http://cfs.nrcan.gc.ca/subsite/pest-forum - Forests

Transcription

http://cfs.nrcan.gc.ca/subsite/pest-forum - Forests
http://cfs.nrcan.gc.ca/subsite/pest-forum
LIBRARY AND ARCHIVES CANADA
CATALOGUING IN PUBLICATION
CATALOGAGE AVANT PUBLICATION DE
BIBLIOTHÈQUE ET ARCHIVES CANADA
Forest Pest Management Forum (2007: Ottawa, Ont.)
Proceedings of the Forest Pest Management Forum 2007
[electronic resource] = Compte rendu du Forum sur la
répression des ravageurs forestiers 2007.
Forum sur la répression des ravageurs forestiers
(2007 : Ottawa, Ont.)
Proceedings of the Forest Pest Management Forum 2007
[ressource électronique] = Compte rendu du Forum sur la
répression des ravageurs forestiers 2007.
Electronic monograph in PDF format.
Mode of access: World Wide Web.
Text in English and French.
Includes bibliographical references.
ISBN 978-0-662-05779-6
Cat. no.: Fo121-1/2007-PDF
1. Trees--Diseases and pests--Control--Canada-Congresses.
2. Forest insects--Control--Canada--Congresses.
3. Insect pests--Control--Canada--Congresses.
4. Trees--Diseases and pests--Canada--Congresses.
5. Forest management--Canada--Congresses.
6. Trees--Diseases and pests--Congresses.
7. Pesticides--Congresses.
I. Canadian Forest Service
II. Title.
III. Title: Compte rendu du Forum sur la répression des
ravageurs forestiers 2007.
SB764.C3F66 2008 634.9'670971 C2008-980196-2E
© Her Majesty the Queen in Right of Canada 2008
Catalog Number Fo121-1/2007-PDF
ISBN 978-0-662-05779-6
ISSN 1911-0855
The texts included in these proceedings are the
original versions provided by authors with
authorization to publish and the authors remain
responsible for both the form and content of
their papers.
Monographie électronique en version PDF.
Mode d’accès : World Wide Web.
Texte en anglais et en français.
Comprend des réf. bibliogr.
ISBN 978-0-662-05779-6
No de cat. : Fo121-1/2007-PDF
1. Arbres--Maladies et fléaux, Lutte contre les--Canada-Congrès.
2. Insectes forestiers, Lutte contre les--Canada--Congrès.
3. Insectes nuisibles, Lutte contre les--Canada--Congrès.
4. Arbres--Maladies et fléaux--Canada--Congrès.
5 Forêts--Gestion--Canada--Congrès.
6. Arbres--Maladies et fléaux--Congrès.
7. Pesticides--Congrès.
I. Service canadien des forêts
II. Titre.
III. Titre : Compte rendu du Forum sur la répression des
ravageurs forestiers 2007.
SB764.C3F66 2008 634.9'670971 C2008-980196-2F
© Sa Majesté la Reine du Chef du Canada 2008
Numéro de catalogue Fo121-1/2007-PDF
ISBN 978-0-662-05779-6
ISSN 1911-0855
Les textes apparaissent dans la version fournie
par les auteurs, avec l’autorisation de publier. Ces
derniers demeurent responsables tant de la forme
que du fond de leurs écrits.
TABLE OF CONTENTS / TABLE DES MATIÈRES
Committee Members / Membres du comité ..........................................................................vii
2007 Pest Forum Planning Team / Équipe de planification du Forum 2007....................... viii
Forest Pest Management Forum 2007 Proceedings / Compte rendu du Forum 2007 sur la
répression des ravageurs forestiers ......................................................................................... ix
Sponsors / Commanditaires .....................................................................................................x
Partners / Partenaires ............................................................................................................. xi
Acknowledgements / Remerciements ................................................................................... xii
List of Attendees / Liste des participants ............................................................................ xiii
Program: Forest Pest Management Forum 2007 ................................................................ xxiii
Programme : Forum 2007 sur la répression des ravageurs forestiers .................................xxvii
SESSION 1: WESTERN PEST MANAGEMENT ISSUES, WESTERN CANADA
ROUND-UP .............................................................................................................................. 1
SÉANCE 1 : LA RÉPRESSION DES RAVAGEURS DANS L’OUEST, TOUR
D’HORIZON DE L’OUEST CANADIEN.............................................................................. 1
British Columbia Report ..............................................................................................................................3
Forest Pest Conditions and Programs in Alberta, 2007 ..........................................................................5
Forest Insect and Disease Conditions in Saskatchewan, 2007 .............................................................16
Forest Pests in Manitoba, 2007 .................................................................................................................26
SESSION 2: NATIONAL FOREST PEST STRATEGY UPDATE...................................... 41
SÉANCE 2 : LE POINT SUR LA STRATÉGIE NATIONALE DE LUTTE CONTRE LES
RAVAGEURS FORESTIERS ................................................................................................. 41
An Update of the National Forest Pest Strategy ....................................................................................43
Assessing the Risk of Mountain Pine Beetle in the Boreal Forest.......................................................44
SESSION 3: IMPACTS OF FIRE OR OUTBREAK ON WOOD QUALITY ......................45
SÉANCE 3 : LES IMPACTS DU FEU OU D’UNE ÉPIDÉMIE SUR LA QUALITÉ DU
BOIS ........................................................................................................................................45
Impact of the White Pine Weevil on the Productivity and Wood Quality of Norway spruce ........47
Short-Term Colonization of Fire-killed Trees by Coleoptera ..............................................................49
Can We Forecast Woodborer Damage in Fire-killed Trees?................................................................59
Economic Impact of Wood Deterioration in Fire-killed Trees ...........................................................65
iii
Impact of Woodborer Damage vs. Checking on Fire-killed White Spruce in Northeastern Alberta,
2003-2004 .....................................................................................................................................................67
Wood Decay and Degradation in Standing Lodgepole Pine (Pinus contorta var. latifolia Engelm.)
Killed by Mountain Pine Beetle (Dendroctonus ponderosa Hopkins: Coleoptera) ..................................69
SESSION 4: REMOTE SENSING AND FOREST HEALTH............................................. 71
SÉANCE 4 : TÉLÉDÉTECTION ET SANTÉ DES FORÊTS............................................ 71
Remote Sensing of Forest Health: Current Advances and Challenges ...............................................73
SESSION 5: PESTICIDE REGULATION, ALTERNATIVES, MINOR USE ...................79
SÉANCE 5 : RÈGLEMENTS SUR LES PESTICIDES, SOLUTIONS POSSIBLES,
UTILISATION SECONDAIRE............................................................................................. 79
Minor Use and Emergency Use Registrations for Forestry: A Provincial Perspective.....................81
Registration of Pest Control Products for Minor Uses in Canada ......................................................84
PMRA Update: Regulators Rock ..............................................................................................................85
SESSION 6: GLOBALIZATION - INTERNATIONAL UPDATE ...................................101
SÉANCE 6 : LA MONDIALISATION - LE POINT SUR LA SITUATION
INTERNATIONALE............................................................................................................101
IUFRO Update......................................................................................................................................... 103
SESSION 7: EASTERN PEST MANAGEMENT ISSUES................................................. 105
SÉANCE 7 : LA RÉPRESSION DES RAVAGEURS DANS L’EST ................................... 105
Status of Important Forest Pests in Ontario, 2007 ............................................................................. 107
État de situation des principaux ravageurs forestiers au Québec en 2007....................................... 125
CROSS-COUNTRY CHECK-UP / TOUR D’HORIZON ................................................ 133
ATLANTIC CANADA / LE CANADA ATLANTIQUE..................................................... 133
Preliminary Summary of Forest Pest Conditions in New Brunswick in 2007 and Outlook for 2008
..................................................................................................................................................................... 135
Status of Forest Health in Nova Scotia, 2007...................................................................................... 158
Newfoundland Report............................................................................................................................. 162
SESSION 8: URBAN FOREST MANAGEMENT.............................................................. 163
SÉANCE 8 : L’AMÉNAGEMENT FORESTIER DANS LES ZONES URBAINES ........ 163
Urban Forestry in Canada - Challenges and Opportunities............................................................... 165
Challenges Facing Today’s Urban Forester in the Prairies ................................................................ 171
iv
SESSION 9: INVASIVE ALIEN SPECIES.......................................................................... 173
SÉANCE 9 : LES ESPÈCES ÉTRANGÈRES ENVAHISSANTES ................................... 173
Report on Wood Packaging Inspection at Marine Ports.................................................................... 175
Emerald Ash Borer Update .................................................................................................................... 180
Development of a Management Program for Emerald Ash Borer in Urban/Suburban Situations:
The London Project................................................................................................................................. 181
Advances in the Use of Systemic Insecticides for Control of Invasive Insect Pests in Urban
Environments ........................................................................................................................................... 193
Sirex noctilio in Canada: An Update of Survey and Research Activities ............................................ 195
Sirex noctilio – Pest Risk Analysis Update .............................................................................................. 196
Brown Spruce Longhorn Beetle Update............................................................................................... 199
Risk Mitigation, Risk Analysis, Flight Behaviour, Natural Control, and Pheromones of the Brown
Spruce Longhorn Beetle: Results from Year 1 of a 3-year Study...................................................... 200
Forest Pest Detection Surveys – Canadian Food Inspection Agency.............................................. 204
CFIA - Invasive Alien Species Pest Interception Report................................................................... 206
SESSION 10: GENOMICS OF VIRUSES AND THEIR LARVAL HOSTS:
IMPLICATIONS IN PEST MANAGEMENT.................................................................... 213
SÉANCE 10 : GÉNOMIQUE DES VIRUS ET DE LEURS HÔTES LARVAIRES :
INCIDENCES SUR LA LUTTE ANTIPARASITAIRE ..................................................... 213
Viruses in Insect Pest Control, a Reality or Just a Pipe Dream?....................................................... 215
From Disease to Genomics: A Journey with Insect Viruses ............................................................. 217
Genomics and the Registration of Baculoviruses for Insect Control .............................................. 219
Pest Genomics and the Identification of Bio-rational Target Sites .................................................. 221
Equivalency Determinations in the Registration of Baculoviruses................................................... 227
Integrating Ethics within the Regulatory Framework of Biotechnology Applications: What Does
This Mean? ................................................................................................................................................ 233
SCIENCE AND TECHNOLOGY À LA CARTE ............................................................... 243
SCIENCES ET TECHNOLOGIE À LA CARTE ............................................................... 243
Insect Rearing – Tool for Detection of Exotic Wood Boring Insects............................................. 245
The René Martineau Insectarium – Forest Insect Documentation Centre for Eastern Canada.. 247
TreeAzin, a Systemic Bioinsecticide Containing Azadirachtin for Control of an Invasive
Woodboring Beetle, the Emerald Ash Borer, Agrilus planipennis ....................................................... 249
ECOBIOM* - Extended Collaboration on Biological Control of Forest Insects or Pathogenic
Microorganisms ........................................................................................................................................ 251
Audit and Evaluation of Aerial Herbicide Programs Using Remote Sensing and GIS................. 253
Invasives at Your Fingertips ................................................................................................................... 255
Effect of Pheromone Chirality on Attraction of Tetropium fuscum (Fabr.), T. cinnamopterum Kirby
and T. castaneum L. (Coleoptera: Cerambycidae) .................................................................................. 257
Remote Sensing of Natural Disturbances: Current Results for Insect Defoliation and Aspen
Dieback Mapping and Monitoring ........................................................................................................ 259
v
Uptake and Translocation Dynamics of Imidacloprid Following Systemic Injections for Control
of Invasive Wood Boring Insect Pests.................................................................................................. 261
A Field Study for Validation of Long Range Spray Drift Modeling................................................. 263
Garlic Mustard, a Threat to Southern Ontario Forests ...................................................................... 265
Assessment of Sirex noctilio Fabricius Spread and its Impacts on Pine Wood Supply and Harvests
in Eastern Canada .................................................................................................................................... 266
Evaluating Lures to Detect Siricids Infesting Conifers of the Sierra Nevada and Allegheny
Mountains: Potential for Trapping Sirex noctilio ................................................................................... 268
Relationships among the Sudden Oak Death Pathogen, Bark and Ambrosia Beetles, and Fungi
Colonizing Coast Live Oaks in California ............................................................................................ 271
vi
Committee Members / Membres du comité
Anthony
Hopkin, Chair
James Brandt
Mike Butler
Nelson Carter
Terry Caunter
Hubert
Crummey
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie du Nord
Prince Edward Island, Environment, Energy and Forestry, Forests, Fish and Wildlife
Branch
New Brunswick Department of Natural Resources / Ministère des Ressources naturelles
du Nouveau-Brunswick
Health Canada, Pest Management Regulatory Agency / Santé Canada, Agence de
réglementation de la lutte antiparasitaire
Newfoundland Department of Natural Resources
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Laurentides
Marcel Dawson Canadian Food Inspection Agency / Agence canadienne d’inspection des aliments
Tim Ebata
British Columbia Ministry of Forests and Range
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Rich Fleming
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre /
J. Edward
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie de
Hurley
l’Atlantique
Michael Irvine Ontario Ministry of Natural Resources / Ministère des Richesses naturelles de l’Ontario
Rory McIntosh Saskatchewan Environment, Forest Services Branch
Natural Resources Canada, Canadian Forest Service, National Headquarters /
Ben Moody
Ressources naturelles Canada, Service canadien des forêts, Administration centrale
Louis Morneau Ministère des Ressources naturelles et de la Faune du Québec
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre /
Vince Nealis
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie du
Pacifique
Hideji Ono
Alberta Sustainable Resource Development, Forestry Division
Gina Penny
Nova Scotia Department of Natural Resources
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Stan Phippen
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Irene Pines
Manitoba Conservation, Forestry Branch / Conservation Manitoba, Direction des forêts
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Krista Ryall
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Gaëtan Daoust
vii
2007 Pest Forum Planning Team / Équipe de planification
du Forum 2007
Stan Phippen,
Planning Team
Leader
Sandra Abi-Aad
Gaëtan Daoust
Nicole De Silva
Anthony
Hopkin
Lise Hotchkiss
Mary
Humphries
Karen Jamieson
Sandy Knight
Lucie
Labrecque
Jennifer Licari
Jennifer
McCrank
Mark Primavera
Krista Ryall
Guy Smith
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, National Headquarters /
Ressources naturelles Canada, Service canadien des forêts, Administration centrale
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Laurentides
Natural Resources Canada, Canadian Forest Service, National Headquarters /
Ressources naturelles Canada, Service canadien des forêts, Administration centrale
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Eastern Ontario Model Forest / Forêt modèle de l’Est de l’Ontario
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Laurentides
Natural Resources Canada, Canadian Forest Service, National Headquarters /
Ressources naturelles Canada, Service canadien des forêts, Administration centrale
Natural Resources Canada, Canadian Forest Service, National Headquarters /
Ressources naturelles Canada, Service canadien des forêts, Administration centrale
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre /
Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des
Grands Lacs
viii
Forest Pest Management Forum 2007 Proceedings / Compte
rendu du Forum 2007 sur la répression des ravageurs
forestiers
Ottawa Congress Centre / Centre des congrès d’Ottawa
Ottawa, Ontario
December 4-5-6, 2007 / 4-5-6 décembre 2007
The Forest Pest Management Forum is sponsored annually by Natural Resources Canada, Canadian Forest
Service, to provide a platform for representatives of various provincial governments and the federal
government to present, review and discuss current forest pest conditions in Canada and the United States.
Le Forum sur la répression des ravageurs forestiers est parrainé annuellement par le Service canadien des
forêts de Ressources naturelles Canada. Il permet à des représentants de divers gouvernements provinciaux
et du gouvernement fédéral de présenter et d’examiner la situation des principaux ravageurs forestiers au
Canada et aux États-Unis.
Anthony Hopkin
Chair, Steering Committee
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5
[email protected]
(705) 541-5568
FOR OFFICIAL USE ONLY. The texts included in these proceedings are the original versions provided
by the authors with authorization to publish and the authors remain responsible for both the form and
content of their papers/abstracts. Material contained in this report is reproduced as submitted and has not
been subject to peer review or editing by the staff of the Canadian Forest Service.
POUR USAGE OFFICIEL SEULEMENT. Les textes apparaissent dans la version fournie par les
auteurs, avec l'autorisation de publier. Ces derniers demeurent responsables tant de la forme que du fond de
leurs écrits/résumés. Les articles qui paraissent dans ce rapport sont reproduits tels qu'ils ont été reçus, sans
être soumis à une lecture d'experts ni à une révision par le personnel du Service canadien des forêts.
ix
Sponsors / Commanditaires
x
Partners / Partenaires
xi
Acknowledgements / Remerciements
The 2007 Forest Pest Management Forum was a resounding success once again thanks to the
contributions of many people. First of all, we wish to thank the presenters, who shared their
knowledge of the issues discussed and who also provided summaries for these proceedings. We are
also grateful to all those who participated in Science and technology à la carte and the Forum 2007
Special Feature. Our thanks go also to the logistical support team. Last but not least, we wish to
thank all the participants, who came from many different regions of Canada and the United States.
THE 2007 FORUM ORGANIZING COMMITTEE
Le Forum 2007 sur la répression des ravageurs forestiers a connu encore un grand succès grâce à la
contribution de plusieurs personnes. Nous remercions tout d’abord nos conférenciers qui ont fait
état de leurs connaissances sur les questions discutées et qui ont bien voulu les résumer pour les
besoins du présent recueil. Nous aimerions aussi témoigner notre reconnaissance aux personnes qui
ont participé à Sciences et technologie à la carte et à l’Événement spécial du Forum 2007 et au
soutien technique. Nos remerciements vont également aux participants et aux participantes qui
provenaient de différentes régions du Canada et des États-Unis.
LE COMITÉ ORGANISATEUR DU FORUM 2007
xii
List of Attendees / Liste des participants
Greg Adams
J.D. Irving Ltd.
181 Aiton Rd
Sussex East, NB E4G 2V5
Tel.: (506) 432-2844
Eric Allen
NRCan, CFS, PFC
506 West Burnside Rd
Victoria, BC V8Z 1M5
Tel.: (250) 363-0674
[email protected]
[email protected]
Abdullahi Ameen
Canadian Food Inspection Agency
3851 Fallowfield Rd
P.O. Box 11300
Ottawa, ON K2H 8P9
Tel.: (613) 228-6898
Fax: (613) 228-6662
Peter Amirault
Forest Protection Limited
Fredericton International Airport
2502 - Rte 102 Hwy
Lincoln, NB E3B 7E6
Tel.: (506) 446-6930
Fax: (506) 446-6934
[email protected]
[email protected]
Dan Baker
Eastern Ontario Model Forest
Representative
c/o Fiddlehead Forestry
141 Arcola Pvt.
Ottawa, ON K1K 4W9
Tel.: (613) 601-3262
[email protected]
Yannick Bidon
AEF Global
201, rue Mgr - Bourget
Lévis, QC G6V 9V6
Tel.: (418) 838-4441
Fax: (418) 835-2112
Tarcisco Bonachela
Milenia Agrociências S. A.
Rua Pedro Antonio de Souza 400
Jardim Eucalipto, Londrina, Brazil
Tel.: 55 043 3371 9000
Fax: 55 043 3371 9025
Alain Bélanger
SOPFIM
1780, rue Semple
Québec, QC G1N 4B8
Tel.: (418) 681-3381
Fax: (418) 681-0994
[email protected]
Ian Birse
City of Saskatoon
223 - 3rd Ave. N
Saskatoon, SK S7K 0J5
Tel.: (306) 975-2766
[email protected]
Anne-Christine Bonfils
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-9039
Fax: (613) 947-9035
[email protected]
xiii
Ken Allison
Canadian Food Inspection Agency
3851 Fallowfield Rd
P.O. Box 11300
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698 (4881)
Fax: (613) 228-6100
[email protected]
Basil Arif
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5512
Fax: (705) 541-5700
[email protected]
Jean Bérubé
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-7174
Fax: (418) 648-5849
[email protected]
Paul Bolan
BioForest Technologies Inc.
105 Bruce St.
Sault Ste. Marie, ON P6A 2X6
Tel.: (705) 942-5824
Fax: (705) 942-8829
[email protected]
Yan Boulanger
Centre d'études nordiques
Université du Québec à Rimouski
300, allée des Ursulines
Rimouski, QC G5L 3A1
Tel.: (418) 723-1986
Fax: (418) 724-1849
[email protected]
Mark Budd
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3634
Fax: (506) 452-3525
Rhonda Burke
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-7329
Fax: (613) 947-7397
Errol Caldwell
Science Enterprise Algoma
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5558
Fax: (705) 541-5712
[email protected]
[email protected]
[email protected]
Alan Carroll
NRCan, CFS, PFC
506 West Burnside Rd
Victoria, BC V8Z 1M5
Tel.: (250) 363-0639
[email protected]
Nelson Carter
New Brunswick Dept. of
Natural Resources
1350 Regent St.
Fredericton, NB E3C 2G6
Tel.: (506) 453-2516
Fax: (506) 453-6689
Terry Caunter
Pest Management Regulatory Agency
2720 Riverside Dr.
Ottawa, ON K1A 0K9
Tel.: (613) 736-3779
Fax: (613) 736- 3840
Katherine Church
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-4008
Fax: (613) 228-6603
Jason Cole
Helicopter Applicators Inc.
1670 York Rd
Gettysburg, PA 17325, USA
Tel.: (717) 337-1370
Fax: (717) 337-1527
Lesley Cree
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-3780
Fax: (613) 228-6610
[email protected]
[email protected]
[email protected]
Gregg Cunningham
Canadian Food Inspection Agency
1992 Agency Dr., Box 1060
Dartmouth, NS B2R 3Z7
Tel.: (902) 426-1393
Fax: (902) 426-4844
Michael Cunningham
Monsanto Canada
P.O. Box 3142, Station B
Fredericton, NB E3A 5G9
Tel.: (506) 451-9712
Fax: (506) 451-9380
[email protected]
[email protected]
Edward Czerwinski
Ontario Ministry of Natural Resources
300 Water St.
Peterborough, ON K9J 8M5
Tel.: (705) 755-3220
[email protected]
[email protected]
[email protected]
Michel Cusson
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-3944
Fax: (418) 648-5849
[email protected]
Martin Damus
Canadian Food Inspection Agency
3851 Fallowfield Rd
P.O. Box 11300
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698
Fax: (613) 228-6662
Gaëtan Daoust
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-7616
Fax: (418) 648-6956
[email protected]
[email protected]
xiv
David Davies
Forest Protection Ltd.
Fredericton International Airport
2502 - Rte 102 Hwy
Lincoln, NB E3B 7E6
Tel.: (506) 446-6930
Fax: (506) 446-6934
[email protected]
Peter De Groot
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6B 2E5
Tel.: (705) 541-5640
[email protected]
Pierre DesRochers
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-3922
Fax: (418) 648-5849
Chuck Davis
NRCan, CFS
Great Lakes Forestry Centre
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5724
Fax: (705) 541-5700
[email protected]
Ian DeMerchant
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3137
Fax: (506) 452-3525
[email protected]
Marcel Dawson
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-4355
Fax: (613) 228-6626
[email protected]
Alice Deschamps
NRCan, CFS
588 Booth St.
Ottawa, ON K1A 0Y7
Tel.: (613) 947-1279
[email protected]
Erhard Dobesburger
Canadian Food Inspection Agency
3851 Fallowfield Rd
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698 (5936)
Fax: (613) 228-6662
Shelagh Duckett
Ontario Ministry of Natural Resources
25th Side Rd, RR #1
Thunder Bay, ON P7C 4T9
Tel.: (807) 939-3115
Jacques Dugal
Valent BioSciences Canada Ltd.
56, rue de la Perdrix
Stoneham, QC G0A 4P0
Tel.: (418) 848-0823
Fax: (418) 848-0824
Alain Dupont
SOPFIM
1780, rue Semple
Québec, QC G1N 4B8
Tel.: (418) 681-3381 ext 261
Fax: (418) 681-0994
Tim Ebata
B.C. Ministry of Forests and Range
P.O. Box 9513, Stn. Prov. Govt
Victoria, BC V8W 9C2
Tel.: (250) 387-8739
Fax: (250) 387-2136
[email protected]
[email protected]
[email protected]
Nadir Erbilgin
University of Alberta
230A Earth Sciences
Edmonton, AB T6G 2E3
Tel.: (780) 492-8693
Crystal Ernst
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-4388
Fax: (613) 228-6626
Hugh Evans
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5543
[email protected]
[email protected]
[email protected]
[email protected]
xv
[email protected]
[email protected]
Robert Favrin
Canadian Food Inspection Agency
3851 Fallowfield Rd
P.O. Box 11300
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698 (5909)
Fax: (613) 228-6662
[email protected]
Richard Fleming
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5608
Fax: (705) 541-5700
[email protected]
Brian Fox
Ontario Ministry of Natural Resources
Ontario Government Complex
Highway 101 E, P.O. Bag 3020
South Porcupine, ON P0N1H0
Tel.: (705) 235-1186
Fax: (705) 235-1246
[email protected]
Mike Francis
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel.: (705) 945-6763
Fax: (705) 945-6638
Sarah Fraser
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-7354
Fax: (613) 947-7397
Jacques Gagnon
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-9043
Fax: (613) 947-9090
[email protected]
[email protected]
[email protected]
Isabelle Gamache
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-8988
Bruce Gill
Canadian Food Inspection Agency
960 Carling Ave.
Ottawa, ON K1A 0C6
Tel.: (613) 759-1842
Fax: (613) 759-6938
Sarah Green
Helicopter Applicators Inc.
1670 York Rd
Gettysburg, PA 17325, USA
Tel.: (717) 337-1370
Fax: (717) 337-1527
[email protected]
[email protected]
[email protected]
Christian Hébert
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-5896
Fax: (418) 648-5849
Patrick Hodge
Ontario Ministry of Natural Resources
353 Talbot St. W
Aylmer, ON N5H 2S8
Tel.: (519) 773-4727
Anthony Hopkin
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5568
Fax: (705) 541-5704
Mary Humphries
Eastern Ontario Model Forest
P.O. Bag 2111
Kemptville, ON K0G 1J0
Tel.: (613) 258-8241
Fax: (613) 258-8363
Edward Hurley
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3515
Fax: (506) 452-3525
[email protected]
[email protected]
[email protected]
Ronald Hall
NRCan, CFS, NFC
5320 - 122 St.
Edmonton, AB T6H 3S5
Tel.: (780) 435-7209
[email protected]
[email protected]
xvi
[email protected]
Michael Irvine
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel.: (705) 945-5724
Fax: (705) 945-6667
Troy Kimoto
Canadian Food Inspection Agency
4321 Still Creek Dr.
Burnaby, BC V5C 6S7
Tel.: (604) 666-7503
Fax: (604) 666-6130
Albert King
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel.: (705) 945-6718
Jan Klimaszewski
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-7849
Fax: (418) 648-5849
Klaus Koehler
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-4784
Fax: (613) 228-6610
Harry Kope
B.C. Ministry of Forests and Range
P.O. Box 9513, Stn. Prov. Govt
Victoria, BC V8W 9C2
Tel.: (250) 387-8739
Fax: (250) 387-2136
Lucie Labrecque
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-3927
Fax: (418) 649-6956
Eric Lacroix
SOPFIM
1780, rue Semple
Québec, QC G1N 4B8
Tel.: (418) 681-3381
Fax: (418) 681-0994
[email protected]
[email protected]
Peter Krell
Science Complex
University of Guelph
Guelph, ON N1G 2W1
Tel.: (519) 824-4120 (53368)
Fax: (519) 837-1802
[email protected]
Gaston Laflamme
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-4149
Fax: (418) 648-5849
[email protected]
[email protected]
[email protected]
Normand Laflamme
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-2528
Fax: (418) 649-6956
[email protected]
[email protected]
[email protected]
Jean-Sébastien Landry
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-8855
Fax: (613) 947-9090
[email protected]
[email protected]
[email protected]
Jason Langis
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5667
Fax: (705) 541-5700
Robert Lavallée
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-5803
Fax: (418) 648-5849
Dan Lavigne
New Brunswick Dept. of Natural
Resources
P.O. Box 6000
Fredericton, NB E3B 5H1
Tel.: (506) 453-2516
Fax: (506) 453-6687
[email protected]
[email protected]
[email protected]
xvii
Rob Legare
Yukon Government Forest Management
Forest Operations
Box 2703 (K-918)
Whitehorse, Yukon Y1A 2C6
Tel.: (867) 456-3811
Fax: (867) 667-3138
[email protected]
Kathy Lewis
University of Northern British Columbia
3333 University Way
Prince George, BC V2N 4Z9
Tel.: (250) 960-6659
Karen Leslie
NRCan, CFS, PFC
506 West Burnside Rd
Victoria, BC V8Z 1M5
Tel.: (250) 363-0727
Fax: (250) 363-6004
[email protected]
Shiyou Li
NRCan, CFS
960 Carling Ave.
Ottawa, ON K1A 0C6
Tel.: (613) 694-2459
Fax: (613) 694-2323
[email protected]
[email protected]
Barry Lyons
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5617
Scott Macdonald
BASF Canada
9 Pamela Pl.
Guelph, ON N1H 8C8
Tel.: (519) 824-2724
Fax: (519) 824-5632
[email protected]
Wayne MacKinnon
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 451-6096
Fax: (506) 452-3525
[email protected]
Roy Maki
Monsanto Canada
868 Onion Lake Rd
Thunder Bay, ON P7G 2B9
Tel.: (807) 767-4235
Fax: (807) 626-3103
Lyne Létourneau
Université Laval
Département des sciences animales
Pavillon Paul-Comtois
local 4301
Québec, QC G1V 0A6
Tel.: (418) 656-2131(8738)
Fax: (418) 656-3766
[email protected]
Christopher Lucarotti
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3538
Fax: (506) 452-3525
[email protected]
Rory McIntosh
Saskatchewan Environment
Forest Service Branch
Box 3003, McIntosh Mall
Prince Albert, SK S6V 6G1
Tel.: (306) 953-3617
Fax: (306) 953-2360
[email protected]
Mireille Marcotte
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-4688
Fax: (613) 221-6626
[email protected]
[email protected]
[email protected]
John W. McFarlane
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5521
Fax: (705) 541-5700
Geoff McLeod
Pest Management Supervisor
City of Saskatoon
223 - 3rd Ave. N
Saskatoon, SK S7K 0J5
Tel.: (306) 975-2766
Stephen Meating
BioForest Technologies Inc.
105 Bruce St.
Sault Ste. Marie, ON P6A 2X6
Tel.: (705) 942-5824
Fax: (705) 942-8829
[email protected]
[email protected]
xviii
[email protected]
Stephen Miller
Canadian Food Inspection Agency
3851 Fallowfield Rd
P.O. Box 11300
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698
Fax: (613) 228-6675
Louis Morneau
Ministère des Ressources naturelles et de
la Faune du Québec
2700, rue Einstein, local DZ.370a
Québec, QC G1P 3W8
Tel.: (418) 643-9679 ext 4742
Fax: (418) 643-0381
[email protected]
Patrick O’Donnell
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-7095
Fax: (418) 648-3354
[email protected]
Ben Moody
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-9016
Fax: (613) 947-9035
Dean Morewood
Pest Management Regulatory Agency
2720 Riverside Dr.
Ottawa, ON K1A 0K9
Tel.: (613) 736-3931
Fax: (613) 736-3770
Vince Nealis
NRCan, CFS, PFC
506 West Burnside Rd
Victoria, BC V8Z 1M5
Tel.: (250) 363-0663
Stephen Nicholson
Valent BioSciences Canada Ltd.
c/o 2704 Orser Rd
Elginburg, ON KOH IMO
Tel.: (613) 376-1070
Fax: (613) 376-1069
[email protected]
[email protected]
Steven Oldford
BioForest Technologies Inc.
105 Bruce St.
Sault Ste. Marie, ON P6A 2X6
Tel.: (705) 942-5824
Fax: (705) 942-8829
[email protected]
[email protected]
[email protected]
Hideji Ono
Alberta Sustainable Resource
Development
8th Floor, 9920 - 108 St.
Edmonton, AB T5K 4M4
Tel.: (780) 427-8474
Fax: (780) 427-0084
[email protected]
Gina Penny
NS Provincial Entomologist
P.O. Box 130
Shubenacadie, Hants Co, NS
B0N 2H0
Tel.: (902) 758-7212
Fax: (902) 758-3210
Holly Palen
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-7335
Fax: (613) 947-9090
Dan Panko
Ontario Ministry of Environment
Place Nouveau
5775 Yonge St.
Toronto, ON M2M 4J1
Tel.: (416) 326-3477
[email protected]
[email protected]
Stan Phippen
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5565
Fax: (705) 541-5701
John Pineau
Canadian Institute of Forestry
504 -151 Slater St.
Ottawa, ON K1P 5H3
Tel.: (613) 234-2242
Fax: (613) 234-6181
Irene Pines
Manitoba Conservation, Forestry
200 Saulteaux Cres., Box 70
Winnipeg, MB R3J 3W3
Tel.: (204) 945-7985
Fax: (204) 948-2671
[email protected]
[email protected]
[email protected]
xix
[email protected]
Jason Pollard
City of Ottawa
100 Constellation Cres.
Ottawa ON K2G 6J8
Kevin Porter
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3838
Fax: (506) 452-3525
[email protected]
Luc Rainville
CIF OVS Member
1930 Markwell Cres.
Orleans, ON K1X 5E4
Fax: (613) 239-5335
[email protected]
Sunil Ranasinghe
Alberta Sustainable Resource
Development
8th Floor, 9920 – 108 St.
Edmonton, AB T5K 2M4
Tel.: (780) 422-8000
Fax: (780 427-0084
Beth Reichert
Ontario Ministry of Natural Resources
300 Water St.
Peterborough, ON K9J 8M5
Tel.: (705) 755-1253
Sylvie Richard
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 947-9028
Fax: (613) 947-9035
Jennifer Roberts
Conservation Halton
2596 Britannia Rd W, RR #2
Milton, ON L9T 2X6
Tel.: (905) 336-1158 ext 251
Fax: (905) 336-7014
[email protected]
[email protected]
Bill Rose
Ontario Ministry of Natural Resources
300 Water St.
Peterborough, ON K9J 8M5
Tel.: (705) 755-3202
Fax: (705) 755-3292
Dan Rowlinson
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel.: (705) 945-5737
Fax: (705) 945-6667
Lincoln Rowlinson
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel.: (705) 945-5731
Fax: (705 945-6638
Krista Ryall
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5549
Taylor Scarr
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A6V5
Tel.: (705) 945-5723
[email protected]
[email protected]
Loretta Shields
Canadian Food Inspection Agency
Plant Health Division
Program Network
350 Ontario St.
St. Catharines, ON L2R 5L8
Tel.: (905) 937-8285
Fax: (905) 937-5003
[email protected]
[email protected]
[email protected]
[email protected]
Stefan Richard
Sylvar Technologies Inc.
P.O. Box 636, Station A
Fredericton, NB E3B 5A6
Tel.: (506) 444-5690
Fax: (506) 444-5662
[email protected]
Sue Robertson
49 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-1333
Fax: (613) 221-1378
[email protected]
[email protected]
[email protected]
xx
Jean Shoiry
AEF Global
201, rue Mgr - Bourget
Lévis, QC G6V 9V6
Tel.: (418) 838-4441
Fax: (418) 835-2112
Guy Smith
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5595
Fax: (705) 541-5701
[email protected]
Sylvia Thomas
NRCan, CCRS
588 Booth St.
Ottawa, ON K1A 0Y7
Tel.: (613) 943-5247
[email protected]
Erik Tremblay
AEF Global
201, rue Mgr-Bourget
Lévis, QC G6V 9V6
Tel.: (418) 838-4441
Fax: (418) 835-2112
Ted Van Lunen
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5555
Fax: (705) 541-5704
[email protected]
Peter Silk
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 451-6084
Fax: (506) 452-3828
Susan Skaalid
Yukon Government Forest Management
Forest Operations
Box 2703 (K-918)
Whitehorse, Yukon Y1A 2C6
Tel.: (867) 633-7904
[email protected]
[email protected]
Neil Stocker
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel. :(705) 945-6622
Jon Sweeney
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3499
Fax: (506) 452-3525
[email protected]
[email protected]
Dean Thompson
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5646
Fax: (705) 541-5700
Graham Thurston
NRCan, CFS, AFC
P.O. Box 4000
Fredericton, NB E3B 5P7
Tel.: (506) 452-3026
Fax: (506) 452-3525
[email protected]
[email protected]
Richard Trudel
RNCan, SCF, CFL
1055, rue du P.E.P.S.
C.P. 10380, succ. Sainte-Foy
Québec, QC G1V 4C7
Tel.: (418) 648-7643
Fax: (418) 648-5849
Joost Van Der Sanden
NRCan, CCRS
588 Booth St.
Ottawa, ON K1A 0Y7
Tel.: (613) 947-1324
Fax: (613) 947-1385
[email protected]
Kristjan Vitols
City of Toronto
Urban Forestry Branch
355 Lesmill Rd
Toronto, ON M3B 1V5
Tel.: (416) 392-0432
xxi
[email protected]
Shaun Wallace
Canadian Food Inspection Agency
3851 Fallowfield Rd
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698 (5914)
Fax: (613) 228-6662
[email protected]
Gary Warren
NRCan, CFS Wood Fibre Centre
P.O. Box 960
Corner Brook, NL A2H 6J3
Tel.: (709) 637-4912
Fax: (709) 637-4910
[email protected]
Doreen Watler
Canadian Food Inspection Agency
3851 Fallowfield Rd
P.O. Box 11300
Ottawa, ON K2H 8P9
Tel.: (613) 228-6698 (5934)
Fax: (613) 228-6100
[email protected]
Charles Wikler
University of Toronto
33 Willcocks St.
Toronto, ON M5S 3B3
Tel.: (416) 946-8686
[email protected]
Ian Wilson
City of Kelowna Recreation
1359 KLO Rd
Kelowna, BC V1W 3N8
Tel.: (205) 469-8842
Fax: (250) 862-3335
Richard Wilson
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400
Sault Ste. Marie, ON P6A 6V5
Tel.: (705) 541-5106
Fax: (705) 945-6667
Michael Wood
Canadian Food Inspection Agency
59 Camelot Dr.
Ottawa, ON K1A 0Y9
Tel.: (613) 221-4634
Fax: (613) 228-6603
[email protected]
[email protected]
[email protected]
Denys Yemshanov
NRCan, CFS, GLFC
1219 Queen St. E
Sault Ste. Marie, ON P6A 2E5
Tel.: (705) 541-5602
Selina Young
NRCan, CFS
580 Booth St.
Ottawa, ON K1A 0E4
Tel.: (613) 996-5986
Fax: (613) 947-9090
[email protected]
[email protected]
xxii
Program: Forest Pest Management Forum 2007
FOREST PEST MANAGEMENT FORUM 2007
December 4–6, 2007
Ottawa Congress Centre, 55 Colonel By Drive, Ottawa, Ontario
TUESDAY, DECEMBER 4, 2007
08:00
08:30
Registration
Welcoming Remarks
Jim Farrell, Natural Resources Canada, Canadian Forest Service
Chair: Sue Farlinger, Natural Resources Canada, Canadian Forest Service
Session I: Western Pest Management Issues
Western Canada Round-up
09:00 British Columbia Report
Tim Ebata, British Columbia Ministry of Forests and Range
09:20 Alberta Report
Hideji Ono, Alberta Sustainable Resource Development, Forest Division
09:40 Saskatchewan Report
Rory McIntosh, Saskatchewan Environment, Forest Service Branch
10:00
Break
10:30
Bioforest Technologies Inc. – Sponsor Session
10:40
Manitoba Report
Irene Pines, Manitoba Conservation, Forestry Branch
Session II: National Forest Pest Strategy Update
11:00
An Update of the National Forest Pest Strategy
Sue Farlinger, Natural Resources Canada, Canadian Forest Service
11:30
Assessing the Risk of Mountain Pine Beetle in the Boreal Forest
Allan Carroll, Natural Resources Canada, Canadian Forest Service
12:00
Lunch
Chair: TBA
Session III: Impacts of Fire or Outbreak on Wood Quality
13:00
Impact of White Pine Weevil on Productivity and Wood Quality of Norway Spruce
Gaëtan Daoust, Natural Resources Canada, Canadian Forest Service
13:20
Short-term Colonization of Fire-killed Trees by Coleoptera
Yan Boulanger, Université du Québec à Rimouski
13:40
Can We Forecast Woodborer Damage in Fire-killed Trees?
Christian Hébert, Natural Resources Canada, Canadian Forest Service
14:00
Economic Impact of Wood Deterioration in Fire-killed Trees
Louis Morneau, Ministère des Ressources naturelles et de la Faune du Québec
14:20
Impact of Woodborer Damage vs. Checking on Fire-killed White Spruce in
Northeastern Alberta, 2003-2004
Sunil Ranasinghe, Alberta Sustainable Resource Development Forestry Division
14:40
Wood Decay and Degradation in Standing Lodgepole Pine (Pinus contorta var. latifolia
Engelm.) Killed by Mountain Pine Beetle (Dendroctonus ponderosa Hopkins: Coleoptera)
Kathy Lewis, University of Northern British Columbia
15:00
Break
15:30
BASF – Sponsor Session
xxiii
Foyer
Capital Hall 2B-3B
Capital Hall 4B-5B
Capital Hall 2B-3B
Capital Hall 4B-5B
Capital Hall 2B-3B
Capital Hall 4B-5B
Capital Hall 2B-3B
Session IV: Remote Sensing and Forest Health
15:40
Remote Sensing of Forest Health: Current Advances and Challenges
Ron Hall, Natural Resources Canada, Canadian Forest Service
Session V: Pesticide Regulations, Alternatives, Minor Use
16:00
Minor Use and Emergency Use Registrations for Forestry: A Provincial Perspective
Michael Irvine, Ontario Ministry of Natural Resources
16:10
Registration of Pest Control Products for Minor Uses in Canada
Shiyou Li, Natural Resources Canada, Pest Management Centre
16:30
PMRA Update: Regulators Rock
Terry Caunter, Pest Management Regulatory Agency
17:00
Pest Forum Steering Committee Meeting
Capital Hall 4B-5B
WEDNESDAY, DECEMBER 5, 2007
08:00
Registration
Chair: Ted Van Lunen, Natural Resources Canada, Canadian Forest Service
Session VI: Globalization: International Update
08:20 IUFRO Update
Eric Allen, Natural Resources Canada, Canadian Forest Service
Session VII: Eastern Pest Management Issues
Cross-Country Check-up – Ontario and Quebec
08:40 Ontario Report
Hugh Evans, Natural Resources Canada, Canadian Forest Service
09:00 Quebec Report
Louis Morneau, Ministère des Ressources naturelles et de la Faune du Québec
Cross-Country Check-up – Atlantic Canada
09:20 New Brunswick Report
Nelson Carter, New Brunswick Department of Natural Resources
09:40 Nova Scotia Report
Gina Penny, Nova Scotia Department of Natural Resources
10:00
Break
10:30
Sylvar Technologies Inc. – Sponsor Session
Cross-Country Check-up – Atlantic Canada
10:40
Newfoundland Report
Hubert Crummey, Newfoundland Department of Natural Resources
Session VIII: Urban Forest Management
11:00
Urban Forestry in Canada – Challenges and Opportunities
Ian Wilson, City of Kelowna
11:30
Challenges Facing Today’s Urban Forests in the Prairies
Ian Birse & Geoff McLeod, City of Saskatoon
12:00
Lunch
Chair: Marcel Dawson, Canadian Food Inspection Agency
Session IX: Invasive Alien Species
13:00
Introduction
Marcel Dawson, Canadian Food Inspection Agency
13:05
Report on Wood Packaging Inspection at Marine Ports
Mireille Marcotte, Canadian Food Inspection Agency
13:25
Emerald Ash Borer Update
Crystal Ernst, Canadian Food Inspection Agency
13:45
Development of a Management Program for Emerald Ash Borer in Urban/Suburban
Situations: The London Project
Barry Lyons, Natural Resources Canada, Canadian Forest Service
xxiv
Foyer
Capital Hall 2B-3B
Capital Hall 4B-5B
Capital Hall 2B-3B
Capital Hall 4B-5B
Capital Hall 2B-3B
14:05
14:25
14:45
15:05
15:35
15:55
16:15
16:30
Advances in the Use of Systemic Insecticides for Control of Invasive Insect Pests in Urban Environments
Dean Thompson, Natural Resources Canada, Canadian Forest Service
Sirex noctilio in Canada: An Update of Survey and Research Activities
Peter DeGroot, Natural Resources Canada, Canadian Forest Service
Sirex noctilio – Pest Risk Analysis Update
Loretta Shields, Canadian Food Inspection Agency
Capital Hall 4B-5B
Break
Brown Spruce Longhorn Beetle Update
Gregg Cunningham, Canadian Food Inspection Agency
Risk Mitigation, Risk Analysis, Flight Behaviour, Natural Control, and Pheromones of
the Brown Spruce Longhorn Beetle: Results from Year 1 of a 3-year Study
Jon Sweeney, Natural Resources Canada, Canadian Forest Service
Forest Pest Detection Surveys – Canadian Food Inspection Agency
Troy Kimoto, Canadian Food Inspection Agency
CFIA- Invasive Alien Species Pest Survey Report
Bruce Gill, Canadian Food Inspection Agency
SCIENCE AND TECHNOLOGY À LA CARTE
Chair: John Pineau, Canadian Institute of Forestry
A Roving, Learn-While-You-Eat Concept
Hosted by the Canadian Institute of Forestry and Forest Pest Management Forum
17:00
to
21:30
Capital Hall 4B-5B
Cash bar and roving buffet dinner; government, commercial, corporate exhibitors; science-knowledge exchange
and informal poster session
FORUM 2007 SPECIAL FEATURE
THURSDAY, DECEMBER 6, 2007
08:00
Registration
Foyer
Chair: Basil Arif, Natural Resources Canada, Canadian Forest Service
Session X: Genomics of Viruses and Their Larval Hosts: Implications in Pest Management
Capital Hall 2B-3B
08:30 Viruses in Insect Pest Control, a Reality or Just a Pipe Dream?
Peter Krell, University of Guelph, Molecular and Cellular Biology
09:00 From Disease to Genomics: A Journey with Insect Viruses
Basil Arif, Natural Resources Canada, Canadian Forest Service
09:30 Genomics and the Registration of Baculoviruses for Insect Control
Chris Lucarotti, Natural Resources Canada, Canadian Forest Service
Capital Hall 4B-5B
10:00
Break
Capital Hall 2B-3B
10:30
Pest Genomics and the Identification of Bio-rational Target Sites
Michel Cusson, Natural Resources Canada, Canadian Forest Service
11:00
Equivalency Determinations in the Registration of Baculoviruses
Brian Belliveau, Pest Management Regulatory Agency
11:15
Integrating Ethics within the Regulatory Framework of Biotechnology Applications:
What Does This Mean?
Lyne Létourneau, Université Laval, Département des sciences animales
Capital Hall 4B-5B
12:00
Lunch
xxv
Programme : Forum 2007 sur la répression des ravageurs
forestiers
FORUM 2007 SUR LA RÉPRESSION DES RAVAGEURS FORESTIERS
Du 4 au 6 décembre 2007
Centre des congrès d’Ottawa, 55, promenade Colonel-By, Ottawa (Ontario)
MARDI 4 DÉCEMBRE 2007
8 h 00
8 h 30
Inscription
Mot de bienvenue
Jim Farrell, Ressources naturelles Canada, Service canadien des forêts
Présidente : Sue Farlinger, Ressources naturelles Canada, Service canadien des forêts
Séance I : La répression des ravageurs dans l’Ouest
Tour d’horizon de l’Ouest canadien
9 h 00
Rapport de la Colombie-Britannique
Tim Ebata, British Columbia Ministry of Forests and Range
9 h 20
Rapport de l’Alberta
Hideji Ono, Alberta Sustainable Resource Development, Forest Division
9 h 40
Rapport de la Saskatchewan
Rory McIntosh, Saskatchewan Environment, Forest Service Branch
10 h 00
Pause
10 h 30
Bioforest Technologies Inc. – Séance des commanditaires
10 h 40
Rapport du Manitoba
Foyer
Salle de la Capitale 2B-3B
Salle de la Capitale 4B-5B
Salle de la Capitale 2B-3B
Irene Pines, Conservation Manitoba, Direction des forêts
Séance II : Le point sur la Stratégie nationale de lutte contre les ravageurs forestiers
11 h 00
Le point sur la Stratégie nationale de lutte contre les ravageurs forestiers
11h 30
12 h 00
Sue Farlinger, Ressources naturelles Canada, Service canadien des forêts
Évaluation du risque que pose le dendroctone du pin ponderosa pour la
forêt boréale
Allan Carroll, Ressources naturelles Canada, Service canadien des forêts
Déjeuner
Salle de la Capitale 4B-5B
Président : À confirmer
Séance III : Les impacts du feu ou d’une épidémie sur la qualité du bois
Salle de la Capitale 2B-3B
13 h 00
Impact du charançon du pin blanc sur la productivité et la qualité du bois de
l’épinette de Norvège
Gaëtan Daoust, Ressources naturelles Canada, Service canadien des forêts
13 h 20
Colonisation à court terme des arbres tués par le feu par les coléoptères
Yan Boulanger, Université du Québec à Rimouski
13 h 40
Peut-on prédire les dommages des perceurs du bois chez les arbres tués par le feu?
Christian Hébert, Ressources naturelles Canada, Service canadien des forêts
14 h 00
Impact économique de la dégradation des bois affectés par les feux
Louis Morneau, Ministère des ressources naturelles et de la faune du Québec
14 h 20
Comparaison de l’impact des dommages infligés par les insectes perceurs du bois et des gerçures
sur le classement du bois tiré d’épinettes blanches tuées par le feu dans le nord-est de l’Alberta
en 2003-2004
Sunil Ranasinghe, Alberta Sustainable Resource Development Forestry Division
14 h 40
Carie et déclassement du bois des pins tordus (Pinus contorta var. latifolia Engelm.) sur pied tués
par le dendroctone du pin ponderosa (Dendroctonus ponderosa Hopkins : Coleoptera)
Kathy Lewis, University of Northern British Columbia
Salle de la Capitale 4B
15 h 00
Pause
Salle de la Capitale 2B
15 h 30
BASF – Séance des commanditaires
xxvii
Séance IV : Télédection et santé des forêts
15 h 40
Utilité de la télédétection pour l’évaluation de la santé des forêts : progrès récents et enjeux
Ron Hall, Ressources naturelles Canada, Service canadien des forêts
Séance V : Règlements sur les pesticides, solutions possibles, utilisation secondaire
16 h 00
Homologations pour utilisations secondaires et utilisations d’urgence en foresterie : une
perspective provinciale
Michael Irvine, Ministère des Richesses naturelles de l’Ontario
16 h 10
Homologation de produits antiparasitaires pour utilisations secondaires au Canada
Shiyou Li, Ressources naturelles Canada, Centre pour la lutte antiparasitaire
16 h 30
Mise à jour de l’ARLA : l’organe de réglementation
Terry Caunter, Agence de réglementation de la lutte antiparasitaire
Salle de la Capitale 4B-5B
17 h 00
Comité directeur du Forum sur les ravageurs
MERCREDI 5 DÉCEMBRE 2007
8 h 00
Inscription
Président : Ted Van Lunen, Ressources naturelles Canada, Service canadien des forêts
Séance VI : La mondialisation – Le point sur la situation internationale
08 h 20
Nouvelles de l’Union internationale des instituts de recherches forestières
(IUFRO)
Eric Allen, Ressources naturelles Canada, Service canadien des forêts
Séance VII : La répression des ravageurs dans l’Est
Tour d’horizon – L’Ontario et le Québec
8 h 40
Rapport de l’Ontario
Hugh Evans, Ressources naturelles Canada, Service canadien des forêts
9 h 00
Rapport du Québec
Louis Morneau, Ministère des Ressources naturelles et de la Faune du Québec
Tour d’horizon – Le Canada atlantique
9 h 20
Rapport du Nouveau-Brunswick
Nelson Carter, Ministère des Richesses naturelles du Nouveau-Brunswick
9 h 40
Rapport de la Nouvelle-Écosse
Gina Penny, Nova Scotia Department of Natural Resources
10 h 00
Pause
10 h 30
Sylvar Technologies Inc. – Séance des commanditaires
Tour d’horizon – Le Canada atlantique
10 h 40
Rapport de Terre-Neuve
Hubert Crummey, Newfoundland Department of Natural Resources
Séance VIII : L’aménagement forestier dans les zones urbaines
11 h 00
Foresterie urbaine au Canada – Défis et perspectives d’avenir
Ian Wilson, Ville de Kelowna
11 h 30
Menaces pesant actuellement sur les forêts urbaines dans les Prairies
Ian Birse & Geoff McLeod, Ville de Saskatoon
12 h 00
Déjeuner
Président : Marcel Dawson, Agence canadienne d’inspection des aliments
Séance IX : Rapport sur les espèces étrangères envahissantes
13 h 00
Introduction
Marcel Dawson, Agence canadienne d’inspection des aliments
13 h 05
13 h 25
Foyer
Salle de la Capitale 2B-3B
Foyer
Salle de la Capitale 2B-3B
Salle de la Capitale 4B-5B
Salle de la Capitale 2B-3B
Compte rendu sur les inspections des matériaux d’emballage en bois effectuées dans les ports océaniques
Mireille Marcotte, Agence canadienne d’inspection des aliments
Le point sur l’agrile du frêne
Crystal Ernst, Agence canadienne d’inspection des aliments
xxviii
13 h 45
14 h 05
14 h 25
14 h 45
15 h 05
15 h 35
15 h 55
16 h 15
16 h 30
Élaboration d’un programme de lutte contre l’agrile du frêne en milieu
urbain/suburbain : le projet de London
Barry Lyons, Ressources naturelles Canada, Service canadien des forêts
Progrès réalisés dans l’utilisation d’insecticides systémiques contre les insectes ravageurs
envahissants en milieu urbain
Dean Thompson, Ressources naturelles Canada, Service canadien des forêts
Le point sur les activités d’enquête et de recherche ciblant le Sirex noctilio au Canada
Peter DeGroot, Ressources naturelles Canada, Service canadien des forêts
Sirex noctilio – le point sur l’évaluation du risque posé par le ravageur
Loretta Shields, Agence canadienne d’inspection des aliments
Pause
Foyer
Longicorne brun de l’épinette : état de la situation
Gregg Cunningham, Agence canadienne d’inspection des aliments
Atténuation des risques, analyse des risques, comportement de vol, lutte naturelle et phéromones
du longicorne brun de l’épinette : résultats de la première année d’une étude de trois ans
Jon Sweeney, Ressources naturelles Canada, Service canadien des forêts
Enquêtes de dépistage des ravageurs forestiers – Agence canadienne d’inspection des aliments
Troy Kimoto, Agence canadienne d’inspection des aliments
ACIA – Compte rendu sur les enquêtes de dépistage des espèces exotiques envahissantes
Bruce Gill, Agence canadienne d’inspection des aliments
SCIENCES ET TECHNOLOGIE À LA CARTE
Salle de la Capitale 4B-5B
Président : John Pineau, Institut forestier du Canada
Un concept qui vous permet de circuler et d'apprendre tout en mangeant
Un événement parrainé par l'Institut forestier du Canada et le Forum sur la répression
des ravageurs forestiers
17 h 00 à Bar payant et buffet à déguster tout en circulant à travers les exposants du gouvernement, du
21 h 30
secteur commercial et de l’entreprise privée; échange de connaissances scientifiques et séance
informelle de présentations d’affiches
ÉVENEMENT SPECIAL DU FORUM
JEUDI 6 DÉCEMBRE 2007
8 h 00
Inscription
Foyer
Président : Basil Arif, Ressources naturelles Canada, Service canadien des forêts
Séance X : Génomique des virus et de leurs hôtes larvaires : incidences sur la lutte antiparasitaire
Salle de la Capitale 2B-3B
8 h 30
L’utilisation de virus contre les insectes ravageurs : réalité ou rêve illusoire?
