh V. and S. M., “A novel
approach for assessing the electron transport properties in plasma thrusters”,
28th International Conference on Phenomena in Ionized Gases, Prague,
Czech Republic, (2007).
Coduti G., Lazurenko A., Mazouffre S., Dudeck M., Dudock De Wit T.,
Cavoit C., Krasnoselskikh V. and Bouchoule A., “Investigation of electron
transport properties in Hall thrusters through measurements of magnetic field
fluctuations”, 30th International Electric Propulsion Conference, p. 143,
Florence, Italy, (2007).
Dussart R., Thomann A.-L., Semmar N., Pichon L.E., Lagrange J.-F., Mathias
J. and Mazouffre S., “Global evaluation and direct measurement of the energy
transfer between an ICP argon plasma and a surface”, 18th International
Symposium on Plasma Chemistry, Kyoto, Japan, (2007).
Ferrier M., Orlik E., Fedioun I. and Davidenko D., “Three dimensional linear
stability analysis of the boundary and entropy layers on a hypersonic vehicle
forebody”, 2nd European Conference for Aero-Space Sciences (EUCASS
2007), Brussels, Belgium, 1-6 July, (2007).
Mazouffre S., Gawron D., Kulaev V. and N. S., “A laser spectroscopic study
on Xe+ ion transport phenomena in a 5 kW-class Hall effect thruster”, 30th
International Electric Propulsion Conference, p. 160, Florence, Italy,
(2007).
Mazouffre S., Gawron D., Lazurenko A., Dudeck M., D’escrivan S. and O. D.,
“Performance and physical characteristics of a 5 kW-class Hall effect thruster
for space missions”, 2nd European Conference for Aerospace Sciences,
Brussels, Belgium, (2007).
Mazouffre S., Lazurenko A., Lasgorceix P., Dudeck M., D’escrivan S. and O.
D., “Expanding frontiers: Towards high power Hall effect thrusters for
interplanetary journeys”, 7th International Symposium on Launcher
Technologies, pp. Paper O-25, Barcelona, Spain, (2007).
Menier E., Depussay E., Lago V., Léger L., Martin J.P. and Lengrand J.C.,
“Experimental and numerical study of the influence of an electrical discharge
on a mach 2 rarefied flow”, Aerospace Thematic Workshop on
"Fundamentals of Aerodynamic-Flow and Combustion Control by
Plasmas", Varenna, ITALY, 28-31 may, (2007).
Menier E., Lago V., Depussay E. and Lengrand J.C., “Influence of a DC
Discharge on a supersonic rarefied air flow over a flat plate: experimental
study”, 2nd European Conference for Aero-Space Sciences (EUCASS
2007), Bruxelles, Belgium, 1-6 july, (2007).
Pawelec E. and Mazouffre S., “Metastable oxygen atom velocity and
temperature in expanding CO2 plasma jets”, 28th International Conference
on Phenomena in Ionized Gases, Prague, Czech Republic, (2007).
68
ACTI : 107 Pliavaka K., Bourig A., Lago V., Martin J.-P., Pliavaka F., Gorbatov S. and
Chernukho A., “Development of a HV pulsed power supply and a crossed
discharge reactor for excited O2 generation”, Aerospace Thematic
Workshop "Fundamentals of Aerodynamic Flow and Combustion
Control by Plasmas", Varenna, Italy, 28-31 May, (2007).
ACTI : 108 Ferrier M., Orlik E., Fedioun I. and Davidenko D., “Transition Prediction of
the 3D Boundary Layer Under a Hypersonic Vehicle Forebody”, 15th AIAA
International Space Planes and Hypersonic Systems and Technologies
Conference, AIAA paper 2008-2599, Dayton, Ohio, 28 april - 1 may, (2008).
ACTI : 109 Kulaev V., Mazouffre S., Gawron D. and Sadeghi N., “Examination of the
Xe+ ion velocity distribution functions in a high power Hall effect thruster”,
5th International Spacecraft Propulsion Conference, pp. 42-051,
Heraklion, Crete, (2008).
ACTI : 110 Léger L., Depussay E. and Lago V., “Comparison of D.C. discharge and
surface heater effect on supersonic rarefied air flow around a flat plate”, 19th
ESCAMPIG (European Conference on Atomic and Molecular Physics of
Ionized Gases), Grenade, Espagne, (2008).
ACTI : 111 Mazouffre S., Dudeck M., Kralkina E., Pavlov V., Rukhadze A., Vavilin K.,
Alexandrov A., Savinov V., Tarakanov V., Kim V., Kozlov V., Skrylnikov A.,
Bugrova A., Bugrov G., Kharchevnikov V., Lipatov A., Desyatskov A.,
Kroesen G., D’escrivan S. and S. Z., “Supplying the discharge of a Hall effect
thruster with RF power: A novel approach to enhance thruster performances”,
5th International Spacecraft Propulsion Conference, pp. 42-068,
Heraklion, Crete, (2008).
ACTI : 112 Mazouffre S., Kulaev V., Gawron D. and Sadeghi N., “Diagnostics of a
discharge in crossed electric and magnetic fields for electric propulsion”, 19th
Europhysics Conference on the Atomic and Molecular Physics of Ionized
Gases, p. T03, Grenada, Spain, (2008).
ACTI : 113 Aanesland A., Popelier L., Leray G., Chabert P., Mazouffre S. and Gerst D.,
“Plasma Propulsion with electronegative gases”, 31st International Electric
Propulsion Conference, p. 01, Ann Arbor, Michigan, (2009).
ACTI : 114 Bourgeois G. and Mazouffre S., “Examination of the temporal characteristics
of electric field in a Hall effect thruster using a photon-counting technique”,
31st International Electric Propulsion Conference, p. 111, Ann Arbor,
Michigan, (2009).
ACTI : 115 Dannenmayer K. and Mazouffre S., “Elementary scaling laws for sizing up
and down Hall effect thrusters: Impact of symplifying assumptions”, 31st
International Electric Propulsion Conference, p. 077, Ann Arbor,
Michigan, (2009).
ACTI : 116 Garrigues L., Pérez-Luna J., Lo J., Hagelaar G.J.M., Boeuf J.-P. and
Mazouffre S., “Determination of the axial electron mobility profile in the
PPSX000 thruster”, 31st International Electric Propulsion Conference, p.
