special - ALU

Transcription

special - ALU
Special 2009
The international
smelting industry
Today's carbon extrusion
process and presses
Casting process
requirements for
aerospace applications
Norsk Hydro
Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen · www.alu-web.de – PVST H 13410 – Dt. Post AG – Entgelt bezahlt
OFFICIAL INTERNATIONAL
MEDIA PARTNER
Modern furnace installation and design criteria
Volume 85 · January / February 2009
International Journal for Industry, Research and Application
1/2
Billets ready for shipment.
Continuous Homogenizing Plant.
Continuous
Homogenizing Plant
Continuous Homogenizing Plant.
Leading technology in the aluminum casthouse.
There are many benefits in one-stop shopping –
even for industrial goods. Reliable, cooperative
planning, specifications, which meet exactly your
demands and individual service-packages to operate
on first-class level throughout the whole lifetime of
the plant – this can be realized by one of the most
experienced suppliers: Hertwich Engineering.
Major benefits
Hertwich Engineering is dedicated to leading technology in the aluminum casthouse. We add value
by designing integrated turnkey solutions. From
melting and remelting to testing and packing. The
results are convincing: highest quality of products
at lowest cost-of-ownership. This has been proven
by numerous plants all over the world.
Continuous Homogenizing Plant
Reliable, maximum homogenizing quality,
uniform for all billets
Lowest labour costs, full automation
Best log straightness, no deep surface marks
Extremly reliable operation, little down-time,
low repair costs
Lowest energy consumption, low power ratings
Flexibility of plant layout
More than 80 plants in operation
MEETING your EXPECTATIONS
HERTWICH ENGINEERING GMBH
Weinbergerstrasse 6
5280 Braunau, Austria
Phone: +43 (0) 7722 806-0
Fax:
+43 (0) 7722 806-122
E-mail: [email protected]
Internet: www.hertwich.com
EDITORIAL
Volker Karow
Chefredakteur
Editor in Chief
Ein schwieriges
Jahr liegt vor uns
A difficult year
lies ahead of us
ALUMINIUM · 1-2/2009
Selten war am Anfang eines Jahres
der weitere Konjunkturverlauf so
unklar wie dieses Mal. Dass die Weltwirtschaft einen drastischen Dämpfer
erfährt, steht außer Frage, doch ist das
Ausmaß des Abschwungs offenbar
schwer zu bestimmen – die Prognosen der Wirtschaftsauguren klaffen
weit auseinander.
Klar ist: Die etablierten Industrienationen werden von der Krise stärker betroffen sein als die aufstrebenden Schwellenländer. USA, Westeuropa und Japan drohen negative
Wachstumsvorzeichen, China und
Indien werden bei ihrem bis dato beeindruckenden Aufholprozess leicht
gebremst, Russland, dessen wirtschaftliche Entwicklung stark von
der Energieförderung abhängt, leidet
unter dem Ölpreisverfall, Brasilien
bekommt die nachlassende Rohstoffnachfrage und die Schwäche der USWirtschaft zu spüren.
Die Regierungen der wichtigsten
Industrieländer schnüren nachfragestimulierende Investitionspakete, senken die Zinsen, partiell auch Steuern
– dies hilft der Wirtschaft, auch wenn
manches als Strohfeuer verpuffen
wird. Kritiker beklagen die damit einhergehende weitere Staatsverschuldung, doch ist wirtschaftspolitische
Untätigkeit keine Alternative.
Vor dem Hintergrund der Wirtschaftskrise blieben die Staats- und
Regierungschefs auf dem EU-Klimagipfel Mitte Dezember in ihren Beschlüssen hinter den Forderungen
der Kommission zurück. Zwar wird
die gesamte produzierende Industrie
der EU ab 2013 in den Emissionshandel eingebunden, doch ein Großteil
der Betriebe wird die CO2-Zertifikate
nicht, wie ursprünglich von der Kommission gefordert, ersteigern müssen.
Vor allem die in einem intensiven
internationalen Wettbewerb stehenden Unternehmen sollen die Emissionsrechte kostenlos erhalten. Einzelheiten dazu sollen jedoch erst Ende
2009 konkretisiert werden. Die von
der NE-Metallindustrie geforderte
volle Kompensation der CO2-Einpreisung in den Strompreis wurde nicht
erreicht. Die Wirtschaftsvereinigung
Metalle hat daher die Bundesregierung aufgefordert, diesen Punkt national zu regeln.