Peter Krell, Université de Guelph, Biologie moléculaire et cellulaire
09 h 00
De la maladie à la génomique : une incursion chez les virus des insectes
Basil Arif, Ressources naturelles Canada, Service canadien des forêts
09 h 30
La génomique et l’homologation des baculovirus pour le contrôle d’insectes
Chris Lucarotti, Ressources naturelles Canada, Service canadien des forêts
Salle de la Capitale 4B-5B
10 h 00
Pause
Salle de la Capitale 2B-3B
10 h 30
La génomique des ravageurs et l’identification de cibles
bio-rationnelles
Michel Cusson, Ressources naturelles Canada, Service canadien des forêts
11 h 00
Déterminations d’équivalence et homologation des baculovirus
Brian Belliveau, Agence de réglementation de la lutte antiparasitaire
11 h 15
Intégrer l’éthique dans la régulation des applications de la biotechnologie : de quoi est-il question?
Lyne Létourneau, Université Laval, Département des sciences animales
Salle de la Capitale 4B-5B
12 h 00
Déjeuner
xxix
SESSION 1: WESTERN PEST MANAGEMENT ISSUES,
WESTERN CANADA ROUND-UP
Chair: Sue Farlinger
Natural Resources Canada
Canadian Forest Service
SÉANCE 1 : LA RÉPRESSION DES RAVAGEURS DANS
L’OUEST, TOUR D’HORIZON DE L’OUEST
CANADIEN
Présidente : Sue Farlinger
Ressources naturelles Canada
Service canadien des forêts
British Columbia Report
Tim Ebata
Forest Practices Branch, B.C. Ministry of Forests and Range
P.O. Box 9513, Stn. Prov. Govt, Victoria, BC V8W 9C2
T
he forest health conditions in 2007 were recorded in the summer of 2007 using fixed wing
aircraft. Approximately 78% of the forested land base in the province was flown with the
major gaps occurring due to poor weather that dominated the north-central part of the province.
Defoliation by the major defoliating insects declined for most species. Eastern spruce budworm
(Choristoneura fumiferana) was still rare but increased from 114 ha in 2006 to 264 ha in 2007. All
activity occurred in the Fort Nelson District in north-east BC. The two-year cycle budworm, C.
biennis, was in an “off year” over most of the province and half of the area defoliated as in 2006 with
only 36,124 ha being affected. Western spruce budworm, C. occidentalis, was the most damaging
defoliator in the province but the total area affected declined to 397,621 ha, primarily in the
southern Cariboo Region. Western hemlock looper declined again in 2007 and only 3,318 ha of
defoliation were recorded. Although affecting only a small area, defoliation by the Douglas-fir
tussock moth is dramatic and intense and is usually located near populated areas. Damage and egg
mass counts have increased significantly and may result in an NPV spray in 2008 to initiate an
epizootic.
Mortality caused by bark beetles varied. Spruce beetle damage dropped to 36,775 ha while
Douglas-fir beetle increased to 81,054 ha. The hosts of both of these species are often found
growing in mixed stands with lodgepole pine that is currently being decimated by the mountain pine
beetle. The pine mortality often masks the mortality caused by the other beetle species so it is
believed the aerial overview survey is under-representing the true levels of damage.
Mountain pine beetle damage increased to just over 10 million ha in 2007 from 9.2 million ha
in 2006. It is believed the outbreak is slowing in its rate of expansion as the majority of the pure
stands of mature pine have already been killed. Continued expansion was observed along the edges
of the main infestation and increases were observed in the northern and south-eastern portions of
the province. Young pine mortality is continuing and a separate survey has been conducted to
quantify this damage to factor it into projections for short and mid-term timber supply.
3
A small trial testing the efficacy of verbenone impregnated Hercon® flakes was carried out in
the Kamloops area by Dr. Lorraine Maclauchlan. The trial did show some encouraging results but
the beetle pressure in this location was not as high as had been predicted and a replicate of this trial
is planned for 2008.
Pathology highlights involved two invasive diseases. The first, Sudden Oak Death, Phytopthora
ramorum, was found in a nursery in central Saanich that required quarantine and sanitation. Where
will it show up next? The second was a “native invasive”, Septosporum musiva, a canker of hybrid
poplars has been found in a poplar nursery and plantation in the Fraser Valley. This disease is native
to eastern Canada and must have been transported on infected stock. A risk assessment of the
disease spreading to native black cottonwood has begun.
Another highlight of 2007 was the publication of the provincial forest health strategy and
program description documents (http://www.for.gov.bc.ca/hfp/health/index.htm). In addition, the
Chief Forester initiated the Future Forest Ecosystems Initiative that will focus resources on
preparing the MFR to cope with the anticipated management challenges of climate change.
The aerial survey report, data
and maps are available on line at:
http://www.for.gov.bc.ca/hfp/healt
h/overview/2007.htm
4
Forest Pest Conditions and Programs in Alberta, 2007
Hideji Ono
Alberta Sustainable Resource Development, Forestry Division
Forest Management Branch, Forest Health Section
8th Floor, 9920 - 108 St., Edmonton, AB T5K 4M4
Compiled by: Anina Hundsdörfer, Sunil Ranasinghe
Contributors: T. Hutchison, M. Maximchuk,
D. Wood, D. Letourneau, C. Ward, B. Horne, S. Handel, D. Thomas, A. McGill
Abstract
Approximately 250,000 new faders were detected in 2007 following a massive influx of
mountain pine beetles into northern Alberta in 2006. Nearly 160,000 beetle-infested trees were
removed during 2006/2007 pine beetle management operations. Severe cold weather conditions in
November 2006 killed many pine beetles in northern Alberta. However, pine beetle populations in
southern Alberta were not affected by this cold wave. Pine beetle influx was relatively minor in 2007
compared to 2006. The beetle-infested area in the province was divided into leading edge, holding
and salvage zones based on control priorities determined by using a Decision Support System.
Intensity in beetle attacks is expected to be lower in northern Alberta but will be higher in southern
Alberta in 2008.
Compared to the area defoliated in 2006, the area defoliated by the spruce budworm nearly
tripled in 2007 to reach 108,758 hectares in provincial Crown land. Nearly 50% of this area was
severely defoliated. In addition, 34,000 hectares in Wood Buffalo National Park were defoliated by
the spruce budworm. Tree kill was about 90% in two monitoring plots severely affected by the
spruce budworm during the outbreak. Spruce budworm infestations are expected to be severe in
northeast Alberta and increase somewhat in intensity in northwest Alberta in 2008.
Two-year cycle budworm caused defoliation may be visible at higher elevations in western
Alberta in 2008. Approximately 17,000 hectares of Douglas fir in southwestern Alberta were
severely defoliated by the western spruce budworm. Tree kill was common in some areas affected by
this pest. Based on egg mass sampling this area is expected to have severe defoliation in 2008.
Yellowheaded spruce sawfly damage was less severe in 2007 compared to 2006.
5
In Alberta, overall forest insect-caused aspen defoliation decreased compared to 2006. The
extent and severity of defoliation decreased in northwest but increased in northeast and southwest.
Forest tent caterpillar was the major aspen defoliator. Large aspen tortrix, Bruce spanworm and
linden looper were the other defoliators of aspen. Based on egg mass sampling, forest tent caterpillar
defoliation is expected to be severe in northeast Alberta in 2008.
Résumé
Les ravageurs forestiers en Alberta : état de la situation et programmes, 2007
Environ 250 000 nouveaux arbres au feuillage décoloré ont été détectés en 2007 à la suite d’un
afflux massif de dendroctones du pin ponderosa dans le nord de l’Alberta en 2006. Presque 160 000
arbres infestés par le ravageur ont été éliminés dans le cadre des interventions de lutte contre le
ravageur en 2006-2007. En novembre 2006, un épisode de très grand froid a tué un grand nombre
de dendroctones dans le nord de l’Alberta. Les populations de dendroctones du sud de l’Alberta
n’ont cependant pas été touchées par cette vague de froid. L’afflux de dendroctones en 2007 a été
relativement faible comparativement à celui de 2006. La zone infestée par le dendroctone dans la
province a été divisée en front d’infestation, zone d’infestation à traiter et zone de coupes de
récupération, selon les priorités de lutte établies à l’aide d’un système d’aide à la décision. En 2008,
on s’attend à ce que les attaques soient plus faibles dans le nord de l’Alberta, mais plus intenses dans
le sud de la province.
Par rapport à l’année précédente, la superficie défoliée par la tordeuse des bourgeons de
l’épinette a triplé pour atteindre 108 758 hectares dans les terres publiques provinciales. Presque 50
% de cette superficie a été gravement défoliée. Le ravageur a également ravagé 34 000 hectares dans
le parc national Wood Buffalo.
Un taux de dépérissement de la cime d’environ 90 % a été enregistré dans deux parcelles de
surveillance gravement défoliée par la tordeuse des bourgeons de l’épinette durant l’infestation. En
2008, on s’attend à de graves infestations dans le nord-est de l’Alberta et à une intensification
relative des infestations dans le nord-ouest de la province. En 2008, la tordeuse bisannuelle de
l’épinette pourrait causer une défoliation apparente en altitude dans l’ouest de l’Alberta. Dans le sudouest de la province, environ 17 000 hectares de douglas ont été gravement défoliés par la tordeuse
occidentale de l’épinette. Les taux de dépérissement de la cime étaient élevés dans certains secteurs
infestés. D’après la densité des masses d’œufs, on s’attend à ce que ce secteur soit gravement défolié
6
en 2008. En 2007, les dommages infligés par la tenthrède à tête jaune de l’épinette ont diminué
d’intensité par rapport à l’année précédente.
L’ampleur globale de la défoliation infligée au peuplier faux-tremble par les insectes forestiers a
diminué par rapport à 2006. L’étendue et la gravité de la défoliation ont diminué dans le nord-ouest
de la province, mais augmenté dans le sud-ouest. La livrée des forêts a été le principal défoliateur de
cette essence. Les autres défoliateurs du peuplier faux-tremble ont été la tordeuse du tremble,
l’arpenteuse de Bruce et l’arpenteuse du tilleul. D’après les densités de masses d’œufs observées, on
s’attend à ce que la livrée des forêts inflige de graves défoliations dans le nord-est de l’Alberta en
2008.
C
ompared to the area defoliated in 2006, the area defoliated by the spruce budworm nearly
tripled in 2007 to reach 108,758 hectares in provincial Crown land. In addition, 34,000
hectares in Wood Buffalo National Park were defoliated by the spruce budworm. Approximately
17,000 hectares in south-western Alberta were severely defoliated by the western spruce budworm.
In Alberta, overall forest insect-caused aspen defoliation decreased compared to 2006. The
extent and severity of defoliation decreased in northwest but increased in northeast and southwest.
Forest tent caterpillar was the major aspen defoliator. Large aspen tortrix, Bruce spanworm and
linden looper were the other defoliators of aspen. Based on egg mass sampling, forest tent caterpillar
defoliation is expected to be severe in northeast Alberta in 2008.
Following a massive influx of mountain pine beetles into northern Alberta, nearly 160,000
infested trees were controlled in the province during 2006/2007 management operations. Despite
these efforts, approximately 250,000 new faders were detected in 2007. A new Mountain Pine Beetle
Management Strategy was defined which divides the infested area in the province into Leading
Edge, Holding and Salvage zones for control priorities determined with the help of a Decision
Support System. Intensity in beetle attacks is expected to be lower in northern Alberta but will be
higher in southern Alberta in 2008.
7
Introduction
This report summarizes the conditions and management programs of the major insect pests in
Alberta in 2007. This report covers historical trends, current conditions and forecasts for spruce
budworm, aspen defoliators and mountain pine beetle. The forested Crown Land in Alberta is
affected by many other pests that are not reported here, such as terminal weevils, other defoliators
and sucking insects, bark beetles other than mountain pine beetle, woodborer, root collar weevils,
etc. For information on invasive alien plants in Alberta and further details of the Forest Health
Program please refer to the Annual Report which will be posted in March 2008 online:
http://www.srd.gov.ab.ca/forests/health/publications/reports.aspx
For forest pest concerns on other forested lands in Alberta please contact the Department of
Community Development for Provincial Parks, the Federal Government for National Parks and
Municipal Governments for urban areas.
Spruce Budworm (Choristoneura fumiferana Clemens)
The area defoliated by the spruce budworm nearly tripled in 2007 compared to the area
defoliated in 2006 reaching 108,758 hectares in provincial Crown land (Figure 1). Nearly 50% of this
area was severely defoliated (Figure 1, 2). In addition, 34,000 hectares in Wood Buffalo National
Park were defoliated by the spruce budworm.
Extent of spruce budworm defoliation in Alberta by
severity categories
120000
H
E
C
T
A
R
E
S
100000
80000
60000
Severe
Moderate
40000
20000
0
2004
2005
2006
YEAR
8
2007
Figure 1: Severity of spruce
budworm defoliation 20042007.
Figure 2: Spruce budworm
defoliation in Alberta in 2007.
Western Spruce Budworm (Choristoneura occidentalis Freeman)
The area severely affected by western spruce budworm totaled 17, 678 ha in the Porcupine
Hills in southwestern Alberta (Figure 3) in 2007. Both Douglas fir and white spruce were defoliated.
Tree kill was common in some areas affected by this pest. Based on egg mass sampling this area is
expected to have severe defoliation in 2008.
9
Figure 3:
Map of western spruce budworm
defoliation in 2007.
Major Aspen Defoliators
In contrast to previous years, overall forest insect-caused aspen defoliation in Alberta declined
in 2007 (Figure 4). However, defoliation is still severe in northern parts of the province (Figure 5).
Forest tent caterpillar (Malacosoma disstria Hubner) was the major aspen defoliator in 2007. Large
aspen tortrix (C. conflictana Walker), Bruce spanworm (Operophtera bruceata Hulst) and linden looper
(Erranis tiliaria Harris) were the other defoliators of aspen also observed in 2007. Based on egg mass
sampling, forest tent caterpillar defoliation is expected to be severe in northeast Alberta in 2008.
10
Insect pest-caused aspen defoliation, AB
5,851,155
6000000
5000000
4000000
HA
3,255,338
2,818,387
3000000
2000000
Figure 4 Area of
defoliated aspen in
Alberta 2004-2007.
632,810
1000000
0
2004
2005
2006
2007
YEAR
Figure 5: Aspen
Defoliation in 2007.
11
Mountain Pine Beetle (Dendroctonus ponderosa Hopkins)
In 2006 a massive influx of mountain pine beetles (MPBs) into northern Alberta was observed.
Extensive ground surveys detected approximately 91 thousand infested trees in the province (Table
1). The Beetle Strategy employed involved aggressively detecting, surveying and controlling infested
trees. Almost 90 thousand were controlled through level 1 single tree treatments. Together with
municipal control programs a total of 156 thousand trees were controlled in Alberta between
August 1st, 2006 and July 31st, 2007. Level 2 harvest of infested wood was another tactic used in
several parts of the province.
The Healthy Pine Strategy aims at pre-emptively reducing the number of highly susceptible
stands through prescribed burns and harvest, which were employed in various parts of the province.
Despite these control efforts, the aerial surveys in 2007 revealed approximately 250,000 additional
red attacked trees (Figure 6). As a result, a total of over 400,000 trees were attacked by MPBs from
the 2006 massive long range dispersal flights.
In order to deal with the large amount of infested trees, the MPB Management Strategy was
revised in 2007. The MPB Management Strategy is available at
http://www.srd.gov.ab.ca/forests/health/pestalerts/mountainpinebeetles.aspx
SRD detected
90 790
SRD controlled
89 635
Municipalities controlled
66 647
Total # trees controlled
156 282
12
Figure 6 Trees killed by mountain
pine beetles that were detected during
aerial surveys in 2007.
The prime objectives of the MPB management strategy are to prevent the spread north and
south along the eastern slopes of Alberta and to prevent the spread eastward into the boreal forest
of lodgepole-jack pine hybrid and jack pine forests. To achieve these goals the infested area in the
13
province was divided into Leading Edge, Holding and Salvage/Monitoring zones based on control
priorities determined by using a Decision Support System (Figure 7). In the Leading Edge Zone all
infested trees are treated, although in some areas only clusters of 3 or more trees are treated. In the
Active Holding Zone only clusters of 25 trees or more are treated. The Inactive Holding Zone
involves only level 2 harvest and the Salvage/Monitoring Zone only monitoring beetle activity.
Figure 7 Alberta
Mountain Pine
Beetle Management
Zones 2007
14
Part of the Decision Support System for evaluating operational priorities is R-values which
indicate the population trend of a MPB infestation. This data was collected during Population
Forecast Surveys in the spring of 2007 where 255 sites across the province were sampled. The data
indicated that populations in the north are mostly static or declining and populations in the south
are increasing.
This is probably due to severe cold events in November 2006 which killed many MPBs in
northern Alberta. The green to red ratios observed in the summer and fall supported this trend as
well, with decreasing ratios in the north and increasing ratios in the south. Hence, intensity in beetle
attacks is expected to be lower in northern Alberta but will be higher in southern Alberta in 2008.
Alberta Sustainable Resource Development funded several research initiatives to gather more
understanding of the MPB infestation in Alberta. These include the following:
•
Projection of flight trajectories from BC to Alberta (P. Jackson et al., University of
Northern BC);
•
Overwintering mortality assessment (B. Cooke et al., Canadian Forest Service);
•
Modelling habitat connectivity (A. Fall & T. Shore, Canadian Forest Service);
•
Genomics of lodgepole pine, MPB and blue stain fungi (J. Cooke et al., University of
Alberta);
•
MPB in boreal jack pine (D. Langor & A. Rice, Canadian Forest Service);
•
MPB survival in wood waste piles (M. Hamilton & A. Abimbola, Olds College);
•
MPB survival in wood chips (A. Hundsdörfer & S. Ranasinghe, Alberta Sustainable
Resource Development).
15
Forest Insect and Disease Conditions in Saskatchewan, 2007
Rory McIntosh
Saskatchewan Environment, Forest Service Branch
Box 3003, McIntosh Mall, Prince Albert, SK S6V 6G1
Abstract
Spruce budworm Choristoneura fumiferana remains the most significant insect pest in
Saskatchewan forests. Aerial surveys show 2007 defoliation overall continues to decline, however
damage is predicted to remain severe in some parts of central and southeast SK. In 2007 no spray
program was implemented. Aspen defoliation was detected in many parts the province. Defoliation
was likely caused by large aspen tortrix, with some damage by forest tent caterpillar, Malacosoma
disstria. Aspen decline in the northwest was mapped during aerial surveys. Dutch elm disease,
Ophiostoma novo-ulmi continues to spread in Saskatchewan. In 2007, infections were variable but fewer
trees were removed than in 2006. Dwarf mistletoe, Arceuthobium americanum, and Jack pine budworm,
Choristoneura pinus pinus, are the most significant pests of Jack pine. Trap catches in 2007 are
reported. Mountain pine beetle, Dendroctonus ponderosae, continues to be a major concern. Systematic
aerial and ground surveys were conducted in Cypress Hills and boreal forest in western SK.
Provincial import restrictions continue. Saskatchewan continues to monitor banded elm bark beetle
Scolytus schevyrewi. CFIA Gypsy moth (Lymantria dispar) trapping surveys revealed significant increases
in moths caught in the City of Saskatoon.
Résumé
Insectes et maladies des arbres en Saskatchewan en 2007
La tordeuse des bourgeons de l'épinette (Choristoneura fumiferana) demeure le plus important
insecte ravageur forestier en Saskatchewan. Même si, de façon générale, les relevés aériens ont
montré que la défoliation a continué de diminuer en 2007, elle devrait demeurer grave dans certaines
parties du centre et du sud-est de la province.
En 2007, aucun programme de pulvérisation n’a été réalisé. La défoliation du peuplier faux
tremble a été détectée dans nombre de régions de la Saskatchewan. Elle est sans doute attribuable à
16
la tordeuse du tremble, et certains dommages ont été causés par la livrée des forêts (Malacosoma
disstria). Un dépérissement du peuplier faux-tremble dans le nord-ouest de la province a été
cartographié lors des relevés aériens. La maladie hollandaise de l'orme (Ophiostoma novo-ulmi) continue
de se propager en Saskatchewan. En 2007, le taux d’infection a été variable, et le nombre d’arbres
abattus a diminué par rapport à 2006. Le faux-gui du pin (Arceuthobium americanum) et la tordeuse du
pin gris (Choristoneura pinus pinus) sont les ravageurs les plus destructeurs du pin gris. Les captures par
piégeage de 2007 sont rapportées. Le dendroctone du pin ponderosa (Dendroctonus ponderosae)
continue d'être très préoccupant. Dans l’ouest de la Saskatchewan, des relevés aériens et terrestres
systématiques ont été effectués dans les collines Cypress et la forêt boréale. Les restrictions
provinciales touchant les importations ont été maintenues. La Saskatchewan continue d'exercer une
surveillance à l'égard du Scolytus schevyrewi, scolyte originaire d'Asie attaquant les ormes. Dans le cadre
de sa campagne de piégeage de la spongieuse (Lymantria dispar), l’Agence canadienne d’inspection des
aliments (ACIA) a observé une augmentation importante du nombre de spongieuses capturées dans
la ville de Saskatoon.
Forest Pest Conditions in Saskatchewan, 2007
Defoliators – Softwood
Spruce Budworm Choristoneura fumiferana
The eastern spruce budworm Choristoneura fumiferana outbreak continues to decline in
Saskatchewan. Aerial surveys conducted in 2005 showed an area of 183,511 hectares. The area in
2006 was 100,000 and in 2007 the area of moderate to severe defoliation had further declined to
89,578 ha., of which 71,318 ha. were moderate and 18,260 ha severe (Figure 1). In 2007 there was no
operational spray program in Saskatchewan.
Conclusions for 2007 and Predictions for 2008
SBW populations continue to decline in most of SK. L2 surveys reveal a few small pockets of
high populations south-eastern Saskatchewan where the defoliation for 2008 is predicted to be
severe and consequently a spray program might be considered in 2008.
17
800
700
600
500
400
300
200
100
0
2008
2006
2004
2002
2000
98
96
94
92
1990
88
86
84
82
1980
Figure 1: Area of moderate to severe
defoliation caused by the spruce
budworm Choristoneura fumiferana in
Saskatchewan 1982-2007.
Research
Saskatchewan Ministry of Environment continues to support a number of Spruce budwormrelated Research and Development projects (See extended abstract in these proceedings) including:
•
Dynamics of endemic spruce budworm populations in Armargh and Epaule. Jacques Régnière &
Barry Cooke;
•
Develop and test pheromone formulations for use in early intervention management strategies
of Spruce budworm. Peter Silk & Ed Kettela;
•
Economic benefits of optimized foliage protection and harvest planning to minimize losses to
spruce budworm. Van Lanz & Dave Maclean.
Jack pine budworm Choristoneura pinus pinus.
Jack pine budworm Choristoneura pinus pinus – a periodic defoliator of Jack pine has not reached
outbreak levels in Saskatchewan since the 1980’s. As part of an ongoing monitoring and early
detection program initiated in 2006, a grid of pheromone traps has been set up across the
commercial forest zone. In total, 72 pheromone-baited monitoring traps were deployed in clusters
of three traps per location across the provincial forest (Figure 2).
18
Nisbe
Canwood
Meadow Lake
Mean (+ SE) number moths/trap
60
2005
2006
2007
50
40
30
20
10
0
1
2
3
4
5
6
7
8
9
Figure 2: Jack pine budworm trap
catches in each on nine regional
monitoring locations (2005-07).
These traps have been further stratified into 9 regional clusters of traps where they were
grouped by trap location on the basis of relative proximity to each other.
The results show that overall the mean number of moths trapped in the Nisbet (#1) and
Canwood (#5) island forests have increased significantly while trap catches in the Meadow lake (#9)
region has declined. Interestingly, these three distinct locations where moth catches remain elevated,
all represent fringe or island forest areas.
Defoliators - Hardwood
Large Aspen Tortrix Choristoneura conflictana
In 2007 aerial surveys revealed 41,000 hectares of hardwood defoliation in the northwestern
part of the province south of the Churchill river (Figure 2). Ground surveys confirm the defoliation
was caused by Large Aspen Tortrix (Choristoneura conflictana). Approximately 41,000 hectares was also
affected by Aspen leaf spot diseases, likely Marssonina populi (Figure 3). Again in 2007, no Forest tent
caterpillar Malacosoma disstria (FTC) defoliation was detected in aerial surveys over the provincial
forest. SK MoE has set up a pheromone trapping grid at 20 locations throughout the aspen parkland
19
and boreal transition ecoregions as part of an ongoing regional monitoring system for FTC. Many
Large Aspen Tortrix adults were found in the Forest tent caterpillar traps.
Figure 3: Area of hardwood defoliation from Large
Aspen Tortrix Choristoneura conflictana
Figure 4: Area of hardwood damage caused by leaf spot
disease
Research
Saskatchewan Ministry of Environment supported research into the calibration of a Forest
Tent Caterpillar population impact and detectability model Barry Cooke & Ron Hall (See extended
abstract in these proceedings).
Invasive and Non-native Pests
Dutch Elm Disease
Over the past decade, Dutch elm disease (DED) has spread from a small area to the south of
Estevan; along the Red Deer River valley in the North; along the Qu’Appelle valley in the east, and
the Souris River area in the southeast (see Figure 5). In 2007, DED continues to spread through
Saskatchewan, the disease now extends west to Moose Jaw – almost to the western-most natural
range of the American elm. The movement is now along the Qu’Appelle valley and last mountain
lake to the North of Regina.
20
Figure 5 : Extent and distribution of
Dutch elm disease in Saskatchewan 2007.
21
There were three communities that reported their first DED infected elm: Wynyard, Pangman,
and Radville. In 2007 a total of 394 samples, collected during provincial surveys and submitted by
the municipalities and public, were confirmed DED positive and removed. In addition, buffers are
set up around vulnerable communities to restrict the spread of DED into the city.
Two Provincial parks, Echo Valley and Buffalo Pound, located in the high infection zones
were included in the surveys in 2007. In total, 114 infected trees were detected and removed in Echo
Valley. Over 200 infected trees were found in Buffalo Pound however, these were not removed due
to the extent and severity of DED in the Park. Unless otherwise noted, all infected trees were
removed in the municipalities, buffers and Echo Valley Provincial park (Table 1)
There were 40 communities involved in the cost-share program. This program promotes
shared management responsibility for DED between the community and the provincial government.
The Cities of Saskatoon, Yorkton, Prince Albert, North Battleford and Swift current remain diseasefree.
Table 1: Number of Dutch elm diseased elm trees removed from municipalities and buffers in Saskatchewan 2007
Municipalities
Location
removed
Estevan
10
Buffers
Location
removed
Estevan
14
Parks
Location
Echo Valley
removed
114
Lumsden
20
Regina
Buffalo Pound
200+1
Regina Beach
12
Moose jaw
Indian Head
1
70
7
Indian Head
30
36
Fort Qu’Appelle
11
Fort Qu’Appelle
Katepwa
32
Tisdale
Carnduff
2
Weyburn
1
Wynyard
1
General public
Total
1.:
0
33
123
157
315
Trees not removed. Infection considered too extensive in the park to contain through removals.
Research
Saskatchewan Ministry of Environment is currently supporting graduate research into
Hylurgopinus rufipes biology and ecology at the Department of Entomology University of Manitoba.
22
European Gypsy Moth Lymantria dispar
In 2007, the Canadian Food Inspection Agency (CFIA)
continued ongoing monitoring in SK deploying 263 Pherocon
IIID traps loaded with DispalureTM in the province.
FIFTEEN traps were found to be positive: 1 in the City
of Estevan; 1 in City of Regina; and 13 in the city of Saskatoon.
In the 15 positive traps a total of 39 moths were confirmed.
Due to increasing trap numbers two years running (2005 and
© Rory McIntosh Saskatchewan Ministry of Environment.
2006), the CFIA increase the trapping density in Gabriel
Dumont Park area. Most of the 39 moths trapped in the
province were caught in an extended grid trapping program in the city of Saskatoon. Interestingly
many of the traps in the grid trapped area in Saskatoon contained multiple moth catches.
Banded Elm Bark Beetle Scolytus schevyrewi
In 2004, Saskatchewan first deployed a network of pheromone-baited multiple funnel traps at
15 locations across the southern extent of the province. Traps were located in areas around
Carnduff and Oxbow in the southeast right through to the west block of the Cypress hills interprovincial park. No Scolytus schevyrewi were collected in 2007 in these remote locations.
In 2007, and in collaboration with CFIA, Saskatchewan Ministry of Forests extended the
monitoring to include 10 additional locations, mostly in major communities across the southern part
of the province. All traps have been collected ina and processed. Positive trap catches have been
confirmed by the Canadian Food Inspection Agency (CFIA) at six of these additional trapping
locations.
Table 2: Communiteis surveyed for Scolytus schevyrewi and confirmed finds (positive (+) or negative (-).
COMMUNITY (Southeast)
Estevan
Weyburn
Yorkton
Moosejaw
Sask Landing (Stewart Valley)
Catch
+
+
+
-
23
COMMUNITY (Southwest)
Maple creek
Shaunavon
Eston
Assiniboia
Leader
Catch
+
+
+
-
Mountain Pine Beetle Dendroctonus ponderosae
The potential spread and risk of mountain pine beetle (MPB) establishing in Saskatchewan
continues to be a major concern. In SK there remains the opportunity to focus on proactive,
preventive approaches and not be forced, at this time, into active beetle-focused suppressive
action.
Since 2002, Saskatchewan Ministry of Environment (SK MoE) has implemented regulatory
controls to prevent the long-distance, human caused, spread of MPB into the province. This
restriction remains in place. SK, together with major stakeholders, continues to streamline the
regulatory process by integrating MPB contingencies into the Forest Management Planning and
tactical planning process.
Saskatchewan’s approach to the MPB threat is very similar to that of fire-fighting – that is the
requirement for early detection leading to immediate, rapid and aggressive response. To help focus
surveillance and detection of MPB, SK has implemented risk and susceptibility mapping – forestfocused approaches aimed at determining the extent and distribution of susceptible pine in the
western part of the province. The distribution of these high risk stands, coupled with the locations
of recent fires (See dark gray polygons in Figure 6) enables efficient aerial and ground surveillance
activities.
In 2007 ground and aerial surveys were expanded to include an area approximately 100 km
wide running East of the Albert-Saskatchewan Border and as far north as the Churchill river. These
surveys revealed over 350 suspect red trees. Ground reconnaissance of 56 sites confirmed none of
these contained MPB.
24
Figure 6 : Map of western Saskatchewan
showing distribution of susceptible pine (red
and purple polygons); recent fires (dark gray
polygons) and red trees (red stars).
Research
Saskatchewan has supported and continues to support a number of research initiatives to aid
in risk assessment and to improve knowledge of MPB ecology and epidemiology in Jack pine. SK
currently supports work into more detailed studies to develop susceptibility indices and connectivity
of forest cover to aid in spread prediction Terry Shore, Bill Riel, Andrew Fall, and Charles Burnett. In
addition to this SK supports research aimed at elucidating the Adaptation of mountain pine beetle to
the boreal environment and novel hosts David Langor (See extended abstract in these proceedings).
CURRENTLY NO MOUNTAIN PINE BEETLES ARE FOUND IN
SASKATCHEWAN’S BOREAL FOREST
25
Forest Pests in Manitoba, 2007
Irene Pines
Manitoba Conservation, Forestry Branch
200 Saulteaux Cres., Box 70, Winnipeg, MB R3J 3W3
Spruce Budworm
In 2007 the spruce budworm Choristoneura fumiferana infestation continued in Manitoba.
Moderate to severe defoliation occurred in the Northwest Region, Lake Winnipeg East area and in
Spruce Woods Provincial Park and Forest in south western Manitoba and in Riding Mountain
National Park. In 2007 spruce budworm defoliation polygons were roughly digitized directly into
ESRI Arc View Shapefiles using Tablet PC's by the aerial observers during the detection flights. The
total area of infestation was approximately 174,480 ha. The area of infestation was 12,313 ha in the
Northwest Region (Figure 1), 604 ha in the Eastern Region (Figure 2), 21,568 ha in Spruce Woods
Provincial Park (Figure 3). The area of defoliation in Riding Mountain National Park was
approximately 140,000 ha in 2007.
Based on the 2006 aerial defoliation survey and defoliation predictions derived from the 2006
egg mass surveys, an operational budworm suppression program was implemented in 2007 within
the Tolko Industries Inc. Forest Management License (FML) in the Northwest Region, in Spruce
Woods Provincial Park and Forest and in the Tembec Inc. FML in the Eastern Region,
The biosynthetic insecticide, Mimic® 240 LV (tebufenozide) was aerially applied to 5,225 ha in
the Northwest Region, 7,099 ha in the Eastern Region and 5,590 ha in Spruce Woods Provincial
Park and Forest. All spray blocks received a single application of 70 grams a.i. of Mimic® per ha.
The product was applied with water providing an application volume of 2.0 litres per ha (290 ml
Mimic® and 1,710 ml water). The product was applied by a team of two Air Tractor AT 602B fixedwing aircraft each equipped with eight AU 4000 Micronair rotary atomizer nozzles. The insecticide
applications were carried out from May 30 to June 10.
Each aerial spray aircraft was equipped with the Satloc AirStar M3 real-time differential Global
Positioning System (GPS) aerial navigation system. This system provided guidance over the
treatment areas and allowed the pilot to boom off (cease spraying) when flying over designated
exclusion zones (buffer areas and non-target sites). Second-by-second GPS and spray application
26
data from each spray aircraft was imported into the Pesticide Application Information System. The
use of this system has facilitated faster correction of spray application problems such as faulty flow
controllers, as well as providing pilots with feedback on their performance after each spray session.
A Cessna 182 aircraft was used for additional navigational support.
A portable, 10 meter tall, solar powered weather station was utilized in the 2007 spray project.
This station was custom built using Campbell Scientific Weather monitoring components and a 1X
RTT Digital Cellular modem. The weather monitoring components include temperature, relative
humidity, 3 dimensional ultrasonic wind speed and direction anemometer and rain gauge. The
components are of the highest accuracy so that the data collected can be directly compared to the
AIMMS-20 onboard meteorological sensors on the spray aircraft, thus allowing for better calibration
of the AIMMS-20. The portable weather station has become an invaluable tool to fill voids in our
fixed weather station network.
The spray blocks were opened for spray operations coinciding with white spruce shoot
development index 4.0 (Auger’s Class) and peak 4th instar larval development. Pre and post spray
surveys were carried out to determine appropriate application timing and success of the spray
application in controlling spruce budworm larvae.
The 2007 spray project was successful. Within treatment blocks, the mean population
reduction was 81% in the Eastern Region, 57% in the Northwest Region and 74% in Spruce Woods
Provincial Forest (Table 1). Generally, light defoliation occurred within the treated blocks, while
moderate defoliation occurred in the untreated controls.
27
Figure 1: Spruce
Budworm 2007
Defoliation
Northwestern
Manitoba (12,313 ha)
28
Figure 2: Spruce Budworm 2007
Defoliation Eastern Manitoba (604 ha)
29
Figure 3: Spruce Budworm 2007 Defoliation
Southwestern Manitoba (21,568 ha)
30
Table 1: Spruce Budworm - Percent reduction in larval numbers
Larval
Area
Pre Spray Post Spray
Location
Larvaeb
Mortality
Treated Larvaeb
Eastern Region
16
3
81%
7,099 ha a
Eastern Region
N/A
14
10
29%
Untreated Controls
Spruce Woods
19
5
74%
5,590 ha a
Spruce Woods
N/A
21
14
33%
Untreated Controls
Northwest Region
5,225 ha a
7
3
57%
Northwest Region
N/A
20
15
25%
Untreated Controls
a. Treatment: Mimic, 70-gram a.i./ha
b. Number of budworm/45-cm branch
Corrected
Mortality
74%
N/A
61%
N/A
43%
N/A
Defoliation assessments and egg mass density surveys to predict 2008 defoliation were
conducted throughout the province in August and September. With the exception of Dorothy Lake,
where budworm populations are chronic, defoliation is predicted to be light in Whiteshell Provincial
Park. Light defoliation is also predicted for Nopiming Provincial Park, the Interlake Region, Spruce
Woods Provincial Park and Forest and in the Western Region. In the Tembec Forest Management
License Area, light defoliation is predicted except for the Sandy River area where moderate
defoliation is predicted. In the Northeast Region severe defoliation is predicted in Paint Lake
Provincial Park near Thompson. Moderate defoliation is predicted in 2008 in the Northwest Region
and in Riding Mountain National Park. (See Tables 2 to 6) with reference to defoliation classes as
follows:
Light
- Up to 35% defoliation of current shoots;
- Based on <40 egg masses per 10 m2 of branch area;
Moderate - 35% to 70% defoliation of current shoots;
- Based on 40 to 185 egg masses per 10 m2 of branch area;
Severe
- Greater than 70% defoliation of current shoots and possible feeding on old foliage;
- Based on >185 egg masses per 10 m2 of branch area.
31
Table 2: 2007 Spruce Budworm Defoliation and Predictions for 2008 (Northeast Region)
Location
2007 Defoliation 2007 Egg Mass/10m2 2008 Defoliation Prediction
Jenpeg
26%
41
Moderate
Paint Lake
95%
294
Severe
Setting Lake
5%
0
Light
Table 3: 2007 Spruce Budworm Defoliation and Predictions for 2008 (Eastern Region)
Location
2007 Defoliation 2007 Egg Mass/10m2
2008 Defoliation Prediction
Falcon Lake
4%
0
Light
Dorothy Lake
34%
64
Moderate
Rennie River
39%
0
Light
Lac du Bonnet
13%
0
Light
McArthur Falls
24%
24
Light
Nopiming Park
15%
0
Light
Maskwa Road
18%
21
Light
Black/O’Hanly Rivers
15%
15
Light
Sandy River
35%
62
Moderate
Rice River Road
45%
6
Light
Table 4: 2007 Spruce Budworm Defoliation and Predictions for 2008 (Northwest Region)
Location
2007
Defoliation
2007 Egg
Mass/10m2
2008 Defoliation
Prediction
Saskatchewan River Forest
Section
38%
48
Moderate
Flin Flon/ Bakers Narrows
25%
88
Moderate
Grass River Park (south
portion)
53%
222
Severe
Snow Lake
92%
130
Moderate
32
Table 5: 2007 Spruce Budworm Defoliation and Predictions for 2008 (Interlake Region)
2007
Defoliation
2007 Egg
Mass/10m2
2008 Defoliation
Prediction
Grindstone Point
6%
0
Light
Hodgson
7%
0
Light
Lake Saint George
24%
23
Light
Pine Dock
11%
29
Light
Location
Table 6: 2007 Spruce Budworm Defoliation and Predictions for 2008 (Western Region)
Location
2007
Defoliation
2007 Egg
Mass/10m2
2008 Defoliation
Prediction
Dawson Bay,
L. Winnipegosis
Davy/Pelican Lakes, Duck
Mountain
Riding Mountain
National Park
5%
10
Light
14%
14
Light
48%
86
Moderate
Spruce Woods Forest
24%
6
Light
Spruce budworm pheromone traps were placed at 33 locations throughout the province. Three
MULTIPHER® insect traps containing spruce budworm pheromone (PVC lure containing 0.3% by
weight of a 95:5 blend of (E)- and (Z)-11-tetradecenal) were placed 40 m apart at each plot location
in either a straight or triangular configuration. Average moth captures per trap increased in three of
the regions (Table 7).
Table 7: Spruce Budworm Pheromone Trapping
Northwest Region
2006 Moth
Capture/Trap
490
2007 Moth
Capture/Trap
694
Northeast Region
Western Region
536
142
719
139
+34%
-2%
Southwest Region (Spruce Woods)
1,943
2,632
+35%
Riding Mountain National Park
1,246
676
-46%
Interlake Region
379
350
-8%
Eastern Region
574
251
-56%
Location
33
Percent Change
+41%
Dutch Elm Disease
The removal of diseased and declining trees marked in 2006 was completed. Provincial Dutch
elm disease (DED) sanitation crews removed 8,760 trees. Of the 8,760 elm trees that were removed,
5,310 were within the Winnipeg DED buffer zone and 3,450 were removed throughout the
remainder of the Province. The City of Winnipeg removed 5,613 elms and Brandon removed 373
elms within built-up urban areas of the City. Total elm tree removals were 14,746.
The annual DED surveillance program started on May 14th and ended August 31st, 2007.
Each of the 38 Cost Sharing Agreement communities was surveyed at least three times including the
firewood survey in the early spring. Each Winnipeg buffer zone rural municipality was completely
surveyed two times. As well, “hot spots” (areas having higher levels of DED in the past) were
surveyed more frequently.
The 2007 season was the fourth year using the computer tracking program called Urban Forest
Information System. There are still some complications with the system which are expected to be
corrected next year when the system will be running in Oracle.
The rapid removals trial continued for a fourth year. This is an operational research trial to
determine whether rapid removal of current year hazard and diseased elm trees and firewood will
reduce the native elm bark beetle population significantly. The expectation is a reduction in diseased
trees. There are seven communities: Manitou, Teulon, Steinbach, Altona, Morris, Treherne, and
Selkirk. This program is conducted by the University of Manitoba, and MB Conservation is a
partner. Initial analysis done by the University of Manitoba Entomology Department indicates that
there is a decline in the incidence of DED by conducting rapid removals.
Basal application for native elm bark beetles in the Winnipeg buffer zone continued for a
fourth year. This is a cooperative program between Manitoba Conservation and the City of
Winnipeg in which all elm trees (public and private) were sprayed within a designated high risk area.
In 2004 and 2006, an area along the Red River south corridor was targeted and included publicly and
privately owned trees. In 2005 and 2007, the Seine River corridor was targeted. The Red River north
corridor was sprayed for the first time in 2007. The expected outcome is reduced bark beetle
populations, and ultimately, reduced incidence of Dutch elm disease.
In 2007, provincial survey crews marked 6,370 elms for removal (3,393 within the Winnipeg
buffer zone and 2,791 in and around the 38 cost-sharing communities). In addition, 173 elm
34
firewood piles were identified for removal. In the City of Winnipeg, 4,377 elms were marked for
removal and 329 firewood notices were issued. The City of Brandon had 495 elms and 42 elm
firewood piles identified for removal. The buffer zones around Brandon had 177 elms marked for
removal.
Manitoba Conservation has monitored for Scolytus multistriatus with pheromone traps
throughout southern Manitoba since 1982. From 1982 to 2006, eight specimens of the smaller
European elm bark beetle had been captured. In 2007, in addition to our S. multistriatus traps and in
cooperation with the Canadian Food Inspection Agency, additional traps for the banded elm bark
beetle, Scolytus schrevyrewi, were placed at the same monitoring locations. Eleven specimens of the
banded elm bark beetle were captured at Otterburne, which is approximately 30 km south of
Winnipeg.
The City of Winnipeg Insect Control Section also establishes and monitors pheromone traps
and sticky bands at several locations for the smaller European elm bark beetle. No S. multistriatus
were captured in the City of Winnipeg in 2007.
Jack Pine Budworm
Defoliation by jack pine budworm, Choristoneura pinus pinus, in Manitoba, continues to be
negligible and moth captures declined in the pheromone traps situated throughout Manitoba's jack
pine (Pinus banksiana) forests. Adult jack pine budworm males have been captured with pheromone
baited traps since 1985. This trapping method is being evaluated as an early warning method for
outbreaks and a supplemental technique to branch collecting and egg mass prediction of population
levels.
Twelve locations across Manitoba were monitored with pheromone traps in 2007. Two
locations had to be re-established in a new stand or area due to harvesting activities in 2006. Since
1989, two trap types, Pherocon 1C and MULTIPHER®, have been field tested for capture
efficiency using a 0.03% or 100 µg concentration of pheromone lure.
In 2007, the average number of male moths in both trap types decreased throughout the
province (Figure 4). Moth numbers declined in seven locations, remained at the same level in two
collection sites and increased twofold at one site. The pheromone location in Sandilands Provincial
Forest was the only site to show an increase in moth captures. The provincial average was 7 moths
per Pherocon trap and 5 moths per Multipher trap.
35
Branch assessment for shoot defoliation and egg masses were completed. No defoliation and
no egg masses were recorded. Pollen cone bud levels for 2008 are predicted to be 34% on the
branch tips.
Figure 4: Annual average capture of male jack pine budworm moths in two trap types
Average moth capture per trap
35
30
25
20
15
10
5
0
1985
1987
1989
1991
1993
1995
Pherocon 1C
1997
1999
2001
2003
2005
2007
Multipher
The Sandilands Provincial Forest was designated as a demonstration site for the Jack Pine
Budworm Decision Support System in 1991. Fourteen pheromone locations were established and
situated in immature, dense jack pine stands with three Pherocon 1C traps per site. An additional 10
sites were established in 1993 in mature/overmature, open-growing jack pine stands to compare jack
pine budworm population levels between the two stand types (Figure 5). Until 2001, moth captures
in the mature open stands were slightly higher than the immature dense stands. After that, moth
capture levels have been almost equal between stand types as the population increased. The number
of moths caught per Pherocon 1C trap increased in 2007. No defoliation and no egg masses were
found during the branch assessment. There has been little difference in pollen cone bud levels
between the immature/dense and mature/open jack pine stands.
36
Figure 5: Annual average capture of male jack pine budworm moths in two stand types
Average moth capture per trap
70
60
50
40
30
20
10
0
1990
1992
1994
1996
1998
Immature Dense
2000
2002
2004
2006
Mature Open
Bronze Leaf Disease of Poplar
In September 2002, extensive browning was observed throughout the crowns of tower poplar
in the Carman area. This condition has been identified as bronze leaf disease of poplar caused by
Apioplagiostoma populi. This disease causes branch death and eventually tree mortality in tower poplar
and Swedish aspen. Over the last few years this disease has spread significantly, and in 2007 it
continued to infect many shelterbelt plantings of tower poplar throughout southern Manitoba.
Armillaria Root Rot
Armillaria root disease causes premature tree mortality and significant timber volume losses in
upland black spruce sites in the mid boreal upland forests of western Manitoba. In September 2007,
a survey was done to develop a tree mortality profile for this forest type in order to determine the
pathological rotation age for upland black spruce. Sample transects (5 metres by 100 metres) were
placed in root disease infection centres in the Clearwater Creek operating area in Duck Mountain
Provincial Forest. Increment core samples were taken from living black spruce trees along transect
lines. On dead standing and fallen black spruce trees along the transect line, cross sectional disks
(cookies) were cut from the base of the tree and 1.3 m above ground and the cause of death was
determined. The cores from the living trees are being analyzed to build a chronology against which
the cookies from dead trees can be matched. The tree ring analysis is being done by the University
of Winnipeg. This procedure determines when the trees died, thus providing the data to develop a
mortality profile and determine the pathological rotation age for black spruce on upland sites. This
37
information will be used to establish an optimal rotation age prior to the onset of extensive mortality
so stands can be harvested prior to significant volume loss occurring.
Eastern Larch Beetle
Outbreaks of the eastern larch beetle occurred throughout the boreal plain forests of
Manitoba. Extensive tree mortality has occurred in many tamarack stands. Although the eastern
larch beetle often attacks trees that are under stress, many of the infested stands are relatively
healthy. It is suspected successive mild winters, resulting in increased over winter beetle survival, and
stressed trees from excessive rainfall during the growing seasons of 2000 to 2002, have contributed
to the outbreak. An outbreak of the current magnitude has not been previously reported in
Manitoba. Harvesting has been occurring within larch beetle infested stands in the Eastern Region.
The intended product is rough lumber for use at the steel mill in Selkirk, Manitoba. To date,
approximately half of the beetle killed material has been unsuitable for lumber and has been
processed into fuel wood.
An aerial survey to map the eastern larch beetle infestation and a ground survey to assess
volume loss were carried out in south eastern Manitoba in August and September 2007. The infested
area in tamarack dominated stands was 18% and the volume loss was 4%. In black spruce dominant
stands the area infested was 12% and the volume loss was 3%. The spread of the infestation is
expected to continue.
Gypsy Moth
Mass trapping of Gypsy moth adult males was conducted, in conjunction with the Canadian
Food Inspection Agency, in the LaSalle area of southern Manitoba. Six of the 32 traps captured
moths, ranging from one to six moths per trap. In October, an egg mass survey was carried out in
the areas where moths were captured. Five egg masses (four current years and one old) were found
on the property where six moths had been trapped.
Large Aspen Tortrix
Severe defoliation of trembling aspen by large aspen tortrix occurred intermittently throughout
much of the Interlake and south eastern Manitoba.
38
Black Knot of Cherry
Black knot of cherry has become widespread and is causing severe damage to Shubert
chokecherry in southern Manitoba. Shubert chokecherry has been planted extensively as an
ornamental in many Manitoba communities. Nursery stock, grown in close proximity to heavily
infested native chokecherry has often become infected prior to transplanting.
Yellowheaded Spruce Sawfly
The yellowheaded spruce sawfly infestation continued in northwest Manitoba, but was not as
severe as in 2006. Most damage occurred in young black and white spruce plantations and tree
improvement orchards. Intermittent defoliation also occurred in young spruce plantations in
southeast Manitoba.
Needle Diseases
A needle blight caused by Rhizosphaera pini was common on balsam fir in the Victoria Beach
area of south east Manitoba. Needle diseases caused by Rhizosphaera kalkhoffii and Stigmina lautii were
common on ornamental and shelter belt Colorado and white spruce in southern Manitoba.
Piercing/Sucking Damage on Spruce
As has been the case for a number of years, piercing/sucking damage by spruce bud scale and
spruce spider mites was prevalent in 2007 on ornamental and shelterbelt Colorado and white spruce.
39
SESSION 2: NATIONAL FOREST PEST STRATEGY
UPDATE
SÉANCE 2 : LE POINT SUR LA STRATÉGIE
NATIONALE DE LUTTE CONTRE LES RAVAGEURS
FORESTIERS
An Update of the National Forest Pest Strategy
Sue Farlinger
Natural Resources Canada, Canadian Forest Service
43
Assessing the Risk of Mountain Pine Beetle in the Boreal
Forest
Allan Carroll
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Rd, Victoria, BC V8Z 1M5
44
SESSION 3: IMPACTS OF FIRE OR OUTBREAK ON
WOOD QUALITY
Chair: TBA
SÉANCE 3 : LES IMPACTS DU FEU OU D’UNE
ÉPIDÉMIE SUR LA QUALITÉ DU BOIS
Président : À confirmer
Impact of the White Pine Weevil on the Productivity and
Wood Quality of Norway spruce
G. Daoust1, M.-J. Mottet2, and S. Y. Zhang3
1
2
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière
2700 Einstein, Québec, QC G1P 3W8
3
Forintek Canada Corp.
319 Franquet, Québec, QC G1P 4R4
Abstract
A study was conducted to assess the impact of major deformities caused by the white pine
weevil (Pissodes strobi [Peck]) in merchantable stems of Norway spruce (Picea abies [L.] Karst.) on
lumber productivity and quality. This was done by evaluating logs obtained from second commercial
thinning operations in three plantations affected by the weevil. Deformed stems were found to be
6% shorter than non-deformed stems, and their merchantable volume, number of board feet and
monetary value were 15%, 21% and 24% lower, respectively. However, these shortfalls almost
disappear, with a loss of less than 3%, when total merchantable volume is taken into account
because deformed stems only represent a fraction of all the stems in a given plantation and make up
a small proportion of the total volume harvested over a time horizon corresponding to a complete
rotation. Deformities caused by the weevil do not affect lumber properties (stiffness, bending
strength, wood density).
This study was published in two parts in The Forestry Chronicle:
Daoust, G. and M.-J. Mottet. 2006. Impact of the white pine weevil (Pissodes strobi Peck) on Norway
spruce plantations (Picea abies [L.] Karst.) Part 1: Productivity and lumber quality. For. Chron. 82(5):
745-756.
Mottet, M.-J., G. Daoust and S.Y. Zhang. 2006. Impact of the white pine weevil (Pissodes strobi Peck)
on Norway spruce (Picea abies [L.] Karst.) plantations. Part 2: Lumber properties. For. Chron. 82(6):
834-843.
47
Résumé
Impact du charançon du pin blanc sur la productivité et la qualité du bois de l’épinette de
Norvège
L’impact des déformations majeures causées par le charançon du pin blanc (Pissodes strobi
(Peck)) aux tiges commerciales d’épinette de Norvège (Picea abies (L.) Karst.) sur la productivité et la
qualité des sciages a été évalué à partir de billes récoltées lors de secondes éclaircies commerciales
dans trois plantations affectées par l’insecte. Comparativement aux tiges non déformées, les résultats
ont démontré que les tiges déformées étaient moins hautes de 6 % et avaient un volume marchand,
un nombre de pmp et une valeur monétaire des sciages inférieurs de 15 %, 21 % et 24 %,
respectivement. Toutefois, ces pertes deviennent presque négligeables, étant inférieures à 3 %,
lorsqu’on se fie à la production en volume marchand total de la plantation puisque les tiges
déformées représentent une partie seulement de l’ensemble des tiges présentes ainsi qu’une faible
proportion du volume total récolté sur un horizon correspondant à une rotation complète. Les
déformations n’affectent pas les propriétés du bois (rigidité, résistance en flexion, densité du bois).
Cette étude a été publiée en deux parties dans The Forestry Chronicle :
Daoust, G. et M.-J. Mottet. 2006. Impact du charançon du pin blanc (Pissodes strobi Peck) dans les
plantations d’épinettes de Norvège (Picea abies [L.] Karst.) Partie 1 : Productivité et qualité des
sciages. For. Chron. 82(4): 538-549.
Mottet, M.-J., G. Daoust et S.Y. Zhang. 2006. Impact du charançon du pin blanc (Pissodes strobi Peck)
dans les plantations d’épinette de Norvège (Picea abies [L.] Karst.) Partie 2 : Propriétés du bois des
sciages. For. Chron. 82(5): 712-722.
48
Short-Term Colonization of Fire-killed Trees by Coleoptera
Yan Boulanger1, 2, Luc Sirois1, 2, and Christian Hébert3
1
Centre d’études nordiques
300 allée des Ursulines, Rimouski, QC G5L 3A1
2
Université du Québec à Rimouski
300 allée des Ursulines, Rimouski, QC, G5L 3A1
3
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
Abstract
Our research focuses on xylophagous Coleoptera (mostly Cerambycidae, Scolytidae and
Buprestidae) colonization patterns the same year as the fire in the northern boreal forest of Quebec.
Beetles were collected using 66 trunk-window traps in a 76 000 ha area that burned between May
29th and June 9th, 2005 in the vicinity of the Eastmain River, James Bay area. At least 44 species of
xylophagous species colonized fire-killed black spruce stands the same year as the fire. Although
some species were already common 2-26 days after fire, xylophagous species were most common
26-61 days after fire. Cerambycidae were the most common xylophagous in sampling whereas
Buprestidae and Scolytidae were much less abundant. Common longhorned beetle species were
much more frequent in severely burned stands. Distance from potential source-populations did not
have a negative effect on xylophagous colonization considering their ability to fly over long
distances. Spatially structured colonization patterns were mostly observed at fine (.25-1km) and
medium (1-3km) scales. Those patterns mostly correspond to spatially structured environment.
Moreover, xylophagous species seem to be able to locate a specific environment within a 10-250 m
range. Consequently, xylophagous species have a detailed perception of the environment to be
colonized. These results are of crucial importance regarding sustainable post-fire salvage logging
operations in the boreal forest.