082, Ann Arbor, Michigan, (2009).
ACTI : 117 Kurzyna J., Mazouffre S. and Kulaev V., “Electric probe measurements of
plasma oscillations in the 100-500 kHz range within the discharge of the
PPSX000 Hall thruster”, 31st International Electric Propulsion
Conference, p. 101, Ann Arbor, Michigan, (2009).
69
ACTI : 118 Lago V., Depussay E. and Léger L., “Optical measurements in the shock layer
of a blunt body in an air plasma and CO2/N2 plasma”, 3rd European
Conference for Aero-Space Sciences (EUCASS 2009), Versailles, France,
july 6-9, (2009).
ACTI : 119 Léger L., Depussay E. and Lago V., “Experimental study of rarefied airflow
modification around a cylinder by a dc discharge”, 3rd European Conference
for Aero-Space Sciences (EUCASS 2009), Versailles, France, july 6-9,
(2009).
ACTI : 120 Léger L., Depussay E. and Lago V., “Effect of DC corona discharge on
rarefied supersonic airflow around a cylinder”, International Symposium on
Electrohydrodynamics 2009, Faculty of engineering UNIMAS, Malaysia,
(2009).
ACTI : 121 Mazouffre S. and Dannenmayer K., “Elementary scaling laws for the design
of low and high power Hall effect thrusters”, 3rd European Conference for
Aerospace Sciences, p. 53, Versailles, France, (2009).
ACTI : 122 Orlik E., Fedioun I. and Davidenko D., “Boundary Layer Transition on a
Hypersonic Forebody : Experiments and Calculations”, 16th
AIAA/DLR/DGLR International Space Planes and Hypersonic Systems
and Technologies Conference, AIAA paper 2009-7352, Bremen, Germany,
19-22 october, (2009).
ACTI : 123 Orlik E., Kornilov V., Ferrier M., Fedioun I. and Davidenko D., “Hypersonic
laminar/turbulent transition: calculations and experiments”, 3rd European
Conference for Aero-Space Sciences (EUCASS 2009), Versailles, France, 69 July, (2009).
ACTI : 124 Bourgeois G., Mazouffre S. and Sadeghi N., “A time-resolved photon
counting spectroscopy study on the ion velocity oscillations in a crossed-field
discharge”, International Conference on Plasma Diagnostics, Pont-àMousson, France, (2010).
ACTI : 125 Dannenmayer K., Mazouffre S., Kudrna P. and Tichý M., “Measurement of
plasma properties in the plume far-field of a Hall effect thruster using
Langmuir and emissive probes”, International Conference on Plasma
Diagnostics, Pont-à-Mousson, France, (2010).
ACTI : 126 Mazouffre S., Dannenmayer K., Bourgeois G., Guyot M., Denise S., Renaudin
P., Gagan V. and Dudeck M., “Effect of channel geometry on discharge
properties and performances of a low-power Hall effect thruster”, Space
Propulsion Conference, San Sebastian, Spain, (2010).
ACTI : 127 Zmijanovic V., Palerm S., Oswald J., Lago V., Léger L., Sellam M., Depussay
E. and Chpoum A., “Fluidic thrust vectorization of an axisymmetric nozzle”,
Space propulsion 2010, San Sebastien , Spain, (2010).
ACTN : Communications avec actes dans un congrès national.
ACTN : 4
ACTN : 5
Menier E., Depussay E., Viviana L., Léger L. and Lengrand J.C., “Influence
d’une décharge électrique sur un écoulement supersonique raréfié le long
d’une plaque plane”, Société Française d’Electrostatique, Grenoble
(France),, August 30-31, (2006).
Menier E., Depussay E., Lago V., Leger L., Martin J.P. and Lengrand J.C.,
“Etude expérimentale et numérique de l’influence d’une décharge électrique
sur un écoulement supersonique raréfié le long d’une plaque plane”, AAAF,
(2007).
70
ACTN : 6
ACTN : 7
Leger L., Depussay E. and Lago V., “Effet d’une décharge sur un écoulement
supersonique raréfié autour d’une plaque plane : aspect thermique”, Société
Française d’Electrostatique, Gif sur Yvette, juillet, (2008).
De Izarra L., Rouet J.-L. and Izrar B., “Construction d'une méthode
multifaisceaux pour les écoulements en milieux poreux”, 19ème Congrès
Français de Mécanique, p. 6, Marseille, France, 24-28 août, (2009).
INV : Conférences données à l’invitation du Comité d’organisation dans un congrès
national ou international.
INV : 24
INV : 25
Mazouffre S., “Recent advances in the physics of high power Hall effect
thrusters: Spatial and temporal characteristics of the Xe+ ion velocity
distribution functions”, 34th European Physical Society Conference on
Plasma Physics, Varsovie, Pologne, (2007).
Mazouffre S., “Diagnostics of a discharge in crossed electric and magnetic
fields for electric propulsion”, 19th Europhysics Conference on the Atomic
and Molecular Physics of Ionized Gases, Grenade, Espagne, (2008).
OS : Ouvrages scientifiques (ou chapitres de ces ouvrages).
OS : 1
OS : 2
Mazouffre S., “Spectroscopie de fluorescence induite par diodes laser :
Application au diagnostic des plasmas.”, Systèmes d'analyse, Modélisation
et Rayonnement, 6, (ed. S. Mottin), MRCT du CNRS, p. 67, St Etienne,
2009.
Thomann A.-L., Semmar N., Dussart R., Bedra L., Mathias J., Tessier Y. and
Mazouffre S., “Un capteur de flux d'énergie dans les plasmas”, Systèmes
d'analyse, Modélisation et Rayonnement, 6, (ed. S. Mottin), MRCT du
CNRS, p. 97, St Etienne, 2009.
OV : Ouvrages de vulgarisation (ou chapitres de ces ouvrages).
OV : 1
OV : 2
OV : 3
OV : 4
OV : 5
OV : 6
Mazouffre S. and Dudeck M., “Des plasmas pour voyager dans l'espace”,
Covalence, no. 59, pp. 2, 2006.
Bouchoule A., Dudeck M., Mazouffre S. and Duchemin O., “La propulsion
électrique pour les missions spatiales”, La Lettre AAAF, no. 6, pp. 6, 2007.
Mazouffre S., “PIVOINE-2g, la fine fleur de la propulsion”, Microscoop, no.
51, pp. 1, 2007.
Mazouffre S., “Un nouveau défi pour la propulsion spatiale à plasma : la forte
puissance”, Microscoop, no. 52, pp. 2, 2007.
Gökalp I. and Mazouffre S., “Homo Spatialis ?”, Covalence, no. 73, pp. 1,
2009.
Mazouffre S., “Les propulseurs à plasma : Une technologie d'avant-garde”,
Reflets de la Physique, no. 14, pp. 5, 2009.
71
Thématique Matériaux & CVD
ACL : Articles dans des revues internationales ou nationales avec comité de lecture
ACL : 164 Met C., De Persis S., Vandenbulcke L., Aubry O., Delfau J.L., Vovelle C. and
Lago V., “Emission spectroscopy, mass spectrometry, and kinetics in CH4CO2 Plasmas used for diamond deposition”, Journal of the Electrochemical
Society, 153 (7), pp. F127-F131, (2006).
ACL : 165 Thomann A.L., Pavius M., Brault P., Gillon P., Sauvage T., Andreazza P. and
Pineau A., “Plasma sputtering of an alloyed target for the synthesis of Zrbased metallic glass thin films”, Applied Physics a-Materials Science &
Processing, 84 (4), pp. 465-470, (2006).
ACL : 166 Gries T., Vandenbulcke L., Simon P. and Canizares A., “Polarized microRaman spectroscopy for studying stresses in as-grown and tensile-tested
diamond films”, Surface & Coatings Technology, 202 (11), pp. 2263-2267,
(2008).
ACL : 167 Gries T., Vandenbulcke L., Simon P. and Canizares A., “Stresses in textured
and polycrystalline cubic films by Raman spectroscopy: Application to
diamond”, Journal of Applied Physics, 102, (2007).
ACL : 168 Gries T., Vandenbulcke L., Simon P. and Canizares A., “Anisotropic biaxial
stresses in diamond films by polarized Raman spectroscopy of cubic
polycrystals”, Journal of Applied Physics, 104 (2), (2008).
ACL : 169 Dolique V., Thomann A.L., Brault P., Tessier Y. and Gillon P., “Complex
structure/composition relationship in thin films of AlCoCrCuFeNi high
entropy alloy”, Materials Chemistry and Physics, 117 (1), pp. 142-147,
(2009).
ACL : 170 Gries T., De Persis S., Vandenbulcke L., Met C., Delfau J.L. and De BarrosBouchet M.I., “Experimental and kinetic studies of C-H-O plasmas for
polycrystalline and nano-smooth diamond deposition”, Diamond and Related
Materials, 18 (5-8), pp. 730-733, (2009).
ACL : 171 Gries T., Vandenbulcke L., De Persis S., Aubry O. and Delfau J.L.,
“Diagnostics and modeling of CH4-CO2 plasmas for nanosmooth diamond
deposition: Comparison to experimental data”, Journal of Vacuum Science
& Technology B, 27 (5), pp. 2309-2320, (2009).
ACL : 172 Vandenbulcke L., Gries T. and Rouzaud J.N., “Nanodiamonds in dusty lowpressure plasmas”, Applied Physics Letters, 94 (4), (2009).
ACL : 173 Dolique V., Thomann A.L., Brault P., Tessier Y. and Gillon P., “Thermal
stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ
XRD analysis”, Surface & Coatings Technology, 204 (12-13), pp. 19891992, (2010).
ACL : 174 Gries T., Vandenbulcke L., Rouzaud J.N. and De Persis S., “Diagnostics in
dusty C-H-O plasmas with diamond and graphitic nanoparticle generation”,
Plasma Sources Science & Technology, 19 (2), (2010).
ACL : 175 Vandenbulcke L., Gries T., De Persis S., Met C., Aubry O. and Delfau J.L.,
“Molecular beam mass spectrometry and modelling of CH4-CO2 plasmas in
relation with polycrystalline and nanocrystalline diamond deposition”,
Diamond and Related Materials, 19 (7-9), pp. 1103-1116, (2010).
72
ACTI : Communications avec actes dans un congrès international.
ACTI : 128 Gries T., Matta C., De Barros M.I., Vacher B., De Persis S. and Vandenbulcke
L., “Nano-smooth diamond coatings on various alloys for ultralow friction in
the presence of OH-containing lubricants”, American Vacuum Society 55th
International Symposium & Exhibition, Boston, USA, (2008).
ACTN : Communications avec actes dans un congrès national.
ACTN : 8
Gries T., Vandenbulcke L., Simon P., Bormann D. and Canizares A.,
“Analyse par spectroscopie Raman de contraintes anisotropes sur des
revêtements diamiant déposés sur alliages de titane”, 15èmes journées
thématiques du Groupe Français de Spectroscopie Vibrationnelle,
Toulouse, 25-27 juin 2008, (2008).
COM : Communications orales sans actes dans un congrès international ou national.
COM : 32
COM : 33
COM : 34
COM : 35
COM : 36
COM : 37
COM : 38
COM : 39
Gries T., Vandenbulcke L., Canizares A. and Simon P., “Polarized microRaman spectroscopy for studying stresses in as-grown and tensile-tested
diamond films”, European Materials Research Society 2007 Spring
Meeting, Strasbourg, France, 28 mai - 1er juin 2007, (2007).
Gries T., Vandenbulcke L., De Persis S., Lago L. and Bougdira J.,
“Characterization of CH4-CO2 plasmas for diamond deposition.”, 16th
International Colloquium on Plasma Processes, Toulouse, France, (2007).
De Barros Bouchet M.I., Michel Martin J., Gries T., Vandenbulcke L. and
Kano M., “Future trends in boundary lubrication of carbon-based coatings”,
19th European Conference on Diamond, Diamond-Like Materials,
Carbon Nanotubes, and Nitrides, Sitges, Espagne, 7-11 septembre 2008,
(2008).
Gries T., Matta C., De Barros Bouchet M.I., Vacher B. and Vandenbulcke L.,
“Nano-smooth diamond coatings for ultralow friction with green lubricants”,
14th International Conference on Thin Films & Reactive Sputter
Deposition 2008, Ghent, Belgique, 17-20 novembre 2008, (2008).