49
Résumé
Colonisation à court terme des arbres tués par le feu par les coléoptères
Dans le cadre de cette recherche, nous avons étudié dans le nord de la forêt boréale du
Québec la colonisation des arbres brûlés par les coléoptères xylophages (principalement les
cérambycides, les scolytides et les buprestides) au cours de l’année du feu. Les coléoptères ont été
capturés à l’aide de 66 pièges à impact troncaux. La zone d’étude, territoire d’une superficie de 76
000 ha balayé par un incendie entre le 29 mai et le 9 juin 2005, se trouve à proximité de la rivière
Eastmain, dans la région de la baie James. Au moins 44 espèces xylophages ont colonisé les pessières
noires brûlées au cours de l’année du feu. Certaines espèces étaient déjà communes 2 à 26 jours
suivant le feu, mais la plupart étaient plus abondantes 26 à 61 jours après le feu. Les cérambycides
ont été trouvés en grand nombre dans les échantillons, tandis que les buprestides et les scolytides
étaient moins abondants. Les espèces de cérambycides communes étaient beaucoup plus abondantes
dans les peuplements gravement brûlés. La distance entre les peuplements brûlés et les populations
sources potentielles n’a pas eu d’impact négatif sur les taux de colonisation, car les insectes
xylophages peuvent voler sur de grandes distances. Des tendances spatialement structurées de
colonisation ont été observées principalement aux échelles fine (0,25 à 1 km) et moyenne (1 à 3 km).
Ces tendances sont déterminées par la structure spatiale de l’environnement à coloniser. Les espèces
xylophages semblent en outre capables de repérer un type d’environnement spécifique à une
distance de 10 à 250 m. Elles ont donc une perception fine de l’environnement à coloniser. Ces
résultats sont d’une importance capitale pour la conduite des opérations durables de récupération du
bois brûlé dans la forêt boréale.
Short-Term Colonization of Fire-killed Trees by Coleoptera
Introduction
R
ecurrent wildfires constitute the most important natural disturbance in Canada’s northern
forests (Rowe and Scotter 1973). Fire contributes both to forest landscape and floristic
diversities (Johnson 1992, Payette 1992) and influences the carbon fluxes in these ecosystems
(Kasischke 2000). Stand-replacing wildfires transform most trees into woody detritus all at once
50
(Tinker and Knight 2000, Boulanger and Sirois 2006). This dead wood represents a critical habitat
for a tremendous diversity of heterotrophic taxa and particularly insects (Siitonen 2001). These
species are “saproxylic” as they ‘depend for at least part of their life cycle upon dead or dying wood
of moribund or dead trees, or upon wood-inhabiting fungi, or upon the presence of other saproxylic
species’ (Speight 1989).
Xylophagous beetles are among the most diverse and abundant taxa among colonizing
saproxylic insects after fire (Wikars 2002, Saint-Germain et al. 2004b, Boulanger and Sirois 2007). In
fact, even if fire destroys most of the original insect communities in the ecosystem (McCullough et
al. 1998), several fire-adapted species have developped strategies to take advantage of the newly
created, competition-free environment (Evans 1966, Frost 1984, Wikars 1994, Schütz et al. 1999),
including fire-killed trees (Muona and Rutanen 1994, Wikars 1994, 1997, Dajoz 1998). The
colonization occurs very shortly after tree death as most initial colonizer species arrive the very year
of fire (Boulanger and Sirois 2007).
One should expect that the colonization pattern of the burned substrate is caracterized by a
multi-scale level selection process. In fact, the colonization of burned patches by xylophagous
beetles should be influenced by both “source-habitat” proximity, quality and abundance and the
quality of the “sink” environment. Fire creates a spatially defined colonization “island” where
colonizing elements converge from external sources (Holliday 1991, Saint-Germain et al. 2004c,
Hyvärinen et al. 2005) as most species in the pre-fire stands are temporarily excluded by fire (Wikars
1997, Gandhi et al. 2001, Wikars and Schimmel 2001). Colonization sources may include unburned
forests or other recently burned stands. Since the suitable and newly-created habitat is spatially
unpredictable and temporally ephemerous, many species have successfully evolved remarkable
dispersion and habitat detection capabilities. Several xylophagous species are known to detect smoke
(Frost 1984), infrared (Evans 1966, Schmitz et al. 2002) and/or volatile organic compounds
originating from dying trees or other colonizing beetles (Lindgren and Miller 2002, Erbilgin and
Raffa 2001) sometimes as far as several tens of kilometers from the burned stand. Quality and
amount of colonization sources at the landscape level is therefore susceptible to influence the
colonization of a given stand inside the burned forest.
At the stand and substrate levels, several factors might influence habitat (“sink”) use. Stands
with great amount of high-quality substrate may have an attractive effect on xylophagous beetle
communities. Substrate preferences may vary following e.g. fire severity, woody debris diameter,
51
moisture content, nutrient quality and insolation (Richmond and Lejeune 1945, Cerezke 1977, SaintGermain et al. 2004a, 2004b). Severely or lightly burned trees are avoided or very lightly colonized
by several xylophagous beetles while large diameter trees are favoured by many initial colonizing
species. These characteristics partly influence the moisture content and the nutrient quality of the
subcortical tissues which may have a direct impact on larval survival rate and the behavior of egglaying female (Gardiner 1957, Saint-Germain et al. 2004a, 2004b). As colonizing species may exhibit
very different substrate preferences, xylophagous beetle communities should be disparitly attracted
according to stand and burned substrat caracteristics.
When colonizing burnt trees, xylophagous species affect the wood quality by i) tunneling in
sapwood and/or heartwood and ii) by vectorizing fungal propagules. The comminution of the wood
matrix by xylophagous beetles can be limited to the subcortical area (cambium, phloem) but some
species may bore deeply in xylem. Among these species, Monochamus scutellatus is the most damaging
species affecting burnt conifer wood in northern North America (Richmond and Lejeune 1945,
Cerezke 1977, Saint-Germain et al. 2004b). In addition to the comminution of wood, larval galleries
could promote saprophytic fungi growth and colonization by creating favorable microenvironmental
conditions (Edmond and Eglitis 1989). Moreover several species (Scolytinae, Cerambycidae,
Buprestidae) are known as fungi vector which can attack and deteriorate dead wood (Garcia and
Morrell 2003, Jacobs et al. 2003, Six and Bentz 2003, Kim et al. 2005).
For these reasons insect colonization in burnt wood represents a net loss of woody biomass.
In the Quebec province, according to the Forest Act, companies owing a Contrat d’aménagement et
d’approvisionnement forestier (CAAF) must suit a special management plan produced by the government
to proceed to salvage logging of disturbed area including burnt forests (Gouvernement du Québec 2002).
In 2005, 400 000 ha of burnt forest representing 6 M cubic meter of wood were salvaged in Québec
(Dumont 2007). Considering the fast colonization of saproxylic beetles after fire, the time period to
complete salvage logging operations is short, i.e. usually about 12 months. Up-to-date, salvage
logging of burnt wood has been conducted without knowledge of the colonization processes of
xylophagous which may represent high costs for companies. Moreover, according to the Commission
d’étude sur la gestion des forêts publiques du Québec (2004), “sustainable management must be implemented
in the Québec’s public forests including burnt forests (Recommendation 4.1)”. Therefore, data on
the colonization pattern of xylophagous beetles are of crucial importance to produce guidelines for
efficient sustainable salvage logging operations after fire in the northern boreal forest.
52
Studies addressing the colonization pattern of xylophagous beetles after fire are scarce. These
colonization patterns are frequently interpreted from abundance and biodiversity data collected only
one year after fire (Saint-Germain et al. 2004a, 2004c) while most initial species colonize the burned
substrate the very year of fire (Wikars 2002, Boulanger and Sirois 2007). The rare measures of short
term response of saproxylic beetle to fire have been conducted in prescribed burning experiments
that rarely cover more than few hectares and do not allow landscape scale interpretations of
colonization patterns.
The objectives of this study are to characterize both the diversity and the colonization pattern
of postfire xylophagous beetles in the northern boreal forest of Québec the very year of fire. A
multiscale approach is used to integrate the landscape and stand levels.
Methods
Study sites were located within a 76 000 ha (52°00 N, 78°00 W) area that burned between May
29th and June 9th 2005. This fire patch is located in the northern boreal forest of Québec, Canada, in
the vicinity of the James Bay area. Fire was ignited by lightning and burned mostly mature (80-250
years old) and overmature (>250 years old) black spruce stands. Topography, forest density,
drainage and fire severity are highly variable throughout the burned area.
Sixty-six plots were established following a systematic procedure and were disposed 400 to 500
m apart. Each site was caracterized for forest composition, fire severity on stems (>2cm of
diameter), stem density, surface area, drainage, substrate type, prefire volume of logs and surface
area of snags. The sampling of colonizing beetles was carried out using trunk-window traps modified
from Kaila (1993) which consisted of a 10 x 30 cm LexanTM translucent plate, attached
perpendicularly with screws and braces to the stem surface of a burned black spruce, 1.30m above
ground on the trunk. A funnel was placed under the plate to collect the falling specimens in a jar
filled with ethylene glycol as a killing and preservative agent. To maximize the catches of early
colonizing beetles, traps were fixed two days after fire. One trap per plot was used. Traps were
operated from June 5th to August 3rd 2005 and were emptied twice during this period.
The influence of eight habitat and three source factors on the whole xylophagous communities
was assessed by partial redundance discriminant analysis (RDA). In order to test the effet of either
sink or source influence on specific species, 124 regression models including habitat and/or source
predictors were tested on the four most common xylophagous species in sampling, i.e. Acmaeops
53
proteus, Arhopalus foveicollis, Hylobius congener and Monochamus scutellatus. Best models were chosen
following the Akaike Information Criterion (AIC; Akaike 1973) while significant effect of predictors
was assessed by multimodel averaging (Mazerolle 2006).
To know which spatial scales are important in determining the colonization pattern of
xylophagous species, abundance of the most common species were regressed against 58 artificial
spatial variables produced by Principal Coordinates of Neighboring Matrices analysis (PCNM;
Borcard et al. 2004). Pure environmental and spatial components of the colonization pattern were
extracted by variation partitioning (Borcard et al. 1992; Legendre and Legendre 1998).
Results
A total of 41 species of xylophagous beetle were recorded the same year as the fire.
Cerambycidae were the most abundant taxa collected followed by Scolytinae and Buprestinae. There
was about the same number of xylophagous species 2-26 days after fire (28 spp.) than 27-61 days (31
spp.) after fire. Most common species were significantly more abundant 27-61 days after fire except
for Hylobius congener and Dryocoetes autographus which reflects the hability of those species to arrive very
early after the disturbance.
As reflected by partial RDA, fire severity, distance to a 2002 fire patch, the diameter of burned
trees, the amount of severely burned forest within 250m and the distance to the nearest > 10ha
unburned forest are the most important predictors that determine xylophagous communities the
same year as the fire. It appears that most common species are attracted to large diameter burned
trees and severely burned forests at the stand level. Surprisingly, distance to sources, i.e. recently
burned forest, forest matrix and >10ha unburned patches, did not affected the colonization by
xylophagous species. In fact, species are more abundant as distance to sources increases.
The colonization pattern of common xylophagous species is spatially autocorrelated.
According to PCNM analyses, spatial autocorrelation occurs mostly at medium (1-3 km) and small
scales (0.25-1 km) whereas approximately 19 % of the species distribution in the fire patch is not
spatially autocorrelated (pure environmental variation). Moreover, most of the spatially
autocorrelated colonization is due to spatially structured environment. Considering these results, it
appears that xylophagous species have a fine perception of the burnt habitat.
54
Discussion and conclusions
This study is the first to assess the postfire colonization pattern and the diversity of
xylophagous beetles the same year as the fire at the landscape level. Xylophagous diversity is very
high very shortly after the fire. Most xylophagous species are able to arrive very early after the
disturbance whereas distance to source-populations does not seem to be detrimental to the postfire
colonization process. Moreover, the perception of the burnt environment is effective at very fine
scales. Theses facts confirm the habilities of most species to fly over long distance and to detect fire
signals and habitat suitability very efficiently (Evans 1966, Frost 1984, Schmitz et al. 2002).
Fire severity seems to be one of the most important factors driving the colonization of
xylophagous species. However, the attraction to severely burned stand is quite surprising. Several
authors (Richmond and Lejeune 1945, Cerezke 1977, Saint-Germain et al. 2004a) have noticed that
larval colonization of xylophagous species is more important in lightly or moderetely burned trees.
Burning severity partly influences the moisture content and the nutrient quality of the subcortical
tissues which may have a direct impact on larval survival rate (Gardiner 1957, Saint-Germain et al.
2004a, 2004b). Higher abundance of adults in severely burned areas may suggest an initial attraction
to sites where fire by-products (volatile organic compounds from dead or dying trees, smoke,
infrared) are more important shortly after the disturbance. In addition, adult abundance in burned
site may not reflect egg-laying success by female and larval surviving rates. These informations are to
be considered in order to conduct efficient salvage logging operations after fire in northern Québec.
Acknowledgements
We would like to thank Dave Johnson, François Demontigny, Valérie Lévesque, Vincent
Mandon, Georges Pelletier, Yves Dubuc, Jan Klimaszewski, Carole Germain and Heikki Utunen for
field work and laboratory assistance. Daniel Borcard and Martin-Hugues Saint-Laurent were very
helpful for multivariate and PCNM analyses. This research was funded by the Fondation de la Faune du
Québec, the Fonds de Recherche sur la Nature et les Technologies du Québec, Canadian Forest Service the
Northern Scientific Training Program and the Centre d’Études Nordiques.
Literature cited
Boulanger, Y. and L. Sirois 2006. Postfire dynamics of coarse woody debris in northern boreal
forest of Quebec, Can. J. For. Res. 36: 1770-1780.
55
Boulanger, Y. and L. Sirois. 2007. Postfire succession of saproxylic arthropods with emphasis on
Coleoptera in the north boreal forest of Québec. Env. Entomol. 36 :128-141.
Cerezke, H.F. 1977. Characteristics of damage in tree-length white spruce logs caused by the white
spotted sawyer, Monochamus scutellatus. Can. J. For. Res 7: 232-240.
Dajoz, R. 1998. Le feu et son influence sur les insectes forestiers. Mise au point bibliographique et
présentation de trois cas observés dans l'ouest des États-Unis. Bulletin de la Société Entomologique
de France 103: 299-318.
Dumont, M.-C. 2007. Les plans spéciaux d’aménagement. 9th annual workshop of the Sustainable
Forest Management Research Chair UQAT-UQAM. May 1st 2007. Matagami, Québec.
Edmonds, R. L. and A. Eglitis. 1989. The role of the Douglas-fir beetle and wood borers in the
decomposition of and nutrient release from Douglas-fir logs. Can. J. For. Res 19: 853-859.
Erbilgin N. and Raffa K.F. 2001. Modulation of predator attraction to pheromones of two prey
species by stereochemistry of plant volatiles. Oecologia. 127: 444 - 453.
Evans, W. G. 1966. Reception of infrared radiation from forest fires by Melanophila acuminata De
Geer (Buprestidae, Coleoptera). Ecology 47: 1061-1065.
Frost, P. G. H. 1984. The responses and survival of organisms in fire-prone environments, pp.273309. In P. V. Booysen and N. M. Tainton (eds). Ecological effects of fire in South African
ecosystems. Ecological Studies 48, Springer-Verlag, Berlin.
Gandhi, K.J.K.; Spence, J.R.; Langor, D.W.; Morgantini, L.E. 2001. Fire residuals as habitat
reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biol. Cons. 102:131-141.
Garcia, C. M. and J. J. Morrell. 1999. Fungal associates of Buprestis aurulenta in western Oregon.
Can. J. For. Res. 29:517-520.
Gardiner, L. M. 1957. Deterioration of fire-killed Pine in Ontario and the causal wood-boring
beetles. Can. Entomol. 89: 241-263.
(Gouvernement du Québec). 2002. Forest Act. R.S.Q., Chapter F-4.1. Éditeur officiel du Québec,
Québec, Québec.
Harmon, M.E., Franklin, J.F., Swanson, F.J. ,Sollins, P., Gregory, S.V., Lattin, J.D.,
Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack Jr, K.
and Cummins, K.W. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol.
Res. 15: 133-302.
Hyvärinen, E. Kouki, J., Martikainen, P. and Lappalainen, H. .2005. Short-term effects of
controlled burning and green-tree retention on beetle (Coleoptera) assemblages in managed boreal
forests. For. Ecol. and Manag. 212:315–332.
56
Jacobs, K., Seifert, K.A., Harrison, K.J., Kirisits, T. 2003. Identity and phylogenetic relationships
of ophiostomatoid champignon associated with invasive and native Tetropium species (Coleoptera:
Cerambycidae) in Atlantic Canada. Can. J. Bot. 81: 316-329.
Johnson, E. A. 1992. Fire and vegetation dynamics – studies from the North American boreal
forest. Cambridge University Press, Cambridge, UK.
Kaila, L. 1993. A new method for collecting quantitative samples of insects associated with decaying
wood or wood champignon. Entomol. Fenn. 4: 21-23.
Kasischke, E. S. 2000. Boreal ecosystems in the global carbon cycle, pp.19-29. In E. S. Kasischke
and B. J. Stocks (eds). Fire, climate change, and carbon cycling in the boreal forest, Ecological
Studies Vol. 138, New York, Springer-Verlag.
Kim, J.-J., Allen, E.A., Humble, L. M. and Breuil, C. 2005. Ophiostomatoid and
basidiomycetous champignon associated with green, red, and grey lodgepole pines after mountain
pine beetle (Dendroctonus ponderosae) infestation. Can. J. For. Res.35:274-284
Lindgren, B.S., and Miller, D.R. 2002. Effect of verbenone on five species of bark beetles
(Coleoptera: Scolytidae) in lodgepole pine forests. Env. Entomol. 31: 759-765.
Martikainen, P., Kouki. J. & Heikkala, O. 2006. The effects of green tree retention and
subsequent prescribed burning on ground beetles (Coleoptera: Carabidae) in boreal pine-dominated
forests. - Ecography, in press.
McCullough, D. G., R. A. Werner, and D. Neumann. 1998. Fire and insects in northern and
boreal ecosystems of North America. Ann. Rev. of Entomol. 43: 107-127.
Muona, J. and I. Rutanen. 1994. The short-term impact of fire on the beetle fauna in boreal
coniferous forest. Ann. Zool. Fenn. 31: 109-121.
Payette, S. 1992. Fire as a controlling process in the North American boreal forest, pp. 144-169. In
H. H.Shugart, R. Leemans and G. B. Bonan (eds). A systems analysis of the boreal forest,
Cambridge University Press, Cambridge, UK.
Richmond, H. A. and R. R. Lejeune. 1945. The deterioration of fire-killed white spruce by woodboring insects in northern Saskatchewan. For. Chron. 21: 168-192.
Rowe, J. S. and G. W. Scotter. 1973. Fire in the boreal forest. Quat. Res. 3: 444-464.
Saint-Germain, M., P. Drapeau and C. Hébert. 2004a. Xylophagous insect species composition
and patterns of substratum use on fire-killed spruce in central Québec. Can. J. For. Res. 34: 677-685.
Saint-Germain, M., P. Drapeau and C. Hébert. 2004b. Habitat use of pyrophilous coleoptera in
recently burned black spruce forest of of Central Québec. Biol. Cons. 118: 583-592.
57
Saint-Germain, M., P. Drapeau and C. Hébert. 2004c. Landscape-scale habitat selection patterns
of Monochamus scutellatus (Say) (Coleoptera: Cerambycidae) in a recently burned black spruce
forest. Env. Entomol. 33: 1703-1710.
Schmitz, H., Schmitz, A., Trenner, S. and Bleckmann, H. 2002. A new type of insect infrared
organ of low thermal mass. Naturwissenschaften 89: 226-229
Schütz, S., B. Weissbecker, H. E. Hummel, K.-H. Apel, H. Schmitz and H. Bleckmann.
1999. Insect antenna as a smoke detector. Nature 398: 298-299.
Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms:
Fennoscandian boreal forests as an example. Ecol. Bull. 49: 11-42.
Six, D.L. and Bentz, B.J. 2003. Champignon associated with the North American spruce beetle,
Dendroctonus rufipennis. Can. J. For. Res. 33: 1815-1820.
Speight, M. 1989. Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg.
from decomposing branch-wood. Ecol. Bull. 25: 193-202.
Tinker, D. B. and D. H. Knight. 2000. Coarse woody debris following fire and logging in
Wyoming lodgepole pine forests. Ecosystems 3: 472-483.
Wikars, L.-O. and Schimmel, J. 2001. Immediate effects of fire-severity on soil invertebrates in
cut and uncut pine forests. For. Ecol. Manag. 141: 189-200.
Wikars, L.-O. 1994. Effects of fire and ecology of fire-adapted insects. Introductory research essay
no. 12. Department of Zoology, Uppsala University, Sweden.
Wikars, L.-O. 1997. Effects of forest fire and ecology of fire-adapted insects. Department of
Zoology, Uppsala University, Sweden
Wikars, L.-O. 2002. Dependance on fire in wood-living insects: An experiment with burned and
unburned spruce and birch logs. J. Insect Cons. 6: 1-12.
Wikars, L.-O., E. Sahlin ad T. Ranius. 2005. A comparison of three methods to estimate species
richness of saproxylic beetles (Coleoptera) in logs and high stumps of Norway spruce. Can.
Entomol. 137: 304-324.
Zhong, H. and T. D. Schowalter. 1989. Conifer bole utilization by wood-boring beetles in
western Oregon. Can. J. For. Res. 19: 943-947.
58
Can We Forecast Woodborer Damage in Fire-killed Trees?
C. Hébert1, J. Ibarzabal2, S. Bélanger3, J. Boucher2, R. Berthiaume3, E. Bauce3, and T. Zhang4
1
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
2
3
Département des sciences fondamentales, Université du Québec à Chicoutimi
555, boul. de l’Université, Chicoutimi, QC G7H 2B1
Faculté des sciences forestières, Département des sciences du bois et de la forêt
Université Laval, Québec, QC
4
FPInnovations - Division Forintek
319 Franquet, Québec, QC G1P 4R4
Abstract
Within the context of wood fibre rarefaction, salvage harvesting of recently fire-killed trees is a
measure that can contribute to maintaining the wood volumes needed to support the operations of
the Canadian forest industry. However, numerous wood-boring insects attack trees recently killed by
fire and reduce the wood quality of trees that can be salvaged. Moreover, a specific fauna is found in
burned forests. Since 2000, our research has enabled us to establish guidelines for improving salvage
logging of fire-killed trees. However, we also observed significant gaps in our knowledge on woodboring insects attacking these trees. Our ongoing research program includes studies aimed at filling
these gaps and improving forecasting of damage by woodborers after fire. Another ongoing study is
aimed at predicting the entrance time of woodborer larvae into the wood to determine the period of
time available to salvage wood with a minimum of economic losses for the industry. Finally, another
study is aimed at determining the level of salvage harvesting that is compatible with the objective of
maintaining biodiversity. This knowledge will contribute to defining sustainable management plans
of burned forests that would be profitable for the industry without affecting the biodiversity
associated with these habitats.
59
Résumé
Peut-on prédire les dommages des perceurs du bois chez les arbres tués par le feu?
Dans un contexte de rareté de la ressource ligneuse, la récupération des bois récemment brûlés
constitue une mesure pouvant contribuer à maintenir les volumes de bois nécessaires au bon
fonctionnement de l’industrie forestière canadienne. Or, de nombreuses espèces d’insectes perceurs
du bois attaquent les arbres récemment brulés, diminuant ainsi la qualité des bois pouvant être
récupérés après le passage du feu. De plus, une faune particulière est également associée aux forêts
brûlées. Depuis 2000, nos travaux ont permis d’établir des lignes directrices permettant d’orienter la
récupération de ces bois. Nous avons cependant constaté un manque de connaissances important
relativement aux insectes perceurs de bois après feu. Notre programme de recherche actuel inclus
des études visant à combler ce manque de connaissances et à prédire de façon plus précise les
territoires susceptibles d’être les plus sévèrement affectés par les perceurs de bois après feu. Une
étude permettant de prédire la période d’entrée des larves dans le bois a aussi été amorcée afin de
déterminer la période de temps disponible pour récolter le bois avec un minimum de pertes
économiques pour l’industrie. Enfin, des travaux visant à évaluer l’impact du niveau de récupération
des brûlis sur la biodiversité sont également en cours. Ces connaissances contribueront à définir des
plans d’aménagement durables des territoires incendiés qui seront rentables pour l’industrie sans
toutefois affecter la biodiversité associée à ces milieux.
Peut-on prédire les dommages des perceurs du bois chez les arbres
tués par le feu?
L
a forêt boréale est un écosystème modelé par le feu. En fait, les incendies forestiers sont des
événements imprévisibles qui génèrent d’immenses quantités d’arbres morts dans une très
courte période de temps. Le feu n’est pas sélectif et il cause la mort d’arbres dont la croissance était
souvent très bonne. Il réduit ou élimine la compétition entre les organismes et libère un panache de
fumée qui est attractif pour certaines espèces. Ces conditions particulières diffèrent de celles qu’on
observe lorsqu’un arbre meurt par sénescence, ce qui confère un caractère unique à la problématique
60
du bois mort brûlé. En fait, bien que le feu constitue une des principales perturbations naturelles
affectant la forêt boréale, on connaît très mal la dynamique forestière des forêts brûlées.
Par ailleurs, dans un contexte de rareté de la ressource ligneuse, la récupération accrue des bois
récemment brûlés constitue une mesure pouvant contribuer à maintenir les volumes de bois
nécessaires au bon fonctionnement de l’industrie forestière canadienne (Hébert 2006a). Or, de
nombreuses espèces d’insectes perceurs du bois attaquent les arbres récemment brûlés, diminuant
ainsi la qualité des bois pouvant être récupérés après le passage du feu. De plus, une faune
particulière est également associée aux forêts brûlées. Dans les pays scandinaves, où l’efficacité dans
la suppression des feux est telle que seulement 0,01% du territoire est brûlé annuellement
(Granström 2001), on retrouve de nombreuses espèces pyrophiles ou favorisées par les feux, sur la
liste rouge des espèces en danger (Ahnlund et Lindhe 1992; Wikars 1992, 1997 ; Jonsell et al. 1998).
Au début des années 2000, des travaux réalisés dans des forêts d’épinettes noires brûlées en
juin 1999 au Parc des Grands-Jardins au Québec ont montré qu’une entomofaune abondante et
diversifiée était associées aux forêts brûlées, avec deux fois plus d’individus et d’espèces de
coléoptères (St-Germain et al. 2004a). Plusieurs espèces de Cerambycidae profitent de cette
ressource subitement très abondante (arbres morts brûlés), de même que des espèces peu communes
ou rares comme Sphaeriestes virescens (Coleoptera : Salpingidae), dont l’abondance n’a cessé de
diminuer à chaque année après le passage du feu (Hébert 2006a). Des sections troncales mises en
élevage (Figure 1) ont permis de déterminer que les arbres à fort diamètre et légèrement brûlés
étaient plus attaqués par les espèces xylophages, notamment le longicorne noir (St-Germain et al.
2004b), Monochamus scutellatus, l’espèce dont les dégâts préoccupent le plus l’industrie forestière. Ces
premiers travaux ont permis d’établir des lignes directrices permettant d’orienter la récupération des
bois de façon à réduire au minimum les pertes dues aux insectes perceurs tout en préservant la
diversité biologique (Hébert 2006b). Ainsi, au cours de l’année suivant un feu, la récupération des
arbres brûlés devrait d’abord être dirigée vers les peuplements d’arbres de forts diamètres qui ont
légèrement brûlés et qui sont faciles d’accès, c’est-à-dire vers les peuplements les plus rentables mais
aussi les plus vulnérables aux attaques des longicornes. Les peuplements peu accessibles (ex : réseau
routier non développé) et donc coûteux à récupérer, devraient être dédiés à la conservation de la
diversité biologique. Les peuplements d’arbres de forts diamètres mais sévèrement brûlés devraient
être récupérés dans la 2e année puisque ces arbres sont beaucoup moins affectés par les insectes
xylophages (Hébert 2006b).
61
Cependant, certaines connaissances sont nécessaires pour améliorer la précision du modèle
développé, notamment sur le pin gris. Notre programme de recherche actuel vise à combler ce
manque de connaissances afin de prédire plus précisément les territoires susceptibles d’être les plus
sévèrement affectés par les perceurs de bois après le passage du feu. Ainsi, en juin 2006, des sections
troncales de 50 cm de long ont été prélevés à la hauteur du DHP sur cinq arbres de chacun des 72
sites brûlés en juin 2005 au nord-ouest du Lac St-Jean et mises en élevage (Figure 1). Les sites se
répartissaient en fonction des essences (épinette noire et pin gris), de la sévérité du feu (faible,
modéré et sévère) et de quatre classes de DHP (Tableau 1). Les critères ayant servi pour catégoriser
la sévérité du feu sur les arbres sont présentés au Tableau 2. Les résultats préliminaires suggèrent que
la réponse des longicornes diffère sur les deux essences et qu’il existe une interaction entre la sévérité
du feu et le DHP. Ainsi, les épinettes noires de plus de 20 cm de diamètre sévèrement brûlés sont
attaquées par les longicornes alors que le pin gris est épargné.
Par ailleurs, une autre étude visant à prédire la période d’entrée des larves de longicornes dans
le bois a aussi été amorcée afin de déterminer la période de temps disponible pour récolter le bois
avec un minimum de pertes économiques pour l’industrie. Enfin, des travaux visant à évaluer
l’impact du niveau de récupération des brûlis sur la diversité biologique sont également en cours. Les
communautés de coléoptères saproxyliques associées au feu sont échantillonnées à l’aide de pièges à
impact multidirectionnels (Figure 2) dans 25 peuplements résiduels d’épinettes noires et 25
peuplements de pins gris dans des paysages récupérés à différentes intensités. Ces connaissances
contribueront à définir des plans d’aménagement durables des territoires incendiés qui seront
rentables pour l’industrie forestière sans toutefois affecter les communautés animales associée à ces
milieux.
Références
Ahnlund, H. et A. Lindhe. 1992. Endangered wood-living insects in coniferous forests – some
thoughts from studies of forest-fire sites, outcrops and clearcutting in the province of Sörmland,
Sweden. Entomologisk Tidskfirt 113: 13-23.
Granström, A. 2001. Fire management for biodiversity in the European boreal forest. Scandinavian
Journal of Forest Research Supplementum 3: 62-69.
Hébert, C. 2006a. Succession d’insectes après feu en forêt boréale. Arthropodes des forêts
canadiennes: 6-8.
62
Hébert, C. 2006b. Bois brûlés : optimiser la récupération en conservant la biodiversité. Ressources
naturelles Canada, Service canadien des forêts, Centre de foresterie des Laurentides, Ste-Foy,
Québec. L'éclaircie Numéro 26. 2 p.
Jonsell, M., Weslien, J. et B. Ehnström. 1998. Substrate requirements of red-listed saproxylic
invertebrates in Sweden. Biodiversity and Conservation 7: 749-764.
St-Germain, M., Drapeau, P. et C. Hébert. 2004a. Ecological factors affecting habitat use of
pyrophilous coleoptera in recently burned black spruce forest of central Quebec. Biological
Conservation 118: 583-592.
St-Germain, M., Drapeau, P. et C. Hébert. 2004b. Xylophagous insects of fire-killed black spruce in
central Quebec: species composition and substrate use. Canadian Journal of Forest Research 34:
677-685.
Wikars, L.-O. 1992. Forest fires and insects. Entomologisk Tidskfirt 113: 1-11.
Wikars, L.-O. 1997. Pyrophilous insects in orsa Finnark, central Sweden: biology, distribution and
conservation. Entomologisk Tidskfirt 118: 158-169.
Figure 1 : Sections troncales encagées dans l’insectarium extérieur du SCF-CFL.
63
Figure 2 :
Le Dr Christian Hébert du SCF-CFL (à droite sur la photo)
installant un piège à impact en compagnie d’une stagiaire.
Tableau 1 : Nombre de sites d’épinette noire et de pin gris où des sections troncales de 50 cm de long
(n=5) ont été prélevées en fonction de la sévérité du feu et du diamètre à hauteur de poitrine (DHP) au
nord-ouest du Lac St-Jean.
DHP (cm)
Espèce
Sévérité du feu
8 - 12
12 - 16
16 - 20
20 - 24
Léger
3
3
3
3
Épinette
Modéré
3
3
3
3
noire
Sévère
3
3
3
3
Léger
3
3
3
3
Pin gris
Modéré
3
3
3
3
Sévère
3
3
3
3
Tableau 2 : Critères utilisés pour déterminer les classes de sévérité de feu des sites échantillonnés.
Sévérité du feu
Léger
Rougies
Intacts
Absentes
Brûlés mais toujours présents
Sévère
Absentes
Absents
Troncs
Partiellement
carbonisés
Carbonisés mais l’écorce est toujours
présente
Entièrement carbonises;
l’écorce se détache
Racines
Pas exposées
Légèrement exposées
Souvent exposées
Végétation
Généralement
abondante
Présente régulièrement
Rare
Aiguilles
Rameaux
Modéré
64
Economic Impact of Wood Deterioration in Fire-killed Trees
M. Chabot1, L. Morneau1, and Y. Corneau2
1
Ministère des Ressources naturelles et de la Faune du Québec
2700 Einstein, local D.2.370a, Québec, QC G1P 3W8
2
FPInnovations – Forintek
319 Franquet, Québec, QC G1P 4R4
Abstract
Wildfires burned over 380 000 hectares of forests in Quebec in 2005. Large volumes of wood
needed to be salvaged and concerns emerged on wood deterioration issues linked to woodborer
damage and wood desiccation. A study looking at the value of lumber from fire-killed trees over
time was initiated in 2005 to address these concerns. This study should allow us to better assess
wood salvage delays and help us prioritise salvaging targets. Two species (black spruce and jack pine)
in three damage classes (charred, brown needles, alive) were sampled. At the end of the first year
(i.e., year of the burn), value loss was generally less than 5% but increased up to 10 to 15% by the
end of the second year after fire. Data from first two years show how useful it is to characterise fire
damage to optimize salvage of burned wood.
Résumé
Impact économique de la dégradation des bois affectés par les feux
En 2005, les feux de forêts ont affecté plus de 380 000 hectares de forêts au Québec.
L’importance des volumes de bois à récupérer et les préoccupations liées aux dommages causés par
les insectes xylophages et au dessèchement du bois ont fait ressortir le besoin de documenter l’effet
de la dégradation du bois sur la valeur des produits. Une étude sur trois ans a été enclenchée en 2005
à cette fin. Les résultats devraient permettre d’évaluer avec plus de rigueur le temps disponible pour
la récupération et d’établir, dans une certaine mesure, des priorités de récupération. Deux essences
(l’épinette noire et le pin gris) dans trois classes de dommage (calciné, roussi et vivant chauffé) ont
été échantillonnés dans un feu de début d’été. Les pertes de valeur à la fin de la première année
(année du feu) sont en moyenne inférieures à 5%. Deux ans après feu, elles augmentent jusqu’à 10 à
15%. Les données des deux premières années de l’étude démontrent l’utilité de caractériser les
65
dommages du feu dans les superficies brûlées afin de réaliser une récupération optimale des bois
affectés par le feu.
66
Impact of Woodborer Damage vs. Checking on Fire-killed
White Spruce in Northeastern Alberta, 2003-2004
S. K. Ranasinghe and H. Ono
Alberta Sustainable Resource Development, Forestry Division
Forest Management Branch, Forest Health Section
8th Floor, 9920 - 108 St., Edmonton, AB T5K 2M4
Abstract
The impact of woodborer damage was compared with that of checking following a massive
wildfire that burnt mature white spruce stands in northeast Alberta. Three 1-ha blocks each
representing light, moderate and severe fire intensity were selected for this study. Each block had
four plots. Four sample trees were chosen at random from each plot. The logs from these sample
trees were processed individually according to standard commercial practice. Incidence of checking,
woodborer damage, final grade and the impact of damage on final grade were recorded for each
piece of lumber generated from these logs.
Incidence of woodborer damage was higher on wood generated from logs in the first year post
burn compared to the second year. Incidence of checking was higher in the second year post burn
logs compared to those of the first year post burn. When graded according to the Standard Grading
Rules for Canadian Lumber, woodborer damage did not affect the final grade of dimension
structural lumber thicker than 2” (5 cm). In the wood generated from logs in the first year post burn,
about 5% of the other structural lumber and boards were downgraded due to borer damage. In the
second year post burn, borer damage had no impact on the final grades of resulting lumber.
Checking downgraded significantly more fire-killed structural lumber and boards than woodborer
did. Checking damage was significantly higher in severely burned wood compared to either light or
moderately burned wood.
67
Résumé
Comparaison de l’impact des dommages infligés par les insectes perceurs du bois et des
gerçures sur le classement du bois tiré d’épinettes blanches tuées par le feu dans le nord-est
de l’Alberta en 2003-2004
Nous avons comparé l’impact des dommages infligés par les insectes perceurs du bois à celui
des gerçures à la suite d’un important feu de forêt qui a dévasté des pessières blanches matures dans
le nord-est de l’Alberta. Trois blocs de 1 ha représentatifs de conditions de feu d’intensité légère,
modérée et forte ont été sélectionnés pour l’étude. Chaque bloc contenait quatre parcelles. Quatre
arbres-échantillons ont été choisis au hasard dans chaque parcelle. Les grumes obtenues de ces
arbres-échantillons ont été transformées individuellement selon le procédé commercial courant. Le
nombre de gerçures et de dommages causés par les insectes perceurs du bois et le classement final
du bois ainsi que l’incidence des dommages sur le classement final du bois ont été notés pour chaque
pièce de bois d’œuvre obtenu de ces grumes.
Les dommages causés par les insectes perceurs du bois étaient plus nombreux dans le bois
obtenu de grumes récoltées au cours de la première année suivant le feu que dans celui obtenu de
grumes récoltées au cours de la deuxième année. Les gerçures étaient par contre plus nombreuses
dans les grumes récoltées deux ans après le feu que dans celles récoltées au cours de la première
année suivant le feu. Lors du classement du bois selon les Règles de classification pour le bois
d’œuvre canadien, les dommages infligés par les insectes perceurs du bois n’ont eu aucune incidence
sur le classement final du bois de charpente de plus de deux pouces d’épaisseur. Dans le cas du bois
obtenu de grumes récoltées au cours de la première année suivant le feu, environ 5 % des autres
pièces de bois de charpente et planches ont été déclassées parce qu’elles présentaient des dommages
causés par des insectes perceurs du bois. Durant la deuxième année suivant le feu, les dommages
infligés par les insectes perceurs du bois n’ont eu aucune incidence sur la classement final du bois
d’œuvre. Les gerçures ont entraîné le déclassement d’un volume significativement plus élevé de bois
d’œuvre et de planches provenant d’arbres brûlés que les insectes perceurs du bois. Les dommages
dus aux gerçures étaient significativement plus graves dans le bois provenant de parcelles gravement
brûlées que dans le bois issu de parcelles touchées par des feux d’intensité modérée ou légère.
68
Wood Decay and Degradation in Standing Lodgepole Pine
(Pinus contorta var. latifolia Engelm.) Killed by Mountain
Pine Beetle (Dendroctonus ponderosa Hopkins: Coleoptera)
K.J. Lewis, R.D. Thompson, and I. Hartley
University of Northern British Columbia
3333 University Way, Prince George, BC V2N 4Z9
Abstract
Despite the history of past outbreaks of mountain pine beetle (Dendroctonus ponderosa
(Hopkins)), little is known about the rate of change in stand structure, and the rate of deterioration
of wood properties with time-since-death. We examined the rate of tree fall in beetle-affected stands,
and we determined the biophysical factors that affect wood quantity and quality in individual trees
following mortality. We surveyed 40 stands, and destructively sampled 600 trees that varied in timesince-death from 1 to 10 years. Sample trees were cross-dated against master chronologies from live
trees to determine their year of mortality. External indicators used to estimate year of mortality were
not accurate, particularly for trees that had been killed in the earlier stages of the epidemic.
Drying, bluestain and checking were the major causes of decline in wood quality and quantity
in recently killed trees (1-2 years). Number and depth of checks was steady and relatively low from 2
to 5 years post-mortality. Saprot and ambrosia beetles became established during the first 2 years
post-mortality, but did not increase in depth of penetration for over 5 years post-mortality, with the
exception of the basal section of the tree where moisture content remained well above fiber
saturation point allowing continued colonization by decay fungi. Location along the stem and tree
size were major contributors to the variation detected in the factors of wood quality and quantity.
69
Résumé
Carie et déclassement du bois des pins tordus (Pinus contorta var. latifolia Engelm.) sur
pied tués par le dendroctone du pin ponderosa (Dendroctonus ponderosa Hopkins :
Coleoptera)
Même s’il y a eu par le passé des infestations de dendroctone du pin ponderosa (Dendroctonus
ponderosa (Hopkins)), on sait peu de choses sur le taux de changement dans la structure du
peuplement ni sur le taux de dégradation des propriétés du bois en fonction du temps écoulé depuis
la mort de l’arbre. Nous avons examiné le taux de chute des arbres dans des peuplements touchés
par le dendroctone, et déterminé les facteurs biophysiques qui influent sur le volume et la qualité du
bois dans des arbres individuels après la mortalité. Nous avons étudié 40 peuplements, et procédé à
un échantillonnage destructif de 600 arbres, dont la mort remontait selon les cas à 1 à 10 ans. Nous
avons effectué une datation de ces arbres par recoupement avec des chronologies maîtresses issues
d’arbres vivants, afin de déterminer l’année de leur mort. Les indicateurs externes utilisés pour
estimer l’année de mortalité n’étaient exacts, surtout pour les arbres qui avaient été tués aux premiers
stades de l’épidémie.
Le desséchement, le bleuissement et la gerçure étaient les principales causes de baisse de
volume et de qualité du bois dans les arbres morts récemment (1-2 ans). Le nombre et la profondeur
des gerçures étaient constants et relativement bas dans les 2 à 5 années après la mortalité. La
pourriture de l’aubier et le scolyte du bois s’établissaient dans les deux premières années après la
mort de l’arbre, mais leur profondeur de pénétration n’augmentait pas pendant plus de 5 ans après la
mort, à l’exception de la section basale de l’arbre, où la teneur en humidité restait bien supérieure au
point de saturation de la fibre, ce qui permettait une poursuite de la colonisation par les
champignons décomposeurs. Les variations observées du volume et de la qualité du bois étaient
largement fonction de l’emplacement sur la tige et de la taille de l’arbre.
70
SESSION 4: REMOTE SENSING AND FOREST
HEALTH
SÉANCE 4 : TÉLÉDÉTECTION ET SANTÉ DES
FORÊTS
Remote Sensing of Forest Health: Current Advances and
Challenges
R.J. Hall1, S.J. Thomas2, J.J. Van der Sanden2, E. Arsenault1, A. Deschamps2,
W.A. Kurz3, C. Dymond3, R. Landry2, E.H. Hogg1, M. Michaelian1, and R.S. Skakun1
1
Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre,
5320 - 122 St., Edmonton, AB T6H 3S5
2
3
Natural Resources Canada, Canada Centre for Remote Sensing
580 Booth St., Ottawa, ON K1A 0Y7
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Rd, Victoria, BC V8Z 1M5
Abstract
In recent years, insect defoliators and drought-related dieback have been important natural
disturbance agents in Canada’s forests. While aerial and field surveys are the primary methods by
which these disturbances are currently assessed, there is a need for more spatially precise, consistent
mapping and monitoring of the area, severity and location of insect defoliation and dieback
disturbances nationally. In response, Natural Resources Canada, in collaboration with the Canadian
Space Agency, is developing methods applicable to the major insect defoliators in Canada and aspen
dieback. The goal is to use multi-scale, remotely sensed change information as input to Canada’s
National Forest Carbon Monitoring, Accounting and Reporting System. Assessing the impacts of
these disturbances is complicated because mortality and growth reductions vary by disturbance
agent, region and year, resulting in highly variable patterns of impact severity across the landscape.
This presentation highlights some of the advances and challenges associated with remote sensing of
forest health.
Contact: Ronald J. Hall
E-mail: [email protected]
Phone: (780) 435 7209
73
Résumé
Utilité de la télédétection pour l’évaluation de la santé des forêts : progrès récents et enjeux
Au cours des dernières années, les insectes défoliateurs et le dépérissement du à la sécheresse
ont causé des perturbations importantes dans les forêts canadiennes. Les relevés aériens et les relevés
sur le terrain sont les principales méthodes utilisées pour évaluer ces perturbations naturelles, mais il
faut trouver une méthode spatialement plus précise pour cartographier et surveiller de façon
systématique les zones perturbées et évaluer la gravité et la répartition des perturbations
occasionnées par les insectes défoliateurs et le dépérissement à l’échelle nationale. Ressources
naturelles Canada, en collaboration avec l’Agence spatiale canadienne, élabore des méthodes afin de
surveiller l’activité des principaux insectes défoliateurs et le dépérissement du peuplier faux-tremble
au Canada. L’objectif consiste à utiliser des données de télédétection multi-échelles sur les
changements comme données d’entrée dans le système national de surveillance, de comptabilisation
et de production de rapports concernant le carbone forestier. L’évaluation des impacts de ces
perturbations soulève d’importantes difficultés, car les taux de mortalité et l’ampleur des réductions
de croissance fluctuent selon l’agent de perturbation, la région et l’année, et l’ampleur des
perturbations varie considérablement à l’échelle du paysage. Cette présentation expose certains des
progrès récents et enjeux associés à l’application de la télédétection à l’évaluation de la santé des
forêts.
Personne-ressource : Ronald J. Hall
Courriel : [email protected]
Téléphone : 780 435-7209
Extended Abstract: Presentation Summary
Remote Sensing of Forest Health: Current Advances and Challenges
P
est outbreaks caused by insect defoliation and climate-related drought resulting in dieback of
trembling aspen (Populus tremuloides, Michx.) are considered natural disturbances that have
carbon consequences (Volney and Fleming 2000; Hogg and Bernier 2005). Repeat severe defoliation
and aspen dieback result in mortality, reduced growth rates, dead tree tops and loss of foliage, all of
which will impact forest productivity, carbon stocks, and the reduced ability to sequester carbon
74
from the atmosphere (Hogg et al. 2002; Bhatti et al. 2003). There is also increasing concern that a
changing climate will further enhance these impacts by altering the frequency and severity by which
these natural disturbances occur (Volney and Fleming 2000; Hogg and Bernier 2005). Disturbance
impacts in moisture-limited regions already appear to be underway in western Canada where
observations of both dieback and mortality have been recorded (Hogg et al. in press).
To account for the impacts of natural disturbances caused by insects and drought, the
Canadian Forest Service of Natural Resources Canada has developed the National Forest Carbon
Monitoring, Accounting and Reporting System (NFCMARS) (Kurz and Apps 2006). Outputs from
NFCMARS will inform national policy makers and resource managers on the impacts of resource
management, land-use change and disturbances on forest carbon stocks (Kurz et al. 2008). The
system is providing data for annual reporting on greenhouse gas emissions provided to
Environment Canada as part of Canada’s report to the United Nations Framework Convention on
Climate Change (Environment Canada 2007), Criteria and Indicators reporting, and to provide a
framework for national level forest monitoring (Wulder et al. 2004).
At present, NFCMARS undertakes reporting for a select set of the major insect pests in
Canada of which the defoliators include aspen defoliators (eg., large aspen tortrix, Choristoneura
conflictana (Wlk.) and forest tent caterpillar, Malacosoma disstria Hubner), spruce budworm,
Choristoneura fumiferana (Clem.), jack pine budworm, Choristoneura pinus pinus Freeman, and hemlock
looper, Lambdina fiscellaria fiscellaria (Guen.), and a pilot study is underway to incorporate drought as a
natural disturbance within the Carbon Budget Model. Provincial forest health surveys are largely
used for this purpose and there is a high desire for more spatially precise and timely mapping of
insect and climate-related disturbances along with an assessment of their severity. With the support
of the Canadian Space Agency, a project partnership between the Canada Centre for Remote
Sensing and the Canadian Forest Service was devised to develop and demonstrate earth-observation
based methods that could provide consistent, timely, and spatially precise mapping and monitoring
of the location, extent and severity of insect defoliation and dieback disturbances. Project elements
include a system framework for data management and reporting and methods for mapping
disturbances caused by insect defoliation and aspen dieback that could be used to support Canada’s
national and international reporting requirements on environmental and sustainable development
indicators and carbon accounting.
75
To meet the objectives of this study, the National Environmental Disturbances Framework
(NEDF) is being developed whose purpose is to provide map products and a geo-spatial reporting
system on national disturbance statistics. Many elements of the NEDF have already been developed,
and it has been functioning operationally to provide information about national fire activity as part
of the Canadian Wildland Fire Information System (de Groot et al. 2007). Information from the
NEDF has been provided to NFCMARS to assist in its national reporting mandate the past three
years. The intent of this incremental activity is to incorporate information about disturbances from
insect defoliation and dieback into the NEDF. The NEDF is clearly a technology advancement that
will facilitate the transfer of disturbance information to NFCMARS.
Research on remote sensing methods for mapping aspen defoliation, spruce budworm
defoliation and aspen dieback is underway and while some success has been reported, operational
challenges have also been identified (Arsenault et al. 2006; Hall et al. 2006a; Thomas et al. 2007).
Some of the advancements in remote sensing include methods for multi-date image normalization, a
modeling approach to map defoliation (Hall et al. 2006b) and dieback (Arsenault et al. 2006), and
mechanisms by which these procedures could be applied to other sensors beyond the Landsat
Thematic Mapper such as SPOT. One of the biggest challenges is generating annual estimates of
defoliation and dieback activity nationally. Satellite remote sensing cannot map all disturbances at
fine resolution due to the possibility of cloud cover at the critical time frames when disturbance
events are most visible. Coarse resolution images from sensors such as MERIS could help identify
where fine resolution remote sensing images should be acquired, and it may also serve as an alternate
image data source for detection and mapping of large-scale disturbances (van der Sanden et al.
2006). As a result, the proposed solution is to invest in geospatial data integration of multisensor
remote sensing, aerial survey and field data to generate a composite picture of defoliation and
dieback disturbances.
With the support of the Canadian Space Agency, we are continuing development and
validation of methods for mapping insect defoliation and aspen dieback, and we are intending to
increase areas of mapping and to apply methods developed to other defoliators. We would welcome
provincial agencies as collaborators through working partnerships. The annual products are feeding
directly into monitoring and reporting in support of sustainable forest management in Canada.
76
References
1Arsenault, E.J., Hall, R.J., and Skakun, R.S. 2006. Characterizing aspen dieback severity using
multidate Landsat data in Western Canadian Forests. Proc. 11th Biennial Remote Sensing
Applications Conference, USDA Forest Service, April 24-28, 2006. Salt Lake City, Utah.
Bhatti, J.S., Van Kooten, G.C., Apps, M.J., Laird, L.D., Campbell, I.D., Campbell, C., Turetsky,
M.R., Yu, Z., and Banfield, E., 2003, Carbon budget and climate change in boreal forests. In Towards
Sustainable Management of the Boreal Forest, P. J. Burton, C. Messier, D. W. Smith, and W. L.
Adamowicz (eds), pp. 799-855 (Ottawa, Ontario: NRC Research Press).
Hall, R.J., Skakun, R.S., and Arsenault, E.J., 2006a. Remotely sensed data in the mapping of insect
defoliation. In Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches, M.
Wulder and S. E. Franklin (eds), pp. 85-111 (Boca Raton: Taylor and Francis, CRC Press).
2Hall, R.J., R.S. Skakun, E.J. Arsenault, and S.J. Thomas. 2006b. Monitoring annual aspen
defoliation patterns by detecting changes in leaf area from multitemporal Landsat TM imagery. Proc.
2006 International Geoscience & Remote Sensing Symposium/27th Canadian Symposium on
Remote Sensing. July 31 - August 4, 2006, Denver, Colorado.
de Groot, W.J., Landry, R., Kurz, W.A., Anderson, K.R., Englefield, P., Fraser, R.H., Hall, R.J.,
Banfield, E., Raymond, D.A., Decker, V., Lynham, T.J., Pritchard, J. 2007. Estimating direct carbon
emissions from Canadian wildland fires, International Journal of Wildland Fire 16: 593–606.
Environment Canada 2007. National Inventory Report 1990–2005: Greenhouse Gas Sources and
Sinks in Canada 1990/2005. Environment Canada, Ottawa.
Hogg, E.H. and Bernier, P.Y., 2005. Climate change impacts on drought-prone forests in western
Canada. The Forestry Chronicle, 81, 675-682.
Hogg, E.H., Brandt, J.P., and Kochtubajda, B. 2002. Growth and dieback of aspen forests in
northwestern Alberta, Canada, in relation to climate and insects. Canadian Journal of Forest Research, 32,
823-832.
Hogg, E.H., Brandt, J.P., and Michaelian, M. Impacts of a regional drought on the productivity,
dieback and biomass of western Canadian aspen forests. Canadian Journal of Forest Research, in press.
Kurz, W.A. and Apps, M.J., 2006, Developing Canada's national forest carbon monitoring,
accounting and reporting system to meet the reporting requirements of the Kyoto Protocol.
Mitigation and Adaptation Strategies for Global Change, 11, 33-43.
Kurz, W.A., Stinson, G., Rampley, G.J., Dymond, C.C., and Neilson, E.T. 2008. Risk of natural
disturbances makes future contribution of Canada’s forests to the global carbon cycle highly
uncertain. Proceedings of the National Academy of Sciences, 105: 1551-1555. doi:10.1073/pnas.0708133105
3Thomas, S.J., Deschamps, A., Landry, R., van der Sanden, J.J., Hall, R.J. 2007. Mapping insect
defoliation using multi-temporal Landsat data. In: Proceedings, 28th Canadian Symposium on
77
Remote Sensing / American Society for Photogrammetry and Remote Sensing (ASPRS)
Conference, Ottawa ON. Canada. 28 October – 1 Nov. 2007 (10 p. on CD.)
4van der Sanden, J.J., Deschamps, A., Thomas, S.J., Landry, R., and Hall, R.J. 2006. Using MERIS
to assess insect defoliation in Canadian aspen forests. Proc. 2006 International Geoscience &
Remote Sensing Symposium/27th Canadian Symposium on Remote Sensing. July 31 - August 4,
2006, Denver, Colorado.
Volney, W.J.A. and Fleming, R.A., 2000. Climate change and impacts of boreal forest insects.
Agriculture, Ecosystems & Environment, 82, 283-294.
Wulder, M., Kurz, W.A., and Gillis, M.D., 2004, National level forest monitoring and modeling in
Canada. Progress in Planning, 61, 365-381.
78
SESSION 5: PESTICIDE REGULATION,
ALTERNATIVES, MINOR USE
SÉANCE 5 : RÈGLEMENTS SUR LES PESTICIDES,
SOLUTIONS POSSIBLES, UTILISATION SECONDAIRE
Minor Use and Emergency Use Registrations for Forestry: A
Provincial Perspective
Michael Irvine
Ontario Ministry of Natural Resources
70 Foster Dr., Suite 400, Sault Ste. Marie, ON P6A 6V5
P
esticides have a key role in the development of effective integrated management programs for
forest pests. Minor use registrations are a way to gain access to useful pesticides when their
anticipated sales volume is not sufficient to justify the effort required to register them. The Pest
Management Regulatory Agency (PMRA) offers two ways to obtain minor use registrations, the
User Requested Minor Use Label Expansion (URMULE) and the User Requested Minor Use
Registration (URMUR). Of these two programs, URMULE is by far the most important.
Registrations granted as URMURs are approximately one percent of those granted for URMULEs.
The requirements to apply for an URMULE are a proposal from the user, draft supplemental
label, and a letter of support from registrant’s regulatory affairs department. These are submitted
through the provincial or forestry minor use coordinator. URMURs require that the proposed active
ingredient be registered in another Organization for Economic Cooperation and Development
(OECD) country, but not in Canada. The proposed product needs a recent data package, and
registered less than five years ago. There is a bigger role for the registrant, who must be willing to
support the registration, make the submission, and act as liaison between sponsor/user group and
PMRA. Requirements for the URMULE and URMUR are described in detail in the Regulatory
Directives DIR2001-01 and DIR99-05 respectively, both available on the PMRA web site at
http://www.pmra-arla.gc.ca/
A new requirement for any registration request is that all documents supporting the
registration be submitted in an E-index. This is a way for PMRA to track the many thousand of
documents they receive.
An URMULE for aerial strip thinning with glyphosate was recently granted. This work was led
by Abitibi Consolidated in cooperation with Monsanto Canada. It is primarily intended for
overstocked fire-origin jack pine stands, and depends on precision aerial application with through
valve booms applied at very low pressure.