De Barros Bouchet M.I., Matta C., Gries T., Vandenbulcke L., Le Mogne T.
and Martin J.M., “Genesis of superlow friction with nano-smooth diamond
coatings”, Annual Meeting of the Society of Tribologists & Lubrication
Engineers, Orlando, USA, 17-21 mai 2009, (2009).
Rouzaud J.N., Le Guillou C., Vandenbulcke L. and Gries T., “On laboratory
nanodiamonds as earth analogues of extraterrestrial carbons”, CARBON,
Biarritz, France, 14-19 juin 2009, (2009).
Vandenbulcke L., De Persis S., Gries T. and Rouzaud J.N., “Synthesis of
nanodiamonds by homogeneous nucleation in C-H-O plasmas experimental
and modelling”, CARBON 2009, Biarritz, France, (2009).
Vandenbulcke L., Gries T., De Persis S., Met C., Aubry O. and Delfau J.-L.,
“Molecular beam mass spectrometry and modelling of CH4-CO2 plasmas in
relation with polycrystalline and nano-smooth diamond deposition”, 36th
International Conference on Metallurgical Coatings and Thin Films, San
Diego, USA, (2009).
73
AFF : Communications par affiche dans un congrès international ou national.
AFF : 74
AFF : 75
AFF : 76
AFF : 77
Dollet A. and De Persis S., “Pressure dependent rate constants of reactions
involving SiH4, Si2H4, Si2H5 and Si2H6 adducts from Quantum Rice
Ramsperger Calculations”, 19th International Symposium on Gas Kinetics,
(eds. P. Dagaut and A. Mellouki), p. 399, Orléans, France, (2006).
Gries T., De Persis S., Vandenbulcke L., Met C., Delfau J.-L. and De Barros
M.I., “Experimental and kinetic studies of C-H-O plasmas for polycrystalline
and nano-smooth diamond deposition”, 19th European Conference on
Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides,
Sitges, Spain, 7-11 september 2008, (2008).
Gries T., Vandenbulcke L., Simon P., Bormann D. and Canizares A.,
“Anisotropic stresses in diamond coatings on titanium alloys by polarized
micro-Raman spectroscopy”, 14th International Conference on Thin Films
& Reactive Sputter Deposition 2008, Ghent, Belgique, (2008).
Vandenbulcke L., Gries T., Rouzaud J.N. and De Persis S., “Homogeneous
synthesis of nanodiamond grains in low-pressure plasmas”, Nanotech
Conference & Expo, Houston, USA, 3-7 mai 2009, (2009).
AP : Autres productions : bases de données, logiciels enregistrés, traductions, comptes
rendus d’ouvrages,
AP : 3
AP : 4
Gillon P., Thomann A.-L. and Brault P., “Process for depositing a thin film of
metal alloy on a substrate and a metal alloy in thin film form”, Brevet
international publié le 13 mars 2008. N° Dépôt/publication WO2008028981
A2, Déposants CNRS and Université-Orléans, (2008).
Vandenbulcke L., Gries T. and Rouzaud J.N., “Procédé d'élaboration de grains
de nanodiamants par nucléation homogène dans un plasma”, Brevet
international publié le 8 juillet 2008. N° Dépôt/publication WO 2010/003922,
Déposant CNRS, (2008).
74
Productions Externes dans ancien laboratoire d’affectation
ACL : Articles dans des revues internationales ou nationales avec comité de lecture
ACL : 176 El Bakali A., Pillier L., Desgroux P., Lefort B., Gasnot L., Pauwels J.F. and
Da Costa I., “NO prediction in natural gas flames using GDF-Kin((R))3.0
mechanism NCN and HCN contribution to prompt-NO formation”, Fuel, 85
(7-8), pp. 896-909, (2006).
ACL : 177 Gueniche H.A., Glaude P.A., Dayma G., Fournet R. and Battin-Leclerc E.,
“Rich methane premixed laminar flames doped with light unsaturated
hydrocarbons - I. Allene and propyne”, Combustion and Flame, 146 (4), pp.
620-634, (2006).
75
LISTES DES THESES ICARE (2006-2010)
TH : 1
TH : 2
TH : 3
TH : 4
TH : 5
TH : 6
TH : 7
TH : 8
TH : 9
TH : 10
TH : 11
TH : 12
TH : 13
TH : 14
TH : 15
Olivani A., “Thermo-fluid-dynamic Analysis of Methane/Hydrogen/Air
Mixtures Under Reacting Conditions by Laser Diagnostics”, Ph.D. Thesis,
Politecnico di Milano (Italy) & University of Orléans, Milano (Italy) - Orléans
(France), 2006.
Amic K., “Oxygène atomique dans les conditions de l’environnement spatial et
simulations d’une source entretenue par Laser.”, PhD Thesis, University of Paris
VI, 2006.
Le Person A., “Pesticides et composés aromatiques : Etudes des cinétiques et
mécanismes de leur dégradation en atmosphère simulée.”, University of
Orléans, Orléans, 2006.
Mathieu O., “Étude cinétique de la formation des particules de suies dans les
conditions de fonctionnement des moteurs automobiles.”, University of Orléans,
Orléans, 2006.
Hadj-Ali K., “Etude cinétique de l’oxydation et de l’auto-inflammation en
milieu gazeux homogène pauvre et ultra pauvre de carburants de substitution
issus de la biomasse”, Ph.D. Thesis, University of Lille-I, Lille, 2007.
Cohé C., “Caractérisation de l'effet de la pression et de l'ajout de CO2 sur les
flammes laminaires et turbulentes de prémélange pauvre méthane-air”, PhD
thesis, Mécanique des fluides, University of Orléans, Orléans, France, 2007.
Osmont A., “Elaboration d’une méthode théorique de calcul des enthalpies de
formation en phase gazeuse et condensée des molécules et radicaux de masse
molaire élevée. Application à l’énergétique.”, Ph.D. Thesis, University of
Orléans, Orléans, 2007.
Gougeon L., “Comparaison de schémas numériques pour la simulation
d'écoulements turbulents réactifs”, Ph.D. Thesis, University of Orléans, Orléans,
France, 2007.
Alseda D., “Combustion en mode Diesel homogène HCCI : recherche et
caractérisation des espèces favorisant l’initiation et le déroulement de la
combustion”, University of Orléans, Orléans, 2007.
Le-Cong T., “Etude expérimentale et modélisation de la combustion de
mélanges CH4/H2/Air, CH4/CO2/H2/Air sous pression”, University of Orléans,
Orléans, 2007.
Escot Bocanegra P., “Études expérimentales et modélisation de la combustion
des nuages de particules micrométriques et nanométriques d'aluminium.”, Ph.D.
Thesis, University of Orléans, Orléans, France, 2007.
Guilloteau A., “Étude multiphasique de polluants organiques aromatiques :
répartition des hydrocarbures aromatiques polycycliques dans les suies et
formation d’aérosols dans l’ozonolyse du catéchol.”, University of Orléans,
Orléans, 2007.
Tabet-Helal F., “Simulation numérique des flammes turbulentes nonprémélangées d’hydrogène-air”, Ph.D. Thesis, University of Orléans, Orléans,
2007.
Gawron D., “Phénomènes de transport ionique dans le plasma d’un propulseur à
effet Hall à forte puissance - Étude par spectroscopie laser.”, University of
Orléans, 2007.
Menier E., “Influence d’une décharge électrique continue sur un écoulement
supersonique raréfié.”, University of Orléans, Orléans, 2007.
76
TH : 16
TH : 17
TH : 18
TH : 19
TH : 20
TH : 21
TH : 22
TH : 23
TH : 24
TH : 25
TH : 26
TH : 27
TH : 28
TH : 29
TH : 30
TH : 31
TH : 32
Ferrier M., “Analyse de la stabilité et prévision de la transition laminaire /
turbulent de l'écoulement proche paroi sur l'avant-corps d'un véhicule
hypersonique”, Ph.D. Thesis, University of Orléans, Orléans, 2008.
Gries T., “Diagnostics in-situ de plasmas C-H-O, modélisation cinétique,
élaboration et caractérisation de couches minces de diamant et de
nanopoudres.”, University of Orléans, Orléans, 2008.
Diévart P., “Oxydation et combustion en milieu ultra-pauvre de carburants types
gazoles. Etude expérimentale en réacteur agité et modélisation”, University of
Lille I, Lille, 2008.
Piperel A., “Impact des propriétés des gaz d’échappement recirculés sur
l’initiation et le déroulement de la combustion : caractérisation paramétrique de
la réactivité de l’EGR”, University of Orléans, Orléans, 2008.
Marchal C., “Modélisation de la formation et de l’oxydation des particules de
suie dans un moteur automobile”, Ph.D. Thesis, University of Orléans, Orléans,
2008.
Delmaere T., “Étude de l’effet d’un gradient de champ magnétique sur le
dévelopement de flammes de diffusion laminaires.”, University of Orléans,
2008.
Nguyen M.-L., “Étude de réactions d’hydrocarbures aromatiques polycycliques
adsorbés sur les suies avec les oxydants atmosphériques O3, NO2 et OH.”,
University of Orléans, Orléans, 2008.
Lafosse F., “Etude expérimentale de la transition forcée déflagration-détonation
en phase gazeuse et en présence de spray”, University of Orléans, Orléans,
2008.
Lopez B., “Simulation des Écoulements de Plasma Hypersonique Hors Équilibre
Thermochimique : application aux Écoulements d'Arcjets et de Rentrée
Atmosphérique.”, University of Orléans, Orléans, 2009.
Bourig A., “Combustion modification by non-thermal plasma.”, University of
Orléans & Otto-Von-Guericke Universität Magdebourg, 2009.
Cheikhravat H., “Étude expérimentale de la combustion de l’hydrogène dans
une atmosphère inflammable en présence de gouttes d’eau. ”, University of
Orléans, Orléans, 2009.
Dubois T., “Étude des mécanismes cinétiques à haute température de mélanges
représentatifs de carburants dans des conditions de fonctionnement proches des
moteurs HCCI.”, University of Orléans, Orléans, 2009.
Mével R., “Étude de mécanismes cinétiques et des propriétés explosives des
systèmes hydrogène-protoxyde d’azote et silane-protoxyde d’azote : application
à la sécurité industrielle.”, University of Orléans, 2009.
Jouot F., “Étude de la détonation dans un jet diphasique cryogénique GH2-LOx
: contribution aux études sur les moteurs à onde de détonation”, Ph.D. Thesis,
University of Orléans, Orléans, 2009.
Bernard F., “Étude du devenir atmosphérique de composés organiques volatiles
biogéniques : réactions avec OH, O3 et NO2.”, University of Orléans, Orléans,
2009.
Mameri A., “Etude numérique de la combustion turbulente du prémélange
pauvre méthane/air enrichi à l'hydrogène”, Ph.D. Thesis, University of Orléans,
Orléans, 2009.
De Iuliis S., “A schock tube flame study on soot growth rate from ethylene in
presence of hydrogen by different optical diagnostics.”, University of Orléans &
POLIMI, 2009.
77
TH : 33
TH : 34
TH : 35
TH : 36
TH : 37
TH : 38
TH : 39
TH : 40
Bouvet N., “Experimental and numerical studies of the fundamental flame
speeds of methane/air and syngas (H2/CO)/air mixtures”, Ph.D. Thesis,
University of Orléans, Orléans, 2009.
Orlik E., “Etude du champ aérodynamique et de la transition laminaire-turbulent
sur l'avant-corps d'un véhicule hypersonique”, Ph.D. Thesis, University of
Orléans, Orléans, 2009.
Yilmaz B., “Computational and experimental analysis of premixed combustion
of hydrogen methane/air mixtures”, Ph.D. Thesis, University of Orléans &
Marmara University (Turkey), 2009.
Matynia A., “Etude expérimentale et cinétique de la combustion de
combustibles gazeux issus de la biomasse”, University of Orléans, Orléans,
2010.
Togbé C., “Etude cinétique de l’oxydation de constituants de biocarburants et
composés modèles - Formation de polluants.”, University of Orléans, Orléans,
2010.
Mzé-Ahmed A., “Cinétique de la combustion de bio-carburants aéronautiques.
Etude expérimentale et modélisation”, University of Orléans, Orléans, 2011.