81
Black headed budworm is a periodic defoliator of softwoods. In 2004 an infestation erupted in
Cape Breton. 40,000 ha of softwood forest were severely defoliated and $500 million in forest
products at risk. Dr. Graham Thurston, CFS Atlantic led a research program to investigate control
with Foray (Bacillus thuringiensis kurstaki) and the URMULE was granted in March 2007.
Arsenal (imazapyr) is a soil active herbicide that has shown to be effective for forest site
preparation. Work coordinated by Milo Mihajlovich, under contract to several Alberta forest
companies, was conducted in three provinces (Alberta, New Brunswick, Ontario). The URMULE
was granted February 2007 for site preparation for white spruce; work continues to generate data for
other species.
In spring 2006 Ontario applied for an URMULE to double the maximum rate of Foray that
could be applied to jack pine budworm from 30 BIU to 60 BIU per hectare. This URMULE request
was based on a written rationale only, requiring no new data to be generated. It was granted very
quickly and reduced application costs (savings to the province of Ontario probably exceeded one
million dollars). It also enabled the protection of a large area of forest within the biological window,
which may not have been otherwise possible given the finite application equipment available.
PMRA will respond to emergency pest situations where no control option exists, but this is
not intended for on-going pest problems. Emergency use (EU) registrations are only available for
currently registered actives, and must not pose an unacceptable risk to humans or the environment.
Emergency use registrations must have provincial support; this is usually in the form of a letter from
the provincial ministry of natural resources or agriculture, and the provincial ministry of
environment. Application is made by describing the emergency pest situation, proposing a pesticide,
drafting a supplemental label with the registrant and providing any available data. As with all
registrations, EUs must have the registrant’s support. For more information refer to the EU
directive DIR2001-05 on the PMRA web site.
Minor and emergency use registrations are very useful ways to facilitate access to the pest
management tools that forest managers need. Some points to remember:
•
Seek URMULEs, not URMURs. The former are much easier to obtain, and place a much
smaller burden on the registrant.
•
Keep it close to what is currently registered. Changes to rates, application methods, timing,
etc. will all raise questions that must be answered with data or a strong rationale
82
•
Get your provincial or forestry minor use coordinator involved. These people know a lot
about how the registration system works and can guide you through the process.
•
Work with the registrant. They have access to data and resources from outside Canada that
may help you. In any event, their full support is needed for any new registration of their
products.
•
Work with new compounds. New pesticides have a recent data package, and their labels are
expanding. Old compounds may be withdrawn from use, their future is uncertain. The
registrant can advise you on specific products.
83
Registration of Pest Control Products for Minor Uses in
Canada
Shiyou Li
Natural Resources Canada, Canadian Forest Service
960 Carling Ave., Ottawa, ON K1A 0C6
84
PMRA Update: Regulators Rock
Terry Caunter
Pest Management Regulatory Agency
2720 Riverside Dr., Ottawa, ON K1A 0K9
Health Canada’s Pest Management
Regulatory Agency Update
Regulators Rock!
Forestry Forum 2007 - December 4, 2007
Terry Caunter
Project Manager
Non-Food Risk Reduction Strategies Section
Value & Sustainability Assessment Directorate
Pest Management Regulatory Agency (PMRA)
Health Canada
85
Health
Canada
Santé
Canada
What’s New
¾http://www.pmra-arla.gc.ca/
¾Canadian Pesticide Regulation Course
‰ Fairmont Chateau Laurier, Ottawa,
February 27-28, 2008
¾PMRA Annual Report 2006-2007
‰ October 29, 2007
¾Re-evaluation Summary Table
‰ September 30, 2007
Health
Canada
Forestry Forum 2007
Santé
Canada
What’s New
¾Regulatory Proposal PRO2007-01
‰ Use of Uncertainty and Safety Factors in the
Human Health Risk Assessment of Pesticides
‰ July 25, 2007
¾Guidance Document
‰ Sales Information Reporting Regulations and
Reporting Forms (2007)
¾Guidance Document
‰ Pest Control Products Incident Reporting
Regulations
‰ September 14, 2007
Health
Canada
Forestry Forum 2007
86
Santé
Canada
What’s New
¾Regulatory Proposal PRO2007-02
‰ Guidelines for the Registration of Low-Risk
Biochemicals and Other Non-Conventional
Pesticides
‰ October 1, 2007
¾Discussion Document DIS2007-01
‰ Reconsideration of Decisions Under the New
Pest Control Products Act
‰ October 1, 2007
¾Incident Report Form User Guide (Version 1)
‰ for registrants & applicants for registration
‰ September 10, 2007
Health
Canada
Forestry Forum 2007
Santé
Canada
What’s New
¾Regulatory Directive DIR2007-01
‰ First Aid Labelling Statements
‰ May 28, 2007
¾Regulatory Directive DIR2007-02
‰ Compliance Policy
‰ June 15, 2007
¾Regulatory Directive DIR2007-03
‰ Protection of Proprietary Interests in Pesticide
Data in Canada
‰ August 1, 2007
Health
Canada
Forestry Forum 2007
87
Santé
Canada
Registration Highlights
¾Registrations
‰ 3-methyl-2-cyclohexen-1-one
ƒ MCH Bubble Cap, Reg. No. 28637
ƒ pheromone
ƒ For Douglas-fir and Spruce beetle in Douglas fir trees,
Spruce trees, Douglas/Spruce tree stands
ƒ Phero Tech Inc.
ƒ June 12, 2007
‰ Spruce Budworm Pheromone
ƒ
ƒ
ƒ
ƒ
ƒ
Hercon Disrupt Micro-Flake, Reg. No. 28695
Spruce Budworm Mating Disruptant
Forests and woodlands (Reduced risk biopesticide)
Hercon Environmental
May 16, 2007
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾Registrations
‰ Fosetyl-Al
ƒ Chipco Aliette T&O Fungicide, Reg. No. 27557
ƒ Greenhouse, container and field-grown ornamental
plants in nurseries and landscapes, plantings and
conifers grown in nurseries and plantations
ƒ Bayer CropScience Inc.
ƒ April 20, 2007
‰ Imazapyr
ƒ
ƒ
ƒ
ƒ
Arsenal Herbicide, Reg. No. 23713
White spruce
BASF Canada Inc.
August 21, 2007
Health
Canada
Forestry Forum 2007
88
Santé
Canada
Registration Highlights
¾Registrations
‰ Metalaxyl-M
ƒ Subdue MAXX Fungicide, Reg. No. 27055
ƒ Greenhouse, container and field-grown ornamental
plants in nurseries and landscapes, plantings and
conifers grown in nurseries and plantations
ƒ Syngenta Crop Protection Canada Inc.
ƒ April 20, 2007
¾Minor Use Registrations
‰ Pymetrozine
ƒ Endeavor 50WG Insecticide, Reg. No. 27273
ƒ Balsam twig aphid in Christmas trees
ƒ Syngenta Crop Protection Canada Inc.
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾Registrations
‰ Evaluation Report ERC2007-07
ƒ (E,Z)-11-tetradecenal
ƒ Spruce Budworm pheromone
ƒ October 25, 2007
‰ Registration Decision RD2007-06
ƒ
ƒ
ƒ
ƒ
Chondrostereum purpureum strain PFC2139
Cp-PFC2139 Chontrol Paste, Reg. No. 27823
June 4, 2007
inhibits the resprouting & regrowth from cut stumps of red
alder and Sitka alder
Health
Canada
Forestry Forum 2007
89
Santé
Canada
Registration Highlights
¾Re-evaluation
‰ Bacillus thuringiensis group
ƒ Proposed Acceptability for Continuing
Registration (PACR) document PACR2006-09
ƒ Re-evaluation of Bacillus thuringiensis
ƒ label recommendations not etched in stone
ƒ comments & concerns will be taken into
account by BioPesticides group before a final
re-evaluation decision is reached
ƒ NOTE: there was an emphasis to harmonize
with the US EPA and Europe’s OECD
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾Re-evaluation
‰ Proposed Re-evaluation Decision PRVD2007-13
ƒ
ƒ
ƒ
ƒ
Hexazinone
November 15, 2007
herbicide for use in woodland management
proposed decision – acceptable with mitigation
measures, e.g., large buffer zones
‰ Proposed Re-evaluation Decision PRVD2007-10
ƒ
ƒ
ƒ
ƒ
Metalaxyl and Metalaxyl-M
November 5, 2007
fungicide used in outdoor conifer nurseries
proposed decision – acceptable with label changes
Health
Canada
Forestry Forum 2007
90
Santé
Canada
Registration Highlights
¾Re-evaluation
‰ Proposed Re-evaluation Decision PRVD2007-01
ƒ The Agricultural, Forestry and Industrial Site Uses of the
Herbicide (4-chloro-2-methylphenoxy)Acetic Acid (MCPA)
ƒ July 3, 2007
ƒ forestry site uses acceptable
ƒ 0 to 200 m buffer zones from aquatic areas
ƒ 225 to 400 m buffer zones from terrestrial areas
‰ Proposed Acceptability for Continuing Registration
PACR 2007-06
ƒ Re-evaluation of the Agricultural, Forestry, Aquatic and
Industrial Site Uses of (2,4-Dichlorophenoxy)acetic Acid [2,4-D]
ƒ June 19, 2007
ƒ proposed decision – acceptable with mitigation measures, e.g.,
large buffer zones
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾Re-evaluation
‰ Re-evaluation Note REV2007-05
ƒ Preliminary Risk Assessment of Trichlorfon
ƒ May 17, 2007
ƒ environmental concerns: birds, small wild
mammals, bees, fish & aquatic invertebrates
‰ Re-evaluation Note REV2007-02
ƒ Acephate Interim Measures
ƒ February 2, 2007
ƒ labels updated with mitigation measures
Health
Canada
Forestry Forum 2007
91
Santé
Canada
Registration Highlights
¾Re-evaluation
‰ Re-evaluation Note REV2007-01
ƒ Update on the Re-evaluation of Chlorpyrifos
ƒ January 5, 2007
ƒ uses for treatment of ornamentals have been
limited to the following:
ƒ treatment of ornamentals for commercial production
only (greenhouses, nurseries and industrial sites)
ƒ treatment of elm for control of adult bark beetles
(Restricted Use to be used only under a provincial
Dutch elm disease program)
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾Emergency Registrations
‰ Imidacloprid
ƒ Confidor 200 SL Systemic Insecticide, Reg. No. 28132
ƒ requested by Alberta
ƒ cottony ash psyllid in Ash tree, European elm scale in
elm trees
ƒ Bayer CropScience Inc.
ƒ April 27, 2007 until August 31, 2007
‰ Acephate
ƒ
ƒ
ƒ
ƒ
ƒ
Orthene 75%, Reg. No. 14225
requested by Saskatchewan & Alberta
cottony ash psyllid in Ash trees
Arysta Lifescience Corporation
August 9, 2007 until August 8, 2008
Health
Canada
Forestry Forum 2007
92
Santé
Canada
Registration Highlights
¾Pending Registrations
‰ Imidacloprid
ƒ Bayer CropScience Inc.
ƒ Tree Borers:
ƒ Asian long-horned beetle, Brown spruce longhorned
beetle, Emerald ash borer, Bronze birch borer;
ƒ Other Tree Pests:
ƒ Cottony ash psyllid, European elm scale, Locust leafminer,
Elm leafminer, Woolly apple aphid, Woolly adelgid
ƒ Forests and Woodlots, Greenhouse Non-Food Crops,
Ornamental Outdoors
‰ Acephate
ƒ Arysta LifeScience Corporation
ƒ Emerald ash borer, elm spanworm
ƒ Forests and Woodlots, Ornamental Outdoors
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾Pending Registrations
‰ Flumioxazin
ƒ Valent USA Corporation
ƒ preemergence weed control in field-grown ornamentals,
deciduous trees, and coniferous trees including
Christmas trees and trees produced for reforestation
‰ Spirotetramat
ƒ Bayer CropScience
ƒ aphid, mite control in Christmas trees
‰ Verbenone
ƒ Hercon Environmental
ƒ anti-aggregation pheromone for bark beetles on pine spp
Health
Canada
Forestry Forum 2007
93
Santé
Canada
Registration Highlights
¾2007 Research Authorizations
‰ various Bt formulations for eastern & western
spruce budworm & Jackpine budworm on
coniferous forests
‰ azadiractin for Emerald ash borer in ash trees
‰ verbenone pheromone for Mountain pine beetle
on lodgepole pine
‰ pyriproxyfen for European elm scale & cottony
ash psyllid on elm & ash
Health
Canada
Forestry Forum 2007
Santé
Canada
Registration Highlights
¾2007 Research Authorizations
‰ Orgyia leucostigma nucleopolyhedrovirus for
whitemarked tussock moth on balsam fir
‰ nuclear polyhedrosis virus of gypsy moth for
gypsy moth egg masses on hardwood trees
‰ nuclear polyhedrosis virus of Douglas-fir tussock
moth for whitemarked tussock moth on balsam fir
‰ glyphosate for alder, raspberry & maple in spruce
forests
Health
Canada
Forestry Forum 2007
94
Santé
Canada
Research Authorizations
¾ Reminders
‰ Performance Standards
ƒ
ƒ
ƒ
ƒ
6 months for unregistered active
3 months for already registered active
GET THEM IN NOW !!
do not need detailed maps with application – can follow at a
later date
‰ 2 year Research Authorizations can be granted –
MUST be requested in initial application
‰ Original Guidelines are now Regulations
ƒ could result in less flexibility
ƒ make sure you are familiar with the process and requirements
ƒ contact Terry Caunter and/or Research coordinator
Health
Canada
Forestry Forum 2007
Santé
Canada
Risk Reduction Groups
Established
¾ Collaborate with (potential) applicants
& user groups to facilitate the
registration of reduced-risk products
according to stakeholder consensus
expressed as “a risk reduction strategy”
Health
Canada
Forestry Forum 2007
95
Santé
Canada
Pesticide Risk Reduction Group
Stakeholder Interactions
User Sectors
PMRA
Public
Sector resource
CRO/EDO
Review Divisions
Regions
Food Crop
Non-Food Crop
Non-Crop Uses
Presubmissions
SCD
Review Divisions
Pesticide Risk
Reduction Groups
Food Crop
Non-Food Crop
Non-Crop Uses
Government
Research
Municipal
Provincial
Terretories
Other Federal
Departments
International
Government
Academia
Independent
Registrants
Health
Canada
Forestry Forum 2007
Santé
Canada
Facilitating Access to Lower
Risk Pest Control Products
‰ What can we do with you?
ƒ Forestry liaison for forestry issues
ƒ Wood preservative (CSA technical committee)
ƒ Forestry Forum Steering Committee
ƒ National Forest Pest Strategy Practitioner
Working Group
ƒ Invasive alien species & Pine beetle support
ƒ Miscellaneous forest pests support
Health
Canada
Forestry Forum 2007
96
Santé
Canada
National Forest Pest Strategy
¾PMRA’s potential role
‰ where does the PMRA fit?
‰ Health Canada not part of the Steering
Committee or Working Group
‰ PMRA is part of the NFPS Practitioner
workshops
‰ envision a potential role in the Risk
Framework Application and/or Science &
Technology aspects
Health
Canada
Forestry Forum 2007
Santé
Canada
National Forest Pest Strategy
¾PMRA’s potential role
‰ Goal 1: Create a Canadian national
forest pests list
ƒ use existing forest pest lists already
established
ƒ update with Forum cross country reports
ƒ research Provincial and Federal Internet
sites & literature
ƒ circulate list to Forest Protection
Technology Committee (FPTC) for peer
review
Health
Canada
Forestry Forum 2007
97
Santé
Canada
National Forest Pest Strategy
¾PMRA’s potential role
‰ Goal 2: Prioritize the Canadian national
forest pest list
ƒ FPTC and/or NFPS Working groups would
establish National priorities
ƒ priorities will change and shift as new forest
pests emerge, cyclic pests reach endemic
levels, or other factors influence pest
pressures
Health
Canada
Forestry Forum 2007
Santé
Canada
National Forest Pest Strategy
¾PMRA’s potential role
‰ Goal 3: Create list of forest pest
management products registered in
Canada
ƒ concentrate on priorities identified by FPTC
and NFPS Working Groups
ƒ posted on the PMRA’s web site
ƒ updated as new products are registered or
older products are removed
Health
Canada
Forestry Forum 2007
98
Santé
Canada
National Forest Pest Strategy
¾PMRA’s potential role
‰ Goal 4: Create a list of forest pest
management products that are
registered in other countries
ƒ facilitate the search for other pest
management options
ƒ use existing and new internet tools to seek
out foreign registrations
ƒ i.e. Homologa: Internet based tool that can
list products registered in other countries
Health
Canada
Forestry Forum 2007
Santé
Canada
National Forest Pest Strategy
¾PMRA’s potential role
‰ Goal 5: Facilitate introduction of
Foreign forest pest products in Canada
ƒ communicate the existence of foreign pest
products to forest pest managers in FPTC
ƒ contact foreign registrants & act as a
liaison
ƒ generation of efficacy data
ƒ facilitate registration of these products
ƒ ’hand holding’ role - explain registration
process and requirements
Health
Canada
Forestry Forum 2007
99
Santé
Canada
Questions?
Forestry Sector
Terry Caunter
613-736-3779
[email protected]
Health
Canada
Forestry Forum 2007
Santé
Canada
Questions?
Forestry Sector
Terry Caunter
613-736-3779
[email protected]
Health
Canada
Forestry Forum 2007
100
Santé
Canada
SESSION 6: GLOBALIZATION - INTERNATIONAL
UPDATE
Chair: Ted Van Lunen
Natural Resources Canada, Canadian Forest Service
SÉANCE 6 : LA MONDIALISATION – LE POINT SUR
LA SITUATION INTERNATIONALE
Président : Ted Van Lunen
Ressources naturelles Canada, Service canadien des forêts
IUFRO Update
Eric Allen
Natural Resources Cananada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Rd, Victoria, BC V8Z 1M5
103
SESSION 7: EASTERN PEST MANAGEMENT ISSUES
Cross-Country Check-up – Ontario and Quebec
SÉANCE 7 : LA RÉPRESSION DES RAVAGEURS DANS
L’EST
Tour d’horizon – l’Ontario et le Québec
Status of Important Forest Pests in Ontario, 2007
Hugh Evans1, Anthony Hopkin1, and Taylor Scarr2
1
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
2
Ontario Ministry Natural Resources, Forest Health and Silviculture
70 Foster Dr., Sault Ste. Marie, ON P6A 6V4
Abstract
The spruce budworm (Choristoneura fumiferana Clem.) was the largest defoliator of conifers in
2007 with an area of 850,000 ha affected, most of which occurred in the Northeast Region. The
infestation of the jack pine budworm (Choristoneura pinus pinus Freeman) increased in the northeast to
over 70,000 ha and in northwestern Ontario the outbreak shifted its boundaries northward, with a
total defoliated area of 464,000 ha. In aspen forests the large aspen tortrix (Choristoneura conflictana
(Wlk.)) defoliated areas totalling 82,000 ha and a leafroller complex including, the early aspen
leafcurler (Pseudexentera oregonana Walsingham) defoliated an additional 27,000 ha. Forest tent
caterpillar (Malacosoma disstria Hbn.) populations persisted in much the same area as 2006, defoliating
some 370,000 ha. In southern Ontario, the area affected by gypsy moth (Lymantria dispar L.) tripled
to 31,000 ha and there were increased areas of damage (10,000 ha) from larch casebearer (Coleophora
laricella Hbn.). There were reports of weather and environmental related damage by winter browning
(346,080 ha), drought (30,562 ha), blowdown (17,618 ha) and hail (932 ha). There were new findings
of the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) but they were all within the
regulated area of Toronto and Vaughan. Damage from the emerald ash borer (Agrilus planipennis
Fairmaire) continues to intensify in areas where the pest has become established. An extensive
trapping program this year for the European wood wasp (Sirex noctilio Fabricus) found new
distribution points on Manitoulin Island and in southcentral Ontario.
107
Résumé
Le point sur les principaux ravageurs forestiers en Ontario, 2007
La tordeuse des bourgeons de l’épinette (Choristoneura fumiferana Clem.) a été le principal
défoliateur des conifères en 2007, causant des dommages sur quelque 850 000 ha, principalement
dans la région du Nord-Est. L’infestation de tordeuse du pin gris (Choristoneura pinus pinus Freeman)
s’est intensifiée dans le nord-est de la province, la superficie défoliée passant à plus de 70 000 ha;
dans le nord-ouest de la province, l’infestation s’est déplacée vers le nord, causant une défoliation
sur 464 000 ha. Dans les tremblaies, la tordeuse du tremble (Choristoneura conflictana (Wlk.)) a défolié
82 000, tandis qu’un complexe d’espèces d’enrouleuses incluant l’enrouleuse hâtive du tremble
(Pseudexentera oregonana Walsingham) a ravagé 27 000 ha additionnels. Les effectifs de la livrée des
forêts (Malacosoma disstria Hbn.) sont demeurés élevés dans l’ensemble des régions infestées en 2006,
provoquant des défoliations sur environ 370 000 ha. Dans le sud de l’Ontario, la superficie défoliée
par la spongieuse (Lymantria dispar L.) a triplé pour passer à 31 000 ha, tandis que la superficie
endommagée par le porte-case du mélèze (Coleophora laricella Hbn.) est passée à 10 000 ha. Les
conditions météorologiques et environnementales ont également été à l’origine de dommages dus au
brunissement hivernal (346 080 ha), à la sécheresse (30 562 ha), au vent (17 618 ha) et à la grêle (932
ha). La présence du longicorne étoilé (Anoplophora glabripennis Motschulsky) a été signalée dans de
nouvelles localités, mais toutes ces localités sont se trouvent à l’intérieur de la zone réglementée de
Toronto et de Vaughan. Les dommages causés par l’agrile du frêne (Agrilus planipennis Fairmaire) ont
continué de s’intensifier dans les régions où le ravageur est établi. Une vaste campagne de piégeage
ciblant le sirex européen du pin (Sirex noctilio Fabricus) a révélé la présence du ravageur dans de
nouvelles localités, dans l’île Manitoulin et dans le centre-sud de l’Ontario.
STATUS OF IMPORTANT FOREST PESTS IN ONTARIO, 2007
OVERVIEW
T
he spruce budworm, Choristoneura fumiferana Clem., was the largest defoliator of conifers in
2007. An area of 850,000 ha was affected, most of which occurred in the Northeast Region.
The infestation of the jack pine budworm, Choristoneura p. pinus Free., increased in the
northeast to 50,000 ha and in northwestern Ontario the outbreak shifted its boundaries northward,
108
with a total defoliated area of 464,000 ha. In aspen forests the large aspen tortrix, Choristoneura
conflictana (Wlk.), defoliated 82,000 ha, and a leafroller complex including the aspen leafroller,
Pseudexentera oregonana Walsingham, defoliated an additional 27,000 ha. Forest tent caterpillar,
Malacosoma disstria Hbn, populations persisted in much of the same area as in 2006. The area
affected by gypsy moth, Lymantria dispar L., tripled to 31,000 ha compared to 2006. There were also
increased areas of damage (10,000 ha) caused by the larch casebearer, Coleophora laricella Hbn. There
were reports of weather-related damage such as winter browning (346,080 ha), drought (30,562 ha),
blowdown (17,618 ha) and hail (932 ha). There were new findings of the Asian longhorned beetle,
Anoplophora glabripennis Motschulsky, but they were all within the already-regulated area of Toronto
and Vaughan. Damage from the emerald ash borer, Agrilus planipennis Fairmaire, continues to
intensify in areas where the pest has become established; there have also been new findings of the
pest in Norfolk County and in the City of Toronto. An extensive trapping program this year for the
European wood wasp, Sirex noctilio Fabricus, found new distribution points on Manitoulin Island and
in south central Ontario.
MAJOR FOREST INSECTS AND DISEASES
Spruce Budworm, Choristoneura fumiferana (Clem.)
Populations of the spruce budworm in Ontario increased in 2007. The total area of moderateto-severe defoliation in spruce, Picea spp. and balsam fir, Abies balsamea (L.) stands increased from
797,206 ha in 2006 to 849,045 ha this year. Most of the affected area was again in the Northeast
Region with all districts (North Bay, Sault Ste. Marie and Sudbury), experiencing increases. In the
Southern Region the infestation declined by about half, from 30,486 ha to 15,902 ha. The largest
decrease occurred in Pembroke District (Table 1 and Figure 1).
The area of spruce budworm-associated tree mortality increased. New areas of mortality were
mapped in Sudbury and North Bay districts of the Northeast Region. There are now 28,078 ha
affected by this pest (Table 2 and Figure 2).
109
Table 1: Gross area of moderate-to-severe defoliation caused by the spruce budworm in
Ontario, 2004 - 2007.
Area (ha)
Region / District
Northwest
2004
2005
2006
2007
138
209
0
0
138
2004
187 854
209
2005
250 936
0
2006
690 731
0
2007
714 358
0
302
3 250
7 405
Sudbury
40 448
47 768
72 739
111 380
Total
228 302
299 006
766 720
833 143
2004
2005
2006
2007
0
1 099
4 244
1 994
Bancroft
6 675
0
0
0
Kemptville
11 381
9 238
6 341
4 469
0
0
2 796
2 217
32 858
27 889
17 105
7 222
470
44
0
0
51 384
38 270
30 486
15 902
279 824
337 485
797 206
849 045
Kenora
Total
Northeast
North Bay
Sault Ste. Marie
Southern
Algonquin
Parry Sound
Pembroke
Peterborough
Total
TOTAL
110
Areas within which spruce budworm
caused moderate to severe defoliation
in Ontario in 2007.
La Cloche
Provincial
Park
United States of America
849 045 ha
Québec
Sudbury
North Bay
Ottawa
Lake Huron
0
25
Kilometres
50
100
150
Figure 1: Areas of spruce budworm
defoliation in Ontario in 2007.
Table 2: Cumulative area of spruce and balsam fir mortality caused by the spruce budworm in Ontario,
2004 - 2007.
Area (ha)
Region / District
Northeast
2004
2005
2006
2007
North Bay
9 839
11 748
14 544
21 624
Sudbury
3 974
5 312
5 312
6 454
Total
13 813
17 060
19 856
28 078
13 813
17 060
19 856
28 078
TOTAL
111
Areas of cumulative spruce budworm
caused mortality in Ontario in 2007.
La Cloche
1997 to 2006
new inProvincial
2007
United States of America
Park
28 078 ha
Québec
N O RT H B AY D I S T R I C T
T
S U D B U R Y D I S T R II C T
Sudbury
Sturgeon Falls
North Bay
Lake Nipissing
0
5
Kilometres
10
20
30
Figure 2. Areas of spruce budwascorm
caused mortality in Ontario in 2007.
Jack Pine Budworm, Choristoneura p. pinus Free.
The main body of the current jack pine budworm outbreak remains in northwestern Ontario.
The combined total area of infestation is 463,851 ha, which is a reduction from 720,172 ha in 2006.
In much of the Fort Frances District and some of Kenora District there was a collapse of
populations; however increases occurred in Dryden District and new areas were recorded in Red
Lake, Sioux Lookout and Thunder Bay districts (Table 3 and Figure 3).
For the second consecutive year, a major spray operation was conducted in the Northwest
Region by the Ontario Ministry of Natural Resources (OMNR). This year a total of 173,000 ha were
sprayed with a single application of Foray 76B.
The area of jack pine, Pinus banksiana Lamb., mortality associated with jack pine budworm now
totals 115,481 ha in northwestern Ontario. Most of this is in Kenora District (99,951 ha) with
smaller areas in the Fort Frances (10,009 ha) and Dryden (5,521 ha) districts. A large portion of the
mortality occurs on the Aulneau Peninsula on the east side of Lake of the Woods.
112
In the northeastern part of Ontario, the defoliated area, increased from about 20,000 ha to
72,200 ha. Most of the increase was in Sudbury District, Northeast Region and the adjacent Parry
Sound District, Southern Region. A significant new area of damage was recorded in the Timmins
District, Northeast Region.
Table 3: Gross area of moderate-to-severe defoliation caused by the jack pine budworm in Ontario, 2004
- 2007.
Area (ha)
Region / District
Northwest
2004
2005
2006
2007
Dryden
0
1 983
116 195
178 881
Fort Frances
0
85 328
355 134
41 020
Kenora
0
1 134
248 843
227 210
Red Lake
0
0
0
6 783
Sioux Lookout
0
0
0
9 065
Thunder Bay
Total
0
0
0
892
0
2004
0
88 445
2005
0
720 172
2006
0
463 851
2007
306
0
953
951
2 502
Sudbury
851
2 599
14 038
42 775
Timmins
0
0
0
4 228
851
3 552
14 989
49 811
2004
2005
2006
2007
Algonquin
0
0
0
185
Parry Sound
0
0
4 548
21 674
Pembroke
0
222
407
530
Total
0
222
4 955
22 389
851
92 219
740 116
536 051
Northeast
North Bay
Sault Ste. Marie
Total
Southern
TOTAL
113
Areas within which jack pine budworm
caused moderate to severe defoliation
in Ontario in 2007.
La Cloche
Provincial
Park
United States of America
536 051 ha
Sudbury
Québec
Lake Superior
0
50
Kilometres
100
200
300
Figure 3: Areas of jack pine budworm
defoliation in Ontario in 2007.
Forest Tent Caterpillar, Malacosoma disstria Hbn.
The infestation of forest tent caterpillar persisted in 2007. The area of defoliation was mostly
in the Sudbury District, Northeast Region, where there was 351,003 ha of moderate-to-severe
defoliation. This occurred in much of the same area as that of 2006. There were also smaller areas
affected in Hearst and North Bay districts, Northeast Region and in Kemptville, Parry Sound and
Peterborough districts, Southern Region (Table 4 and Figure 4).
114
Table 4: Gross area of moderate-to-severe defoliation caused by the forest tent caterpillar in Ontario,
2004 - 2007.
Area (ha)
Region / District
Northwest
2004
2005
2006
2007
0
0
0
0
Nipigon
583 505
0
0
0
Thunder Bay
22 991
0
0
0
Total
606 496
0
0
0
2004
2005
2006
2007
Hearst
29 223
0
0
3 740
Kirkland Lake
2 549
0
0
0
143 239
28 501
4 946
13 615
0
0
0
0
Sudbury
458 767
435 399
355 532
351 003
Timmins
3 459
0
0
0
637 237
463 900
360 478
368 358
2004
2005
2006
2007
0
0
0
27
Midhurst
1 915
0
0
0
Parry Sound
31 886
5 932
10 281
2 135
0
0
0
974
33 801
5 932
10 281
3 136
1 277 534
469 832
370 759
371 494
Fort Frances
Northeast
North Bay
Sault Ste. Marie
Total
Southern
Kemptville
Peterborough
Total
TOTAL
Gypsy Moth, Lymantria dispar (L.)
Moderate-to-severe defoliation occurred on a total of 31,094 ha in 2007. There was 1,474 ha of
defoliation in Aurora District; 4,064 ha in Aylmer District; and 25,556 ha in the Guelph District.
This is almost triple the area affected in the previous year. Damage extends from a few small areas in
Toronto and Vaughan west to Oakville, Burlington and Hamilton. Further south, the main body of
infestation is on the Niagara Peninsula extending west to Norfolk County. There are also points of
damage near Ingersoll, Oxford County and southwest of London in Middlesex and Elgin Counties
(Table 5 and Figure 5). Aerial spray operations were conducted in Mississauga and Toronto as well
as on the Six Nations property near Brantford.
115
Areas within which forest tent caterpillar
caused moderate to severe defoliation
in Ontario in 2007.
La Cloche
Provincial
Park
United States of America
371 494 ha
Québec
Timmins
Sault Ste Marie
Sudbury
Ottawa
Lake Huron
0
Kilometres
25 50
100
150
Figure 4: Areas of forest tent caterpillar
defoliation in Ontario in 2007
In northern Ontario low populations occurred on the Manitou Islands in Lake Nipissing and
in the town of New Liskeard, North Bay District; increased numbers, but still at low levels, were
noted in the Sudbury area in forest tent caterpillar infested stands.
Large Aspen Tortrix, Choristoneura conflictana (Wlk.)
The total area of moderate-to-severe defoliation caused by large aspen tortrix in Ontario was
81,947 ha in 2007. There were 47,483 ha of defoliation to trembling aspen, Populus tremuloides Michx.
in Kenora District and another 31,167 ha in Red Lake District in northwestern Ontario. A smaller
area of 3,297 ha was defoliated in the Parry Sound District of the Southern Region.
116
Early Aspen Leafcurler, Pseudexentera oregonana (Wlsm.)
A complex of leaf-feeding insects caused leafroller damage to trembling aspen at numerous
locations in 2007. The damage was distinct from that of large aspen tortrix, with the early aspen
leafcurler appearing to be responsible for most of the defoliation. In the Northwest Region, the
largest areas of damage were reported in Red Lake (9,157 ha) and Kenora (16,371 ha) districts, but
damage also occurred in Dryden, Nipigon and Sioux Lookout districts, and as far east as Wawa
District of the Northeast Region.
Table 5: Gross area of moderate-to-severe defoliation caused by the gypsy moth in Ontario, 2004 - 2007.
Area (ha)
Region / District
Northeast
2004
2005
2006
2007
177
0
132
0
Sault Ste. Marie
0
0
0
0
Sudbury
0
0
0
0
177
0
132
0
2004
2005
2006
2007
Aurora
0
69
445
1 474
Aylmer
16
32
776
4 064
Bancroft
248
0
0
0
Guelph
0
1 141
8 997
25 556
Kemptville
0
0
0
0
Midhurst
0
0
0
0
Parry Sound
0
0
0
0
Peterborough
0
0
0
0
264
1 242
10 218
31 094
441
1 242
10 350
31 094
North Bay
Total
Southern
Total
TOTAL
Pine False Webworm, Acantholyda erythrocephala (L.)
The total area of pine false webworm defoliation in 2007 was 377 ha, a small increase from the
286 ha that were infested in 2006. All of this mapped damage occurred in the Midhurst District of
117
southern Ontario to eastern white pine, Pinus strobus L. The pest also caused significant damage at
points in the Pembroke District and in the Sault Ste. Marie area.
Larch Casebearer, Coleophora laricella (Hbn.)
Moderate-to-severe defoliation caused by larch casebearer occurred on a total of 10,297 ha in
2007. Most of this occurred in the Ottawa River valley in the districts of Kemptville (8,407 ha) and
Pembroke (1,661 ha) where tamarack, Larix laricina (Du Roi) K. Koch, mortality has also been
reported. The area of tree mortality totals 6,430 ha. Also in southern Ontario, 229 ha of defoliation
occurred in the Midhurst District.
Areas within which gypsy moth
caused moderate to severe defoliation
in Ontario in 2007.
La Cloche
Provincial
Park
31 094 ha
Québec
AURORA DISTRICT
Toronto
Lake Ontario
GUELPH DISTRICT
Hamilton
St. Catharines
United States
of America
AY L M E R D I S T R I C T
London
Lake Erie
0
10
Kilometres
20
40
60
Figure 5: Areas of gypsy moth defoliation
in Ontario in 2007.
Cedar Leafminers, Argyresthia spp.
Cedar leafminers caused 29,986 ha of moderate-to-severe defoliation to eastern white cedar,
Thuja occidentalis L., trees in 2007. Repeated damage for several years has resulted in excessive top
mortality and some whole tree mortality in this area. The cedar leafminer damage occurred south of
118
Ottawa in Kemptville District. There were also reports of increased populations in Midhurst and
Aylmer districts.
OTHER INSECTS AND DISEASES
In southern Ontario high populations of Oystershell Scale, Lepidosaphes ulmi (L.), caused
varying degrees of twig and branch dieback to American beech, Fagus grandifolia Ehrh. in Parry
Sound and Bancroft districts. Defoliation caused by Fall Webworm, Hyphantria cunea (Drury), was
mapped to a variety of hardwood species on 23 ha in Aylmer District. A complex of insects
including Oak Leafshredder, Croesia semipurpurana (Kft.), and the Obliquedbanded leafroller,
Choristoneura rosaceana (Harr.), defoliated 225 ha of red oak in the Pembroke area. The Basswood
Leafminer, Baliosus nervosus (Panz.), caused serious defoliation of basswood, Tilia americana L., at
some locations in Midhurst and Aylmer districts. Increased numbers of Fall Cankerworm, Alsophila
pometaria (Harr.), defoliated Manitoba maple, Acer negundo L., at several locations in Aurora District.
High populations of Larch Sawfly, Pristiphora erichsonii (Htg.), caused 80 percent defoliation to
tamarack in areas of Bancroft District. Recurring populations of Maple Leafcutter, Paraclemensia
acerifoliella (Fitch), were reported in some sugar maple, Acer saccharum Marsh stands in the eastern
part of Bancroft District.
Significant disease occurrences in 2007 in southern Ontario included Ash Anthracnose
caused by the fungi, Apiognomonia errabunda (Roberge) Hohn. and Discula fraxinea (Peck) Redlin &
Stack, resulting in up to 40 percent defoliation on affected ash, Fraxinus spp. trees. These diseases
were reported from across much of the Southern Region. A very high incidence of Diplodia Tip
Blight, Sphaeropsis sapinea (Fr.) Dyko & B. Sutton, occurred on red pine, Pinus resinosa Ait.,
regeneration under semi-mature trees at the Petawawa Research Forest, Pembroke District.
In northern Ontario the Large Boxelder Leafroller, Archips negundana (Dyar), caused
moderate-to-severe defoliation of Manitoba maple to urban trees in Dryden, Sioux Lookout, Red
Lake, Fort Frances, Kenora and Ignace. The Bronze Poplar Borer, Agrilus liragus B. & B.,
continued to be a problem in the Nipigon District, Northwest Region, causing 48 ha of aspen
mortality in 2007. Heavy defoliation of sugar maple by the Greenstriped Mapleworm, Dryocampa
rubicunda (Fr.), occurred on Manitoulin Island, Sudbury District. The Whitespotted Sawyer Beetle,
Monochamus s. scutellatus (Say), in combination with the Pine Engraver, Ips pini (Say), was responsible
for a total of 1,724 ha of jack pine mortality in Dryden, Nipigon and Thunder Bay districts.
119
Across much of northern Ontario there was a widespread incidence of Septoria Leaf Spot,
Mycosphaerella populicola G.E. Thomps., which resulted in premature defoliation of balsam poplar,
Populus balsamifera L. Finally, in the Red Lake District there were instances of heavy damage from
Spruce Needle Rust, Chrysomyxa ledi (Alb. & Schwein.) de Bary var. ledi.
ABIOTIC FOREST DISTURBANCES
Winter Browning of Conifers
There was a considerable area of forest damaged as a result of winter browning in the
Northeast Region. The area affected, 346,080 ha, was in Cochrane (151,670 ha), Hearst (193,281 ha)
and Kirkland Lake (1,129 ha) districts. The foliar browning affected a number of conifers, but the
damage on white and black spruce, Picea glauca (Moench) Voss and P. mariana (Mill.) BSP,
respectively, caused the most concern because much of the area is comprised of juvenile plantations
with tree height in the 5m range. Sporadic areas of damage to black spruce and balsam fir were also
reported in Nipigon and Thunder Bay districts of the Northwest Region.
Drought Damage
Significant drought damage occurred in both southern and in northwestern Ontario. In the
Southern Region visible signs of drought damage were mapped over a total of 28,209 ha in Aurora,
Bancroft, Guelph, Midhurst and Peterborough districts. In the Northwest Region there were reports
of damage in Dryden, Fort Frances, Kenora and Sioux Lookout districts for a total area of 2,353 ha.
There were also reports of localized damage in the Parry Sound area, on Manitoulin Island and in
the vicinity of Sault Ste. Marie.
Storm Damage
A fierce windstorm in late June of 2007 caused blowdown over numerous scattered locations.
The storm passed from the west to the east. Trees were affected in Dryden (7,166 ha), Fort Frances
(10, 039 ha), Kenora (13 ha), and Thunder Bay (400 ha) districts of the Northwest Region.
Other Abiotic Damage
Hail Damage affected 200 ha in Fort Frances District, Northwest Region and 732 ha in
Aurora District of the Southern Region. In the Northeast Region the heavy cone and seed crop of
120
2006 resulted in twig and branch Dieback to eastern white cedar, yellow birch, Betula alleghaniensis
Britt. and white spruce. Notable Frost Damage was reported to the new growth of balsam fir in the
Chapleau District, Northeast Region.
INVASIVE PESTS
European Wood Wasp, Sirex noctilio (Fabricus)
Cooperative work with Canadian Food Inspection Agency (CFIA) on mapping the
distribution of the European wood wasp was conducted again in 2007. A trapping program was
designed to target areas where the wood wasp had not been found in 2005 or 2006. The series of
traps covered south central and south eastern Ontario and extended into northern Ontario, as far
west as the Fort Frances District. Four new distribution points were established in 2007. The
positive locations were near Flinton, Bancroft District, near Gravenhurst, Parry Sound District, at a
location in Algonquin Park District and on Manitoulin Island, Sudbury District (Figure 6).
Figure 6 : European wood wasp survey results in Ontario in 2007.
121
Emerald Ash Borer, Agrilus planipennis Fairmaire
There were new occurrences of emerald ash borer (EAB) in 2007. During the spring and
summer new locations in London were confirmed to have trees infested with the EAB. As a result
the CFIA declared Middlesex County to be a regulated area, adding it to the list that also includes
Essex County, the Municipality of Chatham-Kent, Elgin County and Lambton County. In the fall of
2007, EAB was detected and confirmed in Norfolk County, which is immediately east of Elgin
County as well as in Toronto, in the vicinity of Sheppard Avenue East and Highway 404 of the city
(Figure 7).
Surveys were conducted in areas where EAB has become established and these indicate that
there is severe damage in areas with ash trees throughout Essex County and in portions of Lambton
County and Chatham-Kent Municipality (Figure 8).
Figure 7 : Locations of emerald ash borer
in Ontario in 2007 recorded by the
Canadian Food Inspection Agency.
122
Asian Longhorned Beetle, Anoplophora glabripennis (Motschulsky)
A number of infested trees were detected by CFIA inspection crews during the ongoing survey
for the Asian longhorned beetle in 2007. As a result there were approximately 3,400 removals of
susceptible trees in the campaign to control and eradicate this unwanted pest. All of this activity was
within the existing regulated area.
Other Invasive Pests
High populations of Satin Moth, Leucoma salicis (L.), occurred within the forest tent caterpillar
infestation in the Sudbury area. This insect was collected for the first time in Aylmer District of
southwestern Ontario. A new distribution was also recorded north of Kaladar in Bancroft District.
Trapping was conducted for the Banded Elm Bark Beetle, Scolytus schevyrewi Semenov in
cooperation with CFIA. Traps were deployed in the Fort Frances District, Northwest Region and in
southwestern Ontario. Results are not available at this time. There was a range extension recorded
for the Pine Shoot Beetle, Tomicus piniperda (L.) to Kearney Lake, Algonquin Park District in 2007.
Areas within which emerald ash borer
caused damage and mortality
Québec
in Ontario in 2007.
Algonquin Provincial Park
7 122 ha
London
Sarnia
AY L M E R D I S T R I C T
United States
of America
Lake St. Clair
Chatham
Windsor
Lake Erie
0
5
Kilometres
10
20
30
Figure 8 : Areas of damage and mortality
caused by the emerald ash borer in Ontario
in 2007.
123
ACKNOWLEDGEMENTS
Many people contributed to the compilation of this report. Much of this information comes
from the reports of the field staff. These were Ed Czerwinski, Mike Francis, Patrick Hodge, Wayne
Ingram, Dan Rowlinson and Lincoln Rowlinson from the OMNR and Bill Biggs, Hugh Evans, Al
Keizer, Doug Lawrence and Barry Smith from the CFS. Other staff members that had an integral
involvement included Taylor Scarr and Richard Wilson of the OMNR as well as Dave Comba,
Chuck Davis, Ron Fournier, Anthony Hopkin, Kathryn Nystrom, Krista Ryall, Isabelle Ochoa and
Peter de Groot of the CFS. The generous assistance and valuable cooperation of forest industry and
other government agencies are gratefully acknowledged.
124
État de situation des principaux ravageurs forestiers au
Québec en 2007
Louis Morneau
Direction de l’environnement et de la protection des forêts
Ministère des Ressources naturelles et de la Faune du Québec
http://www.mrnf.gouv.qc.ca/forets/fimaq/insectes/fimaq-insectes-portrait.jsp
L
es infestations par la tordeuse des bourgeons de l’épinette ont augmenté de façon importante
en 2007 pour atteindre plus de 110 000 hectares. L’épidémie de tordeuses du tremble a
commencé à se résorber au Saguenay−Lac-Saint-Jean alors qu’elle continue de s’étendre dans
plusieurs autres régions de la province. La maladie du rond a été découverte dans une nouvelle
région de la province.
TORDEUSE DES BOURGEONS DE L'ÉPINETTE
Choristoneura fumiferana
La tordeuse des bourgeons de l’épinette (TBE) est un insecte indigène dont les populations
évoluent de façon cyclique. La présente épidémie de l’insecte a débuté en 1992 dans la région de
l’Outaouais. Les aires infestées par l’insecte ont progressé substantiellement en 2007. Elles totalisent
maintenant 110 743 hectares comparativement à 50 498 hectares l’année dernière (tableau 1). La
progression de l’épidémie s’est manifestée principalement dans les régions de l’AbitibiTémiscamingue (5 948 ha), du Saguenay–Lac-Saint-Jean (6 910 ha) et de la Côte-Nord (53 990 ha).
Toutefois, les infestations relevées dans les régions de l’Outaouais (43 271 ha), des Laurentides (26
ha), du Centre-du-Québec (4 ha) et de la Mauricie (594 ha) n’ont pas connu d’expansion significative
par rapport à 2006 (carte 1).
Dans l’ensemble des régions infestées par la TBE, les dégâts ont été relevés presque
exclusivement dans les forêts privées, sauf dans la région de la Côte-Nord où l’épidémie affecte les
forêts publiques. Dans cette dernière région, une infestation d’envergure (23 730 ha) a été détectée
sur l’île d’Anticosti.
Des dégâts ont été relevés pour la première fois depuis 1985 au sud du Témiscamingue, soit
dans les terres privées comprises entre Laniel et Saint-Eugène-de-Guigues. La proximité d’une vaste
zone infestée depuis quelques années en Ontario a permis de prévoir la montée des populations sur
125
ce territoire. Au Saguenay–Lac-Saint-Jean, la recrudescence des populations de TBE s’est manifestée
dans la plaine du lac Saint-Jean et le long de la rivière Saguenay, de Normandin à l’ouest jusqu’à
Saint-Félix-d’Otis à l’est. Dans la région de la Côte-Nord, les infestations locales recensées l’année
dernière ont connu une expansion dans les secteurs avoisinant les aires infestées en 2006 et de
nouveaux foyers sont apparus le long de la côte ainsi que sur l’île d’Anticosti (carte 2).
Les fluctuations observées en 2007 dans les foyers d’infestation recensés depuis plusieurs
années dans les régions des Laurentides, du Centre-du-Québec et de la Mauricie sont mineures. En
Outaouais, la présence de la TBE demeure encore concentrée dans les terres privées du sud de la
région où des défoliations sont relevées annuellement depuis 1992.
Tableau 1 Régions administratives
Superficies (ha) touchées par la tordeuse des bourgeons de l'épinette au Québec en 2007
Unités de
gestion
Saguenay– Lac-Saint-Jean
Centre-du-Québec
21-23
22-25
24
27
33
Total
41
Niveaux de défoliation
Léger
3 249
(700)1
174
(36)
254
(0)
3
(9)
943
(0)
4 623
(745)
4
(45)
Modéré
1 748
(207)
45
(0)
82
(0)
12
(0)
71
(0)
1 958
(207)
0
(14)
308
16
0
0
5
329
0
Grave
(325)
(5)
(0)
(2)
(0)
(332)
(11)
Total
5 305
235
336
15
1 019
6 910
4
(1 232)
(41)
(0)
(11)
(0)
(1 284)
(70)
Mauricie
41
31
(479)
216
(172)
347
(27)
594
(678)
Laurentides
64
26
(17)
0
(9)
0
(0)
26
(26)
71
72
73-74
Total
81
2 549
1 077
2 177
5 803
4 572
(3 840)
(1 750)
(2 155)
(7 745)
(0)
5 199
4 385
3 685
13 269
1 103
(6 924)
(3398)
(3 270)
(13 592)
(0)
10 150
6 680
7 369
24 199
273
(12 929)
(6 274)
(5 581)
(24 784)
(0)
17 898
12 142
13 231
43 271
5 948
(23 693)
(11 422)
(11 006)
(46 121)
(0)
93
94-96
97
Total
9 397
7 367
1 345
18 109
33 168
(1 528)
(252)
(0)
(1 780)
(10 811)
9 263
8 565
967
18 795
35 341
(415)
(20)
(0)
(435)
(14 429)
4 988
12 001
97
17 086
42 234
(104)
(0)
(0)
(104)
(25 258)
23 648
27 933
2 409
53 990
110 743
(2 047)
(272)
(0)
(2 319)
(50 498)
Outaouais
Abitibi-Témiscamingue
Côte-Nord
Total général
( )1 : Superficies touchées en 2006
126
Carte 1. Défoliations causées par la tordeuse des bourgeons de l’épinette au Québec en 2007
127
Carte 2. Défoliations causées par la tordeuse des bourgeons de l’épinette sur l’île d’Anticosti en 2007
Le suivi des populations de TBE se poursuit dans le réseau de surveillance du MRNF. Les
inventaires de prévision, auxquels participe la Société de protection des forêts contre les insectes et
maladies (SOPFIM), sont en cours. Ils permettront de prédire les tendances évolutives des
populations et des dégâts qui pourraient survenir en 2008. Les résultats seront disponibles à
l’automne.
TORDEUSE DU PIN GRIS
Choristoneura pinus pinus
L’infestation de la tordeuse du pin gris s’est résorbée presque entièrement après trois années
d’activité sur l’île du Grand Calumet dans la région de l’Outaouais. Les coupes de récupération sont
la principale cause de cette diminution en superficie qui totalise seulement 7 hectares cette année.
128
Des dommages au sol ont cependant été observés au sud-ouest de Fort-Coulonge. Le suivi des
populations de cet insecte se poursuit dans notre réseau de surveillance. Des renseignements sur les
tendances évolutives de l’infestation pour 2007 seront disponibles à l’automne.
Tableau 2 – Superficies (ha) affectées par la tordeuse du pin gris au Québec en 2007
Région
administrative
Unité de gestion
Outaouais
71
Léger
7
(108) 1
7
(108) 1
Total général
Niveaux de défoliation
Modéré
Grave
0
0
(53)
0
0
(53)
(18)
Total
7
(179)
7
(179)
ARPENTEUSE DE LA PRUCHE
Lambdina fiscellaria fiscellaria
Ce défoliateur polyphage est reconnu pour ses spectaculaires explosions de population,
généralement de courte durée, qui peuvent causer la mort rapide de sapins baumiers sur de grandes
étendues. La dernière épidémie d’envergure couvrait, à son plus fort en 2001, près de 925 000
hectares dans la région de la Côte Nord. En 2007, aucune défoliation n’a été relevée pour cet insecte.
Les prévisions sur l’évolution des populations de ce ravageur pour 2008, établies à l’aide du relevé
des œufs, seront disponibles à l’automne.
TORDEUSE DU TREMBLE
Choristoneura conflictana
La tordeuse du tremble est un important défoliateur du peuplier faux-tremble présent dans
toute l’Amérique du Nord. Les épidémies de l’insecte au Québec se produisent à des intervalles de 8
à 12 ans et affectent les peupliers faux-tremble sur de très grandes superficies. Bien que
spectaculaire, la défoliation presque totale des arbres en mai et juin ne cause généralement pas de
dommage importants. En effet, les dégâts se produisent assez tôt en saison ce qui laisse le temps aux
peupliers de produire une nouvelle série de feuilles et ainsi d’emmagasiner leurs réserves pour
l’année suivante. En 2007, l’épidémie s’est résorbée dans la région du Saguenay−Lac-Saint-Jean mais
a continué sa progression dans les régions de la Côte-Nord, du Bas-Saint-Laurent, de la Gaspésie–
Îles de la Madeleine, de la Capitale-Nationale, de la Mauricie, de Lanaudière et de Chaudière
Appalaches.
Les populations de la tordeuse du tremble au Saguenay−Lac-Saint-Jean ont chuté après trois
années d’activité intense dans cette région. L’épidémie s’est déplacée vers le nord où des dommages
129
légers à modérés ont été notés. Quelques foyers de dommages persistent toutefois dans les
contreforts de la plaine du Lac-Saint-Jean et de la rivière Saguenay. Dans la région de la Côte-Nord,
l’insecte sévit sur l’ensemble du territoire où l’on trouve du peuplier faux-tremble. Les défoliations
sont toutefois de moindre intensité qu’en 2006 dans le sud de la région. Les infestations dans la
région du Bas-Saint-Laurent ont continué leur progression en 2007. Des dégâts majoritairement
modérés ont été observés dans le secteur compris entre La Pocatière, Trois-Pistoles et Dégelis. Dans
le secteur plus à l’est, qui s’étend de Trois-Pistoles jusque dans la région de la Gaspésie–Îles-de-laMadeleine, les dommages ont atteint des niveaux généralement graves. Ils se trouvent tout le long de
la côte jusqu’à Rivière-au-Renard en Gaspésie. Des dégâts ont aussi été relevés dans la vallée de la
Matapédia et dans la baie des Chaleurs. À plusieurs endroits, le peuplier a aussi été défolié par les
chenilles du papillon satiné, Leucoma salicis, et d’importants vols de ce papillon blanc ont été
observés.
Dans la région de la Capitale-Nationale, la tordeuse du tremble a causé des dégâts significatifs
variant de légers à élevés dans les unités de gestion de Charlevoix et de Portneuf-Laurentides. Dans
la région de Chaudière-Appalaches, de fortes défoliations sont apparues cette année sur le peuplier
faux-tremble, dans un large corridor s’étendant de Saint-Malachie au sud-ouest et Saint-Just-deBretenières au sud-est, vers le nord-est, au-delà de Sainte-Perpétue. Des dommages ont aussi été
relevés entre Saint-Gédéon et Saint-Ludger. L’étendue de la zone touchée par la tordeuse du tremble
dans la région de la Mauricie s’est agrandie en 2007. La majorité des dégâts se trouvent distribués en
petits foyers dans la zone s’étendant de la réserve faunique de Mastigouche à l’ouest, jusqu’aux
limites de Saint-Georges-de-Champlain au sud, et dans la partie est de l’unité de gestion de Windigoet-Gouin au nord. Dans la région de Lanaudière, l’infestation a diminué dans le secteur de Saint
Michel des Saints (unité de gestion de L’Assomption-Matawin). L’insecte est toujours présent dans
l’Outaouais mais il n’y a pas causé de dommages significatifs en 2007.
LIVRÉE DES FORÊTS
Malacosoma disstria
Cet insecte important du peuplier faux-tremble a été noté plus fréquemment en 2007. Des
défoliations légères ou des colonies ont été aperçues dans quelques régions de la province : le
Saguenay-Lac-Saint-Jean, la Mauricie, l’Outaouais et l’Abitibi-Témiscamingue.
Des défoliations de niveau trace ont été relevées près de Saint-Félicien (unité de gestion de
Roberval et de Saint-Félicien) et de Ville-Marie (unité de gestion du Témiscamingue). De plus, dans
130
les unités de gestion du Saguenay-Sud-et-Shipshaw, du Témiscamingue et de Rouyn-Noranda,
quelques peuplements supportaient de faibles populations (présence de colonies au tronc). La
présence de cette livrée a aussi été signalée dans les régions de la Mauricie, de l’Outaouais et de la
Capitale Nationale.