Ramirez-Lancheros H., “Modélisation de l’auto-inflammation de carburants
multi-composants, application aux biocarburants”, University of Orléans,
Orléans, 2011.
May-Carle J.-B., “Ethanol et moteur Diesel, mécanisme de combustion et
formation des polluants”, University of Orléans, Orléans, 2012.
78
Bibliometric status
Publications distribution
200
177
Number of publications
180
160
140
128
120
100
78
80
60
39
40
37
25
12
20
10
8
6
2
4
2
Journal Title
Acta Astronautica
Aerosol Science and Technology
Aerospace Science and Technology
Applied Physics a-Materials Science & Processing
Applied Physics Letters
Atmospheric Chemistry and Physics
Atmospheric Environment
Chemical Physics Letters
Chemosphere
Combustion and Flame
Combustion Explosion and Shock Waves
Combustion Science and Technology
Diamond and Related Materials
Energy & Fuels
Environmental Science & Technology
European Physical Journal D
Experimental Thermal and Fluid Science
Fuel
Geophysical Journal International
High Temperature Material Processes
Ieee Transactions on Dielectrics and Electrical Insulation
Ieee Transactions on Plasma Science
International Journal of Chemical Kinetics
International Journal of Heat and Mass Transfer
International Journal of Hydrogen Energy
International Journal of plasma Environmental Science & Technology
Journal of Analytical and Applied Pyrolysis
Journal of Applied Physics
es
es
Th
AP
O
D
O
V
O
S
AF
F
M
O
C
TN
AC
TI
AC
V
IN
L
AS
C
LN
AC
AC
L
0
Nbr of
5-Year Impact
publications Factor
1
1
1
1
3
3
4
1
3
14
2
11
2
14
1
1
2
6
1
1
1
1
4
1
4
1
1
3
0.522
3.218
1
1.813
3.78
5.416
3.584
2.402
3.762
3.465
0.678
1.337
1.945
2.594
5.438
1.625
1.557
3.087
2.824
0.408
1.082
1.253
1.584
2.378
4.452
#NA
2.455
2.278
79
Journal of Atmospheric Chemistry
Journal of Chromatography A
Journal of Engineering for Gas Turbines and Power-Trans. of the Asme
Journal of Photochemistry and Photobiology a-Chemistry
Journal of Physical and Chemical Reference Data
Journal of Physical Chemistry A
Journal of Physics D-Applied Physics
Journal of Propulsion and Power
Journal of Spacecraft and Rockets
Journal of the American Chemical Society
Journal of the Electrochemical Society
Journal of Vacuum Science & Technology B
Materials Chemistry and Physics
Measurement Science & Technology
Oil & Gas Science and Technology-Rev.de l'Institut Francais du Petrole
Physical Chemistry Chemical Physics
Physics of Fluids
Physics of Plasmas
Plasma 2005
Plasma 2007
Plasma Physics and Controlled Fusion
Plasma Sources Science & Technology
Proceedings of the ASME Turbo Expo
Proceedings of the Combustion Institute
Proceedings of the Institution of Mechanical Engineers Part a-Journal of
Power and Energy
Process Safety Progress
Progress in Energy and Combustion Science
Propellants Explosives Pyrotechnics
Russian Journal of Physical Chemistry B, Focus on Physics
Spectroscopy and Spectral Analysis
Surface & Coatings Technology
The Journal of Supercritical Fluids
Zeitschrift für Physikalische Chemie
4
1
2
1
1
14
3
1
1
1
1
1
1
1
1
5
1
3
3
1
1
8
3
16
1.888
3.908
0.842
2.918
3.817
2.98
2.305
1.007
#NA
8.805
2.666
1.331
2.264
1.44
1.164
3.779
2.056
2.24
#NA
#NA
2.493
2.438
#NA
3.51
1
1
3
2
1
1
2
1
1
0.723
0.541
12.44
1.316
#NA
#NA
2.148
2.864
#NA
80
ANNEXE 1 : Fiches Plateformes Expérimentales
Voir fichier annexe pdf
81
ANNEXE 2 : Bilan de la Participation à l’Enseignement et la Formation
par la Recherche
Voir feuille Excel dans répertoire « annexes »
82
ANNEXE 3 : Action de Formation Permanente des Personnels de l’UPR3021
ANNEXE 3
Action de Formation Permanente
des Personnels de l’UPR3021
(2006 – 2010)
83
Les évolutions au laboratoire
L’évolution majeure a été la fusion au 1er janvier 2007, des deux laboratoires, LCSR et
Aérothermique en ICARE, Institut de Combustion, Aérothermique, Réactivité et
Environnement.
Les formations suivies par les personnels de l’Unité sont souvent liées aux différentes
évolutions qui ont lieu au sein du laboratoire :
- Les effectifs :
L’effectif total du laboratoire a diminué ces quatre dernières années. Les mutations et
départs à la retraite ont modifié le fonctionnement de certains services communs et/ou
équipes de recherche. Même si certains acquis ont pu être transmis, les agents qui
viennent d’arriver doivent s’adapter à leurs nouvelles conditions de travail, ce qui
nécessite une attention plus particulière par rapport à leurs besoins en formation.
- L’accession à de nouvelles fonctions :
Personne Compétente en Radioprotection (PCR)
Agent Chargé de la Mise en Œuvre des règles d'hygiène et de sécurité (ACMO)
- Les dispositifs expérimentaux
La conception, la réalisation, ou l’évolution des dispositifs expérimentaux, l’acquisition
de nouveaux appareils ou logiciels induisent presque systématiquement des actions de
formation le plus souvent sous la forme d’un stage constructeur ou d’un séjour dans un
laboratoire ayant la maîtrise de la technique à développer.
L’Analyse des besoins en formation ­ Méthodologie : Un questionnaire, rédigé par le correspondant formation (COFO), est adressé annuellement
par courrier électronique à l’ensemble des personnels sous couvert du Directeur de l’Unité.
Il s’articule en trois parties principales :
 Le bilan des actions antérieures
 L’analyse des besoins de formation pour l’année à venir
 L’analyse des formations susceptibles d’être dispensées par le personnel du
laboratoire
84
En moyenne, une quinzaine de réponses à ce questionnaire sont collectées. Elles sont aussi
complétées par les « fiches d’évaluation et de recueil des besoins en formation », remplies
par les ingénieurs et techniciens, et remises par le directeur au COFO.
Un Plan de Formation de l’Unité (PFU) est ensuite rédigé, approuvé et signé par le
Directeur puis adressé au Bureau de la Formation Permanente de la Délégation Régionale.
Ce plan reprend les trois points principaux énoncés ci-dessus : les bilans des actions
antérieures et à venir ainsi que celui sur les formations dispensées par ICARE lui-même.
Un tableau récapitulatif résume l’ensemble des besoins exprimés en précisant l’intitulé de
la formation et sa priorité, le niveau recherché, la population visée ainsi que les modalités et
prestataires éventuels.
La plupart des besoins en formation exprimés chaque année dans le PFU trouvent une
réalisation. D’autres ne se concrétisent pas pour différentes raisons :
-
emploi du temps des stagiaires incompatible avec les dates de stage
-
demande exprimée retardée car matériel non acheté
-
actions non encore proposées par le bureau de formation de la Délégation Régionale
-
actions proposées par le bureau de formation de la Délégation Régionale mais non
adaptées au niveau de compétence.
C’est pourquoi, on peut retrouver dans l’analyse annuelle des besoins de formation des
demandes qui n’ont pas été réalisées l’année précédente. Enfin, aux demandes de formation
inscrites dans le plan de formation annuel, s’ajoutent très souvent d’autres actions de
formation plus spécifiques au laboratoire, à ses différents services et à ses équipes et qui
n’étaient pas prévisibles.
Il est aussi à noter que certaines actions de formation n’ont pas nécessité de demande
auprès du bureau régional de la formation permanente.
85
Bilan des formations suivies par les personnels de l’Unité
Entre 20 et 30 % des personnels du laboratoire se forment chaque année. Il y a en moyenne
une trentaine d’actions de formation dont au moins la moitié avec des intitulés différents.
La répartition entre personnel CNRS et non CNRS a été de 2/3 – 1/3 entre 2006 et 2008
mais est plus en défaveur des non-CNRS en 2009/2010 puisqu’1/10 d’entre eux seulement
ont été formés. La figure 1 donne la répartition des personnes formées en fonction de leur
statut dans l’unité entre 2006 et 2010.
2006/2007
2007/2008
45
40
35
30
25
60
50
Effectif total
Nombre de personnes formées
Nombre de personnes formées
40
Nombre d'actions de formation
Nombre d'actions de formation
30
20
20
15
10
10
5
0
0
Chercheurs
Enseignantschercheurs
Chercheurs
IT
DoctorantsVisiteurs-ATERPostdocs
Enseignantschercheurs
35
2008/2009
50
45
40
35
30
25
20
15
10
5
0
Effectif total
30
Effectif total
2535
Nombre de personnes formées
30
Effectif total
20
Nombre de personnes formées
DoctorantsVisiteurs-ATERPostdocs
25
IT
2009/2010
Effectif total
Nombre de personnes formées
15
20
1015
510
0
5
0
Chercheurs
Enseignantschercheurs
DoctorantsVisiteurs-ATERPostdocs
IT
Chercheurs
Chercheurs
Enseignants-
Doctorants-
IT
Enseignantschercheurs DoctorantsVisiteurs-ATERchercheurs
Visiteurs-ATERPostdocsPostdocs
Figure 1 : Répartition des personnes formées en fonction de leur statut dans l’Unité entre
2006 et 2010 (ATER : Attachés Temporaires d’Enseignement/Recherche ; IT : Ingénieurs
et Techniciens)
Le bilan de ces quatre années, soit plus précisément entre le 1er janvier 2006 et le 30 juin
2010 conduit à 157 actions de formations, dont 83 avec des intitulés différents, 68
86
IT
personnes formées, dont 70% de personnel CNRS, et une répartition en fonction du statut
qui est donnée par le tableau 1 et la figure 2.
L’analyse des figures 1 et 2 et du tableau 1 montrent une forte proportion des personnels
formés chez les ingénieurs et techniciens ainsi que pour les chercheurs non permanents.
Leurs effectifs sont aussi plus nombreux, et ce chiffre est donc à corréler avec l’effectif
global pour chaque catégorie de personnel. Dans ce cas, on constate que ce sont les
personnels permanents qui sont en moyenne les plus formés. En effet, même si un
chercheur non permanent reçoit plus de formations annuellement, sa présence effective au
laboratoire sur la période citée plus haut est aussi plus courte.
Formations
Catégorie personnel
Nombre total Nombre moyen
Nombre max
Nombre total
de personnes de formation /
de formations
de formations
/ personne
formées
personne
Chercheurs permanents
4
17
7
2,4
Enseignants chercheurs
2
4
3
1,3
Chercheurs non permanents
4
58
34
1,7
Ingénieurs, techniciens
8
78
24
3,3
Tableau 1 : Statistiques des actions de formations en fonction de la catégorie de personnel ;
la catégorie « chercheurs non permanents » regroupe les doctorants, post-doctorants,
chercheurs sous contrats, chercheurs étrangers en détachement et ATER.
10%
35%
4%
Chercheurs Permanents
Enseignants-Chercheurs
Chercheurs Non Permanents
51%
Ingénieurs, Techniciens
Figure 2 : Répartition des personnes formées en fonction de leur statut entre
01/01/2006 et 30/06/2010
Le tableau 2 ci-après donne une répartition selon le type de formation. On constate qu’il y a
un nombre important de formations liées à la prévention et à la sécurité, thème qui touche
87
l’ensemble des personnels du laboratoire. On voit aussi que les écoles thématiques (ex. :
école de combustion, vélocimétrie, granulométrie et spectroscopie laser) sont généralement
un outil de formation fortement utilisé par les doctorants. Ces derniers sont aussi les
principaux demandeurs de cours d’anglais. Du fait de la structure du laboratoire qui
possède de nombreuses installations, on observe de même une forte proportion de
formations sur des appareils spécifiques (ex. : chromatographes, analyseurs de gaz) et sur
l’informatique liée à la recherche (Labview, Fortran) pour les chercheurs et ingénieurs ainsi
que sur différentes techniques (ex. : vide-ultravide, maintenance de pompes) pour les
techniciens et ingénieurs. Enfin, une part non négligeable de formations concerne le
développement personnel avec principalement des formations de préparation aux concours
internes du CNRS pour les ingénieurs et techniciens.