CHENILLE À TENTE ESTIVALE
Hyphantria cunea
Ce défoliateur d’arbres feuillus se remarque facilement aux tentes de soie blanche que ses
chenilles tissent dans les arbres en bordure des routes et dans les peuplements clairsemés à partir du
mois d’août afin de s’abriter et se nourrir en sécurité. Cet insecte peut se nourrir du feuillage d’une
centaine d’essences feuillues différentes au Québec bien qu’il se retrouve préférentiellement sur le
frêne, l’orme et le cerisier de Pennsylvanie. L’impact de la chenille à tente estivale est peu important
sur les arbres car les dégâts se produisent à la fin de la saison de végétation lorsque la croissance
annuelle de l’arbre est presque terminée. Des dommages causés par cet insecte sont rapportés depuis
quelques années, principalement dans la région de l’Outaouais. En 2006, des populations
importantes de l’insecte étaient observées dans les régions de l’Abitibi-Témiscamingue, de
l’Outaouais et des Laurentides. En 2007, les manifestations de l’insecte sont relevées dans les mêmes
régions ainsi que dans celle de la Capitale Nationale mais, dans l’ensemble, les populations sont
moins nombreuses qu’en 2006.
MALADIE DU ROND
Heterobasidion annosum
Ce pourridié s’installe dans des plantations de pins rouges une dizaine d’années suivant des
éclaircies ou des coupes. Il entraîne la mortalité d’arbres à partir d’un point central, qui est
généralement une souche contaminée. La maladie a été détectée pour la première fois au Québec en
1989 dans la région de l’Outaouais. Avec les années, la maladie a été rapportée dans plusieurs sites
des régions des Laurentides et du Centre-du-Québec. En 2007, deux plantations dans la région de
Lanaudière s’ajoutent à la liste des sites affectés.
131
Bilans du relevé des insectes et maladies des arbres du Québec:
http://www.mrnf.gouv.qc.ca/forets/fimaq/insectes/fimaq-insectes-portrait.jsp
Cartes des relevés aériens de défoliation:
http://www.mrnf.gouv.qc.ca/forets/fimaq/insectes/fimaq-insectes-portrait-superficies.jsp
Quebec pest reports can be found at:
http://www.mrnf.gouv.qc.ca/forets/fimaq/insectes/fimaq-insectes-portrait.jsp
Aerial survey maps can be found at:
http://www.mrnf.gouv.qc.ca/forets/fimaq/insectes/fimaq-insectes-portrait-superficies.jsp
132
CROSS-COUNTRY CHECK-UP / TOUR D’HORIZON
ATLANTIC CANADA / LE CANADA ATLANTIQUE
Preliminary Summary of Forest Pest Conditions in New
Brunswick in 2007 and Outlook for 2008
N. Carter, L. Hartling, D. Lavigne, J. Gullison
D. O’Shea, J. Proude, R. Farquhar, and D. Winter
Department of Natural Resources, Forest Pest Management Section
1350 Regent St., Fredericton, NB E3C 2G6
SUMMARY
Spruce Budworm
In 2007, 48% of the pheromone traps were positive, down from 60% last year and the high of
81% in 2005. Also, the Provincial mean trap catch decreased to 2.28 moths/trap, down from 3.81
and 2.68 moths/trap in 2005 and 2006, respectively. These two consecutive years of decreases add
to the uncertainty of forecasting long-term trends for spruce budworm. Only 6 over wintering L2
larvae were detected in two plots in the north-western part of the Province. Defoliation by spruce
budworm in NB was last recorded in 1995 when the last outbreak subsided.
Hemlock Looper
No defoliation was forecast for 2007, and none was detected. Following a minor population
increase in 2004, pheromone trap catches declined in 2005 and 2006, but increased very slightly in
2007, though not enough to expect defoliation in 2008.
Gypsy Moth
Defoliation was last detected in 2003; and populations generally declined up to 2005. Despite
the decline in populations, the high populations noted in 2001-03 increased the risk of spread of
gypsy moth, hence new positive sites throughout south-eastern New Brunswick have been found in
the last several years. In 2005, the CFIA increased the regulated areas from the smaller parish level
to the larger county level and included eight counties, plus the City of Miramichi. In 2005, evidence
of new populations was found in Moncton and Memramcook in Westmorland County, and
Bouctouche in Kent County. A mild winter in 2005-2006 led to high egg survival (92%) and
increases in pheromone trap catches and egg mass densities in 2006. New egg masses were again
135
detected in Memramcook and Bouctouche, and for the first time in Sackville and Petitcodiac leading
to the addition of Westmorland County and the Town of Bouctouche to CFIA's list of regulated
areas. Despite these increases, no defoliation was forecast for 2007 and none was detected. The
winter of 2006-2007 was more typical with colder minimum temperatures. Nonetheless, egg survival
(82%) was higher than expected. This, however, did not translate into an increase in pheromone trap
catches and egg mass densities in 2007. It is speculated that diseases played a role in keeping
populations in check. Both pheromone trap catches and egg mass densities were lower in 2007 than
observed in 2006 and no defoliation (except possibly localized areas) is forecast for 2008. Survey
results indicate that much of the northern part of the Province still remains free of this pest and no
new locations with gypsy moth life-stages were found outside the currently regulated areas.
Whitemarked Tussock Moth
In 2005, population increases (since 2002) were detected by pheromone traps and ground
observations raising speculation that greater numbers might occur in 2006. Indeed, the frequency of
encountering incidental levels of larvae in the field significantly increased in 2006 and an eggmass/life-stage survey was conducted. Despite finding egg masses at 2% of the sites, and new
cocoons at 26% of the plots, populations apparently decreased in 2007 according to the survey data
which showed that trap catches declined from the previous two years. No defoliation is expected in
2008.
Rusty Tussock Moth
In 2007, populations were at their lowest level ever recorded since pheromone trapping began
in 1998. No defoliation is expected in 2008.
Jack Pine Budworm
Populations remain at low endemic levels according to pheromone trap catches since 1997.
No defoliation is expected in 2008.
136
Forest Tent Caterpillar
According to pheromone trap catch data, populations seemed to decline from 2002 to 2005;
but catches increased in 2006 leading to a speculation that this might be the start of increasing
populations. In 2007, however, trap catches drastically declined to the lowest levels recorded during
the six years that trapping has been conducted. No defoliation is expected in 2008.
Balsam Twig Aphid
In 2007, the number of plots with detectable balsam twig aphid decreased to 47% compared
to 70% in 2006. It is not clear from the year-to-year trends whether populations will increase or
decrease in 2008.
Balsam Gall Midge
In 2007, fir plots with balsam gall midge populations increased for the second straight year to
41%. If historic patterns repeat themselves it is likely that populations could still increase somewhat
over the next few years.
Balsam Woolly Adelgid
A spring survey at 12 sites indicated decreases in the number of adults at 7 sites; increases at 3
sites; and no change at 2 sites. In addition to decreases in the total number of adults found, mortality
of over wintering stages was also confirmed by the presence of dead nymphs at 6 of the 12 sites.
Despite milder temperatures caused by coastal influences, a declining trend in populations continued
at several coastal sites suggesting that there are also other factors influencing population levels.
Butternut Canker
This disease was first confirmed to be in NB in 1997 at 5 sites near Woodstock. In 2004, the
CFS confirmed several more positive sites, some about 50 km farther north. In 2005, butternut trees
were put on the Endangered List under the Canadian Species at Risk Act, partly because of the
presence of butternut canker. The CFS reported no change in 2006. In 2007, however, they found
several new sites farther south.
137
Hemlock Woolly Adelgid
In 2005, a detection survey for this non-native pest was conducted for the first time in
forested areas (30 hemlock stands) but no signs of the insect or damage were found. The survey was
not repeated in 2006. In 2007, 52 hemlock stands were assessed, but again no life-stages or
symptoms of damage were detected.
There were no reported changes for other foreign pests including: Brown Spruce Longhorn
Beetle (absent), Pine Shoot Beetle (absent), European Larch Canker (present throughout
southern NB), and European Race of Scleroderris Canker of Pines (known only at 3 sites in
north-western NB).
Miscellaneous insects (especially Pine Leaf Adelgid, Aspen Leaf Roller and Large Aspen
Tortrix) were reported.
No significant pests were encountered in Provincial seed orchards or the Provincial forest tree
nursery.
Introduction
O
utbreaks of minor and major forest pests occasionally occur and cause variable amounts of
growth loss and tree mortality. Besides affecting the natural forest, outbreaks can adversely
affect high-value reforestation and tree improvement programs, from nurseries to seed orchards, to
plantations and thinned stands. Thus, long-term forest management plans are constantly under
threat of possible compromise from unwanted pest outbreak. In addition to timber losses, major
effects can be caused to non-timber values such as terrestrial and aquatic wildlife habitat,
recreational sites and aesthetics.
Besides native pests, today’s global economy brings increased risk from the accidental
introduction of insects and diseases from around the World. Such introductions could not only
cause direct impacts on natural forests and the environment, but also indirect economic impacts
through regulations placed on domestic, national, or international movement of goods. These trade
issues can negatively affect the ability of small and large companies to be competitive in local and
global markets. For all these reasons, it is necessary to know about the status of forest pests and the
threats they pose.
138
Monitoring and forecasting the status of forest pests requires the use of different techniques
that reflect survey objectives, pest population levels, the pest’s biology, and knowledge of
relationships between numbers of pests and damage. For some pests these are well established; for
others these are not. Aerial surveys provide the means to map damage in various categories to assess
the extent and severity of outbreak over vast areas.
For some insects, surveys can be conducted to establish population levels by sampling
appropriate locations for eggs or egg masses, depending on the female’s egg laying habits. Surveys of
larvae can be conducted during the insect’s active feeding period, or during periods when they are
inactive, such as in the over-wintering stage. Surveys of pupae to estimate insect population levels
are less common.
Special odours or scents, called pheromones, are given off by female insects to attract males of
the same species for mating. In recent years, the identification and artificial synthesis of sex
pheromones for a number of forest insects has led to the use of pheromone-baited traps as a
technique to monitor these pests. This is especially true when populations are very low and not
detectable by traditional survey sampling intensity for other life stages. Because these artificial lures
are often very potent, they sometimes offer the opportunity to detect subtle increases that might not
be as easily detected by the other means. In other instances, they might still be under development
and results have to be interpreted with caution. Depending on trap catch thresholds or yearly trends,
these surveys could result in the implementation of other methods to forecast levels of damage
expected the ensuing year.
One of the cornerstones of DNR’s pest monitoring program is the use of pheromone traps
for the early detection of changes in population levels of many softwood and hardwood forest pests,
before they increase to potential outbreak status. It is important, however, to be aware that the
number of insects captured in a trap is greatly influenced by the type of lure used, its concentration,
the trap design and the insect species itself. Therefore, a moth count considered to be biologically
significant for one species may be insignificant for another by several orders of magnitude.
Consequently, the absolute number of insects in a trap is not as important as the trends between
years and over time.
139
PESTS OF SOFTWOODS
Spruce Budworm
No defoliation by spruce budworm has been reported since 1995, the last year that controls
were applied. Since then, operational monitoring has been done using a combination of spruce
budworm pheromone traps to capture male moths and branch samples to collect over wintering
second instar larvae (L2). Monitoring locations are more or less evenly distributed throughout the
Province, and supplementary sampling is done as needed. So far, pheromone trap catches were
lowest in 1997. This was followed by an overall general upward trend to a maximum of 81% of the
traps that caught moths in 2005. Decreases in the percent of positive traps occurred in 2006 and
again in 2007; also, the Provincial mean trap catch decreased to 2.28 moths/trap, down from 3.81
and 2.68 moths/trap in 2005 and 2006, respectively (Table 1). These two consecututive years of
decreases add to the complexity of forecasting long-term trends for spruce budworm. The highest
trap catches were detected in north-western New Brunswick.
Table 1: Summary of spruce budworm pheromone trap surveys conducted by FPMS in New Brunswick from 1995 to
2007.
Percent of traps in each class of
Number of
Maximum trap Mean trap
% of traps
Year
moths/trap
traps
catch
catch
positive
0
1-10
>10
1995
296
42%
50%
8%
0 - 47
3.27
58%
1996
99
53%
41%
6%
0 - 54
3.24
47%
1997
148
73%
27%
0%
0- 6
0.49
27%
1998
148
67%
33%
0%
0 - 10
0.95
33%
1999
155
59%
41%
<1%
0 - 12
1.05
41%
2000
154
55%
42%
3%
0 - 25
1.67
45%
2001
197
42%
50%
8%
0 - 32
2.90
58%
2002
198
65%
33%
2%
0 - 12
1.02
35%
2003
198
57%
39%
4%
0 - 18
1.89
43%
2004
196
52%
45%
4%
0 - 17
1.86
49%
2005
255
19%
73%
8%
0 - 41
3.81
81%
2006
281
40%
54%
6%
0 - 42
2.68
60%
2007
298
52%
45%
4%
0 - 56
2.28
48%
In 1998, DNR modified its L2 monitoring survey (which replaced the egg mass survey in
1985) by using a combination of sampling intensities consisting of a ‘traditional’ set of plots, where 3
trees/plot are sampled; and more intensive plots, where 30 trees/plot are sampled. Additional plots
are added as deemed necessary in any particular year, and this may also be followed by
supplementary sampling to refine the population forecast.
140
From 1995 to 2006, L2 surveys also show endemic populations within the Province. Only
trace levels have been detected at a small number of plots fluctuating from a low of 0% in 1999 to a
high of 7.1% in 2004 (Table 2). In 2006, only one plot had detectable larvae (i.e., 2 larvae from a 3tree plot). That plot was located on the north-western part of the Province referred to as the
‘panhandle’. In 2007, only two plots, both in north and north-western New Brunswick, were positive
for L2 larvae. At those two plots, 2 larvae were extracted from a 3-tree plot and 4 larvae from a 30tree plot. Overall, any population trends suggested by the pheromone trap data are less clear with
the L2 data at this time, possibly reflecting the different sensitivities of each survey, as currently
conducted, to detect subtle changes within low density spruce budworm populations.
Table 2: Summary of spruce budworm larvae detected in L2 surveys conducted by FPMS in New Brunswick from 1995 to
2007. (Supplementary samples to refine the forecast are not included in this table).
Number of
Number of
Number of
Number (%) of plots with
Number of L2
Year
plots
trees/plot
branches
L2 detected
detected
1995
814
3
2442
28 (3.4%)
65
1996
503
3
1509
3 (0.6%)
8
1997
317
3
951
2 (0.6%)
2
1998
75
3 & 30
900
3 (4.0%)
4
1999
75
3 & 30
900
0 (0.0%)
0
2000
75
3 & 30
900
1 (1.3%)
5
2001
78
3 & 30
909
1 (1.3%)
1
2002
75
3 & 30
900
1 (1.3%)
1
2003
79
3 & 30
1020
4 (5.1%)
8
2004
99
3 & 30
1269
7 (7.1%)
19
2005
95
3 & 30
1041
3 (3.2%)
5
2006
100
3 & 30
1056
1 (1.0%)
2
2007
110
3 & 30
1167
2 (1.8%)
6
In addition to DNR’s pheromone trap and L2 surveys, JD Irving, Limited conducts similar
surveys on parts of their freehold limits and submits samples to FPMS for processing. Their
pheromone trap results were similar to the provincial survey, but L2 results are not available at this
time.
Jack Pine Budworm
Defoliation by jack pine budworm in New Brunswick has not been reported since 1983,
though monitoring is conducted annually because of the importance of natural jack pine stands and
plantations for the Provincial wood supply. A network of pheromone traps was initiated in 1997 at
locations selected to represent these stands. No moths were caught in the first year, but since then
moths have been caught annually, albeit in low numbers, with the maximum being 41 moths in one
141
trap in 1999 (Table 3). In that year, a follow-up L2 survey was done, but no larvae were detected. In
2004, it was decided to switch from Delta traps (sticky on 3 sides) to the Multi-Pher1® traps with
Vaportape ll® killing strip to improve the quality of samples collected and facilitate more accurate
moth identification.
In 2006, we had paired our standard traps, baited with a rubber septa pheromone lure (100 µg
load) produced by the New Brunswick Research & Productivity Council (RPC) (source may soon no
longer be available), with traps baited with a PVC flex lure (300 µg load) commercially available from
Phero Tech Inc. (PTI) in British Columbia. Traps were placed approximately 40-m apart at each
location, and 42 pairs of traps were ultimately available for comparison. Half the traps caught no
moths at all. Of the 21 positive pairs, those baited with the RPC lure caught more moths 67% of the
time; those with the PTI lure had higher counts 19% of the time; and trap catches were identical
14% of the time. Trap catches were very low with mean catch being 1.07 moths/trap for the RPC
lure and 0.45 moths/trap for the PTI lure. Although these were statistically different (P<0.001), we
would like to have had higher populations to compare. Similar studies done in higher populations in
Manitoba and Saskatchewan have yielded no significant differences between the two lure sources,
indicating a switch to the PTI lure may be acceptable.
Since the inception of the trapping program in New Brunswick, jack pine budworm
populations have remained at endemic levels, with only low moth counts found in pheromone traps.
Against this backdrop, 2007 seemed an opportune time to switch lures to the commercially available
PVC flex lure (300 µg load). Any spikes in trap catches in future years can then be attributed to
population change rather than the switch to the new lure.
Survey results in 2007 indicate that jack pine budworm populations are still at endemic levels
throughout the monitored zones (Table 3); hence, larval densities in 2008 are expected to stay at
very low to undetectable levels throughout New Brunswick.
142
Table 3: Summary of jack pine budworm pheromone trap surveys conducted by FPMS in New Brunswick from
1997 to 2007.
Percent of traps in each class of
Number
% of traps
Moths/trap Mean trap
Year
moths/trap
of traps
positive
(range)
catch
0
1-10
11-20
21-40 >40
1997
46
0%
100%
0%
0%
0%
0%
0
0.00
1998
52
42%
58%
42%
0%
0%
0%
0– 8
1.42
1999
51
55%
45%
45%
8%
0%
2%
0 – 41
3.25
2000
51
27%
73%
25%
2%
0%
0%
0 – 17
1.45
2001
51
57%
43%
47%
2%
8%
0%
0 – 30
1.51
2002
51
41%
59%
35%
4%
2%
0%
0 – 22
1.92
2003
50
26%
74%
24%
2%
0%
0%
0 – 14
1.12
2004
50
34%
66%
34%
0%
0%
0%
0 – 10
1.46
2005
49
39%
61%
39%
0%
0%
0%
0 – 10
0.82
2006
47
43%
57%
43%
0%
0%
0%
0– 9
1.02
2007
49
53%
47%
49%
4%
0%
0%
0 – 13
1.59
Hemlock Looper
This insect can kill trees in a single year. The only reported outbreak of hemlock looper in
New Brunswick occurred from 1989 to 1993. Areas affected were in the north-western, northcentral and south-western parts of the Province. In the north, the Canadian Forest Service (CFS)
estimated about 650 000 m3 of merchantable balsam fir were killed during this period, though
salvage harvesting by Fraser Inc. and Repap New Brunswick Inc. reduced the volumes actually lost.
Controls were applied in 1990, 1991 and 1993.
Since 1997, populations have been monitored using a network of pheromone traps throughout
the Province supplemented by egg surveys as needed. Pheromone trap catches had increased 3.3fold Province wide in 2000 (hinting an impending outbreak), but decreased in 2001, though
defoliation was mapped over 760 ha that year. In 2002 and 2003, no defoliation was recorded and
trap catches resembled those of 1997-1999 (Table 4). In 2004, a 2.5-fold Province-wide increase in
trap over 2003 occurred, somewhat resembling the increase seen in 2000. Highest trap catches
occurred in the extreme northwest close to the Québec border and in the north-central parts of the
Province. Consequently, a follow-up egg survey was done in selected areas to see if populations were
high enough to anticipate defoliation in 2005. Based on previous experience with the number of
eggs encountered, no defoliation was anticipated for 2005, and none was detected from aerial
surveys or ground observations. Likewise, no defoliation was reported in 2006.
Mean and maximum trap catch progressively decreased from 2004 to 2006 suggesting the
increase in 2004 was part of normal population fluctuations. Moth counts slightly increased in 2007,
143
but remain at endemic levels. Nonetheless, such increases are worth attention to ensure prompt
detection of an outbreak.
In addition to DNR’s pheromone trap survey, JD Irving, Limited conducts a similar survey on
parts of their freehold limits and submits samples to FPMS for processing. Results are not available
at this time.
Table 4: Summary of hemlock looper pheromone trap surveys conducted by FPMS in New Brunswick from
1997 to 2007.
Year Number of traps % of traps positive
Mean trap catch*
Moths/trap (range)*
1997
103
99
92
0 – 448
1998
95
99
71
0 – 524
1999
98
100
69
3 – 411
2000
99
100
230
3 – 863
2001
199
>99
89
0 – 837
2002
101
99
77
0 – 444
2003
98
100
64
1 – 342
2004
101
100
157
6 – 1127
2005
198
>99
115
0 – 723
2006
93
99
105
0 – 649
2007
105
99
121
0 – 719
* Numbers are based on pheromone lure strength of 10-µg. For 1997 to 2000, the numbers of moths/trap
(using 200-µg lure) were converted to estimates of moth catches using 10-µg strength lure using the equation: Y
= 0.565 X + 1.469 developed from a 3-year study, 1998 – 2000.
Whitemarked Tussock Moth
The last outbreak of this pest in New Brunswick occurred in the 1970s. In 1975, the area
defoliated was 25 000 ha, and in 1976 it was 202 400 ha. Thus, the population explosion of this
insect in Nova Scotia in 1997 coupled with their forecast for 1998 caused great interest in New
Brunswick. Since 1998, however, annual monitoring with pheromone traps and occasional egg mass
searches had not revealed any significant populations in this Province (Table 5). Nonetheless, a lowlevel increasing trend in populations seemed somewhat evident since 2001 when no moths were
detected followed by increases up to 2006 when the highest percent (39%) of traps were positive
with the highest mean (0.92 moths/trap) and maximum trap catch (12 moths) (Table 5). Indeed, the
frequency of encountering incidental levels of larvae in the field significantly increased in 2006. In
view of these changes, an egg-mass/life stage survey was conducted in southern New Brunswick at
245 locations (i.e., 3 lower-crown branches x 20 balsam fir trees/plot x 245 plots = 14 700 branches
examined). New cocoons were found at 26% of the sites, yet new egg masses were only detected at
2% of the sites. Examination of the cocoons/pupae found that on average 25% of the insects
successfully emerged from their pupal cases, 39% were parasitized; 22% failed to successfully
complete development, 7% were diseased; and 6% were predated upon. Whether these low-level
144
changes in pheromone trap catches and findings of cocoons are indications of an impending
outbreak, or are normal endemic fluctuations, were then unclear.
Table 5: Summary of adult whitemarked tussock moths caught in pheromone trap surveys conducted by FPMS
in New Brunswick from 1998 to 2007.
Year
Number of traps Number (%) of traps positive Moths/trap (range) Mean trap catch
1998
59
5 (8%)
0–4
0.17
1999
57
2 (4%)
0–2
0.05
2000
54
2 (4%)
0–1
0.04
2001
49
0 (0%)
0
0.00
2002
49
1 (2%)
0–1
0.02
2003
49
6 (12%)
0–4
0.22
2004
51
5 (10%)
0–1
0.10
2005
49
12 (24%)
0–4
0.51
2006
75
29 (39%)
0 – 12
0.92
2007
102
11 (11%)
0–2
0.15
As it turned out, in 2007, moth catches in pheromone traps declined from the previous two
years. Only 11% of the traps were positive, with 1-2 moths/trap. Positive traps were found in southeastern New Brunswick, in a geographic band east of Saint John, running along the Bay of Fundy to
the Nova Scotia border and Northumberland Strait. Whitemarked tussock moth populations are
expected to remain at endemic levels in 2008.
Note: There is a concern about the sensitivity of the pheromone lure currently in use and research is being conducted
(led by Dr. G. Grant of the CFS Great Lakes with collaboration in NB by FPMS, and in NS by NSDNR) to see if a
better lure might be developed for monitoring this insect. Some of that research is about to be published. No
collaborative research was done in 2007.
Rusty Tussock Moth
This insect, of European origin, is now transcontinental in distribution. It is highly
polyphagous and can attack most conifers and hardwoods. Outbreaks are usually small and of short
duration, and are not common in New Brunswick, but they have been reported several times in
Newfoundland. Each year since 1998, pheromone traps used for detecting whitemarked tussock
moth have also caught moths of this closely related species (Table 6).
In 2005, the mean trap catch was the highest yet, and the data hinted an increasing trend from
2003, though overall results were not significantly beyond levels seen in the past. And, no defoliation
has been detected so far, thereby suggesting that the numbers of moths being caught are below the
threshold of impending detectable larval feeding, and hence below an indication of when an egg
mass survey might be needed. Thus no defoliation was forecast for 2006 and none was detected.
No matter what measure was used for the 2007 survey, (e.g., mean trap catch, maximum moth
catch, number of positive traps), trap catches of rusty tussock moth were lower than in any other
145
year of monitoring for this insect. In reviewing past data, it now appears that the observed
fluctuations in trap catch between years (e.g., high of 2.4 moths/trap in 2005 to a low of 0.4
moths/trap in 2007) are normal fluctuations in a stable, endemic population. Pheromone trap
catches indicate that rusty tussock moth populations will remain at endemic levels throughout
southern New Brunswick in 2008.
Table 6: Summary of adult rusty tussock moths caught in pheromone trap surveys conducted by FPMS in New
Brunswick from 1998 to 2007.
Year
Number of traps
Number (%) of traps positive
Moths/trap (range)
Mean trap catch
1998
59
19 (32%)
0– 9
0.9
1999
57
20 (35%)
0 – 11
1.4
2000
54
14 (26%)
0 – 10
0.8
2001
49
19 (39%)
0 – 20
1.8
2002
49
30 (61%)
0 – 18
1.5
2003
49
21 (43%)
0 – 12
1.3
2004
51
17 (33%)
0 – 10
1.0
2005
49
26 (53%)
0 – 20
2.4
2006
75
30 (40%)
0 – 32
2.1
2007
102
17 (17%)
0– 7
0.4
Balsam Twig Aphid
This insect is not a significant forest pest, though it can be a major problem for the Christmas
tree industry. Populations are monitored in a general way throughout the Province by assessing their
presence on balsam fir branch samples collected for the spruce budworm L2 survey. Analyses of
data from previous years indicate a tendency for balsam twig aphid populations to increase and
decrease in general synchrony throughout the Province (though local variations do occur).
In 2007, the number of plots with detectable balsam twig aphid decreased to 47% compared
to 70% in 2006. It is not clear from the year-to-year trends whether populations will increase or
decrease in 2008. Because these data are collected at a limited number of locations widely distributed
throughout the Province, Christmas tree growers need to monitor conditions on their own property.
Balsam Gall Midge
This insect is also not considered a significant forest pest, but like the balsam twig aphid it can
be a problem for Christmas tree growers. Populations of balsam gall midge are also monitored
around the Province by assessing their presence on balsam fir branch samples collected for the
spruce budworm L2 survey. As with balsam twig aphid, analyses of previous years’ data indicated a
tendency for balsam gall midge populations to increase and decrease in general synchrony (with
some local variations) throughout the Province. Likewise, the data since 1984 suggest a cyclical trend
146
in populations. In this case, because balsam gall midge populations had been low for a few years, we
speculated that increases might soon occur if the past trend repeated.
In 2006, an increase was indeed detected as 23% of the plots had galls present (up from three
consecutive years of less than 5%). In 2007, fir plots with balsam gall midge populations increased
for the second straight year to 41%. If historic patterns repeat themselves, it is likely that
populations could still increase somewhat over the next few years. Again, Christmas tree growers
need to monitor conditions on their own property because these data come from a limited number
of samples widely distributed throughout the Province.
Balsam Woolly Adelgid
This insect, of European origin, was first found in the Maritimes in the early 1900s and in
Quebec in 1964. It only attacks true firs of the genus Abies. Symptoms of attack, especially gouty tops,
are noticeable in southern New Brunswick where local tree mortality, severe in some cases, has been
reported in recent years. It has been speculated that populations had increased in the 1990s due to a
number of milder winters. Mortality of the adelgid’s over-winter dormant stage increases when
temperatures reach -20oC and is complete at -37oC. Concerns by forest industry prompted
distribution surveys, over-winter survival surveys and small-scale studies on growth impact in the
past few years.
Surveys conducted since 2002 have revealed symptoms of attack throughout southern New
Brunswick below an irregular line drawn in a general north-easterly direction from about Nackawic
in the west to the City of Miramichi in the east. This southern part of the Province below this
general line is associated with milder winter temperatures more conducive to over winter survival of
the insect and corresponds very well to Plant Hardiness Zones 4b, 5a and 5b for New Brunswick
(see http://sis.agr.gc.ca/cansis/nsdb/climate/hardiness/intro.html). Curiously, this line is similar to,
but a little farther south than reported in the literature (i.e., Fig. 32 in Prebble, M.L. (editor). 1975.
Aerial control of forest insects in Canada. Env. Can. Ottawa).
In the spring of 2003, a system to monitor annual population changes of balsam woolly
adelgid was initiated at 12 locations in the southern region of the Province. In the spring of 2007,
branch samples were collected and processed to determine the number of adults present. In contrast
to the mild winter of 2005-2006 where minimum temperatures never fell below -20ºC (Fredericton
Airport), in 2006-2007 there were 18 days where temperatures were less than -20ºC (Fredericton
147
Airport). Given these more typical winter temperatures, some over wintering mortality was
anticipated. At 7 sites there were decreases in the number of adults found; 3 sites had increases; and
2 had no change. Besides decreases in the total number of adults found, mortality of over wintering
stages was also confirmed by the presence of dead nymphs at 6 of the 12 sites. Despite milder
temperatures caused by coastal influences, a declining trend in populations continued at several
coastal sites suggesting that there are also other factors influencing population levels.
Brown Spruce Longhorn Beetle
This non-native insect was confirmed present in Nova Scotia in the spring of 2000 and it was
subsequently revealed that it had been present at least since 1990, but had mistakenly been misidentified as a similar native species. It appears capable of killing red, white, black and Norway
spruce and poses a threat to spruce forests and associated forest industry. Eradication actions, under
the leadership of the Canadian Food Inspection Agency (CFIA) under the federal Plant Protection Act,
were initiated in 2000. There is speculation that population increases and expansion could be
associated with extensive wind-thrown trees from Hurricane Juan in 2003.
So far, surveys have not detected its presence in New Brunswick. However, reports from
Nova Scotia confirmed a significant increase in the area over which the beetle was found in 2006,
thus jeopardizing continued eradication actions. As a result, the CFIA switched to a ‘slow-thespread’ policy and instituted a greatly expanded Containment Area to regulate the movement of
specified high-risk spruce materials. That increased the concerns in New Brunswick because
softwood from that Province is sometimes delivered to mills in New Brunswick. The CFIA have
maintained dialogue with government and industry representatives of both provinces, and CFS
researchers, regarding the expanded management zone and conditions of treatment that would
facilitate the continued movement of host spruce material.
In 2007, the New Brunswick forest industry self-imposed a voluntarily one-year moratorium
on regulated spruce materials coming from the Containment Area within Nova Scotia. The CFIA
also greatly increased its survey efforts within the Atlantic Provinces and Québec in 2007, but no
BSLB were found outside Nova Scotia. Nonetheless, substantial increases were detected in that
Province, raising expectations for further expansion of the Containment Area in 2008.
148
Pine Shoot Beetle
Since 1992, this non-native insect has gradually been found from Ontario eastward into
Québec and in the Lake States, ultimately reaching Maine in 2000. In Ontario, it has been found in
association with mortality in Scots, red, white and jack pines, though it is uncertain whether Scots
pine must be present to enable populations to become high enough to damage the other pine
species. Quarantine regulations are in place under the federal Plant Protection Act administered by the
CFIA. So far, monitoring surveys done by the CFIA and CFS have not detected its presence in New
Brunswick.
Pine Leaf Adelgid
According to the literature, the life cycle of the pine leaf adelgid extends over two years and
involves five different forms and two hosts. Its primary hosts are red and black spruce and its
secondary hosts are generally eastern white pine and occasionally red, Scots and Austrian pine. It
occurs in all Canadian provinces as well as Maine, New Hampshire, Vermont and New York.
Damage on spruce consists of the formation of cone-shaped galls that do not affect the health of
the trees. On pine, damage may cause mortality of shoots and even tree death. Records indicate that
this insect has on occasion been a major pest in New Brunswick, Nova Scotia and Maine. In New
Brunswick, an outbreak started in 1942 and within 10 years all stands of red spruce and eastern
white pine in most of the Province were infested. Populations then declined unexpectedly, and have
rarely been reported since.
In 2005, the pine leaf adelgid caused widespread attack on white pine generally north and
south of the Miramichi River in central New Brunswick (e.g., north and south of the Priceville and
Doaktown area; west of Bartibog to Shinnickburn - south of Blackville; and just north of Popple
Depot) as well as eastern New Brunswick (i.e., Rogersville to Saint-Louis de Kent). Damage on
white pine was generally much less evident in 2006.
In 2007, however, widespread damage was again apparent within the same areas, as well as
other parts of the Province. Given the concerns expressed by DNR Regional and industry staff, a
survey was conducted in 2007 to examine the severity of damage, specifically in areas where
intensive pine management is conducted. Damage was rated on a total of 1996 over-story and 1835
under-story trees in 66 representative stands. Approximately 75 to 90% of the trees had damage in
149
the nil to trace categories (1-5% of the 2006 foliage affected), 7-10% had light damage (6-30% of
2006 foliage affected), and trees with moderate (31-70%) and severe (>70%) damage represented
only 15% of the trees assessed in the under-story and 2.5% in the over-story, respectively. These
results suggest that the more mature trees are less severely attacked (as reported in the literature). It
remains to be seen whether populations will persist and increase, and whether the future health and
growth of trees will be severely impacted.
Gray Spruce Looper
This insect is apparently widely distributed in North America and sometimes is also referred to
as the gray forest looper. It feeds on an array of tree species including balsam fir, hemlock, larch,
cedar, spruces and more rarely on pines. Information about insect numbers and damage in New
Brunswick is sparse. Since the institution of our pheromone trap survey for spruce budworm, a few
gray spruce looper adults have typically been found in these traps, but in 2005 the numbers were
“unusually” high with some traps having as many as 10 to 177 moths/trap. This is somewhat
curious because the spruce budworm is a member of the Family Tortricidae, and the gray spruce
looper is a member of the Family Geometridae. The “high” catches occurred in traps set out both
by FPMS and J.D. Irving, Limited in north-western New Brunswick. Ground surveys at the four
locations with the highest moth counts detected low numbers of larvae and slight amounts of
defoliation on individual branch tips of balsam fir, red, black and white spruce in both plantations
and thinnings.
In 2006 and 2007, the incidence of gray spruce looper returned to the more common
incidental levels of the past. We will remain vigilant for this insect in future surveys in case numbers
do substantially increase.
Hemlock Woolly Adelgid
The hemlock woolly adelgid, native to Japan, was first reported in western U.S. (Oregon) in
1924, and in eastern U.S. in the mid-1950s near Richmond, VA. In the U.S., it feeds only on
hemlock tree species (Tsuga spp.). The two tree species native to western U.S., western hemlock and
mountain hemlock, are not noticeably affected. In contrast, the two tree species native to eastern
U.S., eastern hemlock and Carolina hemlock, can be severely defoliated and killed, often within five
years of infestation. All ages and sizes of eastern hemlock trees are susceptible to damage. As of
1999, the USDA Forest Service had documented the insect in eleven eastern states from North
150
Carolina to Massachusetts. In Maine, after several years of detection on nursery stock (starting in
1999) its presence in the natural forest was first detected in 2003. The Maine Forest Service
implements aggressive efforts to contain or slow the spread of this pest in the State. Infested sites
occur in York County in the southern part of the State.
In 2005, FPMS conducted a detection survey in New Brunswick for this non-native pest for
the first time in forested areas (30 hemlock stands) but no signs of the insect or damage were found.
The survey was not repeated in 2006. In 2007, 52 hemlock stands were assessed, but again no life
stages or symptoms of damage were detected.
European Larch Canker
This non-native disease was first found by the CFS in New Brunswick in 1980. It is capable of
killing mature and immature larch trees. It is present mostly throughout the southern half of the
Province and quarantine regulations are in place administered by the CFIA under the federal Plant
Protection Act. In 1977, the CFS found a positive site outside, but close to the known regulated area,
but the CFIA have made no changes to the regulated zone. Surveys by the CFS from 1998 to 2000
did not detect any new positive sites, and no specific survey has been done since then.
Scleroderris Canker of Pine – European Race
The North American race of this disease seldom causes mortality to trees over 2-m tall, though
branches up to this height are affected. The European race, however, is capable of killing much
taller trees. It was once thought to occur at about a dozen sites in New Brunswick, but newer testing
methods used by the CFS in 1998 confirmed only one site was actually positive for the European
race (found on Scots pine in north-western New Brunswick). In 1999, two nearby sites (within a few
kilometres) were confirmed positive (one Scots pine and the other red pine). No new positive sites
have been reported since then. Quarantine regulations are in place under the federal Plant Protection
Act administered by the CFIA.
PESTS OF HARDWOODS
Gypsy Moth
Populations of this pest have greatly declined over the past few years. Historically, gypsy moth
was reported present in south-western New Brunswick in the mid-1930s but eradicated by 1940. It
151
was ‘rediscovered’ in the same general area in 1981, and since then it has gradually expanded its
range in the Province. Quarantine regulations have been put in place under the federal Plant Protection
Act administered by the CFIA. Defoliation (~ 4 ha of second-growth poplar) was first mapped from
the air in 1987. Increasing populations were detected in south-central regions between 1998 and
2000. This led to three consecutive years of defoliation (from 2001 to 2003) followed by population
collapse due to extremely cold winter temperatures in 2002-2003 and 2003-2004, and build-up of
larval diseases (i.e., nuclear polyhedrosis virus and the fungus Entomophaga maimaiga), along with
other natural bio-controls. Some private landowners had some of their property aerially sprayed with
Bt. in 2002 and 2003.
Annual pheromone trapping and egg mass surveys indicate that low-density populations
persist in known infested areas in southern New Brunswick and at some sites distant from them
(e.g., as far northeast as Miramichi City). During the years with high populations and defoliation
there was an increased risk of spread of this pest, hence finding new positive sites was anticipated.
In 2005, the CFIA increased the regulated areas from the smaller parish level to the larger
county level and included eight counties, plus Miramichi City. The regulated counties include:
Charlotte, Carleton, York, Sunbury, Kings, Queens, Saint John, and Albert. These new regulated
areas incorporated all the positive sites found outside the regulated area from 1993 to 2004. In the
fall of 2005, evidence of new populations was found for the first time in Moncton and
Memramcook in Westmorland County, and Bouctouche in Kent County, extending the known
distribution of gypsy moth farther eastward in the Province.
In 2006, new egg masses were again found in Memramcook and Bouctouche, and found for
the first time in Petitcodiac and in Sackville (reported by the CFIA). This led to the addition of
Westmorland County and the Town of Bouctouche to CFIA's list of regulated areas.
In the spring of 2007, egg masses were collected to estimate over winter mortality. Compared
to the mild winter in 2005-2006, minimum temperatures in 2006-2007 were more typical with 18
days where temperatures dropped below -20°C (Fredericton Airport). With these colder
temperatures, higher egg mortality was expected in the spring of 2007. A total of 44 egg masses were
collected (Apr. 4th – 10th, 2007) from five sites and 30% to 99% of the eggs in each egg mass hatched
with an overall egg hatch of 82% (compared to 92% in 2006). Despite this higher than expected
survival rate, forecasted population levels were not expected to cause noticeable defoliation in 2007
and none was detected. With this high rate of survival, however, there was an expectation that
152
populations would continue to increase. Subsequent pheromone trapping and egg mass survey
results, however, did not bear this out. Both the overall and the mean number of moths/trap catch
decreased in 2007 from 2006.
Annual changes in populations are also monitored by egg mass searches at 75 permanent
sample plots. Cursory examination of the 2007 results also shows an overall drop in population
levels. Reasons for this are speculative as no larval monitoring was done. Nonetheless, a high
incidence of a naturally occurring nuclear polyhedrosis virus and the fungus Entomophaga maimaiga
was detected at a research site (G. Thurston – CFS-AR, pers. comm.) suggesting that disease may
have played a role in keeping populations in check in 2007.
Survey results continue to indicate that large areas of northern New Brunswick still remain free
of this pest. No new areas outside of those currently regulated in southern New Brunswick were
found to have new egg masses. No defoliation, except possibly in localized areas, is expected in
2008.
Forest Tent Caterpillar
The last two outbreaks of this insect each lasted about 6 years (from 1991-96; and 1979-84)
with a 12-year period between the start of each. The former outbreak peaked at about 0.4 million ha
and the latter peaked at about 1.4 million ha. If the same trend were to repeat, a build-up of
populations would have occurred about 2003. Therefore, in 2002, in anticipation of another
outbreak, pheromone traps were set out in a network of locations evenly distributed throughout the
Province to establish baseline data for comparison in following years. From 2002 to 2005, there
appeared to be a decreasing population trend as reflected in the trap catch data giving no evidence of
an impending outbreak (Table 7).
In 2006, trap catches increased thus leading to speculation that this might signal the start of a
population rise. In 2007, however, trap catches drastically declined to the lowest levels recorded
during the six years that trapping has been conducted. In western Canada, the threshold for damage
is >100 moths/trap. If this is applicable to New Brunswick conditions, populations will have to
increase substantially before damage is again detected in this Province. No defoliation is expected in
2008.
153
Table 7: Summary of forest tent caterpillar moths caught in pheromone trap surveys conducted by FPMS in
New Brunswick from 2002 to 2007.
Year
Number
of traps
% of traps
positive
2002
2003
2004
2005
2006
2007
128
125
130
137
133
137
88
77
76
59
70
47
Percent of traps in each class of moths/trap
0
1-10
11-25
26-50
51-100
>100
13%
23%
23%
41%
30%
53%
70%
62%
71%
58%
67%
46%
23%
13%
5%
1%
3%
1%
2.3%
2%
0%
0%
0%
0%
1%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
Maximum
catch
Mean
catch
51
41
23
16
21
17
7.8
5.2
2.7
1.7
2.8
1.4
Satin Moth
This insect primarily feeds on leaves of poplar and willow. At the end of the last outbreak of
the forest tent caterpillar, defoliation by satin moth was detected for several years. An area of 4 388
ha of poplar was estimated to have been killed due to repeated defoliation by satin moth in
combination with weakening by forest tent caterpillar defoliation and two summers with drought
conditions. Since 2001, however, no significant defoliation has been detected.
Greenstriped Mapleworm
This is a native insect that attacks all species of maple (red and sugar being preferred) and
occasionally other hardwoods. Outbreaks are usually not extensive and last only 2 to 3 years, though
some tree mortality has been reported from Ontario to Nova Scotia, including New Brunswick. In
New Brunswick, defoliation has been reported for 1937, 1956, 1976-79, 1993-94, and 1997. In 2002,
defoliation was mapped over 63 ha. Defoliation was again detected in 2003 in the same general
location, but over a smaller area and was not mapped during the aerial survey. No defoliation was
mapped in 2004. In 2005, FPMS staff detected larvae and defoliation north of Priceville and at
Bettsburg. Subsequently, it was detected by FPMS staff and Regional Pest Detection Officers at a
number of scattered locations north and south of the Miramichi River from Boiestown to
Renous/Blackville in the central part of the Province. A small isolated pocket of insects was again
detected north of Priceville in 2006. No damage was reported for this pest in 2007.
Orangehumped Mapleworm
According to the literature, the orangehumped mapleworm preferably feeds on sugar maple
and occasionally on other species of hardwood such as beech, basswood, elm, and oak. Reportedly,
outbreaks are rare and of short duration and occur over limited area. In 2005, larvae and small
154
scattered stands of defoliated beech were detected by staff of Bowater Maritimes Inc. north-west of
Boiestown in an area know as Sisters Mountain/Rocky Brook area. There were no populations
detected or reported in 2006 and nothing again in 2007.
Fall Webworm
This insect is a common defoliator of hardwood trees in late summer. The webs it makes
resemble silken “nests” and these were commonly seen along the roadside around the Province in
2004. Similar conditions had been reported in the early 1990s. In 2005, there were numerous
incidental reports though seemingly less than the year before. In 2006, the insect was again reported
and observations made at sporadic locations throughout most regions of the Province but seemed
much more prevalent in the lower Saint John River Valley. There were no significant reports of this
pest in 2007.
Fall Cankerworm
This insect periodically reaches outbreak levels throughout its range in North America. Host
trees include elm, oak, ash, and maples as well as many fruit trees and shrubs. In 2005, feeding
damage was reported to about 15 ha along the southwest Miramichi River (near Blissfield) but no
larvae were found at the time it was subsequently investigated (mid-July). Damage was evident on
elm, hawthorn, alders, pin cherry, butternut and maple, and fall cankerworm was suspected. In 2006,
a visit was made in late May to the area where defoliation had been reported last year and numerous
larvae of fall cankerworm were found. There were no significant reports of this pest in 2007.
Butternut Canker
In the United States, this non-native disease is causing severe mortality of butternut trees
throughout their range. This disease was first confirmed present in New Brunswick by the CFS in
1997 at five sites in the general vicinity of Woodstock, but no regulatory action was taken by the
CFIA. Butternut is not a major component of our native forests, nor is it of major economic
importance, but the disease could pose a threat to our natural forest biodiversity. In 2004, the CFS
confirmed several new positive sites. In 2005, butternut trees were put on the Endangered List
under the Canadian Species at Risk Act. No evidence of newly infected areas was reported in 2006. In
2007, however, the CFS reported several new positive sites once again, this time somewhat farther
south (specifics to be reported later).
155
MISCELLANEOUS
Results from the annual aerial survey conducted within the Province found no evidence of
widespread damage from any major forest pests other than a 300-ha area of defoliation caused by
large aspen tortrix (Choristoneura conflictana (Walker)), as well as continued evidence of beech bark
disease in the north-central and north-western portions of the Province.
In addition, based on ground observations in early June, in the Saint John River Valley around
Fredericton, Woodstock and Florenceville there were patches of forest land with moderate and
severe defoliation on trembling aspen, caused by the aspen leaf roller (Pseudexentera oregonana
(Walsingham)). Later that same month, ground surveys and aerial reconnaissance detected small but
widespread patches of trembling aspen defoliation in the northern half of the Province, from Plaster
Rock south-west to Arthurette, north-east of Kedgwick, south of Dalhousie, and from Nash Creek
to Bathurst. The defoliator causing the damage was the large aspen tortrix.
ASSESSMENTS OF PLANTATIONS AND THINNINGS
Regional DNR staff designated as Pest Detection Officers, conduct pest assessments in a subset of high-value plantations and thinned stands in each of DNR’s four Administrative Regions, as
well as general surveillance of forest pests around the Province. Survey results have not yet been
compiled, but no major pests or significant areas of damage were reported.
SEED ORCHARD PEST MONITORING & NURSERY PEST SUPPORT
Routine monitoring of pest conditions was conducted in DNR’s first- and second-generation
seed orchards (mostly located in the Fredericton area). At Kingsclear and Wheeler Cove, egg
sampling for spruce cone maggot in the black spruce stands produced very low numbers, so there
was no need for control measures. White spruce stands, at Queensbury and Kingsclear, produced
few cones making cone maggot egg sampling unnecessary. At Kingsclear, yellowheaded spruce
sawfly numbers in the black spruce stands were low enough that very little damage was seen.
Scattered trees in fir stands at Queensbury and Kingsclear had low levels of damage from balsam fir
sawfly feeding.
At Wheeler Cove, yellowheaded spruce sawfly numbers on black spruce remained low and
trace levels were found on the red spruce at Queensbury. White pine weevil was responsible for the
loss of two dozen leaders on the black spruce at Wheeler Cove and more than three dozen leaders
156
on the Norway spruce at Queensbury. Spruce budworm and jack pine budworm numbers remained
low in all spruce and jack pine stands respectively.
There were no pest enquiries from DNR’s Kingsclear forest tree nursery in 2007.
157
Status of Forest Health in Nova Scotia, 2007
Gina Penny
Nova Scotia Department of Natural Resources, Integrated Pest Management Group
P.O. Box 130, Shubenacadie, NS B0N 2H0
Jack Pine Budworm (Choristoneura pinus pinus) continues to cause defoliation in mature
white pine in the southwestern end of the province. Defoliation was first detected in 2005, covering
360 ha, all of which was moderate to severe. The following year, total defoliation rose to 553 ha;
with the majority, 467 ha, being light. In 2007, total jack pine budworm defoliation increased almost
three fold to 1554 ha. However, its intensity level was less, all light defoliation no moderate or
severe. We’re continuing to monitor the progress of these populations.
The spruce budworm (Choristoneura fumiferana) has caused more damage to Nova
Scotian softwood forests than any other insect. The last major spruce budworm outbreak in Atlantic
Canada occurred in the 1970s, peaking in Nova Scotia in the early 80’s and collapsing in 1987. Since
that time population levels have decreased dramatically. In 2007 39% of the pheromone traps were
positive, up from 17% in 2006. Numbers in our positive pheromone traps have remained low but
they’re increasing. No over wintering L2 larvae were detected during our 2007 branch surveys. We
haven’t found any overwintering larvae since 1995 but we’re expecting to find some in the future
due to the increasing numbers in our pheromone traps.
The Brown Spruce Longhorn Beetle (Tetropium fuscum), an insect native to Europe, was
positively identified in Nova Scotia, in 1999. This is the only known occurrence of this beetle in
North America. Since its introduction, trapping surveys for the brown spruce longhorn beetle have
been conducted by the Canadian Food Inspection Agency in association with the Nova Scotia
Department of Natural Resources.
In October of 2000, a Ministerial Order, The Brown Spruce Longhorn Beetle Infested Places
Order, was issued to help stop the beetle’s spread. This order has been revised twice since it was
issued so that the present containment area now includes central Halifax County and very small
adjacent portions of Colchester and Hants Counties. This order regulates the movement of high risk
articles including spruce round logs, unprocessed wood chips and bark out of the containment area.
158
Brown spruce longhorn beetle trapping was greatly expanded throughout Eastern Canada in
2007, with trap numbers in Nova Scotia increasing from 208 in 2006 to 409 in 2007. This years
survey resulted in 17 new positive locations outside the current brown spruce longhorn beetle
containment area; including one positive in both Antigonish and Cumberland Counties, seven in
Colchester County, two in Halifax County and six in Hants County. Traps were also deployed in
New Brunswick, Newfoundland, Prince Edward Island and Quebec and all were negative for brown
spruce longhorn beetle.
Widespread mortality of mature and over mature white spruce is occurring throughout the
province due to the Spruce Beetle (Dendroctonus rufipennis). This damage is occurring
predominantly in areas where farm abandonment was common and where fields and pastures have
regenerated into old field white spruce. There’s more than 200,000 ha of old field white spruce in
Nova Scotia and many of these stands are over mature and have become prime host material for the
beetle. We’ve also detected red spruce mortality in two provincial protected areas; Cape Chignecto
Provincial Park along the Fundy shore and Abrams lake in the Liscomb Game Sanctuary. In these
two areas, spruce beetle attack has resulted in 308 and 17 ha of mature red spruce mortality
respectively. Recent mild winters has increased spruce beetle winter survival and has led to a
tremendous population buildup.
Blackheaded Budworm (Acleris variana) populations were at low levels in the Cape Breton
Highlands in 2006 but these were closer to what we perceive as background populations. No
defoliation was detected during aerial surveys. The population has collapsed but we’re continuing to
monitor.
Surveys indicate that as of 2006 the Pale Winged Grey (Iridopsis ephyraria) population has
collapsed in most areas. However, ground level defoliation surveys have detected new, light to heavy
defoliation occurring in a few small areas. We’re continuing to monitor their spread and intensity.
The Gypsy Moth (Lymantria dispar) survey was conducted in two parts with delta traps
placed in towns within the unregulated and regulated area and daily monitored, permanent multipher
traps placed across the province. Delta trap catches reflect a slight reduction in moth flights in the
towns surveyed. Notable exceptions include New Glasgow which had a catch of 61 moths in 2006
and 96 in 2007 and Advocate whose total catch of 37 moths in 2006 dropped significantly to 8 in
2007. Typically we would blame the harsh winter weather of January/February 2007 for any
downward population trend, however overwintering egg masses appeared to have very healthy hatch
159
rates regardless. The permanent multipher trap survey provides a snapshot of the population across
the province; increases were detected in Lunenburg, Hants, and Colchester Counties. As of March
15, 2007, the Canadian Food Inspection Agency amended the areas within Canada that are regulated
to control the spread of the gypsy moth. New additions to the list of already infested or suspected
infested areas include Colchester and Cumberland Counties.
An overwintering egg mass survey was conducted for Whitemarked Tussock Moth (Orgyia
leucostigma). Our survey has yet to be completed however, 235 sites were sampled across the
province to date. Population levels are down as compared to 2006, remaining low across the
province with the exception of two small pockets in Colchester County. We’ll continue to monitor.
Fall and spring branch surveys were conducted for Balsam Woolly Adelgid (Adelges piceae)
from 2002 to 2007. Sampled populations tended to be high in the fall and reduced in the spring,
with overall populations dropping during the duration of the survey. In order to determine if harsh
winter temperatures, those below -20oC, were behind the spring population reductions, minimum air
temperatures were collected from each of the Nova Scotia Transportation and Public Works
weather stations across the province during the months of December to February from 2003 to
2007. Based on this temperature data it was concluded that the winter temperatures experienced
during this period were low enough to result in population reductions the following spring. 2008
populations are predicted to be spotty in the Western end due to mild winter temperatures with the
remainder of the province seeing temperature related population reductions. Inland populations will
be sampled again in spring 2008 to determine how the insulating snow cover and severe
temperatures we’ve experienced this winter will affect them.
No detectable defoliation was observed during aerial surveys from Hemlock Looper
(Lambdina fiscellaria fiscellaria) and Balsam Fir Sawfly (Neodiprion abietis). However we’re
continuing to monitor.
Damage from Sirococcus Shoot Blight (Sirococcus conigenis) in red pine plantations has
increased alarmingly through out the central portion of the province. Surveys conducted in the
Trafalgar/Garden of Eden areas revealed that infection levels have increased from generally low to
moderate in 2006 to moderate to severe in 2007. It’s felt that wet springs in 2004, 2006 and 2007
have led to this intensification and spread. Land managers have started to harvest the plantations
that are the most heavily affected by Sirococcus and plan to eventually harvest all of the red pine
plantations, approximately 6000 ha, over time.
160
Gross overall defoliation, due to Ash Rust (Puccinia sparganioides), covered 5,900 ha
along the Fundy and South shores. Within these areas, all of the white ash trees, 10-20%, were
defoliated. We believe this outbreak to be a direct result of 2007’s wet spring and early summer. The
alternate hosts for this disease are several species of cordgrass (Spartina species) and a marsh grass
(Distichlis spicata), which may also explain why we’re seeing high infection rates along two coastal
areas.
161
Newfoundland Report
Hubert Crummey
Newfoundland Department of Natural Resources
162
SESSION 8: URBAN FOREST MANAGEMENT
SÉANCE 8 : L’AMÉNAGEMENT FORESTIER DANS LES
ZONES URBAINES
Urban Forestry in Canada - Challenges and Opportunities
I.M. Wilson
City of Kelowna, Parks Division
1359 KLO Rd, Kelowna, BC V1W 3N8
Abstract
Although municipalities occupy a small proportion of the land in Canada, 80% of Canadians
live and work in cities and towns. The urban forest is the assemblage of trees and vegetation that
most Canadians deal with in their everyday life. A growing body of research has shown that urban
trees provide many ecosystem services and benefits for urban areas acting as a type of "green
infrastructure", yet Canada's urban forests are increasingly threatened by many factors, such as
urbanization, native or exotic pests, or wildfire. The City of Kelowna, BC has experienced all of
these challenges in recent years, including catastrophic wildfires, a growing mountain pine beetle
infestation, and rapid growth. Lack of funding and research is also a major issue. In the United
States, urban forestry programs and research initiatives are being funded at the National, State, and
local level. In Canada these programs are only being addressed through a small number of local
initiatives.