Type de formations
Langues
Bureautique
Gestion financière, Ressources humaines
Développement personnel,
Culture générale et institutionnelle
Prévention et sécurité
Communication, Management
Conduite de projets, Valorisation
Financement de la Recherche
Ecoles thématiques
Connaissances liées aux techniques
Formation sur un appareil spécifique
Informatique appliquée à la Recherche
Informatique : réseaux / systèmes
Nombre de formations
Personnel concerné
10
2
5
CNP et IT
CP et IT
IT
14
IT
37
1
CNP, CP et IT
CP
2
CP et IT
26
18
19
15
8
CNP
IT
CNP, CP et IT
CNP, CP et IT
CP et IT
Tableau 2 : Répartition des formations par type ; CNP : chercheurs non permanents, IT :
ingénieurs et techniciens, CP : chercheurs permanents
88
Bilan des formations dispensées par les personnels de l’Unité
La plupart des formations citées ci-dessous perdurent annuellement.
Formations internes :
- Hygiène et Sécurité et présentation du laboratoire par l’ACMO et le Directeur depuis
2003
- Sécurité laser par l’Ingénieur de Recherche en charge des lasers et du diagnostic optique
- Radioprotection par la PCR (Personne Compétente en Radioprotection) pour toute
personne travaillant en présence de sources radioactives
Formations externes :
- Ecoles thématiques (école de combustion par exemple) : participation régulière des
chercheurs aux enseignements.
- X-LAB : une gestionnaire du laboratoire formatrice (partie à la retraite en 2010)
- « Méthode de conduite et de gestion d’un projet technique/technologique – utilisation de
MS-Project » effectuée par un Ingénieur de Recherche.
- Sécurité laser dans le cadre de la formation d’ACMO ou de la formation des nouveaux
entrants, par l’Ingénieur de Recherche en charge des lasers et du diagnostic optique.
- Chimie (niveau 1) pour un personnel du groupe Servier dans le cadre du SEFCOUniversité par un maître de conférences depuis 2010.
- Techniques du vide dans le cadre du réseau des techniques du vide par deux ingénieurs de
recherche, depuis 2008
89
ANNEXE 4 : Rapport des actions Hygiène & Sécurité de l’UPR3021
ANNEXE 4
Rapport des actions du Comité Hygiène
et Sécurité de l’UPR3021
(2006 – 2010)
90
 Bilan des accidents et incidents, mesures prises
Année 2009
 4 électrisations dont 1 consultation aux Urgences du CHRO
 1 coupure avec consultation aux Urgences du CHRO
 1 éclatement d'une enceinte lors d'un essai pression
 1 chute dans les escaliers (présence de neige)
Année 2010
 1 coupure à la main avec consultation à la clinique de la main: coupure sans gravité.
L'ACMO a rappelé à la personne concernée que le port de gants et de lunette était
obligatoire lors d'opération d'usinage ou de manutention.
 1 intoxication au méthyltrichlorosilane, la personne a été conduite à l'infirmerie qui
a contacté le centre antipoison. Il nous a informé d'une possible irritation des voies
respiratoires mais sans nécessité d’hospitalisation. Vers 17h par soucis de
précaution, la personne a été conduite aux urgences du CHRO, placée sous oxygène
le temps d'effectuer différents examens et ressortie vers 22h.
 Identification et analyse des risques de l'unité
Un document unique est constitué chaque année avec le concours des différentes équipes de
l’Unité. Ce document est présenté au comité Hygiène et Sécurité de l’Unité où il est
débattu. Les ACMOs dressent la liste des actions de prévention à effectuer mais celle-ci
peut varier en fonction des différents contrôles obligatoires réalisés en cours d'année.
Actions de prévention
Date
prévisionnelle
Date de
réalisation
Lister les personnels manipulant des CMR
Décembre 2010
En cours
Mise en sécurité des tours et fraiseuses de
l'atelier mécanique
Septembre 2010
Devis reçu
Mise en sécurité de l'escalier de la cafétéria,
installation de nez de marche inox
Juillet 2010
Mai 2010
Amélioration de l'aspiration des sorbonnes :
fermeture des ailettes des portes des laboratoires
Septembre 2010
Appel d'offre en
cours
Aménagement d'un local "Déchets chimiques"
Octobre 2010
En cours
d'aménagement
Destruction de bouteilles de gaz
Appel d'offre en
cours
91
 Structure du comité d'hygiène et sécurité
Le comité d'hygiène et sécurité du laboratoire est constitué :
- du directeur I GOKALP
- des 2 ACMOs (MM. F. PEYROUX et N. GOUILLON)
- de la personne compétente en radioprotection
- du service prévention et sécurité de la délégation
- du service médical de la délégation
- d'un membre de chaque équipe ou service du laboratoire
Le comité est renouvelé tous les 2 ans (dernier renouvellement décembre 2009), il se réunit
deux fois par an.
 Formation du personnel à l'hygiène et sécurité
Les ACMOs forment les "nouveaux entrants" tous les ans :
- aux risques liés à l'activité du laboratoire
- à l'hygiène
- à la sécurité
- au règlement intérieur
Les "nouveaux entrants" sont ensuite formés par leur équipe sur les risques liés à leurs
expériences.
Les ACMOs sont en relation avec le correspondant formation pour organiser des stages de
manipulation d'extincteur, de secourisme, d'utilisation de matériel …
Chaque année, en collaboration avec le service prévention et sécurité de la délégation, un
exercice incendie est organisé. Un débriefing a lieu ensuite par les pompiers présents sur le
site.
 Problèmes de sécurité
Suite au contrôle des sorbonnes réalisé par la société Igienair, un certain nombre d'entre
elles sont déclarées non conformes. Des devis ont été demandés, les travaux de
remplacement sont prévus fin 2010 et début 2011.
L'aménagement de la passerelle rez-de-jardin reliant les 2 bâtiments d'ICARE reste un
problème. Lorsqu'il pleut, la passerelle est inondée, il y a donc un risque de chute sur celleci mais également dans l'escalier menant à la cafétéria (partiellement résolu par des nez de
marche antidérapant), risque d'autant plus élevé lorsqu'il gèle.
92

Documents pareils