Urban trees offer many opportunities to educate the public about trees and forestry, and also
to directly improve the quality of life for Canadians. Kelowna and a few other cities in Canada have
started to conduct urban forest inventories, to quantify the benefits of their urban forests, and to
develop management plans to help sustain green infrastructure. The Canadian Urban Forest Strategy
(2004-2006) addresses some of the critical components that are required. Some key
recommendations and opportunities will be discussed.
Ian Wilson, MPM, RPF, Certified Arborist
Urban Forestry Supervisor, Parks
City of Kelowna Recreation, Parks and Cultural Services
Phone: (250) 469-8842
Fax: (250) 862-3335
www.kelowna.ca / [email protected]
165
Résumé
Foresterie urbaine au Canada – Défis et perspectives d’avenir
En dépit de la faible proportion du territoire occupée par les zones urbaines, 80 % des
Canadiens vivent et travaillent dans de petites et grandes villes. La forêt urbaine est l’assemblage
d’arbres et de végétation que la majorité des Canadiens côtoient au quotidien. Un corpus de
recherche de plus en plus important montre que les arbres urbains dispensent de nombreux services
et bienfaits, ce qui a donné lieu à l’appellation « infrastructure verte ». Ce rôle crucial n’empêche
malheureusement pas les forêts de nos villes de subir un nombre croissant d’assauts, qu’il s’agisse
d’urbanisation, de ravageurs indigènes et exotiques, de feux de forêt, ou autres. La ville de Kelowna,
C. B., a fait face à toutes ces épreuves au cours des dernières années, notamment aux incendies
catastrophiques, à une infestation de plus en plus prononcée par le dendroctone du pin ponderosa et
à la croissance rapide. De plus, le manque de financement et de recherche constitue un problème
majeur. Aux États-Unis, les programmes de foresterie urbaine ainsi que les initiatives de recherche
connexes sont financés à l’échelle nationale, d’État et locale. Par contre, au Canada, de tels
programmes ne sont pris en charge que par un petit nombre d’initiatives locales.
Les arbres urbains permettent d’éduquer le public sur la question des arbres et de la foresterie,
et contribuent directement à l’amélioration de la qualité de vie des Canadiens. Kelowna, à l’instar de
certaines villes canadiennes, a entrepris de recenser les forêts urbaines, de chiffrer les bénéfices de
ses forêts urbaines, et d’élaborer un plan de gestion afin de soutenir son infrastructure verte. La
Stratégie canadienne sur la forêt urbaine (2004-2006) aborde quelques-uns des volets essentiels à ce
dossier. Quelques recommandations clés et possibilités d’action seront également étudiées.
Ian Wilson, GMP, FPI, Arboriste certifié
Superviseur, foresterie urbaine, Parcs
Services des loisirs, des parcs et de la culture de la ville de Kelowna
Téléphone : (250) 469-8842
Télécopieur : (250) 862-3335
www.kelowna.ca / [email protected]
U
rban forestry is a relatively recent, specialized branch of forestry, that is growing in
importance as more Canadians are living in urban areas than every before. Urban trees
166
provide many benefits to city dwellers, yet there are many challenges to Canada’s urban forests
including severe natural disturbances, urbanization, and a general lack of training, resources and
funding particularly in higher levels of government. There are also many needs and opportunities
which have been partly achieved through the Canadian Urban Forest Strategy, but much work is still
required.
Introduction
“Urban forestry is a specialized branch of forestry and has as its objective the cultivation and
management of trees for their present and potential contribution to the physiological, sociological
and economic well being of urban society” (Jorgensen, 1974). The urban forest can be thought of as
the sum total of all vegetation growing in an urban area.
Urban forests are gaining greater importance in Canadian society, particularly as Canada
becomes an increasingly urbanized nation. In the last 100 years, the proportion of Canadians living
in urban areas have increased from 38% to approximately 80% (Anonymous 1996), making Canada
one of the most urbanized countries in the world. Most Canadians now live in an “urban forest”, yet
the field of urban forestry in Canada is still in its infancy.
A growing body of research has documented some of the many benefits that trees and
vegetation provide to urban dwellers. These benefits include cleaner air (Town of Oakville, 2006),
reduced energy consumption through shading or windbreaks (USDA Forest Service, 2008a),
reduced “heat island effect” (EPA, 2008), reduced storm water runoff (USDA Forest Service,
2008b), economic benefits such as increased property values (Wolf, 2007), crime reduction (Kuo and
Sullivan, 2001), psychological and physical well-being (Ulrich, 1986), as well as improved aesthetics.
Trees help produce a number of “ecosystem services”, such as clean water, clean air, or soil
stabilization and can be thought of as a type of “green infrastructure” for a city. As urban trees are
lost, some of these ecosystem services must be replaced through expensive investments in “grey
infrastructure” such as water treatment plants, or storm sewer upgrades.
Urban forests are important to pest managers because they are the first port of entry for exotic
pests. Urban trees are also highly prone to pest attack since they have low genetic diversity (most
urban trees are clones), and are growing in very harsh conditions due to pollution, drought, poor
soils, poor tree care, etc. Yet, there has been very little research on urban tree pests or their
management. There is a growing desire among the Canadian public for more tools to protect and
167
preserve urban trees from pests or other threats, and the public places an extremely high value on
these trees – in a sense, urban trees are among the most valuable trees in Canada.
Challenges
Some of the challenges to Canada’s urban forest include natural disturbances, increased
urbanization, and an overall lack of management, research, funding and training.
In recent years, severe natural disturbances have taken their toll on urban trees, from ice
storms in eastern Canada, to wind storms and fires in western Canada. For example, the 2003
Okanagan Mountain Park Fire in Kelowna, was the most destructive interface fire in Canadian
history. Approximately 239 homes were lost, 45,000 people were evacuated, 26,000 ha were burned,
and as a result the City of Kelowna spent $3 million on drainage upgrades alone, due to the loss of
tree cover. Currently an unprecedented mountain pine beetle outbreak is not only threatening British
Columbia’s natural forests but also killing millions of trees in cities and towns in the BC interior.
Rapid urbanization in many parts of Canada has also led to a significant decline in tree cover.
Trees can be preserved or replanted in developed areas but there is usually a significant loss in
growing space, due to installation of buildings, roads and hardscape. There are few studies in Canada
that have looked at changes in urban tree cover over time. South of the border, one study used aerial
photo analysis to conclude that Washington, DC lost 64% of it’s tree cover between 1985 and 1997
(American Forests, 2008).
Because “urban forestry” is a very young profession in Canada, there is also a general lack of
management, training and resources. Urban forest coordination or management is practically
nonexistent at the provincial or federal government level in Canada, yet even the American state of
Alaska (population 650,000) has a state-wide urban forestry program as well as assistance from the
US federal government. At the local level, management and funding of urban forestry in Canada is
also very sparse.
Very few educational programs exist in Arboriculture or Urban Forestry in Canada, and
research is also poorly funded in spite of huge gaps that require more investigation. Again, the
United States is leading the way in terms of research and education programs but much more work
is needed in Canada, as we have different needs and growing conditions.
168
Opportunities
The Canadian Urban Forest Strategy (Tree Canada, 2006) was recently developed in order to
“increase awareness of the urgent issues facing Canada’s urban forests and to stimulate action to
address those issues”. Some of the tasks and opportunities identified in the strategy have been
accomplished, but much work remains to be done in all areas, including developing a national urban
forest infrastructure; public education; research; development of techniques and technology for
planning and management; as well as professional development opportunities. One key
accomplishment was the recognition of urban forestry for the first time in Canada’s National Forest
Strategy (National Forest Strategy Coaliton, 2006. The Canadian Urban Forest Network list-serve
(CANUFNET) was also initiated to foster better communication across the country. Users can sign
up for the list at:
http://list.web.net/lists/listinfo/canufnet
Conclusions
Canada is a forest nation with a rich history in traditional forestry. Unfortunately Canada is
falling behind in the recognition and management of urban forests, which is where most Canadians
directly experience forests and their benefits. Recent efforts such as the National Urban Forest
Strategy are a promising start but much more work will be required in the future.
References
American Forests, 2008. The $50 million dollar photos: Washington, DC.
http://www.americanforests.org/resources/urbanforests/success.php
Anonymous, 1996. Canada’s Urban Development Story. From the World Urban Forum, Vancouver,
June 19-23, 2006. http://www.wuf3-fum3.ca/en/about_canada_and_urban_development.shtml
EPA, 2008. Trees and vegetation: heat island effect.
http://www.epa.gov/hiri/strategies/vegetation.html
Jorgensen, E. 1974. Towards an urban forestry concept. Proceedings of the 10th Commonwealth
Forestry Conference. Ottawa, Canada; Forestry Service.
Kuo, F. E., and W. C. Sullivan. 2001. Environment and Crime in the Inner City: Does Vegetation
Reduce Crime? Environment and Behavior 33(3):343-365
National Forest Strategy Coalition, 2006. http://nfsc.forest.ca/index_e.htm
169
Town of Oakville, 2006. Oakville’s urban forest: our solution to our pollution.
http://www.oakville.ca/Media_Files/forestry/UFORE.pdf
Tree Canada, 2006. Canadian Urban Forest Strategy, 2004-2006.
http://www.treecanada.ca/publications/pdf/cufs.pdf
Ulrich, R. S. 1986. Human Responses to Vegetation and Landscapes. Landscape and Urban
Planning 13:29-44.
USDA Forest Service, 2008a. Center for Urban Forest Research, Trees and Energy Conservation.
http://www.fs.fed.us/psw/programs/cufr/research/shade.shtml
USDA Forest Service, 2008b. Center for Urban Forest Research, Trees and Water.
http://www.fs.fed.us/psw/programs/cufr/research/water.shtml
Wolf, K. 2007. City trees and property values.
http://www.cfr.washington.edu/research.envmind/Policy/Hedonics_Citations.pdf
170
Challenges Facing Today’s Urban Forester in the Prairies
Geoff Mcleod and Ian Birse
City of Saskatoon
1101 Ave. P. North, Saskatoon, SK S7K 0J5
Abstract
Fifteen years ago, urban foresters and pest managers on the prairies had little to be concerned
with in terms of alien invasive pests. Dutch elm disease was the major threat. In recent years,
discoveries of Gypsy Moth (Lymantria dispar), Cottony ash psyllid (Psyllopsis discrepans), Banded elm
bark beetle (Scolytus schevyrewi), and newly raised concerns over Emerald ash borer (Agrilus planipennis)
have put considerable pressure on our urban forests and those who manage them.
Most municipalities have limited expertise and resources to deal with these introduced threats.
The limited availability of effective pesticides and often a lack of support from regulatory agencies
make it difficult to manage these pests. Acquiring the assistance of federal agencies to deal with such
issues has been a challenge and has brought prairie urban foresters and pest managers to form the
Prairie Urban Forest Alliance to work as an advocacy group to hopefully obtain the support needed
from federal agencies and other partners.
Résumé
Menaces pesant actuellement sur les forêts urbaines dans les Prairies
Il y a 15 ans, dans les Prairies, les espèces nuisibles exotiques envahissantes ne constituaient
pas une source de préoccupation importante pour les forestiers et responsables de programmes de
lutte œuvrant en milieu urbain.
La maladie hollandaise de l’orme était considérée comme la principale menace. Au cours des
dernières années, les méfaits causés par la spongieuse (Lymantria dispar), le psylle Psyllopsis discrepans, le
scolyte Scolytus schevyrewi et, tout récemment, l’agrile du frêne (Agrilus planipennis), ont contribué à
alourdir la pression qui pèse sur les forêts urbaines et sur les instances responsables de leur gestion.
La plupart des municipalités ne possèdent ni l’expertise ni les ressources nécessaires pour lutter
adéquatement contre ces espèces introduites. Le manque de pesticides efficaces et, souvent,
171
l’absence de soutien de la part des organismes de réglementation compliquent la mise en place
d’interventions de lutte efficaces contre ces espèces nuisibles. Conscients des difficultés que soulève
l’obtention de la part des organismes fédéraux concernés de l’aide nécessaire pour faire face à ces
nouvelles menaces, les forestiers et les responsables de programmes de lutte en milieu urbain des
Prairies ont fondé la Prairie Urban Forest Alliance. De par son rôle de groupe de revendication,
l’Alliance espère obtenir plus facilement des organismes fédéraux et des autres partenaires le soutien
nécessaire pour résoudre les problèmes causés par les espèces nuisibles exotiques envahissantes.
172
SESSION 9: INVASIVE ALIEN SPECIES
Chair: Marcel Dawson
Canadian Food Inspection Agency
SÉANCE 9 : LES ESPÈCES ÉTRANGÈRES
ENVAHISSANTES
Président : Marcel Dawson
Agence canadienne d’inspection des aliments
Report on Wood Packaging Inspection at Marine Ports
M. Marcotte and M. Dawson
Canadian Food Inspection Agency, Plant Health Division, Forestry Section
59 Camelot Dr., Ottawa, Ontario, K1A 0Y9
Abstract
In March 2002, the Government of Canada adopted the International Plant Protection
Convention’s International Standard on Phytosanitary Measure (ISPM) No. 15, Guidelines for
regulating wood packaging material in international trade. In Canada’s three main marine ports,
Montreal, Halifax and Vancouver, inspection data is collected and analyzed on a quarterly basis.
Following analysis, a notice of non-compliance, with detailed information on non-compliant
shipments, is sent to the National Plant Protection Organization of the exporting country for them
to ensure that corrective actions are taken. As a result of reporting the non-compliances as well as
targeting both frequently non-compliant countries and commodities frequently associated with noncompliances, the compliance rate for wood packaging materials is increasing steadily since the
implementation of the wood packaging inspection program.
Résumé
Compte rendu sur les inspections des matériaux d’emballage en bois effectuées dans les
ports océaniques
En mars 2002, le gouvernement du Canada a adopté les Normes internationales pour les
mesures phytosanitaires (NIMP) no 15 de la Convention internationale pour la protection des
végétaux intitulées Lignes directrices pour la réglementation de matériaux d’emballages à base de
bois dans le commerce international. Aux trois principaux ports océaniques du Canada, Montréal,
Halifax et Vancouver, des inspections sont effectuées régulièrement, et les données d’inspection
recueillies sont analysées sur une base semestrielle.
En cas d’infraction, un avis de non-conformité, accompagné de données détaillées sur les
marchandises non conformes, est envoyé à l’organisation nationale de phytoprotection du pays
exportateur, de façon à ce que les mesures correctrices qui s’imposent soient mises en place. Depuis
l’adoption de la politique consistant à signaler tous les cas de non-conformité et à cibler les pays
175
contrevenant fréquemment aux normes et les marchandises fréquemment trouvées non conformes
et la mise en place du programme d’inspection des matériaux d’emballage en bois, le taux de
conformité des matériaux d’emballage en bois augmente de façon soutenue.
I
n Canada, the Canadian Food Inspection Agency (CFIA) regulates the entry of wood packaging
materials from all countries of the world, with the exception of the Continental United States
(see CFIA policy directive D-98-08 “Entry Requirements for Wood Packaging Materials Produced in All
Areas Other than the Continental United States”). Since July 5, 2006, Canada doesn’t allow non-compliant
international wood packaging materials entry into Canada. This is the final phase of the wood
packaging import requirements being implemented in Canada in accordance with the International
Standard for Phytosanitary Measures (ISPM) No. 15.
ISPM No. 15 requires that wood packaging either be heat-treated or fumigated with methyl
bromide and marked with an internationally recognized International Plant Protection Convention
(IPPC) mark, or in lieu of this mark, the consignment may be accompanied by a Phytosanitary
Certificate (PC) specifying the treatment used.
The on-going adoption of the international standard by exporters and exporting countries is
essential. Thus, shipments found containing wood packaging materials that do not meet Canadian
import requirements, will be ordered to be removed from Canada. The responsibility of removal lies
by the importer and are the responsibility of the importer or person in care/control of the regulated
article(s). The Canada Border Services Agency (CBSA) is conducting an enforcement strategy at
main marine ports (Vancouver, Montréal and Halifax). All decisions regarding the disposition of
non-compliant wood packaging materials remain their responsibility.
There are three different types of non-compliance:
(1) Presence of live pests and/or signs of live pests despite the presence of the IPPC mark or PC;
(2) Presence of live pests and/or signs of live pests and no certification of the wood packaging
materials, and
(3) No certification of the wood packaging materials and no sign of live pest. In each of these
cases, official notices of non-compliance are sent to the exporting countries on a quarterly
basis.
176
These notices include detailed information on non-compliant shipments (e.g., exporter’s name
and address, container number, inspection date, name of vessel and voyage number). This allows the
National Plant Protection Organization of the exporting country to follow-up on the cases and to
report investigation results to CFIA.
Some general statistical reports on wood packaging non-compliances are also produced on a
quarterly basis. These reports include information such as number of shipment inspected, number
of non-compliant shipments for each type of non-compliance, country of origin of the noncompliant shipment and commodities found in infested shipments. The statistics are shared within
CFIA as well as with CBSA and the United States Department of Agriculture (USDA). Sharing of
that information allows targeting for inspection of shipments with higher risk of being noncompliant depending on origin and/or commodity in the shipment.
The analyzed wood packaging inspection data for the period from April 1st to July 31st, 2007,
showed that 889 (92%) of the 965 inspected shipments were found compliant (Fig. 1). From the 76
non-compliant shipments (8%), 26 had live pests and either an IPPC mark or PC, 5 had live pests
and no certification, and 45 had no certification and no pest (Fig. 1). Further breakdown of the data
shows that most of the shipments found non-compliant were from China (Fig. 2). Other noncompliant countries include India, Spain, Thailand, Turkey and Japan. A similar trend is observed
for infested shipments, with shipments in which the presence of live pests was found coming mainly
from China and India (data not shown). Within infested wood packaging shipments, various types of
commodities were found, mainly glass products, slates, stone products, engines and marble tiles.
Despite the fact that non-compliant wood packaging materials are still found in some
shipments, strict enforcement procedures and notification of non-compliance to exporting countries
helped to increase the overall level of compliance over the last years. For the period from August
2006 to July 2007, the overall compliance rate increased from 61.3% to 92.1% (data not shown).
Similarly, between 2003 and 2007, the compliance rate increased steadily (Fig. 3). However, even
with these encouraging results, it is important to be aware that some of the compliance statistics
could be in-complete and/or biased. For example, the database with wood packaging inspection
results does include shipments with no wood packaging materials. These shipments should not be
taken into account in the statistics. The presence of signs of live pests is also difficult to assess. It is
often very hard to tell if signs are from before or after the treatment of the wood packaging. Finally,
not all fields in the database are consistently filled from one inspector to another and some
177
information, such as bark occurrence and types of pests, are not always tracked. CFIA is working on
producing more complete compliance statistics in the future.
References
Canadian Food Inspection Agency. D-98-08, Entry Requirements for Wood Packaging Materials
Produced in All Areas Other than the Continental United States, Ottawa, 2007.
ISPM 15 Guidelines for regulating wood packaging material in International Trade (2002) with modifications
to Annex I (2006). Rome, 2002, FAO.
Figure 1: Number of inspected shipments containing wood packaging materials that were found compliant or noncompliant during the period of April 1st to July 31st, 2007. The different types of non-compliance are shown.
Inspected Shipments
1000
889
750
500
250
26
5
45
0
With IPPC Mark
or PC
Compliant
With IPPC mark
or PC and
live pests
(92%)
No Certification
and live pests
Non-Compliant
(8%)
178
No Certification
and no pest
Figure 2: Number of inspected shipments containing wood packaging materials found non-compliant for
wood packaging materials during the period of April 1st to July 31st 2007, by country of origin.
Number of shipments
35
30
25
20
15
10
5
er
s
n
O
th
pa
Ja
ey
rk
Tu
Th
ai
Sp
ai
la
nd
n
a
In
di
C
hi
na
0
Figure 3: Percentage of inspected shipments containing wood packaging materials found compliant each year,
from 2003 to 2007. Data from 2007 includes shipments inspected from January 1st to July 31st only.
Percentage (%)
100
75
50
25
0
2003
2004
2005
Year
179
2006
2007
Emerald Ash Borer Update
Crystal Ernst
Canadian Food Inspection Agency
59 Camelot Dr., Ottawa, ON K1A 0Y9
180
Development of a Management Program for Emerald Ash
Borer in Urban/Suburban Situations: The London Project
D. Barry Lyons and Blair V. Helson
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
Abstract
The emerald ash borer, Agrilus planipennis, was first detected in the City of London in
November of 2006 when three infested trees were discovered on a single residential property. In
April of 2007, we proposed to City Council the framework for a project for emerald ash borer
management in urban/suburban areas using the City of London as our demonstration site. This was
a collaborative project between Canadian Forest Service, Canadian Food Inspection Agency,
Ontario Ministry of Natural Resources and City of London. The project brought to bear existing
knowledge about the pest in the development of the strategy. The project will be long term and
dynamic, evolving as new knowledge about the insect becomes available. The cornerstone of the
management program was the systemic injection of ash trees, within 500 m of known infested trees,
with an experimental formulation of an azadirachtin-based (neem) insecticide and concurrent,
companion scientific investigations. Other elements of the project included: trapping to delineate
beetle populations; management of ash waste material; a public awareness and communication
campaign; removal and scientific evaluation of infested trees; and the establishment of quarantines.
This presentation details the undertaking of the demonstration project.
Résumé
Élaboration d’un programme de lutte contre l’agrile du frêne en milieu urbain/suburbain :
le projet de London
L’agrile du frêne (Agrilus planipennis) a été détecté pour la première fois à London en novembre
2006, lors de la découverte de trois arbres infestés sur une propriété résidentielle. En avril 2007,
nous avons proposé au conseil municipal de London un cadre pour un projet de lutte contre l’agrile
du frêne en milieu urbain/suburbain utilisant la ville de London comme site de démonstration. Ce
projet est le résultat d’une collaboration entre le Service canadien des forêts, l’Agence canadienne
181
d’inspection des aliments, le ministère des Richesses naturelles de l’Ontario et la ville de London.
Toutes les données disponibles sur le ravageur ont été utilisées aux fins de l’élaboration de la
stratégie. Le projet s’étalera sur plusieurs années et évoluera en fonction des nouvelles connaissances
sur le ravageur. Le programme de lutte repose principalement sur l’injection d’une formulation
expérimentale d’un insecticide systémique à base d’azadirachtine (neem) aux frênes se trouvant à
moins de 500 m d’arbres infestés et la conduite en parallèle de travaux de recherche. Le projet
prévoit également la réalisation de campagnes de piégeage visant à délimiter les populations du
ravageur, la mise en place de mesures de gestion des résidus de frêne, le lancement d’une campagne
de sensibilisation du public et de communication, l’élimination et l’évaluation scientifique des arbres
infestés et la mise en place de mesures de quarantaine. Dans le cadre de cette présentation, nous
décrivons plus en détail les composantes de ce projet de démonstration.
Development of a Management Program for Emerald Ash Borer in
Urban/Suburban Situations: The London Project
Introduction and Background
T
he emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive species
that was accidentally introduced into North America from Asia, sometime during the 1990s.
The species was first encountered in Ontario in 2002 in the city of Windsor. Larvae of the beetle
feed under the bark of their ash (Fraxinus spp.) tree hosts, where their feeding galleries eventually
girdle the host tree. The species is a very aggressive tree killer. The Canadian Food Inspection
Agency (CFIA) requested that the Canadian Forest Service (CFS) develop a demonstration project
for the management of EAB in the Forest City. The management plan proposal was developed in
partnership between the CFS, the CFIA, the Ontario Ministry of Natural Resources (OMNR) and
the City of London. The strategies used in the plan were science based, and will be dynamic and
evolve over time. The goals of the project are:
1) To slow the spread of EAB within the City of London, as well as out of the City of London;
2) To mitigate the fiscal burden of the city, and
3) To buy time for the development of new strategies.
182
The resulting strategy will serve as a model for management of EAB in other urban/suburban
communities. The cornerstone of the project was the systemic injection of trees with a natural
product insecticide. This served as an alternative to tree removal. A hypothetical plan was presented
to London City Council on April 16, 2007 wherein we sought their endorsement for the project.
City Council was presented with two options, one of which was to adopt a management plan and
the other was to do nothing. Based on the city's tree inventory, city staff indicated that there were
9875 ash trees along streets and boulevards within the city of London. This number did not include
trees in green spaces within the city boundaries or private trees. The staff also estimated that the
average cost of removing and replacing a dead or dying tree was approximately $1500. Thus, if these
ash trees were killed by EAB attack, the estimated costs for tree removal and replacement would
amount to almost $15 million. By the end of the meeting, Council unanimously endorsed the
proposal. The dynamic management plan for EAB consists of the following elements:
1)
Survey/monitoring;
2)
Outreach/communications;
3)
Quarantine/regulations;
4)
Sanitation/cultural controls;
5)
Biological controls, and
6)
Chemical controls.
Our inability to detect low level populations of EAB has had serious ramifications for
managing this pest. This has resulted from the lack of an adequate sampling tool. A lure (e.g.,
pheromone) to attract beetles to a trap, although under development, has not yet been perfected.
We have had moderate success using sticky-band traps, placed on the boles of host trees, to monitor
the seasonal activity and abundance of EAB in woodlot situations. Sticky bands are passive traps
that require that the beetle land on their surface where they are captured by a sticky adhesive. There
is some indication from work undertaken in the United States that buprestid beetles are attracted to
purple sticky bands. There is also considerable evidence that buprestid beetles are attracted to
wounded and decadent trees. To date, the protocol employed in the United States for sampling EAB
utilizes girdled (i.e., severely wounded) ash trees to attract the beetles. The current trapping protocol
for Canada uses a cluster of three ash trees that have been wounded by removing a 'window' in the
bark and placing a clear sticky band above the window on one of three trees. Therefore, within the
183
demonstration project, we evaluated the use of clear and purple sticky bands, as well as clusters of
three wounded trees with a sticky band to monitor populations of the borer. Tree wounding was
only employed in urban/suburban green spaces and not on street or park trees. A companion study
was undertaken in an infested woodlot near Dutton, Ontario, where the three trapping systems were
compared. In addition to sticky-band trapping, the program uses visual inspection techniques to
search for signs and symptoms of EAB attack. These include the presence of crown dieback,
epicormic shoots, bark deformities, exposed galleries, and woodpecker feeding holes and emergence
holes. The signs and symptoms have been thoroughly described in two publications recently
developed by the Canadian Forest Service (de Groot et al. 2006, Lyons et al. 2007). These publications
were distributed to project participants.
Many aspects of the outreach/communication element of the management plan are already in
place. The Canadian Food Inspection Agency currently undertakes open house events, media events
and promotional programs to communicate the EAB situation to the public. In addition, CFIA
currently maintains a telephone hotline for EAB at 1-866-463-6017. It was also proposed that CFIA,
in cooperation with CFS, undertake diagnostic workshops, instructing city staff on how to identify
signs and symptoms of EAB attack. It was also proposed that the public be encouraged to
participate in the project. Citizen coalitions have been effectively used in some communities to assist
in the searching and trapping for pest insects. The city of Winnipeg is assisted by the "Coalition to
Save the Elms" in its Dutch elm disease management program. A name like the "Ash-on-the-Line
Coalition" might catch the public's interest. Because one of the signs of EAB attack is the presence
of increased woodpecker activity on ash trees, birders might also be solicited to help look for the
presence of the borer.
Quarantines/regulations are an integral part of any pest management plan for an invasive
species. Quarantines prevent the inadvertent movement of infested material to areas that are not
infested. After EAB was found within the City of London, Notices of Quarantine were issued to all
property owners within a 5 km distance from the known infested property, thus prohibiting the
movement of ash materials to areas outside the quarantine zone. Similar quarantine zones were
imposed when new infestations were detected outside of the known infested area. In addition, an
Infested Place Order (i.e., Ministerial Order) was imposed on Middlesex County to prevent
movement of potentially infested materials out of County. This is what is known as a nestedquarantines structure (i.e., quarantine within quarantine). This type of quarantine structure is
184
effective for invasive species that are difficult to detect. The assumption is that some trees are
infested within Middlesex County, but we are unable to detect those trees. There is a high
probability that trees are infested within 5 km of the known infested trees. Thus there should be no
movement of ash materials from property to property or out of the properties from within the zone.
There is a lower probability of encountering an infested tree outside of the 5 km-radius zone within
the county, so movement within the county is not regulated. There is some risk of moving material
out of the county to other counties, so this type of movement is restricted.
Removal and destruction of infested material falls under the realm of cultural
control/sanitation. As part of the EAB management plan, infested trees should be removed and
destroyed. Known infested trees contain the bulk of the population of the beetle. All removed trees
were disposed of by chipping, grinding or burning. Buffer trees around known infested trees were
not removed to manage the insect. Trees that were removed were dissected to gather biological
information about this pest species. This information was stored in a database and will be analyzed
once sufficient data has been compiled. Some removed trees were replaced with non-susceptible
hosts.
Biological control agents are currently being developed for use against EAB. Potential
biological control agents will include both parasitoids and pathogens. As biological control agents
become available, they will be incorporated into the management plan. There are two potential
avenues for exploration for biological control agents:
1)
Local exploration and augmentation of existing fauna, and
2)
Foreign exploration using the classical biological control strategy.
Chemical control options for emerald ash borer are limited. There are two potential strategies
for getting an insecticide to the larvae or adults of EAB. One strategy would involve applying an
insecticide to the foliage or the trunk of the tree by either aerial of ground spray application.
However, due to the public's aversion to insecticidal sprays and the lack of an available efficacious
insecticide for EAB control, this was not considered to be a viable strategy for this project. Another
strategy, CFS has expended considerable effort exploring, is the use of systemic tree injections for
controlling EAB. Three systemic formulations, Confidor, Ecoprid and TreeAzin4, have been tested
by Dr. B. Helson (CFS-GLFC) for control of EAB. Systemic tree injections show considerable
promise for protecting high value trees. However, logistical problems would preclude their use in
185
heavily ash-populated woodlots. The active ingredient in the first two formulations is the insecticide
imidacloprid. The latter two formulations are proprietary formulations developed by Helson. The
two imidacloprid formulations were not available for experimental use in this project. The active
ingredient in TreeAzin4 is azadirachtin, the principle insecticidal extract from the neem tree. Helson
and colleagues have demonstrated that this formulation is efficacious against larvae of EAB. The
formulation may also have a negative impact on realized fecundity of EAB when females feed on
treated foliage. Based on research undertaken by CFS, Bioforest Technologies Inc. developed the
EcoJect System, a safe efficient injection device for injecting trees. Systemic injections were be used
as a prophylactic treatment for uninfested of lightly infested trees. Once infested trees contain a
critical population density of beetles, the use a systemic trunk injections is no longer a viable option
because the insecticide is unable to diffuse throughout the tree as a result of larval feeding damage.
Sanitation/Cultural Controls
EAB was first detected in London, Ontario in November of 2006. Three infested trees were
found on a residential property on Carol Street in the west end of the city. The three infested trees
were removed on 26 April 2007 by a tree removal service under contract to CFIA. The branches
from the infested trees were chipped on site. The boles of the infested trees were transported to the
Salt Shed for dissection by CFIA staff under the direction of CFS. Life stages and relevant data were
collected. After dissection, the pieces of the boles were tub ground on site.
On 8 May 2007, a new EAB infestation was found in a single tree at on Doon Dr. in the
northern portion of the City. Two days later three more small infested trees were found in Carriage
Hill Park approximately 0.5 km west of the Doon Dr. tree. Interestingly, the three infested trees in
the Park were a white ash, a green ash and a black ash. This neighbourhood had considerably more
public ash trees than did the Carol St. neighbourhood. These new finds considerably expanded the
scope of the project. The Doon tree was also removed by a contractor, under contract to CFIA, for
research purposes. Subsamples of the main tree bole were collected and dissected for EAB analysis.
The Carriage Hill Park trees were removed by City staff, and CFIA inspectors on site collected EAB
samples from the trees. Heat-treated sections of the Doon Dr. tree were examined by Peter de
Groot (CFS-GLFC) who determined that the trees had been infested for at least three years. City
staff planted new trees to replace the three removed in the Park.
186
A new infested site on the very edge of the quarantine zone was confirmed by CFIA on 10
July 2007 at the St. Joseph Hospital Site (corner of Dundas St. and Highbury Ave. N.). Within a
week additional infested sites were found adjacent to this site outside of the existing quarantine
zone. No trees were removed from this site but larvae were collected for genetic analysis. A new 5km radius quarantine zone was implemented centered on these locations.
Beetle Surveying/Monitoring
Two types of sticky band traps were used in the London project. A clear trap consisted of a
51-cm wide band of plastic shrink wrap (Staples Business Depot, Markham, Ontario, Canada, Cat.
No. 498385) wrapped tightly three times around the bole of an ash tree, the bottom of which was
situated at an approximate height of 1.3 m above the ground. Each band was covered with Pestick™
(Phytotronics, Inc., Earth City, MO, USA, Cat. No. 4002) applied with a paint roller. Purple traps
were constructed by wrapping and stapling an USDA-APHIS Purple Prism Trap around the bole of
an ash tree also at a height of 1.3 m above the ground. Excess trap material was cut off the trap
resulting in a 60-cm wide band around the tree. These pre-glued traps were manufactured from a
corrugated plastic of a color that showed optic nerve activity in EAB. Traps were examined at
intervals throughout the beetle's flight season and insects were removed and counted.
Sticky-band traps were deployed throughout the study areas to delineate populations and to
evaluate trapping methodologies. Within the Carol Street study area (Fig. 1), eight clear and four
purple sticky-bands traps were deployed. Within the Doon Drive/Carriage Hill Park study area (Fig.
2), 30 clear traps and 23 purple traps were deployed. Only one beetle was captured in the Carol
Street area, while traps in the Doon Dr./Carriage Hill Park area yielded five beetles. Beetles were
captured at diverse locations within the latter area and one was captured near the outer border of the
treatment area at a distance of 0.5 km from a known infested tree. In addition, experimental clusters
of trap trees were set up in green spaces within Greenway Park (n = 10 clusters; Carol Street area),
the ravine adjacent to Ravine Ridge Way (n = 7 clusters; Doon Drive/Carriage Hill Park area) and in
the woodlot at the Service Centre near Dutton, Ontario (n = 29 clusters). A cluster consisted of one
tree with a clear trap, one tree with a purple trap, and three trees that had been wounded by
removing bark windows (15 by 25 cm), one of which contained a clear trap. The latter simulated the
protocol used by CFIA in its grid survey described above. No beetles were captured in Greenway
Park while four beetles were captured on one trap and one beetle on another nearby trap in the
ravine. A total of 398 beetles (214 males and 184 females) were captured on traps within the tree
187
clusters at the Dutton site. Although the beetles were mostly captured on a few traps, the majority
(165 beetles) was captured on clear traps on wounded trees. Clear traps on non-wounded trees
captured the least beetles (94 beetles) while the purple trap captures were intermediate (139 beetles).
A chi-square analysis indicated significant differences among trap types (χ2 = 19.45, P < 0.001). A
G-test indicated that the clear traps caught significantly fewer beetles than the other two trap types,
which were not significantly different from each other (overall G-square = 29.81, P < 0.05). A
highly visible sign (Fig. 3) was placed on each street tree that contained a sticky band trap that
described the function of the trap, provided contact information and depicted the adult beetle. This
was designed to improve public awareness as part of the public outreach/communication program.
These results indicate that sticky band traps do have a role in monitoring and delimiting EAB
populations in urban/suburban situations.
Figure 1: Sticky band locations in the Carol
Street area, London, Ontario in 2007
188
Figure 2: Sticky band locations in the
Doon Drive area, London, Ontario in 2007
189
Figure 3: Notice that
was posted on each tree
that contained a stickyband trap in London,
Ontario in 2007
Figure 4: Injection
times for individual ash
trees that were injected
with the TreeAzin4
formulation in the
Doon Drive and Carol
Street area of London,
Ontario in 2007
Biological Control
USDA-APHIS and USDA-FS have been actively undertaking foreign expiration in China for
potential biological control agents. During the summer of 2007, these agencies released three
parasitoids into Michigan that had been obtained from EAB populations in China. The releases took
place after the required environmental impact assessment had been completed. If the released
parasitoids become established and are effective in regulating EAB populations then it is conceivable
that these parasitoids could be transplanted to within the management area.
Preliminary investigations by Leah Bauer of the USDA-FS indicated that parasitism by
endemic parasitoids in Michigan was less than 1%. An investigation, by CFS during the summer of
2007, has detected an inordinately high parasitism rate by parasitoids in an EAB population in Essex
190
County. The two parasitoids involved include the native species Phasgonophora sulcata (Hymenoptera:
Chalcididae) and an alien species Balcha indica (Hymenoptera: Eupelmidae). Further research will
determine if these parasitoids might play a role in future EAB management. We also collected the
latter species in London at the Hospital Site.
Chemical Control
TreeAzin4 is a proprietary formulation of a neem-based insecticide that was developed by
Blair Helson of the Canadian Forest Service. The experimental tree injections that were undertaken
in London as part of the demonstration project and its associated Dutton experiments utilized the
TreeAzin4 formulation (PMRA Research Authorization 48-RP-07). These tree injections were
undertaken under contract to Bioforest Technology using their patented Ecoject tree injection
device. In the Carol Street area (Fig. 1) of London, 22 private trees and 17 public trees were
experimentally treated at a rate of 0.1 g azadirachtin/cm dbh. In the Doon Drive/Carriage Hill Park
area (Fig. 2) of the City, 133 public tree and three private trees were treated at the same rate.
Thirteen trees were also treated in the latter area with twice that dose as part of the environmental
fate studies (translocation in the tree and insecticide concentration in foliage at leaf drop) being
undertaken by Dean Thompson and Dave Kreutzweiser (CFS-GLFC). Companion efficacy studies
are being conducted at the EAB-infested site at the Service Centre on Hwy. 401 near Dutton,
Ontario. At this site 90 trees were treated at each of three doses (0.05, 0.1, and 0.2 g azadirachtin/cm
dbh). An additional 15 trees were treated at the highest dose for the environmental fate studies.
Samples for fate studies have been collected and are currently being processed. Efficacy will be
assessed in all trees over the next three years, with the first assessment in the spring of 2008.
To assess the uptake period of the TreeAzin4 formulation, injection time data was collected
for most of the London trees. The time from insertion of the canisters into the tree bole to the time
when all canisters were empty was recorded. If the trees had not taken up all the formulation after
one hour the canisters were removed and the residual amount of formulation in the canisters was
recorded. The distribution of injection times is shown in Figure 4. The mean injection time for the
36 trees in the Carol Street neighbourhood that took up all of the formulation was 10.7 min. Three
trees (7%) at that location did not take up all the formulation after 1 h but on average had taken up
64.3% of the dose. In the Doon Drive/Carriage Hill Park area, the average uptake time for complete
injection of 81 observed trees was 14.9 min., with 40 trees (30.1%) taking up only 56.0% of the dose
191
at the 1 h cutoff time. Trees that did not readily take up the formulation were mostly drought
stressed and injured trees (predominately park trees).
Bioforest Technologies Inc. submitted an emergency registration application for the
TreeAzin4 formulation to the Pest Management Regulatory Agency (PMRA) sponsored by the
Ontario Ministry of Natural Resources (OMNR). Acceptance and approval of the application by
PMRA was contingent in part upon the registration (or submission or registration application) of the
technical material neemazel by E.I.D. Parry of India. The OMNR and the Canadian Food
Inspection Agency (CFIA) were both proponents for the emergency registration. A neem
formulation, Neemix 4.5, had a temporary registration in Canada in 2000 for control of the sawflies
by aerial application. The application was approved by the PMRA on 29 February 2008 and will be
available for use until 31 August 2008.
Acknowledgements
Thanks are gratefully extended to the following individuals, agencies and companies. Gene
Jones, Ashton Kent, Niall O'Brien and Ashleigh Sauve of the Canadian Forest Service, Great Lakes
Forestry Centre (CFS-GLFC) deployed and sampled sticky band traps. Blair Helson (CFS-GLFC)
formulated the technical neemazel. Bioforest Technologies Inc. did the systemic injections. John
McFarlane, Niall O'Brien and Ashleigh Sauve assisted with tree injections. Funding for this project
was provided by the OMNR, the CFIA and the CFS. CFIA inspectors under the direction of Bill
Lammers (CFIA) and the guidance of Chuck Davis (CFS-GLFC) performed tree dissections and
distributed notices to the public. City of London staff removed and replaced trees, and watered trees
in Carriage Hill Park to improve uptake of the insecticide formulation. Jacob Kanyaya (CFIA) and
Rob Burnard (City of London) created GIS maps of the study areas.
References
de Groot, P. Biggs, W.D., Lyons, D.B., Scarr, T., Czerwinski, E., Evans, H.J., Ingram, W., and
Marchant, K. 2006. A visual guide to detecting emerald ash borer damage. Natural Resources
Canada - Canadian Forest Service and Ontario Ministry of Natural Resources, Sault Ste. Marie,
Ontario, Canada.
Lyons, D.B., Caister, C., de Groot, P. Hamilton, B., Marchant, K., Scarr, T., and Turgeon, J. 2007.
Survey guide for detection of emerald ash borer. Natural Resources Canada - Canadian Forest
Service and Canadian Food Inspection Agency, Sault Ste. Marie, Ontario, Canada.
192
Advances in the Use of Systemic Insecticides for Control of
Invasive Insect Pests in Urban Environments
D.G. Thompson1, B.V. Helson1, and J. Meating2
1
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
2
BioForest Technologies Inc.
105 Bruce St., Sault Ste. Marie, ON P6A 2X6
Abstract
This presentation will provide an overview of recent advances in the development of systemic
insecticides, and associated injection technologies, for the control of invasive alien wood boring
insect pests in Canada. The focus will be on data and information pertaining to the uptake and
translocation of various formulations of imidacloprid and azadirachtin in ash trees as a potential
control technique for Emerald Ash Borer (EAB). Reference to parallel studies on the potential role
of systemic injections for control of other “killer B’s” Asian Longhorned Beetle (ALB) and Brown
Spruce Longhorn Beetle (BSLB) will be also be mentioned. The presentation will demonstrate the
significant potential for systemic injections as an environmentally acceptable and logistically practical
technique for protecting high value trees, particularly in urban settings and as a control tool in
containment and general integrated pest management strategies.
Résumé
Progrès réalisés dans l’utilisation d’insecticides systémiques contre les insectes ravageurs
envahissants en milieu urbain
Cette présentation décrit de façon succincte les progrès réalisés récemment dans la mise au
point d’insecticides systémiques et de techniques d’injection connexes aux fins de la lutte contre les
insectes xylophages exotiques envahissants au Canada. Une attention particulière est accordée aux
données et autres informations relatives à l’assimilation et à la translocation dans les frênes traités de
diverses formulations d’imidaclopride et d’azadirachtine susceptibles d’être utilisées contre l’agrile du
frêne. Il est également fait mention d’études parallèles sur l’efficacité potentielle d’injections
d’insecticides systémiques contre le longicorne étoilé et le longicorne brun de l’épinette. Technique à
193
la fois respectueuse de l’environnement et logistiquement pratique, l’injection d’insecticides
systémiques présente un grand potentiel pour la protection des arbres de grande valeur, en
particulier en milieu urbain, dans le cadre de stratégies tant d’enrayement que de lutte intégrée
générale.
194
Sirex noctilio in Canada: An Update of Survey and Research
Activities
Peter de Groot
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
Abstract
The Sirex wood wasp, Sirex noctilio Fabricius, was discovered in Ontario in 2005. Surveys in
Ontario, Quebec, Nova Scotia and New Brunswick in 2006 and 2007, indicate that the wood wasp is
well established in southern Ontario but has not yet been found elsewhere. In addition to extensive
survey efforts, research into the biology and ecology of the insect was established in 2006 and
extended in 2007. Research activities include the search for and discovery of a parasitic nematode,
an analysis of the fungal strains associated with Sirex and the nematode (Deladenus siricidicola), and
studies on the vertical distribution of Sirex and its associated natural enemies and wood boring
insects. In this presentation, an update will be given on the survey and research activities, which will
be preceded by a short introduction on the biology and ecology of this insect.
Résumé
Le point sur les activités d’enquête et de recherche ciblant le Sirex noctilio au Canada
À la suite de la découverte du sirex européen du pin (Sirex noctilio Fabricius) en Ontario en 2005,
des enquêtes ont été entreprises en Ontario, au Québec, en Nouvelle-Écosse et au NouveauBrunswick en 2006 et en 2007. Ces enquêtes ont révélé que le ravageur est bien établi dans le sud de
l’Ontario mais qu’il ne semble pas encore présent ailleurs. Parallèlement à ces enquêtes, des
recherches sur la biologie et l’écologie de l’insecte ont été entreprises en 2006 et se sont poursuivies
en 2007. Les travaux en cours sont axés sur la recherche et la découverte d’un nématode parasite,
l’analyse des souches de champignons associées au ravageur et au nématode (Deladenus siricidicola) et
l’étude de la distribution verticale du sirex et des ennemis naturels et autres insectes perceurs du bois
qui lui sont associés. Dans cette présentation, nous ferons le point sur les activités d’enquête et de
recherche en cours visant le sirex européen après avoir décrit brièvement la biologie et l’écologie du
ravageur.
195
Sirex noctilio – Pest Risk Analysis Update
L. Shields
Canadian Food Inspection Agency, Plant Health Division, Program Network
350 Ontario St., St. Catharines, ON L2R 5L8
W
hen Sirex noctilio was first reported in Canada in the fall of 2005, one key question that was
raised was whether the Canadian Food Inspection Agency (CFI) would institute regulations
for this forest pest. Before regulations are considered, the risk associated with S. noctilio must first be
determined.
In early 2006, the Forestry section of the CFIA requested the Science Branch to re evaluate the
risks associated with S. noctilio. Two earlier risk assessments were done that referenced S. noctilio but
these were specific to wood chips and the wood packaging pathways, and did not identify nor assess
other high risk pathways that may be associated with S. noctilio.
The pest risk assessment was recently completed and identifies potential man made pathways.
Several factors associated with these pathways were studied, including survival capability in transit,
ease of detection at entry inspection, frequency of shipments, intended end use, season of arrival,
and distribution of commodities and availability of potential hosts at destination.
Six pathways were identified. These are described below and discuss the existing regulations
and movement restrictions for these pathways, and the current uncertainties and knowledge gaps
associated with these pathways.
1. Dunnage and Solid Wood Packaging Materials
This pathway is rated as a high risk pathway. Siricids are commonly intercepted at ports of
entry in wood packaging materials in Canada and the United States. Regulations currently exist in
Canada for the importation of wood packaging materials as per policy directive D-98-08, Entry
Requirements for Wood Packaging Materials Produced in All Areas Other than the Continental
United States. The Canadian Wood Packaging Certification program was instituted in 2001. Facilities
under this program are required to construct wood packaging materials from lumber heat treated to
the 56/30 standard. There are currently over 500 facilities under this program in Canada. It is
unknown how many wood packaging facilities that are not under this program construct wood
196
packaging materials from non HT lumber, and how many may be utilizing pine lumber from Sirex
infested areas.
2. Logs, Lumber and Related Commodities
This pathway is rated as a high risk pathway. S. noctilio can be associated with logs and lumber
in any life stage. Canada currently regulates pine logs from the United States for pine shoot beetle.
Lumber from the United States, however, is unrestricted. For the importation of logs and lumber
from overseas, lumber requires phytosanitary certification. Logs originating from offshore countries
are prohibited entry.
3. Firewood
This pathway is rated as a high risk pathway. Firewood from the United States requires a
phytosanitary certificate for entry into Canada as per policy directive D-01-12, Phytosanitary
Requirements for the Importation and Domestic Movement of Firewood. Firewood from offshore
is prohibited entry into Canada. To what extent pine firewood is utilized in Canada, and the extent
of the movement of pine firewood into uninfested areas of Canada is currently not known.
4. Pine Nursery Stock
This pathway is rated as a low risk pathway. In order to be marketable, pine nursery stock must be
maintained in a relatively healthy state and S. noctilio is generally considered to attack pine trees that
are under stress. All pine nursery stock sourced from the United States requires phytosanitary
certification for entry into Canada. Pine nursery stock from offshore countries is prohibited entry
into Canada. The parameters which could cause healthy pine stock to be attacked need to be
investigated further.
5. Pine Christmas Trees
This pathway is rated as a negligible risk pathway. The importation of pine Christmas trees
from countries other than the United States is prohibited entry into Canada. Pine Christmas trees
from unmanaged plantations could pose a risk. There is a need to determine the specific
circumstances where S. noctilio will attack pine Christmas trees, and whether infected trees could
retain their marketability.
197
6. Pine Wood Chips
This pathway is rated as negligible. All stages of S. noctilio would not likely survive the chipping
process, and completion of development to the adult stage would be very improbable. Pine wood
chips imported from the United States require a phytosanitary certificate for entry into Canada.
Wood chips from off shore countries are prohibited entry into Canada.
Environmental impacts were evaluated in the pest risk assessment. The impact of S. noctilio is
likely limited to pine. However, Pinus rigida (pitch pine) occurs in some areas of eastern Ontario
where it is considered rare because this region corresponds to the northern limit of its range. If S.
noctilio does become a primary killer of pines, consequences will include a change in ecological
balance, an increase in the risk of forest fires, an increase in destructive pests, and recreational
changes. The challenge in determining the overall environmental impact lies in understanding the
prevalence of the woodwasp in the environment.
Economical impacts were the final considerations of the pest risk assessment. Should S. noctilio
become prevalent in the pine forests of Canada, the timber industry would see a decrease in supply
and grade of pine wood and increased costs of silvicultural practises. Trade barriers may also be
realized. The Christmas tree industry would be minimal as scots pine plantations represent less than
20% of the acreage in Ontario. Impacts to the Nursery industry are difficult to predict, as statistics
with respect to the value of pine nursery stock are not readily available. However, trade barriers
could impact this industry.
The CFIA and the USDA are working toward a harmonized approach to slow the spread of S.
noctilio through artificial means. Discussions have been initiated to explore a zone approach to
regulating this pest. This concept will be discussed at stakeholder consultation meetings in January,
2008.
References: Dumouchel, L. 2007. Plant Health Risk Assessment, CFIA, European Woodwasp,
Sirex noctilio Fabricius
198
Brown Spruce Longhorn Beetle Update
Gregg Cunningham
Canadian Food Inspection Agency
1992 Agency Dr., Box 1060, Dartmouth, NS B2R 3Z7
199
Risk Mitigation, Risk Analysis, Flight Behaviour, Natural
Control, and Pheromones of the Brown Spruce Longhorn
Beetle: Results from Year 1 of a 3-year Study
J. Sweeney1, P. Silk1, J. Gutowski2, K. Porter1, W. Mackinnon1, W. MacKay1, J. Wu1, J. Price1, E.
Kettela1, S. Sopow1, G. Boiteau3, B. Colpitts4, R. Murphy5, R. Taylor6, and T. Poland7
1
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre
P.O. Box 4000, Fredericton, NB E3B 5P7
2
Forest Research Institute, Department of Natural Forests
17-230 Białowieża, Poland
3
Agriculture & Agri-Food Canada, Environmental Health
P.O. Box 20280, Fredericton, NB, E3B 4Z7
4
Department of Electrical and Computer Engineering
University of New Brunswick, Fredericton, NB, E3B 5A3
5
Faculty of Forestry and Environmental Management
University of New Brunswick, Fredericton, NB, E3B 6C2
6
Department of Entomology
Ohio State University, Wooster, Ohio 44691, USA
7
USDA Forest Service, East Lansing, Michigan 48823, USA
Abstract
A three year research project, funded by the Canadian Forest Service and the Canadian Food
Inspection Agency, was initiated in the spring of 2007 to address key issues of provincial and forest
industry stakeholders concerning the brown spruce longhorn beetle (BSLB), Tetropium fuscum (Fabr.)
(Coleoptera: Cerambycidae). The project is focused on the development of practical tools for risk
mitigation, risk analysis, and population suppression to contain the beetle’s spread. We briefly
summarize our progress to date. BSLB-infested logs were processed by sawmill debarkers to
determine the relative risk of moving live BSLB in round wood, debarked logs and bark.
Compared to untreated logs (i.e., round wood), significantly fewer BSLB emerged from bark
(0-2%) and debarked logs (13-16%). Processing of bark by “hog” machines, commonly done at
most sawmill operations, may further mitigate risks and a trial is planned this fall/winter.
200
To better understand factors affecting BSLB spread and potential impact, we are building a
static risk model/map that includes a susceptibility rating for each patch of vegetation on the
landscape. We are also developing a dynamic spread model that simulates potential spread over time
across the landscape using what is known about BSLB biology and behavior as well as mathematical
techniques. Additional field data is being collected to fill gaps and provide more direct measures of
factors affecting BSLB risk. Preliminary data on BSLB flight behavior using laboratory flight mills
suggest that BSLB fly mainly at dusk and in daylight hours, predisposition to fly varies greatly among
individuals, and that most flights are of short duration (few seconds to few minutes) but total
distance flown can be considerable (e.g.,one male flew >3 km in 24 h). Dispersal of BSLB under
field conditions will be explored in 2008 and 2009 using harmonic radar and tagged BSLB. The
potential impact of two native hymenopteran parasitoid species (Rhimphoctona macrocephala
(Ichnemonidae); Wroughtonia occidentalis (Braconidae)) on BSLB populations in Nova Scotia was
assessed by regressing percentage parasitism of each species vs. BSLB densities in field collected
spruce bolts. Percent parasitism either declined slightly or was unrelated to changes in BSLB density,
suggesting that neither species would regulate growth of BSLB populations.
Synthetic aggregation pheromone (fuscumol) was tested in field trapping experiments from
May-August 2007 in Halifax and also in Białowieża, Poland, to determine the most effective lure for
detection of BSLB. Three pheromone enantiomer treatments: pure S-, pure R-, and 50/50 (S/R)
(racemic) fuscumol, were tested alone and in combination with host volatiles in cross-vane traps.
Results indicated that:
1) S-fuscumol but not R-fuscumol was attractive to BSLB;
2) Attraction to S-fuscumol and racemic fuscumol was synergized by the addition of host volatile
lures (monoterpene blend and ethanol);
3) So long as S-fuscumol and host volatiles are present, the presence of R-fuscumol does not
reduce BSLB catch, i.e., the racemic fuscumol lure is as effective as pure S-fuscumol and will
be much cheaper to synthesize.
Plans for 2008 include field trials to test the feasibility of suppressing BSLB populations using
pheromone-mediated mating disruption and mass trapping.
201
Résumé
Atténuation des risques, analyse des risques, comportement de vol, lutte naturelle et
phéromones du longicorne brun de l’épinette : résultats de la première année d’une étude de
trois ans
Un projet d’une durée de trois ans financé par le Service canadien des forêts et l’Agence
canadienne d’inspection des aliments a été entrepris au printemps 2007 en vue de trouver des
réponses aux principales sources de préoccupation des partenaires provinciaux et du secteur
forestier concernant le longicorne brun de l’épinette (LBE) (Tetropium fuscum (Fabricius)) (Coleoptera:
Cerambycidae). Ce projet a pour principal objet de mettre au point les outils pratiques nécessaires
pour analyser et atténuer les risques posés par le LBE, réprimer les populations et enrayer la
dispersion du ravageur. Nous présentons brièvement les progrès réalisés à ce jour. Nous avons
transformé des grumes infestées par le LBE à l’aide d’écorceuses commerciales afin de déterminer le
risque relatif de dispersion du LBE associé au déplacement de bois rond, de grumes écorcées et
d’écorce contenant des individus vivants. Les taux d’émergence enregistrés à partir de l’écorce (0 à 2
%) et de grumes écorcées (13 à 16 %) étaient significativement moins élevés que le taux observé à
partir de pièces de bois non traité (bois rond). La réduction de l’écorce en petits copeaux à l’aide
d’une écorceuse-déchiqueteuse, opération couramment effectuée dans la plupart des usines, pourrait
contribuer à atténuer davantage les risques, et un essai est prévu pour l’automne/hiver prochains.
Pour mieux comprendre les facteurs qui influent sur la dispersion et l’impact potentiel du
LBE, nous avons élaboré un modèle/carte du risque statique qui attribue une cote de vulnérabilité à
chaque parcelle de végétation à l’échelle du paysage. Nous élaborons également un modèle de
dispersion dynamique qui simule la dispersion potentielle du ravageur à l’échelle du paysage dans le
temps, en nous fondant sur ce qui est connu de la biologie et du comportement du LBE et en
recourant à diverses techniques mathématiques. Nous nous employons également à recueillir des
données additionnelles sur le terrain afin de combler les lacunes dans les connaissances et d’obtenir
des mesures plus directes des facteurs qui influent sur le risque de dispersion du LBE. Les données
préliminaires sur le comportement de vol du LBE amassées en laboratoire à l’aide d’un modèle de
«moulinets de vol » donnent à croire que le LBE vole principalement à la brunante et durant le jour,
que la prédisposition à voler des adultes varie considérablement d’un individu à l’autre et que la
plupart des vols sont de courte durée (quelques secondes à quelques minutes) mais que la distance
parcourue peut être considérable (p. ex. un mâle a parcouru plus de 3 km en 24 h). En 2008 et en
202
2009, nous utiliserons un radar harmonique et nous aurons recours à des techniques de marquage
pour évaluer la dispersion du LBE sur le terrain. Nous avons évalué l’impact potentiel de deux
hyménoptères parasitoïdes indigènes (Rhimphoctona macrocephala (Ichnemonidae) et Wroughtonia
occidentalis (Braconidae)) sur les populations de LBE en Nouvelle-Écosse en effectuant une
régression du taux de parasitisme de chaque espèce par rapport aux densités de LBE mesurées dans
des billons d’épinette récoltés sur le terrain. Les taux de parasitisme ont décliné légèrement ou n’ont
pas varié en fonction des fluctuations de la densité des effectifs du ravageur. Ces résultats donnent à
croire qu’aucun des deux parasitoïdes ne pourrait enrayer la croissance des populations du LBE.
L’efficacité d’une phéromone d’agrégation synthétique (fuscumol) a été évaluée entre mai et
août 2007 dans le cadre d’essais de piégeage sur le terrain menés à Halifax et à Białowieża (Pologne).
Dans le cadre ce ces essais, qui visaient à trouver un outil efficace pour le détection du LBE, trois
traitements (énantiomère S-fuscumol pur, énantiomère R-fuscumol pur, mélange racémique 50/50
des deux énantiomères R et S), ont été évalués individuellement ou en combinaison avec des
substances volatiles émises par l’hôte dans des pièges à impact en croix. Les essais ont révélé que :
1)
L’énantiomère S-fuscumol est attractif pour le LBE, alors que le R-fuscumol ne l’est pas;
2)
L’attraction exercée par le S-fuscumol et le mélange racémique des deux énantiomères est
accrue par l’ajout de substances volatiles émises par l’hôte (mélange de monoterpènes et éthanol);
3)
Tant que la formulation renferme l’énantiomère S-fuscumol et des substances volatiles de
l’hôte, l’efficacité de l’appât n’est pas compromise par la présence du R-fuscumol.
En d’autres mots, le mélange racémique renfermant les deux énantiomères est aussi efficace
que le S-fuscumol pur, et sa synthèse est beaucoup moins dispendieuse. Nous planifions en 2008
d’effectuer des essais sur le terrain pour évaluer s’il est possible d’éliminer les populations de LBE en
utilisant des appâts à base de phéromone pour perturber le comportement d’accouplement du
ravageur et en procédant à des piégeages massifs.
203
Forest Pest Detection Surveys – Canadian Food Inspection
Agency
T. Kimoto1, R. Favrin2, E. Bullas-Appleton3, D. Holden1, R. Neville4, Y. Proulx5, and S. Wallace2
1
Canadian Food Inspection Agency, Plant Health Surveillance Unit
4321 Still Creek Dr., Burnaby, BC V5C 6S7
2
Canadian Food Inspection Agency, Plant Health Surveillance Unit
3851 Fallowfield Rd, Ottawa, ON K2H 8P9
3
Canadian Food Inspection Agency, Plant Health Surveillance Unit
174 Stone Road West, Guelph, ON N1G 4S9
4
Canadian Food Inspection Agency, Plant Health Surveillance Unit
1992 Agency Dr., Dartmouth, NS B3B 1Y9
5
Canadian Food Inspection Agency, Plant Health Surveillance Unit
2001 University St., Suite 746-K, Montréal, QC H3A 3N2
Abstract
In addition to pest-specific surveys, the Canadian Food Inspection Agency (CFIA) conducts
surveys aimed at detecting established populations of exotic forest insects. Since 1998, the CFIA has
used Lindgren funnel traps baited with semiochemicals to detect non-indigenous wood boring
insects at high risk sites in and around urban areas. After consultation with the Canadian Forest
Service (CFS) in 2005, the CFIA has slightly modified this survey by increasing trap density at each
site. This survey has detected Sirex noctilio and Tetropium fuscum in new locations as well as a variety of
naturalized non-indigenous and native species.
The semiochemicals used in this survey were initially developed to target bark and ambrosia
beetles. Pending research conducted by the CFS, the CFIA is exploring alternative methods to better
detect other target groups such as longhorn beetles.
In addition to semiochemical trapping, this detection program includes an insect rearing
component. In partnership with the CFS and four municipalities, the CFIA is rearing insects from
logs as another tool to detect exotic wood boring insects.
Logs are placed into modified climate-controlled marine transport containers and placed in
pre-selected locations within each city. For more information on this rearing project, please refer to
204
the CFIA-CFS poster presentation, “Insect Rearing – Tool for Detection of Exotic Wood Boring
Insects”.
Résumé
Enquêtes de dépistage des ravageurs forestiers – Agence canadienne d’inspection des
aliments
En plus d’effectuer des enquêtes ciblant des ravageurs particuliers, l’Agence canadienne
d’inspection des aliments (ACIA) mène à bien des enquêtes de dépistage en vue de détecter des
populations établies d’insectes forestiers exotiques. Depuis 1998, l’ACIA utilise des pièges à
entonnoirs Lindgren contenant un appât à base de composés sémiochimiques pour le dépistage des
insectes perceurs du bois exotiques dans les secteurs à haut risque, en milieu urbain ou dans les
régions avoisinantes. Après avoir consulté le Service canadien des forêts (SCF) en 2005, l’ACIA a
légèrement modifié son protocole d’enquête en augmentant la densité des pièges à chaque site de
piégeage. Les enquêtes de dépistage effectuées depuis ont mené à la découverte du Sirex noctilio et du
Tetropium fuscum dans de nouvelles localités, ainsi que de diverses espèces exotiques non indigènes
naturalisées et d’espèces indigènes.
Les composés sémiochimiques utilisés dans le cadre de cette enquête ont été mis au point
initialement aux fins de la détection des scolytes de l’écorce et des scolytes du bois. Parallèlement
aux recherches menées par le SCF, l’ACIA explore d’autres méthodes en vue d’accroître l’efficacité
des activités de dépistage visant d’autres groupes cibles, comme les longicornes (ou cérambycides).
En plus du volet de piégeage à l’aide de substances sémiochmiques, ce programme de
dépistage comporte un volet d’élevage. En partenariat avec le SCF et quatre municipalités, l’ACIA
procède à des élevages d’insectes à partir de grumes aux fins du dépistage des insectes perceurs du
bois exotiques. Les grumes sont entreposées dans des conteneurs maritimes transformés en
installations d’élevage à ambiance contrôlée et placés à des endroits prédéterminés dans chaque ville.
Pour de plus amples renseignements sur ce projet d’élevage, voir l’affiche de l’ACIA et du SCF
intitulée « Élevage d’insectes – outil pour le dépistage des insectes perceurs du bois exotiques ».
205
CFIA - Invasive Alien Species Pest Interception Report
Bruce D. Gill
Entomology Lab, Ontario Plant Laboratories (OPL), Canadian Food Inspection Agency (CFIA)
Building 18, 960 Carling Ave., Ottawa, ON K1A 0C6
Abstract
The Entomology unit of the CFIA’s Ontario Plant Lab has undergone a recent expansion with
the hiring of additional staff and relocation into new facilities. An overview of wood dunnage
samples sent to the lab is given and examples of unusual wood boring pests intercepted on wooden
crafts such as kitchen utensils, jewellery boxes, scented pine cones, and bamboo tiki torches is
presented.
Introduction
E
arlier this morning, Eric Allen of the CFS in Saanich, B.C. mentioned that wooden crafts are
emerging as one pathway for the entry of exotic forest pests. I will follow up on this by
highlighting some of the pests that the CFIA has intercepted over the past few years on wood
dunnage, plus various wooden crafts and non-traditional wood items. Since the CFIA has not
provided annual interception reports at previous Forest Pest Management Fora, I will include data
from the past several years to give a better idea of the diversity of forest pests entering Canada and
will try to provide some insight into the trends that are emerging. As a bit of background
information I should point out that the Ontario Plant Laboratories (OPL) was formed in 2006 when
the Centre for Plant Quarantine Pests (CPQP) was amalgamated with the Carling Seed Lab during a
Science Branch reorganization of the CFIA.
Sampling Issues
In addition to dunnage, international commerce uses a large amount of wood in the form of
pallets, skids, and crates for the shipping of goods. Table 1 provides an annual look at the numbers
of samples of pests from infested wood and dunnage received by the OPL since April 2000.
206
Table 1: Infested wood samples received
by the OPL
Fiscal Year
# Samples
2000-2001
531
2001-2002
363
2002-2003
394
2003-2004*
416
2004-2005
188
2005-2006
187
2006-2007
77
* Canadian Border Services Agency
created December, 2003
Current invasive forest pests such as the Asian long horned beetle (Anoplophora glabripennis) and
emerald ash borer (Agrilus planipennis) likely gained entry to North America via solid wood packaging
in the early 1990's. The continued expansion of global trade with an ever-increasing diversity of
commodities and wood packaging guarantees a greater diversity of forest pests showing up as
potential stow-aways. Unfortunately the transfer of CFIA inspection staff to the Canadian Border
Services Agency (CBSA) in December 2003 seems to have resulted in a substantial reduction in
dunnage pests being submitted for identification. Statistics aren’t needed to compare the numbers
before and after FY 2003/04 (Table 1). In the late 1990's and into the early 2000's, numerous
dunnage interceptions were received from inspectors working at the air and sea ports of Victoria,
Vancouver, Toronto, Montreal and Halifax. Submissions have dropped off drastically from most of
these ports, with the notable exception of Vancouver which still forwards a moderate number of
samples to the OPL.
New Staff and Facilities
With additional resources received under Invasive Alien Species (IAS) funding, the OPL
Entomology Lab was able to hire some talented new personnel. Drs. Hume Douglas (Coleopterist),
Chris Schmidt (Lepidopterist) and Brad Sinclair (Dipterist) joined our staff in the spring of 2007 and
have greatly enhanced our diagnostic capacity with their expertise. Dr. Vasily Grebennikov (visiting
Postdoctoral Fellow under NSERC) also officially joined the OPL roster as a Research Scientist.
Vasily has embarked on an ambitious research program to study the phytophagous beetle pests of
the north-Asian Pacific region that pose a threat to Canadian plant resources. He also provides
diagnostic support on intercepted beetle larvae. A reassignment of technical and support staff, plus a
207
relocation of the Entomology Lab into Building 18 on the Central Experimental Farm from
previously cramped quarters in the K.W. Neatby Bldg., were welcome changes to the OPL
Entomology Lab in the past year and a half.
Four Case Studies
1) Wooden Kitchen Utensils
Indoor bostrichid collecting in Canada has never been better, thanks to the proliferation of
dollar stores. These discount vendors are springing up in most shopping malls across the country
and sell a wide array of items including cooking utensils such as wooden mixing spoons and bamboo
kebab skewers. Most of these items are imported from China, and sold in plastic bags. Inspecting
the bottom of the bags occasionally reveals the presence of sawdust. Examination of these items
normally reveals a healthy population of either Dinoderus bostrichids or powderpost beetles of the
genus Lyctus or Minthea. These pests of dry wood will continue to feed on the items until they are
reduced to a pile of frass.
2) Decorative Jewellery Boxes
In April of 2004 CFIA field staff responded to a complaint from an emporium in Kitchener,
Ontario concerning a shipment of wooden jewellery boxes. The retailer had contacted their local
CFIA office after observing sawdust emerging from several of the boxes on display. These
decorative painted boxes had been imported from India, several of which had beetle larvae chewing
within the walls of the box (Fig. 1). The shipment was seized and samples sent to the OPL for
identification. The grubs (Fig. 2) were clearly Cerambycine larvae of the tribe Hesperophanini, but
could not be identified further due to the poor state of knowledge of immature Cerambycids from
the Indian subcontinent. In the hope that an adult beetle could be obtained, one box was held in the
lab for over half a year while a single larva continued to feed, turning much of the wood into
powder (Fig. 3). Sadly the larva failed to emerge as an adult, thus precluding a more accurate
identification. However in September of the same year a dead cerambycid beetle was recovered by a
keen-eyed CBSA inspector in Montreal from a container of personal effects, including wooden
furniture imported from Pakistan. This beetle was submitted to the OPL and readily identified as
Zoodes compressus (Fabr.), a species belonging to the Hesperophanini. It is likely that the larvae in the
jewellery boxes were also Zoodes compressus or a related species.
208
Figure 1
Figure 2
Figure 3
3) Fragrant Potpourri (AKA scented pine cones)
In December of 2003 CFIA inspectors were notified of a recall in the United States
concerning infested pine cones. The USDA had detected live Chlorophorus strobilicola Champion in
cartons of fragrant potpourri imported from India for the Christmas season. The material was
ordered fumigated in the U.S. prior to distribution, but the fumigation was not successful as the
fumigant failed to penetrate the acetate boxes within the cartons (Fig. 4). The USDA subsequently
ordered the recall, prompting the CFIA to seize the infested material from a Canadian importer in
Green Valley, Ontario. Prior to incineration of the shipment, a sample was sent to the OPL for
analysis. In addition to recovering the target pest C. strobilicola (Figs. 5 and 6), other pests such as
Megastigma sp. (a Torymid pest of seeds), the plaster beetle Cartodere constricta (Gyllen.), myrmecine
ants, plus fragments of lygaeid seed bugs and fulgoroid leafhoppers were also recovered. A veritable
Christmas potpourri of insect pests for the discerning Entomologist.
Figure 4
Figure 5
209
Figure 6
4) Tiki Torches
Six inch diameter bamboo tiki torches (Fig. 7) were imported into the U.S.A. from Indonesia.
A Canadian visitor purchased several of these wooden items from a mall in upstate New York and
returned with them to St. Catharines, Ontario. The bamboo posts were cut-up and reassembled into
a decorative headboard for a child’s bed. The appearance of live cerambycid beetles emerging from
the bamboo in June of 2007 came as a surprise to the homeowner (Fig. 8). Believing they may pose
a risk to her son, she brought a specimen to the OMAFRA office in Vineland. The OMAFRA
entomologist recognized the beetle as a species of Chlorophorus, and sent it to Ontario Plant Lab in
Ottawa for identification. It was confirmed as Chlorophorus annularis (Fabr.), an Asian pest of bamboo
not known to be established in North America. Canadian Food Inspection Agency staff followed-up
by collecting the rest of the infested bamboo which was sent to the OPL for rearing. Over the next
6 months, a total of 10 Chlorophorus annularis and 7 weevils of the genus Pseudocossonus emerged from
two infested pieces of wood. The follow-up inspection was important in detecting the additional
pest (the Cossonine weevil) that had not been seen in the initial inspection, plus documenting the
continued emergence of beetles for at least 5 months after first emergence.
Figure 7
Figure 8
Summary
Wood is a ubiquitous commodity throughout much of the world, and is used in the
manufacture of many household items a well as in packaging and dunnage when larger items need to
be transported long distances. Low grade waste wood is often utilized in shipping and is well
documented as a conveyance for many forest pests such as Asian long horned beetles and
210
bostrichids such as Sinoxylon and Heterobostrychus. What is less well documented is the movement of
other wood boring insects in manufactured wood items, especially wooden crafts and decorative
items. These items and their pests pose a major challenge to plant health inspectors.
211
SESSION 10: GENOMICS OF VIRUSES AND THEIR
LARVAL HOSTS: IMPLICATIONS IN PEST
MANAGEMENT
Chair: Basil Arif
Natural Resources Canada, Canadian Forest Service
SÉANCE 10 : GÉNOMIQUE DES VIRUS ET DE LEURS
HÔTES LARVAIRES : INCIDENCES SUR LA LUTTE
ANTIPARASITAIRE
Président : Basil Arif
Ressources naturelles Canada, Service canadien des forêts
Viruses in Insect Pest Control, a Reality or Just a Pipe
Dream?
Peter Krell
University of Guelph, Molecular and Cellular Biology
Guelph, ON N1G 2W1
Abstract
Augmentation with natural pathogens in the control of forest and agricultural infestations has
seen favour even during the era of chemical pesticides. With the increasing public reluctance to
accept chemical insecticides and a corresponding drive towards solutions which leave a minimal
environmental footprint, much of the recent attention has turned to harnessing the specificity and
effectiveness of viruses and other natural pathogens against forest insect pests as biological control
agents in integrated pest management. The many different insect viruses, which vary in size, shape,
nature of genome, replication cycle, host(s) infected and nature of infection are divided into broader
categories of families and narrower taxa of genera and species. The most studied of the insect
viruses are restricted to approximately a dozen families. However, only a few have become
prominent as insecticides. For example, viruses in the family Baculoviridae are being commercialized
for use in agriculture and forestry, particularly against lepidopteran and some hymenopteran pest
species. For forestry, several insect virus formulations have been registered including Gypcheck
against gypsy moth, Neocheck against the European pine sawfly, Lecontvirus against the Red
headed pine sawfly, Virtus and TM Biocontrol-1 against the Douglas fir tussock moth, Disparvirus
against the Gypsy moth and recently, Abietiv against the balsam fir sawfly. To date the applications
are augmentative and use native viruses. Some baculoviruses are being developed as more
efficacious agents by modifying their genetic makeup. As insects develop resistance to currently used
insecticides, insect viruses and their modified variations will become less a laboratory curiosity and
more an additional biological control agent for use against forest insect pest species.
Résumé
L’utilisation de virus contre les insectes ravageurs : réalité ou rêve illusoire?
215
L’utilisation d’agents pathogènes naturels contre les ravageurs forestiers et agricoles a toujours
été bien perçue, même à l’époque où les insecticides chimiques étaient considérés comme la solution
à tous nos problèmes. En raison des réticences de plus en plus importantes du public à accepter la
lutte chimique et de la popularité grandissante des solutions laissant une empreinte
environnementale minimale, les scientifiques s’efforcent maintenant de tirer profit de la spécificité et
de l’efficacité des virus et d’autres agents de lutte naturelle en vue de les utiliser comme agents de
lutte biologique contre les insectes ravageurs forestiers dans le cadre de programmes de lutte
intégrée. Les nombreux virus entomopathogènes, qui se distinguent les uns des autres par la taille, la
forme, la nature du génome, le cycle de réplication, la gamme d’hôtes et la nature des pathologies
qu’ils provoquent, sont rangés dans des catégories taxinomiques plus larges appelées familles et dans
des catégories plus restrictives appelées genres et espèces. Les virus entomopathogènes les plus
étudiés appartiennent à une douzaine de familles, mais seuls quelques-uns d’entre eux ont été
largement utilisés comme insecticides. Par exemple, certains virus de la famille des Baculoviridae
sont commercialisés comme agents de lutte en agriculture et en foresterie, en particulier contre des
lépidoptères et certains hyménoptères. Plusieurs formulations de virus entomopathogènes ont été
homologuées pour la lutte contre les ravageurs forestiers, dont le Gypcheck contre la spongieuse, le
Neocheck contre le diprion du pin sylvestre, le Lecontvirus contre le diprion de LeConte, le Virtus
et le TM Biocontrol 1 contre la chenille à houppes du douglas, le Disparvirus contre la spongieuse
et, plus récemment, l’Abietiv contre le diprion du sapin. À ce jour, les applications sont de nature
augmentative et utilisent des virus indigènes. La modification de la constitution génétique de certains
virus a permis d’accroître leur efficacité. À mesure que les insectes deviendront résistants aux
insecticides utilisés actuellement, les virus entomopathogènes et leurs versions modifiées cesseront
d’être considérés comme de simples curiosités de laboratoire pour devenir des agents de lutte
biologique à part entière contre les insectes ravageurs forestiers.
216
From Disease to Genomics: A Journey with Insect Viruses
Basil Arif
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
Laboratory for Molecular Virology
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
Abstract
Baculoviruses are distinguished by a biphasic replication cycle where the virus produces a
phenotype (BV) that buds out of the cell early in the infection cycle to disseminate infection in
susceptible cells and tissues. A second phenotype is produced late in the cycle and becomes
occluded in a proteinic matrix and functions to spread infection to other susceptible insects.
Genomic analyses of viruses infecting Lepidoptera and those infecting ancient insect orders have
revealed that the BV phenotype was generated in order to evade defense systems within the larval
gut. Indeed, genomics of viruses and their insect hosts have revealed that they co-evolved with each
other and that the virus has acquired a number of host genes to give it a selective advantage in
nature as well as to allow it to survive within the complex larval physiology. Many such genes have
been classified as auxiliary in that they can be deleted without affecting the replication cycle per se.
Over the past few years, loci of auxiliary genes have been utilized for the insertion of exogenous
genes to enhance the effectiveness of the virus in the control of forest and agricultural insect pests
as well as for the expression of genes of interest. We have developed a specific system to enhance
viruses as pest control agents by the hyper expression of host genes that interfere with the molting
process and thus disrupting the development and metamorphosis of the larva. Briefly, this involved
expression of a larval transcription factor that interfered with other genes needed to complete
metamorphosis. This appears to represent an environmentally benign approach to the engineering of
insect viruses and to enhance their ability to control larval pests in both forestry and agriculture.
Résumé
De la maladie à la génomique : une incursion chez les virus des insectes
Les baculovirus se caractérisent par un cycle de réplication biphasique au cours duquel le virus
produit un phénotype (BV, pour budded virus) qui forme, au début du cycle d’infection, un
217
bourgeonnement à l’extérieur de la cellule pour propager l’infection aux cellules et tissus sensibles.
Un second phénotype, produit à la fin du cycle, est occlus dans une matrice protéinique et propage
l’infection à d’autres insectes sensibles. Les analyses génomiques des virus qui infectent les
lépidoptères et des virus qui infectent des ordres d’insectes plus anciens ont révélé que le phénotype
BV sert à déjouer les systèmes de défense du tube digestif de la larve. De fait, la génomique des virus
et de leurs insectes hôtes a montré que ces organismes ont co-évolué et que les virus ont acquis des
gènes des hôtes, ce qui leur confère un certain avantage sélectif dans la nature et leur permet de
survivre à la physiologie complexe des larves. Nombre de ces gènes sont dits auxiliaires car ils
peuvent être supprimés sans nuire au cycle de réplication en soi. Au cours des dernières années, on a
utilisé des locus de gènes auxiliaires pour l’insertion de gènes exogènes afin d’augmenter l’efficacité
des virus dans la lutte contre les insectes ravageurs forestiers et agricoles ainsi que pour l’expression
de gènes présentant un intérêt. Nous avons élaboré un système spécifique pour améliorer les virus
comme agents de lutte contre les ravageurs par hyperexpression de gènes d’hôtes qui interfèrent
avec le processus de mue et, par conséquent, qui dérèglent le développement et la métamorphose
des larves. En bref, le système implique l’expression d’un facteur de transcription chez les larves, qui
interfère avec d’autres gènes nécessaires pour réaliser la métamorphose. Il s’agirait là d’une méthode
de modification des virus d’insectes inoffensive pour l’environnement, permettant d’accroître leur
capacité à lutter contre les larves des insectes ravageurs forestiers et agricoles.
218
Genomics and the Registration of Baculoviruses for Insect
Control
Christopher Lucarotti1, Renée Lapointe2, and Robert Eveleigh2
1
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre,
P.O. Box 4000, Fredericton, NB E3B 5P7
2
Sylvar Technologies Inc.
Fredericton, NB E3B 5A6
Abstract
Baculoviruses are DNA viruses known only to infect arthropods and have been widely used to
suppress insect pests. Baculoviruses have restricted host ranges. They have been extensively safety
tested and have always been found to be safe to humans and the environment. More than 30
baculovirus genomes have been sequenced and are available through Genbank and new ones are
constantly being added. This bank is an invaluable resource for those wishing to register
baculoviruses for biological control. With full-genome sequence data, phylogenic relationships to
other baculoviruses can be determined providing clues to host ranges and potential hazard to
nontarget insects. Syntenic maps and parity plots can detect sequence inversions and insertions
possibly from sources external to the baculovirus genome. The full genome sequence should be part
of the characterization of any registered baculovirus product to ensure product stability over time.
Genome sequence data should be presented to the Pest Management Regulatory Agency as part of
the discussions that will determine the requirements for registration.
Résumé
La génomique et l’homologuation des baculovirus pour le contrôle d’insectes
Les baculovirus sont des virus d’ADN qui infectent les arthropodes et qui ont été utilisés pour
supprimer les insectes ravageurs. Ces virus ont des spécificitées d’hôtes très restraintes. De
nombreux tests ont été effectués sur les baculovirus et ont démontré une grande sécurité pour
l’environnement et les humains. A ce jour, les génomes de plus de 30 baculovirus ont été séquencés
et ajoutés au ˝Genbank˝. Cette banque est une ressource inestimable pour qui désirent homologuer
de nouveaux baculovirus pour le contrôle biologique. En utilisant les séquences complètes de
219
génomes, les relations phylogénétiques avec les autres baculovirus peuvent donner des indices
concernant la spécificité de l’hôte et l’impact possible sur les espèces non cibles. Les cartes
synténiques et les parcelles de parité (?) peuvent détecter les inversions et insertions de séquences qui
proviennent possiblement de sources externes. Les séquences génomiques de nouveaux baculovirus
devraient être présentées à l’agence de réglementation de la lutte antiparasitaire dans le cadre des
discussions qui établiront les exigences d’homologuation.
220
Pest Genomics and the Identification of Bio-rational Target
Sites
Michel Cusson
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
Abstract
The development of pest-control products has traditionally relied upon the chance discovery
of microbial agents that are effective against a given target species or the large-scale shotgun
screening of synthetic compounds with potential pesticidal activity. However, comparative and
functional genomics have opened new possibilities for the rapid identification of bio-rational target
sites, i.e., key regulatory proteins (enzymes, transcription factors, receptors) that are specific to a
limited group of pests and that may be used to enhance the activity of existing microbial agents,
through genetic engineering, or as targets for inhibitor or antagonist design. For the latter approach,
structural bioinformatics tools may be put to contribution in building or choosing molecules that
have the highest probability of blocking the protein’s ligand binding site—a strategy commonly
employed in modern drug discovery. Although labeled as “synthetic”, pest-control products
developed in this manner should have a relatively narrow host range and, consequently, a low
environmental impact, thereby facilitating their registration for use against forest pests. Some
Canadian provinces, however, have banned the use of all synthetic pesticides over forested land,
irrespective of the actual impact synthetic compounds may or may not have on the environment and
human health. Such blanket policies will need to be reassessed if we are to take full advantage of
modern genomics tools in the design of effective and environmentally benign pest-control products.
Résumé
La génomique des ravageurs et l’identification de cibles bio-rationnelles
Le développement de produits antiparasitaires a traditionnellement reposé sur la découverte
fortuite d’agents microbiens efficaces contre une espèce cible donnée, ou sur l’évaluation à grande
échelle du pouvoir pesticide de milliers de molécules synthétiques choisies un peu au hasard.
Cependant, la génomique comparative et fonctionnelle ouvre de nouvelles possibilités pour
221
l’identification rapide de cibles bio-rationnelles, i.e., des protéines régulatrices clé (enzymes, facteurs
de transcription, récepteurs) qui sont spécifiques à un groupe limité de ravageurs et qui peuvent être
utilisées pour améliorer l’efficacité d’agents microbiens existant, par le génie génétique, ou comme
cibles pour l’élaboration d’inhibiteurs et d’antagonistes spécifiques. Pour cette deuxième approche,
des outils de bioinformatique structurale sont mis à contribution dans la présélection de molécules
prometteuses—une stratégie communément utilisée dans la découverte de nouveaux médicaments.
Bien que portant l’étiquette « synthétique », les produits antiparasitaires développés de cette façon
devraient avoir un spectre d’activité assez étroit et, par conséquent, un impact environnemental
limité, facilitant ainsi leur homologation pour utilisation en milieu forestier. Certaines provinces
canadiennes interdisent toutefois la pulvérisation de tout pesticide de synthèse sur leurs territoires
forestiers, sans égard à l’impact réel de ces produits sur la santé humaine et l’environnement. De
telles politiques globales devront être réévaluées si nous souhaitons tirer pleinement avantage des
outils modernes de génomique dans le développement de produits antiparasitaires efficaces et
respectueux de l’environnement.
Pest genomics and the identification of bio-rational target sites
A
pproaches to the suppression of insect pest outbreaks in Canadian forests have undergone
dramatic changes over the past 60 years. To take the eastern spruce budworm as an example,
control operations have gone from the massive and indiscriminate application of broad-spectrum
chemical insecticides such as DDT over New Brunswick and Quebec conifer stands in the 1950’s, to
what may now be considered a very sparing use of two much safer insecticides, Btk (e.g., Foray®)
and tebufenozide (Mimic®). The former is a bacterial pest control product whereas the latter is a
synthetic insect molt disruptor. Both display high selectivity for lepidopteran insects (i.e., caterpillars
such as the budworm) and have excellent safety records for non-target organisms. Although both
products are registered for use in Canada, some provinces have imposed restrictions on the
application of tebufenozide for the control of forest pests, largely on the basis that it is a synthetic
pesticide. Thus, the arsenal of pesticides available for use against lepidopteran forest defoliators may
be viewed as very limited.
In this context, I would like to address the question as to what insect genomics can do towards
the discovery of novel pest-control products and strategies that are both effective and
222
environmentally acceptable. I believe there are several ways in which comparative and functional
pest genomics can make a valuable contribution. One avenue is the identification and
characterization of insect genes that could be used in the genetic improvement of baculoviral
insecticides or the engineering of insect-resistant trees. For example, the gene encoding the spruce
budworm transcription factor CHR3, which is involved in triggering larval molts, has been
introduced into the genome of CfMNPV, a baculovirus that is budworm-specific. Over-expression
of CHR3 in hosts infected with the recombinant virus causes a precocious and fatal molt, thereby
enhancing the insecticidal activity of the virus.
Studies in insect genomics can also lead to the discovery of gene products with insecticidal
activity that can be used either directly or as fusion proteins produced using recombinant
technologies. For example, the peptide “trypsin modulating oostatic factor” or TMOF, originally
isolated from mosquitoes, displays insecticidal activity against mosquitoes and several other groups
of insects. In addition, insect genomics-based approaches such as microarray analysis provide tools
for the identification of genes that play a role in the development of insecticide resistance;
monitoring the frequency of these genes in pest populations may then be carried out using PCRbased strategies.
But one of the greatest potentials of comparative and functional insect genomics, with respect
to the discovery of novel pest-control products, resides in the identification of “bio-rational target
sites”. The latter are proteins (such as enzymes, receptors and transcription factors) that play a vital
role in a biochemical process that is specific (for the case at hand) to insects or a group of insects.
Inhibiting or antagonizing the activity of such proteins disrupts the biochemical processes the
proteins are involved in, to the point of causing death or, at least, feeding cessation in the animal.
Such inhibitors, agonists or antagonists, if used as pest-control products, may then be considered
“bio-rational insecticides”, which are synthetic compounds displaying high target selectivity. As
such, these pesticides pose considerably lower risks to humans, wildlife and the environment than
conventional, broad-spectrum insecticides. Tebufenozide, an agonist of the lepidopteran molting
hormone receptor, falls under this category.
Here I would like to focus on the strategies used to identify bio-rational target sites in insects
as well as on the tools currently available for facilitating the design and assaying of molecules
generated with the intention of disrupting these target proteins.
223
Until very recently, identification of target sites was strictly knowledge-based. For example, it is
known that inhibition of juvenile hormone (JH) biosynthesis during the larval stage of some insects
can trigger a precocious and fatal metamorphosis. It follows that some JH biosynthetic enzymes may
be suitable targets for inhibition; conventional molecular strategies may then be employed for the
cloning of the relevant enzyme cDNA, production of the recombinant enzyme using a bacterial or
baculoviral expression system, and development of in vitro assays to assess the activity of potential
inhibitors. However, high-throughput sequencing technologies, which are now applied to the
sequencing of the entire genome of many organisms, combined with comparisons of the sets of
genes found in these different organisms, make it possible to identify genes that are unique to insects
or groups of insects. Then, application of other technologies such as RNA interference (RNAi;
described below) allows one to determine which of these genes are truly vital and may thus be
considered good targets for disruption.
There are two main approaches to the genome-wide identification of genes. As indicated
above, the main one involves determining the nucleotide sequence of an entire genome, followed by
its annotation, a process during which biological information (e.g., position and putative function of
genes) is attached to the sequence. For insect genomes, this often requires a large-multi-lab effort
and substantial investment. Twenty insect genomes have been sequenced to date, and the
sequencing of several others is currently in progress.
A second approach consists in developing expressed sequence tag (EST) data bases, which
contain a collection of partial sequences of expressed genes. It involves the construction of cDNA
libraries from mRNAs extracted from either whole insects or specific tissues, followed by singleread sequencing of a large number of cDNA clones. Although partial, each sequence obtained is
typically sufficiently long to allow identification of the associated gene, and thus provides a gene
“tag”. This approach requires substantially lower investment than whole genome sequencing, and
can often be handled by a single laboratory. There exist many insect EST data bases, including some
for the spruce budworm developed by the CFS.
The comparative analysis of insect genomes has already led to some very interesting
observations. For example, insect genomes differ considerably in terms of size and number of genes
(e.g., the honey bee has ~10,000 genes while the silkworm has ~18,500 genes). With respect to gene
content, it has been found that the best represented insect-specific genes are those associated with
stress and stimulus response, cuticle formation and pheromone/odor perception; the latter are
224
receptors and binding proteins, and are far more abundant in some insects (e.g., mosquitoes) than
others. In addition, some insects have a whole suite of genes that are absent from other groups of
insects; for example, the silkworm genome contains an estimated 1793 genes that are not found in
either the fruit fly or the mosquito genome.
Once a gene has been found to be unique to a pest or group of pests, its suitability as a biorational target site may be assessed using various gene disruption strategies. Among the latter, RNAi
is probably the simplest and most accessible approach. This gene silencing procedure involves
transcriptional inhibition through administration of double stranded RNA (dsRNA); the sequence of
the latter must be complementary to the mRNA of the gene whose expression is to be disrupted. If
silencing the target gene proves to have lethal effects in the animal, then the gene, or the protein it
encodes, may be viewed as a promising target for the development of a bio-rational insecticide.
Most bio-rational target sites are proteins whose activity requires that they bind to a nonproteinaceous molecule (a “ligand”). In the case of an enzyme, the natural ligand is the substrate
whereas in the case of a receptor, the ligand is typically a hormone. Insecticidal molecules interacting
with these proteins will either be enzyme inhibitors, competing with the natural substrate, or
receptor agonists (activating a receptor at a time when such activation is physiologically
inappropriate) or antagonists (competing with the natural hormone).
The ability to empirically determine the three-dimensional (3-D) structure of a target protein,
or to assess its 3-D structure through homology modeling, can guide the selection and design of
molecules that will fit in the binding pocket of the protein, thus providing a first computer-assisted
screen of candidate molecules. High-throughput screening (HTS) assays may then be developed to
assess the in vitro activity of the most promising molecules. These assays are often cell-based, using
an insect cell line that has been transformed with an appropriate DNA construct and reporter gene
(e.g., green fluorescent protein; GFP). The cells are then seeded into the wells of microtiter plates,
and a distinct compound is applied to each well. The intensity of fluorescence from the reporter
gene is then measured in each well, giving a direct assessment of the binding affinity of the test
compound. Such an approach has recently been employed for the screening new ecdysone agonists
of the diacylhydrazine family (to which tebufenozide belong). EC50 values were used in conjunction
with a 3-D model of the receptor to conduct 3-D quantitative structure-activity relationship studies
(3-D QSAR). The latter allowed the identification of compound features that are important for
225
activity. Compounds performing best in vitro may then be assessed for their in vivo activity on target
pests.
Thus, comparative and functional genomics of forest pests offers several avenues for the
development of novel pest control products and strategies. Among these is the identification of
pest-specific proteins, typically receptors, binding proteins and enzymes that can be targeted for the
development of bio-rational insecticides. Various in silico and in vitro high-throughput screening
assays can be designed to accelerate the testing of candidate molecules. Because of their modes of
action, such molecules should have minimal impact on non-target organisms.
Relevant references will be found in:
Cusson M. The molecular biology toolbox and its use in basic and applied insect science.
BioScience, in press.
226
Equivalency Determinations in the Registration of
Baculoviruses
Equivalency Determinations in the
Registration of Baculoviruses
Forest Pest Management Forum
December 4 – 6, 2007
Ottawa
Brian Belliveau, Ph.D.
Head, Microbial and Biochemical Evaluation Section
Health Evaluation Directorate
Pest Management Regulatory Agency
Health
Canada
Santé
Canada
Baculoviruses Currently
Registered in Canada
• Lymantria dispar (Gypsy moth) NPV
(Disparvirus)
• Neodiprion lecontei (Red-Headed Pine
Sawfly) NPV (Lecontvirus)
• Orgyia pseudotsugata (Douglas-Fir Tussock
Moth) NPV (Virtuss and TM-Biocontrol)
• Cydia pomonella (Codling Moth) GV (Virosoft
CP4)
• Neodiprion abietis (Balsam Fir Sawfly) NPV
(ABIETIV Flowable Biological Insecticide)
Health
Canada
Santé
Canada
227
Microbial Guidelines
•
Registration requirements on
characterization of microbial
agents are described in
DIR2001-02
•
Taxonomic identification to
the lowest epithetic level
possible using the best
available technology
•
ID of microorganism is
critical to support arguments
of biological equivalence to
existing registered (or other)
microorganisms because
PMRA registers to
strain/isolate level
– consistent with U.S. EPA
and EU regulatory approach
Health
Canada
Santé
Canada
The Virosphere
Health
Canada
Santé
Canada
228
The Baculoviruses
How far can
taxonomic
equivalence be
argued before it
loses all
regulatory
meaning?
Health
Canada
Santé
Canada
The Baculoviruses
Health
Canada
Santé
Canada
229
The Baculoviruses
•
•
•
•
What criteria should be used to
establish equivalence between
baculoviruses?
Consider all baculoviruses
biologically equivalent?
Should distinction be made
between host insect orders?
NPV vs. GV? MNPV vs. SNPV?
Sequence and compare
baculovirus genomes to
determine similarities of entire
genomes and/or specific genes?
– ~31 baculoviruses fully
sequenced
•
Genomes range between 81.8 to
161 kb
– Sawfly NPVs smallest to date
Health
Canada
Santé
Canada
NeabNPV (Abietiv) Case Study
• Comparisons drawn between NeabNPV (Neodiprion
abietis) and PMRA-registered NeleNPV (Neodiprion
lecontei) and to lesser extent with unregistered
NeseNPV (Neodiprion sertifer)
– SNPVs (Hymenoptera, Symphyta, Diprionidae)
• NeabNPV genome fully sequenced (84,264 bp) and
compared to NeleNPV (81,755 bp) and NeseNPV
(84,462 bp)
– G+C content (33.5%) for all 3
Health
Canada
Santé
Canada
230
NeabNPV (Abietiv) Case Study
• NeabNPV gene content
– Of the 93 NeabNPV ORFs, 72 have
corresponding homologues in NeseNPV
and 81 in NeleNPV
– 11 NeabNPV ORFs are unique to
NeabNPV
– 10 NeabNPV ORFs have a homologue in
NeleNPV but NOT in NeseNPV genome
– One NeabNPV ORF has a sequence
homologue in NeseNPV but NOT in
NeleNPV genome
Health
Canada
Santé
Canada
NeabNPV (Abietiv) Case Study
• Nucelotide sequence
parity plots showed
greater colinearity
between NeabNPV and
NeleNPV than between
NeabNPV and NeseNPV
• NeabNPV and NeleNPV
(New World) share same
conserved loci compared
to NeseNPV (reintroduced from Old World
in 1920s)
Health
Canada
Santé
Canada
231
Registration Requirements or “I
have to do HOW many studies?!”
• Registration requirements outlined in
Directive DIR2001-02 can be addressed by
submitting one of the following:
• Test data on the microorganism to be
registered
• Waiver rationale supported by published
scientific data on a closely related
strain/species, if both belong to a wellcharacterized (familiar) taxon
• Rationale to waive the requirement because it
is unnecessary or impractical
Health
Canada
Santé
Canada
NeabNPV (Abietiv) Case Study
• Genome equivalency between NeabNPV and
NeleNPV established
– CFS successfully argued for waivers from many
registration requirements, particularly health and
environment (see REG2006-10 for details)
– Waiver requests not applicable to product
characterization/analysis or to efficacy
requirements
• Sets the stage for a “universal” waiver
approach for future baculovirus registrations
– based on equivalency claims to existing registered
baculoviruses as well as to unregistered, but well
characterized, baculoviruses
Health
Canada
Santé
Canada
232
Integrating Ethics within the Regulatory Framework of
Biotechnology Applications: What Does This Mean?
Lyne Létourneau1 and Francis Lord2
1
Université Laval, Département des sciences animales
Québec, QC G1K 7P4
[email protected]
2
Université Laval, Faculté de droit
Québec, QC G1K 7P4
[email protected]
Abstract
As a form of knowledge, science is considered to be the hallmark of rationality and objectivity.
Yet, in the bio-engineering context, alleged uncertainties in the assessment of risks are plaguing
scientific discourse and undermining the credibility of science as an adequate basis for regulation.
Criticizing science-based regulation, a community of authors coming from various
backgrounds are arguing for the rejection of our current regulatory model and aiming to replace the
latter by a broader regulatory framework standing on ethics as well as on science. In their proposed
system, science would be all but one of many considerations to be taken into account. That being
the case, the thresholds of our current regulatory process would need to be rearticulated so that
science alone could not act as the only justification for the introduction of GMOs. In their
viewpoint, the integration of ethical and socio-economic considerations within the regulatory
framework of GMOs would restore public trust in a normative system which is presently deaf to
many important issues related to so called “non scientific” concerns, hence increasing its legitimacy.
To some of them, this is not only a matter of efficiency, but of duty.
Such a proposal however, which is put forward very frequently, raises many questions of its
own. For instance, what are these “non scientific” concerns to which regulators should pay more
attention? How could they be legitimately integrated within the regulatory process without
undermining innovation? More generally, what relationships should be established between science
and ethics in the regulation of GMOs?
For the purposes of our communication, we will explore in more detail the exact nature and
extent of what is meant when commentators suggest integrating ethics within the regulatory
233
framework of biotechnology applications. We will also provide elements of critical analysis in
thinking about this complex issue.
Résumé
Intégrer l’éthique dans la régulation des applications de la biotechnologie : de quoi est-il
question?
Parmi les formes de la connaissance, la science est considérée comme une garantie de
rationalité et d’objectivité. Cependant, dans le contexte propre à la bio-ingénierie, des incertitudes
dans l’évaluation des risques affectent le discours scientifique et minent la crédibilité de la science à
titre de fondement de la régulation.
Critiquant la régulation fondée sur la science, une communauté d’auteurs provenant de champs
disciplinaires divers revendique la réforme de l’actuel modèle de régulation au profit d’une approche
plus large reposant autant sur l’éthique que sur la science. Selon cette proposition, la science ne serait
qu’une parmi plusieurs considérations susceptibles d’être prises en compte. Il en résulte que les seuils
de contrôle du système actuel devraient être reformulés de sorte que la science ne puisse isolément
justifier l’introduction d’OGMs. Suivant leur perspective, l’intégration des considérations éthiques et
socio-économiques dans la régulation des OGMs permettrait de réacquérir la confiance du public
envers un système normatif qui, à l’heure actuelle, négligent selon eux d’importantes questions, soit
nommément les considérations « non scientifiques », accroissant d’autant sa légitimité. Pour certains
de ces auteurs, il ne s’agit pas seulement d’une question d’efficacité, mais d’un devoir.
Une telle proposition, laquelle est fréquemment avancée, n’est pas sans soulever de
nombreuses questions. Par exemple, quelles sont ces considérations « non scientifiques » auxquelles
les régulateurs devraient porter davantage attention? Comment peuvent-elles être légitimement
intégrées au processus réglementaire sans porter atteinte au développement technoscientifique? De
façon plus générale, quelle devrait être la teneur des rapports entre la science et l’éthique dans la
régulation des OGMs?
Dans le cadre de notre communication, nous explorerons avec plus de précision la nature et
l’étendue de ce que signifie l’intégration de l’éthique dans le cadre de la régulation des applications de
la biotechnologie, telle que suggérée par ces auteurs. Nous offrirons également des éléments
d’analyse critique permettant d’avancer la réflexion en regard de ce problème complexe.
234
Introduction
F
ar from achieving unanimity, GM technology is a source of controversy. Its applications give
rise to a number of divergent ethical assessments. Located at the crossroads of law and ethics,
therefore, regulatory frameworks are developing against the backdrop of a plurality of ethical
viewpoints.
Although regarded as very important, ethics is almost never taken into account within the
regulatory approval process for biotechnology products. What is more, there is no consensus on
whether and, if so, how ethics should be addressed within the regulatory system. (Silverman
2000: 5 6)
This issue however holds considerable interest. In a 2004 report, the External Advisory
Committee on Smart Regulation recommended that the Canadian government “make it a priority to
develop and implement a comprehensive, government-wide biotechnology regulatory strategy which
would (…) give due consideration to ethical issues.” (EACSR 2004: 91)
For our present purposes, we will explore what is meant by those (i.e. academics, advisory
bodies and other experts – let’s call them “critics”) who suggest integrating ethics within the
regulatory framework of biotechnology applications. More specifically, we will present an overview
of the answers provided by these critics to the following three questions:
a- Why should ethics be integrated within the regulatory framework of biotechnology applications?
b- What in terms of “ethics” should be integrated within the regulatory framework of
biotechnology applications?
c- How should ethics be integrated within the regulatory framework of biotechnology
applications?
Why should ethics be integrated?
As a general rule, critics support the integration of ethics within the regulatory framework of
biotechnology applications for two broad sets of reasons. The first set of reasons concerns the role
of science within the regulatory process.
In Canada (as well as in many other countries, including at the international level), the
regulatory process that leads to the registration of a product (GM or not) for wide use in forestry,
agriculture, fisheries and so on is generally described as “science-based”. Requiring strict adherence
235
to a number of guidelines designed to assure the safety, quality and efficacy of the product, it
compels promoters to produce considerable amounts of empirically derived data as proof (scientific
proof) that the aforementioned criteria are met. However, according to critics, who attack the
science-based character of our current regulatory system, science offers an insufficient ground for
effective (environmental or health) risk analysis (and control - ultimately).
Indeed, science can provide assessments based upon present scientific knowledge about risks.
Yet, there remain many uncertainties. As authors Wolfgang Krohn and Wolfgang Van Den Daele
underscore:
“We normally emphasize the capacity of scientific research to transform uncertainty of
knowledge into certainty, replace conceptual ambiguity by clear theory, and turn technical
impasse into manageable options. However, the more that capacity is extended to
complex issues [(such as genetic engineering)] the more we will be confronted with what
we do not know and cannot control. (…) [S]cience (…) will generate new knowledge –
this is what research is all about. But on the road to that knowledge it will also accumulate
new uncertainties and open questions. And the non-knowledge may well outstrip the
relevant knowledge.” (Krohn & Van Den Daele, 1998: 194)
To critics, biotechnology applications have brought us to this point where what we know (or
what we think we know) is clearly not enough.
Critics also argue that scientific knowledge about risks cannot, by itself, give an answer to the
question whether a certain risk should be taken for deliberations, and thus conclusions, about the
acceptability of risks rest on assumptions about important social, economic and philosophical issues.
Albeit a significant part of the regulatory process that leads to the registration of a product, science
alone is inadequate to formulate a proper judgement on the acceptability of risks. What makes
matters worst, according to Karsten Klint Jensen and Peter Sandoe, is “that the description of
scientific risk assessment and scientific advice seems to reflect an underlying lack of awareness
among scientists and administrators (…) of the role that value judgements play in their work?”
(Jensen & Sandoe, 2002: 249)They make implicit value judgements, but are totally unaware of it!
Finally, critics say that public distrust of science extends to the regulatory system. Indeed,
according to critics, people consider that scientists are too closely tied to business interests, giving
rise to suspicion of conflicts of interest. As Dane Scott explains, many academic scientists and
universities aggressively pursue profits from scientific innovations as part of their mission. That
236
being the case, people wonder whether this new endeavour is interfering with scientists performing
their technical roles competently. What is more, academic scientists who make alliances with
industry take on a set of loyalties that may conflict with the traditional loyalties of the scientific
community. (Scott, 2003: 579-580) Thus, critics conclude, whereas members of the public expect the
regulatory process to be objective and impartial, they distrust its “science-based” character and feel
flawed by government whose interests are also considered to be too much aligned with those of
industry. In this context, Jensen and Sandoe rightly ask: “[H]ow [is] mere scientific rearmament (…)
supposed to overturn public distrust?” (Jensen & Sandoe, 2002: 246)
The second set of reasons why critics support the integration of ethics within the regulatory
framework of biotechnology applications emphasizes the limited conception of “risk” underlying the
regulatory process.
Indeed, different types of concerns are at issue in the public debate about biotechnology
applications. In its 2001 report on the regulation of food biotechnology in Canada, the Expert Panel
of the Royal Society of Canada identified three categories of risks:
(1) The potential risks to the health of human beings, animals and the natural environment;
(2) The potential risks to social, political and economic relationships and values; and
(3) The potential risks to fundamental philosophical, religious or “metaphysical” values held by
different individuals and groups. (Royal Society of Canada, 2001:3).
However, because of its science-based character, our regulatory system only considers the first
category of risks. According to critics, it follows that its scientifically based evaluation of possible
consequences is incomplete in terms of comprehensiveness. For what is at stake, in terms of “risks”,
is much broader than what is actually taken into account.
For all of the aforementioned reasons, therefore, critics express the view that ethics should be
integrated within the regulatory framework of biotechnology applications. To summarise, they
believe that an “integrated” system is preferable to a science-based system because risk assessments
should be conducted in an intellectual space wherein values adopted by scientific personnel and
institutions are explicit and allow for the formulation of proper judgments with respect to the
acceptability of the full range of risks. Such a regulatory system, according to critics, might succeed
in gaining back some of the public’s trust. For it would give weight to their concerns.
237
What in terms of “ethics” should be integrated?
What in terms of “ethics” should be integrated within the regulatory framework of
biotechnology applications? Answers here vary among critics depending on what they have in mind
in terms of end goal. One possible answer rests along the following line of reasoning.
Moral neutrality does not exist in the regulation of biotechnology applications. For instance, in
the case of animal or plant biotechnology, no matter what system of regulation is put into place, the
regulatory framework will reflect a particular stance on the double ethical dilemma raised by the
genetic engineering of animals or plants. Either explicitly or implicitly, it will reflect both a
conception of the relationship between humans and animals – or the environment -, as well as a
moral position with respect to the acceptability of genetically modifying animals or plants. That
being the case, regulatory frameworks of biotechnology applications may be subjected to what is
called “moral appraisal”.
Using moral judgement to reflect on regulatory systems, some critics call for reform on the
basis of their identification of these systems as being unjust or otherwise morally deficient. What
they seek to “integrate”, therefore, is their own ethical viewpoint; they want their own ethical
viewpoint to be crystallised in legislation.
Another possible answer is that ethics should contribute the principles guiding decisions in the
practical domain. With such conflictual areas, indeed, a number of critics affirm that the procedural
part of the regulation constitutes what is vital. This includes an enlisting of the factors and criteria to
be considered before making a decision, and the eventual relations among them.
To illustrate, Ben Mepham proposes an “ethical matrix” that, short of aspiring to be a
decision-making procedure, nevertheless provides a set of substantive moral premises upon which
to base reasoning, a framework for ethical analysis that allows differences of emphasis within a
scheme of universal applicability. (Mepham, 2000)
Still another answer is that regulatory frameworks of biotechnology applications should, not so
much integrate any explicit ethical views or normative decision-making principles, but allow as an
integral part of the regulatory process that leads to the registration of a product the contemplation of
all relevant interests and values, thus including and reflecting the concerns of all citizens.
238
Robert Streiffer and Thomas Hedemann explain, for instance, that many people object to GM
food because they believe that it is unnatural or that its creation amounts to playing God. These
objections have been widely criticized in the agricultural ethics literature as being unsound,
incompatible with modern science, religious, inchoate, and based on emotion instead of reason.
Many critics of these objections also argue that, even if these objections did have some merit as
ethical objections, their quasi-religious nature means that they are entirely irrelevant when
interpreted as political objections regarding what public policy ought to be. Streiffer and Hedemann
argue that this widespread view is false and that the discussion should not so much center on the
substantive merits of these objections but rather on the appropriate political norms for achieving
democratically legitimate policy (or decision-making) on issues that touch people’s deepest religious
and moral beliefs. (Streiffer & Hedemann, 2005)
Knowing why critics argue that ethics should be integrated within the regulatory framework of
biotechnology applications, as well as what they think in terms of ethics should be integrated, let’s
turn our attention to the answers offered by critics to our third question, that is, how should ethics
be integrated within the regulatory framework of biotechnology applications.
How should ethics be integrated?
Generally speaking, two distinct types of “integration strategies” are found in the literature.
The first type aims to promote and support ethical debate and analysis; the second type seeks to
confer legal force to some chosen ethical standards.
Under the first set of integration strategies, critics ask for the institutionalisation of debate
through the establishment of forums where the exchange of ideas and the confrontation of differing
ethical viewpoints can occur - such as advisory committees and public consultation through citizen’s
juries, consensus conferences, public hearings, and the like. The establishment of such forums is
regarded by critics as desirable, if not necessary, in order to cope with the normative (or evaluative)
aspects of risk assessment – for example, when discussing the acceptability of certain risks.
Nevertheless, one should note that, since risk estimation requires highly specialised knowledge to
make accurate risks estimates, it should be kept separate from the normative aspects of risk
assessment and only involve scientific experts. Usually, advisory committees hold no decisionmaking power and public consultation does not form part of the regulatory approval process.
239
Under the second type of integration strategies, critics intend to spare the opportunity for
reasons other than “scientific” to constrain the regulatory process that leads to the registration of a
product, and even to prevent its registration. This, of course, may be done through the adoption of
limits such as legal prohibitions. However, what most of the critics propose is to broaden risk
assessment to its ethical component – in addition to its scientific constituent – while keeping both
evaluations separate, although complementary and integrated in order to avoid situations where, in
the case of opposite assessments (one for, the other against), science could overturn ethics. It is
worth mentioning that the approach by “process” is deemed to be more amenable to the integration
of ethics than its counterpart approach by “product”.
Moving away from imperatives and prescriptions as well from the compulsory nature of state
regulation, Sylvie Pouteau favours corporate social responsibility as a means to the integration of
ethics within the regulatory framework (meant large) of biotechnology applications. Indeed,
according to her:
“Because the roles and capacities of governments of enforcing ethical, environmental, or
social regulations have decreased due to growing globalization and transnational
corporations, it is unlikely that ethical practices in [biotechnology] will be achieved
without active involvement of the private sector.” (Pouteau, 2000: 287)
Australia and Norway illustrate how some western states have integrated ethics within their
regulatory framework of biotechnology applications. (Silverman, 2000)
In Australia, the Gene Technology Regulator, an independent statutory office holder whose
functions include determining applications for GM licences, is bound by policy principles. A GMO
license cannot be issued if doing so would be inconsistent with a policy principle. Policy principles
deal with ethical issues related to GMOs (or other matters prescribed by regulation). They are issued
by the Ministerial Council after consultation with a number of Commonwealth, state, industry, and
community organisations, including the three Commonwealth advisory committees established
under the Gene Technology Act. The Regulator must also have regard to policy guidelines in deciding
whether to issue a GMO license, but is not bound to follow them. Policy guidelines are issued by the
Ministerial Council as well, but do not have to be formulated in consultation with anyone – although
the Ministerial Council may choose to consult. The Regulator has the ability to obtain scientific,
ethics, and other advice from three advisory committees established by the Act: the Gene
Technology Technical Advisory Committee (composed of scientific and technical experts), the Gene
240
Technology Community Consultative Group (composed of representatives from a range of sectors,
including the environment, public health, primary industry, local government, and consumers), and
the Gene Technology Ethics Committee (composed of persons with expertise in ethics, religion, and
law). Nevertheless, only the Gene Technology Technical Advisory Committee is involved directly in
providing advice on GMO licences. The two other advisory committees are consulted only in
relation to general principles or guidelines, not in relation to specific decisions.
In Norway, ethical considerations are strongly reflected in the regulation of biotechnology.
Under the Gene Technology Act, biotechnology applications cannot receive approval unless their
benefit to society and promotion of sustainable development are demonstrated. The Act also states
that (and I quote): “In cases where approval is required under the present Act, the competent
authority may decide that a public consultation is to be carried out.” Furthermore, the Act prohibits
the altering of an animal’s genetic material with the aid of gene technology if:
(1) This makes the animal unable to carry out normal behaviours or affects physiological
functions in an undesirable way;
(2) The animal is made to undergo unnecessary suffering; or
(3) The alterations provoke general ethical reactions.
Finally, the consideration of ethical issues has been institutionalised through the Norwegian
Biotechnology Advisory Board, composed of experts in the natural sciences, law and philosophy,
representatives of environmental groups, farmers’ associations, trade unions, etc.
Conclusion
Integrating ethics within the regulatory framework of biotechnology applications does
constitute a significant challenge. Societal demand for regulation that takes ethics into consideration
is great.
With Inger-Johanne Sand, however, what is worrying with this trend is that political, legal and
regulatory decision-making in such an area as biotechnology may mean stretching the function and
the abilities of law and politics. As she affirms: “[l]aw and politics are presumed to be able to make
decisions in any area of social interest (…). There may however be signs that law and politics are
currently being overburned with tasks which go beyond their abilities and their legitimacy.”
241
(Sand: 88) On the path to the integration of ethics, we should not forget as a society to pause in
order to contemplate what new role the emergence of biotechnology brings on for law and politics.
References
Karsten Klint Jensen & Peter Sandoe, « Food safety and ethics: the interplay between science and
values », (2002) 15(3) Journal of Agriculture and Environmental Ethics 245-253.
Krohn, Wolfgang & Wolfgang Van Den Daele, « Science as an agent of change: finalization and
experimental implementation », (1998) 37(1) Social Science Information 191-222.
Mepham, Ben, « A framework for the ethical analysis of novel foods: the Ethical Matrix », (2000)
12(2) Journal of Agricultural and Environmental Ethics, 165-184
Pouteau, Sylvie, « Beyond substantial equivalence: ethical equivalence », (2000) 13(3-4) Journal of
Agriculture and Environmental Ethics 273-291.
Royal Society of Canada, Elements of Precaution: Recommandations for the Regulation of Food Biotechnology in
Canada, Ottawa, Government of Canada, 2001.
Inger-Johanne SAND, “The regulation of vital risks, uncertainties and scientific controversies: the
case of regulating new bio- and genetic technologies”, (2005) […]79-96.
Scott, Dane, « Science and the consequences of mistrust: lessons from recent GM controversies »,
(2003) 16(6) Journal of Agricultural and Environmental Ethics 569-581.
Silverman, O., International Approaches to Non-science Issues in Regulating the Products of Biotechnology,
background paper prepared for the Canadian Biotechnology Advisory Committee, November 2000.
Streiffer, Robert & Thomas Hedemann, « The Political Import of Intrinsic Objections to Genetically
Engineered Food », (2005) 18 Journal of Agricultural and Environmental Ethics 191-210.
Canada. External Advisory Committee on Smart Regulation, Smart Regulation – A Regulatory Strategy
for Canada, Ottawa, External Advisory Committee on Smart Regulation, September 2004.
242
SCIENCE AND TECHNOLOGY À LA CARTE
Chair: John Pineau
Canadian Institute of Forestery
SCIENCES ET TECHNOLOGIE À LA CARTE
Président : John Pineau
Institut forestier du Canada
Insect Rearing – Tool for Detection of Exotic Wood Boring
Insects
T. Kimoto1 and L.M. Humble2
1
2
Canadian Food Inspection Agency, Plant Health Surveillance Unit
4321 Still Creek Dr., Burnaby, BC V5C 6S7
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Rd, Victoria, BC V8Z 1M5
Abstract
The Canadian Food Inspection Agency, in partnership with the Canadian Forest Service, City
of Surrey, City of Toronto, City of Montreal and Halifax Regional Municipality, is rearing insects
from logs as a tool for the detection of established populations of exotic wood boring insects. Steel
marine transport containers (40 feet or 12.19 metres in length) were modified into climate-controlled
rearing facilities and placed in pre-selected locations in each of the cities (Surrey, Toronto, Montreal,
Dartmouth). Logs that meet specific criteria (e.g., proximity to high risk sites, state of decline, signs
of insect activity, etc.) are obtained through a city’s hazard tree removal program. Logs are placed in
sleeve cages suspended from an overhead racking system or placed in modified sonotubes/building
forms and held for insect emergence. To date, ambrosia beetles, weevils, bark beetles, longhorn
beetles and metallic wood borers have been reared from a variety of softwood and hardwood
species. Although a few naturalized non-indigenous species have been collected, most of the reared
insects are native. To date, there have not been any new records of introduced species.
Résumé
Élevage d’insectes – outil pour le dépistage des insectes perceurs du bois exotique
L’Agence canadienne d’inspection des aliments, en partenariat avec le Service canadien des
forêts, la ville de Surrey, la ville de Toronto, la ville de Montréal et la municipalité régionale de
Halifax, a mis sur pied un programme d’élevage d’insectes à partir de grumes aux fins du dépistage
des populations établies d’insectes perceurs du bois exotiques. Des conteneurs maritimes en acier
(40 pieds de longueur, 12.19 m.) ont été transformés en installations d’élevage à ambiance contrôlée
et placés à des endroits prédéterminés dans chaque ville (Surrey, Toronto, Montreal et Dartmouth).
245
Les grumes satisfaisant à certains critères préétablis (p. ex. proximité par rapport aux sites à haut
risque, stade de dépérissement, signes d’activité d’insectes, etc.) sont recueillies dans le cadre du
programme municipal d’élimination des arbres dangereux. Ces grumes sont introduites et
maintenues dans des cages-manchons suspendues à un support ou dans des sonotubes/éléments de
coffrage modifiés jusqu’à l’émergence des insectes. Diverses espèces de scolytes du bois, de
charançons, de scolytes de l’écorce, de longicornes et de buprestes ont émergé des grumes de
diverses espèces de feuillus et de résineux. Des individus de quelques espèces non indigènes
naturalisées ont été recueillis, mais la plupart des insectes obtenus dans le cadre de ce programme
d’élevage appartenaient à des espèces indigènes, et à ce jour, aucune nouvelle espèce introduite n’a
été découverte.
246
The René Martineau Insectarium – Forest Insect
Documentation Centre for Eastern Canada
J. Klimaszewski
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
Abstract
The René Martineau Insectarium is the leading documentation centre for forest insects in
eastern Canada. It supports research on forest insect biodiversity, taxonomy, ecology, and pests. The
collection houses some 200,000 insect specimens and about 6,000 identified insect species
represented by 3,273 species of Coleoptera, 1,270 species of Hymenoptera, 1,221 species of
Lepidoptera, 189 species of Heteroptera, 146 species of Homoptera, 108 species of Collembola, and
a small number of species of Blattodea, Orthoptera, Mantodea, Dermoptera and Odonata. In
addition it contains the collection of 40,000 slides of over 900 insect species, adults and larvae
(stored in Archives Canada, Ottawa), including a database of 13,000 selected digital images of forest
phytophagous insects. It has the best Canadian collection of megadiverse aleocharine rove beetles.
Résumé
L’Insectarium René-Martineau – Centre de documentation sur les insectes forestiers pour
l’est du Canada
L’Insectarium René-Martineau est le principal centre de documentation sur les insectes
forestiers dans l’est du Canada. Il offre un support à la recherche portant sur la biodiversité des
insectes forestiers, la taxinomie, l’écologie et les espèces nuisibles. La collection abrite près de
200 000 spécimens et environ 6 000 espèces d’insectes identifiées, représentées par 3 273 espèces de
coléoptères, 1 270 espèces d’hyménoptères, 1 221 espèces de lépidoptères, 189 espèces
d’hétéroptères, 146 espèces d’homoptères, 108 espèces d’collemboles de même qu’un petit nombre
d’espèces de blattidés, d’orthoptères, de mantidés, de dermoptères et d’odonates. D’autre part, il
contient une collection de 40 000 lames représentant plus de 900 espèces d’insectes, adultes et larves
(entreposée à Archives Canada, Ottawa), incluant une banque de données de 13 000 images digitales
247
sélectionnées d’insectes forestiers phytophages. Il possède la meilleure collection au Canada d’une
grande diversité de staphylins aleocharines.
248
TreeAzin, a Systemic Bioinsecticide Containing Azadirachtin
for Control of an Invasive Woodboring Beetle, the Emerald
Ash Borer, Agrilus planipennis
B. V. Helson1, D. G. Thompson1, G. W. Otis2, N. G. McKenzie2, and J. Meating3
1
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
2
University of Guelph, Department of Environmental Biology
Guelph, ON N1G 2W1
3
BioForest Technologies Inc.
105 Bruce St., Sault Ste. Marie, ON P6A 2X6
Abstract
A new formulation named TreeAzin, containing the safe, natural product, azadirachtin has
been developed specifically for tree trunk injections. Low volumes of this 5% formulation can be
injected quickly and completely into trees with a new, high output, commercial tree delivery method,
the EcoJect System. TreeAzin was evaluated for its potential to manage emerald ash borer by
injecting ash trees and determining its uptake, translocation and persistence, its efficacy on larvae as
well as effects on adult mortality, female fecundity and fertility. Azadirachtin is rapidly taken up
initially in ash trees followed by a slow, logarithmic decline in foliar residues over time after
injections of TreeAzin with the EcoJect system. TreeAzin can effectively control EAB larvae and
protect ash trees from significant damage at dosages as low as 100 mg azadirachtin/cm tree
diameter. Azadirachtin can greatly reduce the fecundity and fertility of females that have fed on ash
leaves containing azadirachtin.
Résumé
Utilisation du TreeAzin, bioinsecticide systémique contenant de l’azadirachtine, contre
l’agrile du frêne (Agrilus planipennis), coléoptère xylophage envahissant
Une nouvelle formulation appelée TreeAzin, à base d’azadirachtine, composé naturel
sécuritaire, a été mise au point spécifiquement à des fins d’injection dans le tronc des arbres hôtes.
De faibles volumes de cette formulation à 5% peuvent être injectés rapidement et complètement
dans le tronc des arbres à l’aide d’un nouveau système commercial d’injection à rendement élevé
249
appelé EcoJect System. Aux fins de l’évaluation du potentiel du TreeAzin contre l’agrile du frêne, les
chercheurs ont injecté la formulation dans le tronc de frênes et ont étudié son assimilation, sa
translocation et sa persistance dans l’hôte et évalué son efficacité contre les larves du ravageur et ses
effets sur la mortalité des adultes et la fécondité et la fertilité des femelles. Suivant l’injection du
TreeAzin à l’aide du système Ecoject, l’azadirachtine est d’abord rapidement assimilée dans les
frênes, après quoi les concentrations de résidus foliaires déclinent lentement de façon logarithmique
dans le temps. Le TreeAzin est efficace contre les larves du ravageur et empêche celles-ci d’infliger
des dommages importants aux frênes à des doses aussi faibles que 100 mg d’azadirachtine/cm de
diamètre. L’azadirachtine peut réduire considérablement la fécondité et la fertilité des femelles qui
ont consommé des feuilles de frêne contenant de l’azadirachtine.
250
ECOBIOM* - Extended Collaboration on Biological Control
of Forest Insects or Pathogenic Microorganisms
R. Lavallée1, G. Laflamme1, and C. Guertin2
1
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
2
INRS-Institut Armand-Frappier
531, boul. des Prairies, Laval, QC H7V 1B7
Abstract
The objectives of ECOBIOM* are to promote the research and development of new
biological control tools that can be eventually licensed for use against forest pests. Climate change
associated with increasing world trade and economic exchange could promote the emergence of
indigenous pests or new non native pests. To replace chemical insecticides, research activities focus
on naturally occurring native fungi, whether they are pathogenic to insect pests, competitors or
antagonistic. Current work on the prevention of annosus root rot with Phlebiopsis gigantea is at the
licensing stage. Also, studies are underway on the use of Beauveria bassiana against the white pine
weevil and some bark beetles like the pine shoot beetle and the spruce beetle. Moreover, our team
has developed an expertise in molecular and morphological identification of fungi. Scientists,
professionals, technicians and graduate students from the CFS and INRS-IAF are part of the team.
Résumé
ECOBIOM* - Effort concerté de lutte biologique contre les insectes ou les
microorganismes pathogènes des forêts
ECOBIOM* travaille à la recherche et au développement de produits de lutte biologique qui
seront homologués pour contrer des ravageurs forestiers. Les changements climatiques risquent de
favoriser le développement de ravageurs indigènes. Aussi, l'augmentation des échanges commerciaux
est propice à l'émergence de ravageurs forestiers exotiques. Enfin, pour remplacer des pesticides
chimiques, nous ciblons l'utilisation de champignons qui se retrouvent en milieu naturel, qu’ils soient
entomopathogènes, compétiteurs ou antagonistes. Les travaux sur la prévention de la maladie du
rond sont au stade de l'homologation du champignon Phlebiopsis gigantea. Du côté des insectes, nos
251
recherches portent sur les charançons du pin blanc et de la racine du fraisier, et sur le grand hylésine.
L'utilisation d'un champignon du genre Beauveria qui présente un potentiel très intéressant pour lutter
contre plusieurs ravageurs forestiers. De plus, nous avons développé une expertise en identification
des champignons qui combine les données morphologiques et de biologie moléculaire. Notre équipe
multidisciplinaire se compose de chercheurs, de professionnels, de techniciens et d'étudiants
diplômés provenant du SCF et de l'INRS-IAF.
252
Audit and Evaluation of Aerial Herbicide Programs Using
Remote Sensing and GIS
Don Mitchell1 and Dan Panko2
1
Ontario Ministry of the Environment
435 James St. S, Suite 331, Thunder Bay, ON P7E 6S7
2
Ontario Ministry of the Environment
5775 Yonge St., 8th Floor, Toronto, ON M2M 4J1
Abstract
Digital imagery collected for herbicide auditing purposes provides additional tools to forest
managers and government regulators looking to enhance their data collection programs. This study
examined two remote sensing techniques designed to monitor vegetation stress: change detection
and normalized difference vegetation index (NDVI). Herbicide application programs from 2003 to
2005 were examined on the Dog River-Matawin, Lakehead and Gordon Cosens forests in Northern
Ontario. Digital imagery was analyzed using NDVI and change detection and compared against
2006 ground survey data. Of the two methods, NDVI proved more consistent in verifying treatment
efficacy and herbicide placement and overall costs for the NDVI were less.
Don Mitchell
Regional Pesticide Specialist
Ministry of the Environment
Tel.: 807-475-1712
Fax: 807-475-1754
[email protected]
Dan Panko
Regional Pesticide Specialist
Ministry of the Environment
Tel.: 416-326-3477
Fax: 416-325-6347
[email protected]
This project was funded by our Best In Science program. The work was carried out by Paul
Ernsting from Geospatial Consulting under the banner of Confederation College Forestry Centre.
Data, financial and in-kind contributions were provided by Bowater Canadian Forest Products,
Green Mantle Forest Inc., Tembec Forest Resources and Monsanto Canada.
253
Résumé
Audit et évaluation des programmes de pulvérisation aérienne d’herbicides à l’aide de
technologies de télédétection et SIG
Les images numériques recueillies pour l’audit des programmes de pulvérisation aérienne
d’herbicides constituent des outils additionnels forts utiles pour les aménagistes forestiers et les
organismes de réglementation gouvernementaux qui souhaitent accroître l’efficacité de leurs
programmes de collecte de données. Dans le cadre de cette étude, nous avons évalué deux méthodes
de télédétection conçues pour l’étude du stress subi par la végétation : la détection des changements
et l’indice de végétation par différence normalisée (IVDN). Nous avons examiné les programmes de
pulvérisation d’herbicides effectués entre 2003 et 2005 au-dessus des forêts de Dog River-Matawin,
Lakehead et Gordon Cosens, dans le nord de l’Ontario. Les images numériques ont été analysées
selon les méthodes IVDN et détection des changements et comparées aux données recueillies en
2006 dans le cadre de relevés au sol. Parmi les deux méthodes, l’IVDN a fait preuve d’une plus
grande constance dans l’évaluation de l’efficacité et de la précision des traitements herbicides, et son
coût d’utilisation global était moindre.
Don Mitchell
Spécialiste régional des pesticides
Ministère de l’Environnement
Tél. : 807-475-1712
Téléc. : 807-475-1754
[email protected]
Dan Panko
Spécialiste régional des pesticides
Ministère de l’Environnement
Tel. : 416-326-3477
Téléc. : 416-325-6347
[email protected]
Ce projet a été financé par notre programme Best In Science. Les travaux ont été exécutés par
Paul Ernsting, de Geospatial Consulting, pour le compte du centre de foresterie du Confederation
College. Des contributions en données, en financement et en nature ont été fournies par Bowater
Produits forestiers du Canada Inc., Green Mantle Forest Inc., Tembec et Monsanto Canada.
254
Invasives at Your Fingertips
K. Porter1, V. Nealis2, I. DeMerchant1, D. Langor3, M. Budd1, P. DesRochers4, A. Hopkin5, R.
Simpson1, M. Noseworthy2, and V. Waring2
1
2
3
4
5
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre
P.O. Box 4000, Fredericton, NB E3B 5P7
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre
506 West Burnside Rd, Victoria, BC V8Z 1M5
Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre
5320 - 122 St., Edmonton, AB T6H 3S5
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre
1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
Abstract
Forest stewardship for sustainability requires scientific information to assess past and project
future impacts to forest ecosystems resulting from forest invasive alien species (FIAS). Primary
information is required for analysis and synthesis, for rapid display and for policy assessment. We
provide primary and synthesized information and tools for investigation and communication for
several levels of inquiry from the long-term data legacy of forest survey and research in Canada. We
have built a web-based database application composed of 3 sources of primary historical scientific
data on invasive species:
1)
Voucher specimen labels;
2)
Survey collections; and
3)
A searchable document library.
System functionality includes capabilities for sorting, mapping, exporting and reporting. This
application is available through CFSNet and also through the FIAS Portal also being presented at
the Pest Forum.
255
Résumé
Les espèces envahissantes à votre portée
Pour assurer la gérance et la durabilité des forêts, il faut disposer des données scientifiques
nécessaires pour évaluer et prévoir les impacts futurs des espèces forestières exotiques envahissantes
(EFEE) sur les écosystèmes forestiers. Il faut disposer de données primaires à des fins d’analyse et
de synthèse, de divulgation rapide et d’évaluation stratégique. Nous puisons à même les données
amassées au fil des ans dans le cadre de relevés et de projets de recherche sur les forêts du Canada
pour fournir, en réponse à divers types de requêtes, des outils et des données primaires et de
synthèse à des fins d’étude et de communication. Nous avons construit une base de données Web
intégrant trois grandes sources de données scientifiques historiques sur les espèces envahissantes :
1)
Étiquettes des spécimens de référence;
2)
Collections constituées lors des relevés;
3)
Bibliothèque de documents interrogeables.
Le système sera doté de fonctionnalités permettant le tri, la cartographie, l’exportation et
l’établissement de rapports. Cette application est disponible sur le site SCFN et et également par le
portail de EFEE qui sera aussi présenté au Forum.
256
Effect of Pheromone Chirality on Attraction of Tetropium
fuscum (Fabr.), T. cinnamopterum Kirby and T. castaneum
L. (Coleoptera: Cerambycidae)
J. Sweeney1, P. Silk1, J. Gutowski2, E. Kettela1, J. Wu1, and J. Price1
1
Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre
P.O. Box 4000, Fredericton, NB E3B 5P7
2
Forest Research Institute, Department of Natural Forests
17-230 Białowieża, Poland
Abstract
Synthetic aggregation pheromone (fuscumol) was tested in field trapping experiments from
May-August 2007 in Halifax, Nova Scotia and Białowieża, Poland, to determine the most effective
lure for detection of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) and related species.
Three pheromone enantiomer treatments: pure S-, pure R-, and 50/50 (S/R) (racemic) fuscumol,
were tested alone and in combination with host volatiles in cross-vane traps. Results indicated that:
1) S-fuscumol but not R-fuscumol is attractive to Tetropium spp.;
2) Attraction to S-fuscumol is synergized by the addition of host volatile lures, i.e., monoterpene
blend and ethanol; and
3) So long as S-fuscumol and host volatiles are present, the presence of R-fuscumol does not
reduce trap catch, i.e., the racemic fuscumol lure is as effective as pure S-fuscumol and will be
much cheaper to synthesize.
Traps baited with the combination of S- or racemic fuscumol and host volatile lures were
significantly attractive to T. fuscum, T. cinnamopterum (native to North America), and T. castaneum
(native to Europe and not known to be established in North America) and are suitable tools for
early detection and survey of these species.
257
Résumé
Effet de la chiralité sur le pouvoir attractif des phéromones à l’égard du
Tetropium fuscum (Fabricius), du T. cinnamopterum Kirby et du T. castaneum L.
(Coleoptera : Cerambycidae)
L’efficacité d’une phéromone d’agrégation synthétique (fuscumol) a été évaluée entre mai et
août 2007 dans le cadre d’essais de piégeage sur le terrain menés à Halifax et à Białowieża (Pologne).
Dans le cadre de ces essais, qui visaient à trouver un outil efficace pour la détection du LBE et
d’espèces apparentées, trois traitements (énantiomère S-fuscumol pur, énantiomère R-fuscumol pur,
mélange racémique 50/50 des deux énantiomères R et S), ont été évalués individuellement ou en
combinaison avec des substances volatiles émises par l’hôte dans des pièges à impact en croix. Les
essais ont révélé que :
1) L’énantiomère S-fuscumol est attractif pour le LBE, alors que le R-fuscumol ne l’est pas;
2) L’attraction exercée par le S-fuscumol et le mélange racémique des deux énantiomères est
accrue par l’ajout de substances volatiles émises par l’hôte (mélange de monoterpènes et
éthanol);
3) Tant que la formulation renferme l’énantiomère S-fuscumol et des substances volatiles de
l’hôte, l’efficacité de l’appât n’est pas compromise par la présence du R-fuscumol.
En d’autres mots, le mélange racémique renfermant les deux énantiomères est aussi efficace
que le S-fuscumol pur, et sa synthèse est beaucoup moins dispendieuse. Les pièges appâtés avec du
S-fuscumol ou avec le mélange racémique des deux énantiomères et les substances volatiles de l’hôte
se sont révélés significativement plus attractifs pour le T. fuscum, le T. cinnamopterum (espèce indigène
en Amérique du Nord) et le T. castaneum (espèce originaire d’Europe tenue pour non établie en
Amérique du Nord). Ces substances constituent des outils utiles pour la détection précoce et les
enquêtes visant ces espèces.
258
Remote Sensing of Natural Disturbances: Current Results
for Insect Defoliation and Aspen Dieback Mapping and
Monitoring
S.J. Thomas1, A. Deschamps1, R.J. Hall2, J.J. Van der Sanden1, E. Arsenault2, R. Landry1, R.S.
Skakun2, and C. Dymond2
1
2
Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa, ON
Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre
5320 - 122 St., Edmonton, AB T6H 3S5
Abstract
Insect defoliation and drought-related dieback are major natural disturbances to Canada’s
forests. Current carbon accounting information needs and national/international reporting
obligations have resulted in an increased requirement for a nationally consistent, timely and
standardized natural disturbances mapping and monitoring capability. Satellite imagery, due to its
systematic, synoptic and repetitive coverage, has good potential to provide consistent and timely
defoliation and dieback information to complement the aerial survey techniques currently employed.
The goal of this work is to develop and demonstrate reliable methods of monitoring the spatial
location, extent and severity of forest disturbances by integrating remote sensing, field and aerial
survey information, for incorporation into a National Environmental Disturbances Framework
(NEDF). This poster will present current results and future work related to the application of multiscale remote sensing imagery to map and monitor insect defoliation as well as aspen dieback.
Résumé
Télédétection des perturbations naturelles : résultats à ce jour de la cartographie et de la
surveillance de la défoliation par les insectes et du dépérissement des peupliers fauxtrembles
La défoliation par les insectes et le dépérissement lié à la sécheresse sont des perturbations
naturelles importantes dans les forêts canadiennes. Les besoins actuels en matière de données sur la
comptabilisation du carbone et les obligations de déclaration nationales et internationales ont
entraîné une augmentation de la nécessité d’une capacité de cartographie et de surveillance des
perturbations naturelles normalisée, rapide et uniforme à l’échelle nationale. Grâce à sa couverture
259
répétitive, synoptique et systématique, l’imagerie satellitaire a un bon potentiel d’utilisation pour
obtenir des données cohérentes en temps utile sur la défoliation et le dépérissement pour
complémenter les techniques de relevé aérien employées actuellement. Le but du projet est
d’élaborer des méthodes fiables, et de faire la démonstration de celles ci, pour surveiller les lieux,
l’ampleur et la gravité des perturbations forestières en combinant des données de relevés de
télédétection, de relevés sur le terrain et de relevés aériens aux fins d’intégration dans un cadre
national sur les perturbations environnementales (National Environmental Disturbances
Framework-NEDF). Cette affiche présentera des résultats à jour et les travaux futurs liés à
l’utilisation de l’imagerie de télédétection à échelles multiples pour cartographier et surveiller la
défoliation par les insectes et le dépérissement des peupliers faux trembles.
260
Uptake and Translocation Dynamics of Imidacloprid
Following Systemic Injections for Control of Invasive Wood
Boring Insect Pests
D.G. Thompson1, B.V. Helson1, D.P. Kreutzweiser1, D. Chartrand1, T. Buscarini1, and J. Meating2
1
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
2
BioForest Technologies Inc.
105 Bruce St., Sault Ste. Marie, ON P6A 2X6
Abstract
Invasive alien wood-boring insect pests such as the Emerald Ash Borer (EAB) and Asian
Longhorned Beetle (ALB) pose significant threats to the aesthetic, economic and ecological values
associated with several hardwood tree species in Canada. Systemic injections of insecticidal
compounds such as imidacloprid may provide an environmentally acceptable and efficacious
technique for protecting high value trees, particularly in urban settings. In addition, systemic
techniques may be employed in containment or broader integrated pest management strategies.
Understanding the potential effects of systemically injected pesticides requires quantitative data on
the magnitude and duration of concentrations in foliage or stem tissues. Resultant data characterize
real-world exposure regimes as a principal determinant of potential effects on either target pest or
non-target organisms. Integrating exposure information together with dose-response relationships,
developmental rates and foraging/feeding behaviour of organisms of interest allow for predictive
estimation of efficacy and potential non-target effects. This poster will provide an overview of
experimental approaches and data pertaining to the uptake and translocation of imidacloprid in ash
and maple trees relative to their potential for control of EAB and ALB.
Résumé
Assimilation et translocation de l’insecticide systémique imidaclopride dans l’hôte suivant
son injection contre les insectes xylophages envahissants
Les insectes xylophages exotiques envahissants comme l’agrile du frêne et le longicorne étoilé
représentent une menace importante pour les valeurs esthétiques, économiques et écologiques
261
associées à plusieurs essences feuillues au Canada. L’injection de composés insecticides systémiques
comme l’imidaclopride pourrait représenter une technique à la fois efficace et acceptable sur le plan
environnemental pour protéger les arbres de grande valeur, en particulier en milieu urbain. En outre,
cette technique peut être utilisée tant à des fins d’enrayement que dans le cadre de stratégies plus
globales de lutte intégrée. Pour être en mesure de comprendre les effets potentiels des pesticides
ainsi injectés, il faut disposer de données quantitatives sur l’ampleur et la persistance de leurs
concentrations dans les tissus des feuilles ou des tiges. Ces données permettent de caractériser les
régimes d’exposition réels sur le terrain, un des principaux déterminants des effets potentiels des
traitements sur les ravageurs ciblés ou les organismes non ciblés. En combinant les données sur
l’exposition aux données sur les relations dose-effet et sur la vitesse du développement et les
comportements de quête de nourriture et d’alimentation des organismes considérés, il devient
possible d’estimer de façon prédictive l’efficacité des injections d’insecticides systémiques et leurs
effets potentiels sur les organismes non ciblés. Cette affiche résume les approches expérimentales et
les données relatives à l’assimilation et à la translocation de l’imidaclopride suivant son injection dans
le tronc de frênes et d’érables à des fins de lutte contre l’agrile du frêne et le longicorne étoilé.
262
A Field Study for Validation of Long Range Spray Drift
Modeling
D.G. Thompson1, H. Thistle2, S. Bird3, B. Richardson4, and G. Rousseau5
1
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
2
USDA Forest Service
180 Canfield St., Morgantown, West Virginia 26505, USA
3
U.S. Environmental Protection Agency, Ecosystems Research Division
960 College Station Rd, Athens, Georgia 30605, USA
4
5
ENSIS Rotorua, 49 Sala St., Rotorua, New Zealand
Private Consultant, 1481 des Pionniers, Saint-Nicolas, QC
Abstract
Internationally collaborative efforts are continuing to develop expert decision support systems
capable of making spatially explicit predictions of deposition and potential effect of aerially released
spray clouds. A key requirement in this area is to develop empirical data for comparative assessment
against model prediction. This is particularly true in cases where coupling of different models may
be required to make predictions over larger spatial areas with complex terrain influences and where
temporally dynamic changes in meteorology are expected. The objective of this study was to
evaluate the performance of the SprayTrans modelling system in predicting deposition of Btk as a
pesticide tracer under these types of scenarios. The poster will provide a summary of the
experimental approach and techniques employed in conducting 20 different trials to generate
empirical data for assessing the SprayTrans model system including some preliminary results and
conclusions.
Résumé
Étude de terrain visant à valider le modèle de dérive à grande distance des nuages de
pulvérisation
Dans le cadre de projets conjoints internationaux, des scientifiques s’emploient à mettre au
point des systèmes d’aide à la décision fournissant des prévisions spatialement explicites des dépôts
263
de pesticides et des effets potentiels des nuages de pulvérisation libérés dans l’atmosphère. Pour être
en mesure de valider les prévisions des modèles, il est essentiel d’obtenir des données empiriques.
C’est particulièrement vrai lorsque le couplage de modèles différents s’avère nécessaire pour faire des
prévisions applicables à des territoires plus vastes comportant des influences topographiques
complexes et lorsque des fluctuations temporelles des paramètres météorologiques sont prévues.
Cette étude visait à évaluer la capacité du système de modélisation SprayTrans de prévoir les dépôts
de Btk comme traceur sous ces types de scénarios. Cette affiche décrit de façon succincte l’approche
expérimentale et les techniques utilisées dans le cadre de 20 essais différents destinés à fournir les
données empiriques requises pour évaluer l’efficacité du modèle SprayTrans, y compris certains
résultats et conclusions préliminaires.
264
Garlic Mustard, a Threat to Southern Ontario Forests
C. Wikler1 amd Sandy M. Smith2
1
CNP-UNICENTRO, University of Toronto
2
University of Toronto, Faculty of Forestry
33 Willcocks St., Toronto, ON M5S 3B3
Abstract
Garlic mustard (Alliaria petiolata) is a European biennial weed that presents several
characteristics of an opportunist invasive species and is spreading rapidly through southern Ontario.
This alien plant is successfully invading and dominating natural environments, in particular forest
understories, thereby preventing forest regeneration and disrupting native floral and faunal
communities. The success of garlic mustard is related to the absence of natural enemies, high seed
production and the release of phytotoxins from its root tissue. As no current methods successfully
control garlic mustard, biological control appears to have great potential for reducing its dispersion
and damage.
Résumé
L’alliaire officinale, une menace pour les forêts du sud de l’Ontario
L’alliaire officinale (Alliaria petiolata) est une bisannuelle nuisible originaire d’Europe qui
présente plusieurs caractéristiques d’une espèce envahissante opportuniste. Cette mauvaise herbe
exotique se propage rapidement dans tout le sud de l’Ontario. Elle envahit avec succès les milieux
naturels, en particulier le sous-étage des forêts, où elle empêche la régénération forestière et perturbe
les communautés végétales et animales indigènes, et elle y devient l’espèce dominante. Le succès de
l’alliaire officinale est attribué à l’absence d’ennemis naturels et, chez la plante elle-même, à la forte
production de graines et à la libération de phytotoxines à partir des tissus des racines. Comme il
n’existe actuellement aucune mesure de lutte efficace contre l’alliaire officinale, la lutte biologique
semble le meilleur moyen de freiner sa dispersion et d’atténuer les dommages.
265
Assessment of Sirex noctilio Fabricius Spread and its
Impacts on Pine Wood Supply and Harvests in Eastern
Canada
D.Yemshanov1, D. McKenney1, P. de Groot1, D. Haugen2, and D. Sidders3
1
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre
1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5
2
USDA Forest Service, Northeastern Area
1992 Folwell Ave., St. Paul, Minnesota 55108, USA
3
Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre
5320 - 122nd Street, Edmonton, AB T6H 3S5
Abstract
This study evaluates potential economic impacts of the spread of an exotic pest, Sirex noctilio
Fabricius, on pine wood supply and harvest activities in eastern Canada. We develop a stochastic
model that integrates the spread of Sirex with forest biomass growth and a heuristic harvest
allocation model. The intent is to provide a quantitative assessment of the vexing issue of the risk of
a new potentially invasive alien species. Relatively little is known of the biology and ecology of Sirex
but scientific judgements are required to support policy. Projections of killed pine volume range
between 25.8 and 115 million m3 over 20 years depending on the spread model assumptions.
Ontario shows highest and most immediate losses (78% - of total biomass over 20 years), and
Quebec shares the rest (21.9% over 20 years). Short- and medium-term annual losses reach $M 86.3254.1 per year after 20 years and are split almost equally between Ontario and Quebec. The total
harvest losses over 28 years is between $B 0.7 and $B2.1 depending on spread model assumptions.
Undiscounted annual cash flow losses after 20 years of infestation reach $M 86.3-254.
The choice of harvest policies has a considerable impact with adaptation policies that could
top $B 0.84-1.0 over 28 years. Adaptation policies decrease short-term losses by maximum 46-55%
and help delaying massive harvest failures by 9-11 years. Without harvest adaptation, failures to
maintain Annual Allowable Cut levels start to occur after 20 years when total area infested exceeds
approximately 15 million ha.
266
Résumé
Évaluation de la propagation du Sirex noctilio Fabricius et de l’impact du ravageur sur la
récolte et l’approvisionnement en bois de pin dans l’est du Canada
La présente étude vise à évaluer les répercussions économiques potentielles de la propagation
d’un ravageur exotique, le Sirex noctilio Fabricius, sur l’approvisionnement en bois de pin et
l’exploitation de cette essence dans l’est du Canada. Nous avons mis au point un modèle
stochastique intégrant la propagation du sirex européen du pin (anciennement appelé guêpe percebois) à la croissance de la biomasse forestière et un modèle heuristique de la répartition des activités
de coupe. Notre objectif était d’évaluer, de façon quantitative, le risque posé par une nouvelle espèce
exotique potentiellement envahissante. La biologie et l’écologie du sirex européen du pin sont
relativement peu connues, et le jugement des scientifiques est requis en appui des politiques. Selon
les hypothèses relatives à la propagation du ravageur considérées, les volumes prévus de bois de pin
détruits par le sirex européen du pin au cours des 20 prochaines années varient entre 25,8 et 115
millions de m3. Les pertes les plus importantes et les plus rapides surviennent en Ontario (78 % de la
biomasse totale sur une période de 20 ans), et les autres pertes, au Québec (21,9 % de la biomasse
totale sur une période de 20 ans). Les pertes annuelles à court et moyen termes atteignent 86,3 à
254,1 millions de dollars par année après 20 ans et sont réparties presque également entre l’Ontario
et le Québec. Les pertes de récolte totales sur 28 ans varient entre 0,7 et 2,1 milliards de dollars,
selon les hypothèses relatives à la propagation du ravageur considérées. Les pertes monétaires
annuelles non actualisées après 20 ans d’infestation varient entre 86,3 et 254 millions de dollars.
Le choix des politiques d’exploitation forestière a un impact considérable, avec des politiques
d’adaptation qui pourraient totaliser 0,84 à 1,0 milliard de dollars sur 28 ans. Les politiques
d’adaptation réduisent les pertes à court terme dans une proportion maximale de 46 à 55 % et
contribuent à retarder les mauvaises récoltes massives de 9 à 11 ans. En l’absence de politiques
d’adaptation, il deviendra impossible de maintenir les niveaux de coupe annuelle permise après 20
ans, alors que la superficie totale du territoire infesté s’élèvera à plus de 15 millions d’hectares.
267
Evaluating Lures to Detect Siricids Infesting Conifers of the
Sierra Nevada and Allegheny Mountains: Potential for
Trapping Sirex noctilio
Nadir Erbilgin1, John Stein2, Robert Acciavatti2, Nancy Gillette3, and David L. Wood4
1
Canada Research Chair in Forest Entomology
230A Earth Science Building, Department of Renewable Resources
University of Alberta, Edmonton
Phone: (780) 492-8693; Fax: (780) 492-1767
E-mail: [email protected]
2
USDA Forest Service, Forest Health Technology Enterprise Team
Morgantown WV, USA
3
4
USDA Forest Service, Pacific Southwest Research Station
Berkeley CA, USA
University of California, Division of Organisms and Environment
Berkeley CA, USA
Abstract
The European wood wasp, Sirex noctilio has become established in several countries in the
Southern Hemisphere where North American pine species are widely used in plantations. Therefore,
S. noctilio may pose a threat to North America's conifer forests, e.g., especially Monterey, loblolly,
slash, lodgepole and ponderosa pines. Wood wasps of the genus Sirex and other genera are well
represented in the forests of North America. Our objective was to characterize variation in the
behavioral chemistry of wood wasps in the Central Sierra Nevada in California and West Virginia.
We tested several compounds during 2004-2006 using various release devices which were
attached to flight intercept traps. Chemicals and release devices were provided by ChemTica
Internacional (San Jose, Costa Rica). We tested: monoterpenes [(-)-α-pinene, (+)-α-pinene, (-)-βpinene, and (+)-3-carene] in September-October 2004 and different classes of terpenoids
[monoterpene hydrocarbons ((-)-alpha-pinene, (-)-beta-pinene, 3-carene), alcohols ((-)-cis-verbenol,
(+)-cis-verbenol and (-)-trans-verbenol, (+)-trans-verbenol), aldehydes ((-)-myrtenol, (+)-myrtenol,
geranial), ketones (pinocarvone, fenchone, verbenone)] in July-October 2005. Based on the results
obtained in 2005, fenchone, (+)-3-carene, (+)-3-carene + fenchone, (+)-3-carene + ethanol, (-)-α-
268
pinene + ethanol, sirex lure (a mixture of α-pinene and β-pinene), ethanol, and a blank control were
tested in June-Oct 2006.
The most abundant species caught were both males and females of Sirex areolatus, S. behrensii, S.
cyaneus, S. longicauda, Urecerus californicus, and 2 unknown species in California, and S. cyaneus, S.
edwardsii, S. nigricornis, U. cressoni, and Tremex columba in West Virginia. Our 3-yr study indicated that ()-α-pinene in combination with ethanol or 3-carene alone attracted significantly more woodwasps
than the control and the remaining treatments. Although ethanol is not attractive to woodwasps, it
synergized attraction to (-)-α-pinene. These results suggest that (-)-α-pinene plus ethanol and (+)-3carene alone are the most promising attractants for native woodwasps. We plan to conduct a release
rate study of these compounds against S. noctilio in Michigan and New Zealand in 2008.
Résumé
Évaluation de l’efficacité de divers appâts pour la détection des Siricides infestant les
conifères dans la Sierra Nevada et les monts Allegheny et le piégeage du Sirex noctilio
Le sirex européen du pin (Sirex noctilio) est aujourd’hui établi dans plusieurs pays de
l’hémisphère sud où diverses espèces de pins originaires de l’Amérique du Nord sont largement
utilisées dans les plantations. Le S. noctilio représente donc une menace potentielle pour les forêts de
conifères de l’Amérique du Nord, en particulier les peuplements de pin de Monterey, de pin à
encens, de pin d’Elliott, de pin tordu latifolié et de pin ponderosa. Les guêpes perce-bois du genre
Sirex et d’autres genres sont bien représentées dans les forêts de l’Amérique du Nord. La présente
étude visait à caractériser la variation de la chimie comportementale des guêpes perce-bois habitant
la portion centrale de la Sierra Nevada, en Californie, et la Virginie occidentale.
De 2004 à 2006, nous avons fait l’essai de plusieurs composés à l’aide de dispositifs de
libération fixés à des pièges d’interception. Les composés chimiques et les dispositifs de libération
nous ont été gracieusement fournis par la société ChemTica Internacional (San José, Costa Rica).
Nous avons testé des monoterpènes [(-)-α-pinène, (+)-α-pinène, (-)-β-pinène et (+)-3-carène] en
septembre et octobre 2004, et différentes classes de terpénoïdes [hydrocarbures monoterpéniques (()-alpha-pinène, (-)-bêta-pinène, 3-carène), alcools ((-)-cis-verbénol, (+)-cis-verbénol, (-)-transverbénol,
(+)-trans-verbénol),
aldéhydes
((-)-myrténol,
(+)-myrténol,
géranial),
cétones
(pinocarvone, fenchone, verbénone)] entre juillet et octobre 2005. Après avoir analysé les résultats
de 2005, nous avons décidé de poursuivre entre juin et octobre 2006 l’évaluation des appâts
269
suivants : fenchone, (+)-3-carène, (+)-3-carène + fenchone, (+)-3-carène + éthanol, (-)-α-pinène +
éthanol, Sirex Lure (mélange d’α-pinène et de β-pinène), éthanol et solution témoin.
Les espèces (individus des deux sexes) récupérées en plus grand nombre dans les pièges
étaient, en Californie, le Sirex areolatus, le S. behrensii, le S. cyaneus, le S. longicauda, l’Urecerus californicus et
deux espèces inconnues, et en Virginie occidentale, le S. cyaneus, le S. edwardsii, le S. nigricornis,
l’U. cressoni et le Tremex columba. Notre étude de trois ans a révélé que l’(-)-α-pinène utilisé en
combinaison avec l’éthanol et le 3-carène utilisé seul ont attiré un nombre significativement plus
élevé de guêpes perce-bois que la solution témoin et les autres composés chimiques testés. L’éthanol
n’est pas attractif pour les guêpes perce-bois, mais il synergise l’effet attractif de l’(-)-α-pinène. Ces
résultats donnent à croire que l’(-)-α-pinène utilisé en combinaison avec l’éthanol et le (+)-3-carène
utilisé seul sont les attractifs les plus prometteurs pour la détection des espèces de guêpes perce-bois
indigènes. Nous comptons entreprendre une étude sur le taux de libération de ces composés contre
le S. noctilio au Michigan et en Nouvelle-Zélande en 2008.
270
Relationships among the Sudden Oak Death Pathogen, Bark
and Ambrosia Beetles, and Fungi Colonizing Coast Live
Oaks in California
Nadir Erbilgin1, Brice A. McPherson2, Pierluigi Bonello3, and David L. Wood2
1
Canada Research Chair in Forest Entomology
230A Earth Science Building, Department of Renewable Resources
University of Alberta, Edmonton, AB
Phone: (780) 492-8693; Fax: (780) 492-1767
E-mail: [email protected]
2
3
Center for Forestry, University of California, Berkeley CA, USA
Ohio State University, Department of Plant Pathoglogy, Columbus OH, USA
Abstract
Sudden oak death (SOD) has had devastating effects on several oak species in many California
coastal forests. Phytophthora ramorum has been identified as the primary causal agent of sudden oak
death. While the pathogen may be capable of killing mature trees, it is likely that in nature
opportunistic organisms play significant roles in the decline and death of infected trees. For
example, we have found elevated landing rates of bark and ambrosia beetles (Coleoptera: Scolytidae)
on mechanically inoculated coast live oaks (Quercus agrifolia) in California. The tunneling activity of
these beetles in bleeding cankers on P. ramorum-infected coast live oaks may accelerate mortality and
may contribute to catastrophic failures, even while diseased trees retain asymptomatic canopies. The
objective of this study was to determine the role of bark and ambrosia beetle infestation in the
introduction and/or stimulation of decay fungi associated with tree mortality and breakage. We
inoculated coast live oaks with P. ramorum in two forested sites in Marin Co. in March 2005 and
monitored them for signs and symptoms of P. ramorum infection. An additional group of
asymptomatic trees was felled to allow colonization by bark and ambrosia beetles. In January and
July of 2006, we randomly selected and harvested three P. ramorum-inoculated trees and three
asymptomatic trees from each of the sites. Trees selected for fungal culturing were in the following
categories:
1) Live symptomatic trees exhibiting only bleeding without obvious beetle attacks;
271
2) Live symptomatic trees exhibiting bleeding with beetle attacks;
3) Dead symptomatic trees with beetle attacks;
4) Dead asymptomatic trees without beetle attacks;
5) Dead asymptomatic trees with beetle attacks.
Trees were cut a minimum of 30 cm below the point of inoculation, generating bolts
approximately 70 cm long. Each bolt was cut into 15 cm thick disks. Wood samples (5 to 10 mm
wide, 4 per disk) were collected along cross-sectional transects from the upper surface of each disk
and divided into 4 sections. Each section was placed on one of several types of media: potato
dextrose agar, malt extract agar and water agar. We separated and purified morphologically distinct
fungal colonies (morphotypes) and amplified the internal transcribed spacerregion (ITS) of the
rDNA operon. Amplicons were sequenced and blasted in GenBank (http://www.ncbi.nlm.nih.gov).
The principal taxa isolated from wood samples are described below.
Pezicula cinnamomea was only isolated from bleeding trees before beetles attacked. Two species,
Botryosphaeria sarmentorum and an unnamed Ascomycete sp. were isolated from infected trees that had
not been attacked by beetles, and also from trees that died following beetle infestation. The greatest
numbers of fungi were isolated from beetle-colonized, living symptomatic trees: Botryosphaeria
corticola, Botryosphaeria sarmentorum, Geosmithia fassatiae, Geosmithia langdonii, Monochaetia sp., Stereum
hirsutum, Mucor racemosus, Trametes versicolor and Truncatella angustata. Fungi were not isolated from the
symptomatic dead trees that died before they had been colonized by beetles. Beetle-attacked,
asymptomatic dead trees yielded B. corticola, a Monochaetia sp. and an Alternaria sp. All the fungi
identified had ITS values of 97% or higher.
Pezicula cinnamomea is generally known as pathogenic fungi that primarily cause dieback disease
of Quercus spp., callus rings in Fagus sylvatica in Europe and has also been found in Prunus avium in
Europe and in Prunus sp. in Japan. Botryosphaeria corticola causes cankers and dieback in Quercus spp.,
and B. sarmentorum has been associated with dieback and canker diseases of Quercus spp. and Ulmus,
Malus, Prunus, and Pyrus spp. in Europe. Geosmithia fassatiae is an anamorphic fungus found in
association with scolytid bark beetle-colonized Quercus pubescens in central Europe. Mucor racemosus is a
filamentous fungus found in soil, plants, decaying fruits and vegetables, while Trametes versicolor
(known as the Turkey Tail fungus) is found ubiquitously in temperate to sub-tropical forests
throughout the world where it serves as a primary decomposer of hardwoods, including Quercus spp.
272
Truncatella angustata is known to cause disease on stems of Ribes, Prunus and Malus in England. The
unknown Ascomycete sp. has been isolated from Scots pine (Pinus sylvestris) sapwood, at the root collar
or in roots. Monochaetia spp. cause cankers on several hardwood tree species. Alternaria spp. cause
serious twig diseases on several hardwood trees, including apples.
We are currently waiting for the results from our last isolations. Our data until now have
revealed the presence of several fungal species commonly associated with disease and decay of
hardwood species and appears to be a promising approach in our attempts to fully characterize
fungal communities associated with the SOD syndrome. The greatest species diversity was found in
infected trees after bark and ambrosia beetles had colonized the sapwood. This study will be
expanded and refined so that we can determine the sequence of microorganisms that occur in oaks
following infection with P. ramorum.
Résumé
Relations entre l’agent pathogène responsable de l’encre des chênes rouges, les scolytes de
l’écorce et du bois et les champignons colonisant les chênes de Californie en Californie
Dans de nombreuses forêts côtières de la Californie, l’encre des chênes rouges (ECR) a eu des
effets dévastateurs chez plusieurs espèces de chênes. Le Phytophthora ramorum est considéré comme le
principal agent causal de la maladie. Cet agent pathogène peut provoquer la mort d’arbres matures,
mais en nature, divers organismes opportunistes semblent contribuer activement au dépérissement
et à la mort des arbres infectés. Ainsi, nous avons enregistré des taux de colonisation importants par
les scolytes de l’écorce et du bois (Coléoptères : Scolytides) sur des chênes de Californie (Quercus
agrifolia) vivants inoculés mécaniquement en Californie. Par leurs activités de forage dans les
chancres suintants qui se forment sur les chênes de Californie infectés par le P. ramorum, les scolytes
peuvent accélérer la mort des arbres infectés et provoquer des mortalités catastrophiques, même
lorsque la cime des arbres atteints ne présente aucun symptôme de la maladie. Cette étude avait pour
objectif de déterminer comment les scolytes de l’écorce et du bois peuvent favoriser l’introduction
des champignons de la carie associés à la mortalité et à la chute des arbres et/ou contribuer à
stimuler l’activité de ces champignons. En mars 2005, nous avons inoculé le P. ramorum à des chênes
de Californie vivants dans deux sites forestiers du comté Marin. Nous avons ensuite surveillé ces
arbres afin de déceler l’apparition éventuelle des signes et symptômes d’infection causés par l’agent
pathogène. Nous avons abattu un groupe additionnel d’arbres asymptomatiques afin de permettre
273
leur colonisation par les scolytes de l’écorce et du bois. En janvier et en juillet 2006, dans chacun des
sites forestiers, nous avons choisi au hasard et abattu trois arbres inoculés mécaniquement et trois
arbres asymptomatiques. Les arbres sélectionnés aux fins de la culture du champignon appartenaient
aux catégories suivantes :
1) Arbres symptomatiques vivants présentant des traces de suintement mais aucun signe évident
d’attaques par des scolytes;
2) Arbres symptomatiques vivants présentant des traces de suintement et des signes évidents
d’attaques par des scolytes;
3) Arbres symptomatiques morts montrant des signes d’attaques par des scolytes;
4) Arbres asymptomatiques morts ne présentant aucun signe d’attaques par des scolytes;
5) Arbres asymptomatiques morts présentant des signes d’attaques par des scolytes.
Les arbres ont été coupés à au moins 30 cm sous le point d’inoculation et débités en billons
d’environ 70 cm de longueur. Chaque billon a ensuite été subdivisé en disques de 15 cm d’épaisseur.
Des échantillons de bois (4 échantillons de 5 à 10 mm de largeur par disque) ont été prélevés le long
de transects transversaux à partir de la face supérieure de chaque disque et divisés en 4 sections.
Chaque section a été déposée sur un des différents types de milieux de culture suivants : gélose
dextrosée à la pomme de terre, gélose à l’extrait de malt et eau gélosée. Nous avons séparé et purifié
les colonies de champignons morphologiquement distinctes (morphotypes) et amplifié l’espaceur
intergénique (IGS) de l’opéron ADNr. Nous avons ensuite séquencé les amplicons, puis recherché
des
similarités
dans
la
bibliothèque
GenBank
au
moyen
du
logiciel
Blast
(http://www.ncbi.nlm.nih.gov). Les principaux taxons isolés à partir des échantillons de bois sont
énumérés ci-dessous.
Le Pezicula cinnamomea a été isolé seulement à partir d’arbres portant des chancres suintants
mais encore exempts de scolytes. Deux espèces, soit le Botryosphaeria sarmentorum et un ascomycète
indéterminé, ont isolées à partir d’arbres infectés encore exempts de scolytes et d’arbres morts à la
suite d’une infestation par des scolytes. La plus grande diversité d’espèces de champignons a été
observée chez les arbres symptomatiques vivants attaqués par des scolytes. Les espèces suivantes ont
été isolées à partir de ces arbres : Botryosphaeria corticola, Botryosphaeria sarmentorum, Geosmithia fassatiae,
Geosmithia langdonii, Monochaetia sp., Stereum hirsutum, Mucor racemosus, Trametes versicolor et Truncatella
angustata. Aucun champignon n’a été trouvé sur les arbres symptomatiques morts avant d’avoir été
274
colonisés par des scolytes. Sur les arbres asymptomatiques morts colonisés par des scolytes, trois
espèces, soit le B. corticola, un Monochaetia sp. et un Alternaria sp, ont été isolées. Tous les
champignons identifiés présentaient des valeurs d’IGS d’au moins 97 %.
Le Pezicula cinnamomea est généralement considéré comme un champignon pathogène
principalement associé à une forme de dépérissement touchant diverses espèces de Quercus et à la
formation d’anneaux calleux chez le Fagus sylvatica en Europe; il a également été trouvé en
association avec le Prunus avium en Europe et un Prunus sp. au Japon. Le Botryosphaeria corticola
provoque la formation de chancres et un dépérissement chez diverses espèces de Quercus. Le
B. sarmentorum cause des symptômes similaires chez les genres Quercus, Ulmus, Malus, Prunus et Pyrus
en Europe. Le Geosmithia fassatiae est un champignon anamorphe associé aux Quercus pubescens
colonisés par des scolytes de l’écorce dans le centre de l’Europe. Le Mucor racemosus est un
champignon filamenteux qui vit dans le sol, les plantes et les fruits et légumes en décomposition,
tandis que le Trametes versicolor (connu sous le nom de polypore versicolore) est répandu
mondialement dans les forêts tempérées à subtropicales, où il est l’un décomposeur primaire de
diverses essences décidues, dont les Quercus spp. Le Truncatella angustata est reconnu en Angleterre
comme un pathogène des tiges chez les genres Ribes, Prunus et Malus. L’ascomycète indéterminé a été
isolé de l’aubier de pins sylvestres (Pinus sylvestris), au niveau du collet ou dans les racines. Les
Monochaetia spp. provoquent la formation de chancres chez plusieurs essences décidues. Les
Alternaria spp. causent de graves maladies des rameaux chez plusieurs essences décidues, dont le
pommier.
Nous attendons présentement les résultats de nos derniers travaux d’isolement. Les données
amassées jusqu’à présent ont révélé la présence de plusieurs espèces de champignons couramment
associées à des maladies ou à la carie chez les essences décidues. Nous sommes confiants de pouvoir
caractériser pleinement les communautés de champignons associées à l’encre des chênes rouges. La
plus grande diversité d’espèces a été observée chez des arbres infectés dont l’aubier avait été colonisé
par des scolytes de l’écorce et du bois. Nous comptons élargir et raffiner cette étude de manière à
pouvoir déterminer la séquence selon laquelle les microorganismes colonisent les chênes infectés par
le P. ramorum.
275