Rarely was it as difficult to predict the
economic trend at the start of a new
year as it is this year. There is no question that the world’s economy will suffer a serious damper but the extent of
the downturn is apparently difficult to
predict – there are very marked differences in the forecasts made by the
economic crystal-gazers. One thing is
clear though: the crisis will affect the
highly industrialised nations more severely than the emerging economies.
There is a threat of negative growth in
the USA, western Europe and Japan,
China and India will see a slight slowing down in what to date has been an
impressive catching-up process, Russia, whose economic development
has been strongly dependent on energy supply, is suffering from the fall
in the price of oil and Brazil is feeling
the effects of the fall in demand for
raw materials and the weakness of the
US economy.
The governments of the major industrial countries are putting together
investment packages to stimulate demand and are cutting interest rates,
and to some extent taxes – this will
help trigger the economy even though
some of the measures will turn out to
be damp squibs. Critics are bemoaning the resultant increase in public
debt, but economic inactivity is not
an option.
Against the background of the economic crisis, the decisions made at the
EU climate summit in mid-December did not go as far as the demands
made by the Commission. Although
the whole of the European Union’s
producing industry will be included
in the emissions trading scheme from
2013 onwards, a large number of the
plants will not have to purchase CO2
certificates at auction. In particular
companies that are exposed to intensive international competition
will receive the emission rights free
of charge. However, the EU does not
want to finalise details until the end
of 2009. Complete compensation for
the pricing-in of the CO2 certificates
in the electricity price – as demanded
by the non-ferrous metals industry –
was not achieved. The German Nonferrous Metals Association WVM has
called on the Federal Government to
regulate this matter at national level.
3
I N H A LT
EDITORIAL
Ein schwieriges Jahr liegt vor uns ........................................... . 3
A KT U E L L E S
Personen, Unternehmen, Märkte ........................................... . 6
WIRTSCHAFT
20
Aluminiumpreise .............................................................. 10
Produktionsdaten der deutschen Aluminiumindustrie .................. 12
Energiemanagement – eine Herausforderung für die
Bandbeschichtung ...................................................................... 14
Die Aluminiumerzeuger 2008 – Branchenrückblick (engl.) .............. 20
SPECIAL: ALUMINIUMHÜTTENINDUSTRIE
26
ABB-Gleichrichterstation für Qatalum (engl.) ............................ 26
Bauxitrückstände wirtschaftlich vorteilhaft minimieren (engl.) ........ 30
Umrüstung von pneumatischen Stampfmaschinen auf
Elektroantrieb (engl.) ......................................................... 34
Kohlenstoffkathoden – Herstellung und Anlagentechnik (engl.) ..... 35
Anodenwechselkran: Training am Simulator (engl.) .................... 38
Belüftung von Elektrolysezellen (engl.) ................................... 40
Ein neuer Ansatz zur Rohstoffauswahl in Hüttenbetrieben (engl.) . . . 42
Buss-Knetmaschinen weiterentwickelt (engl.) ................................ 48
Alro: Leistungssteigerung durch geänderte Betriebspraxis (engl.) .... 50
GIESSEREI-LÖSUNGEN
Gießprozesstechnische Anforderungen bei Luftfahrtprodukten (engl.)
Reinigung von Tiegelbehältern und Absaugrohren (engl.) .............
Systemlösungen von Precimeter (engl.) ...................................
Lösungsansätze der T.T. Tomorrow Technology zur Verbesserung
des Gießereimanagements und der Arbeitsbedingungen (engl.) .....
56
61
63
65
SCHMELZÖFEN
Aufbau eines neuen 135-Tonnen-RTC-Schmelzofens (engl.) ........... 68
Ofenmodernisierung und Designmerkmale (engl.) ...................... 70
M Ä R KT E U N D A N W E N D U N G E N
38
Anodisationsabwässer – Verwerten statt entsorgen .................... 75
Audi: Die große Kunst des Leichtbaus .................................... 76
Aluminium zeigt Flagge auf der BAU 2009 .............................. 80
I N T E R N AT I O N A L E B R A N C H E N N E W S ................... 82
RESEARCH
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Strangpressen – Innovative Verfahren für Leichtbau und
Ressourcenschonung ......................................................... 95
V E R A N S TA LT U N G E N / D O K U M E N TAT I O N
40
Der ALUMINIUM-Branchentreff
des Giesel Verlags: www.alu-web.de
4
Termine, Fortbildung ........................................................ 101
Patente ........................................................................ 104
Literaturservice ............................................................... 107
Neue Bücher .................................................................. 110
Impressum .................................................................... 129
Vorschau....................................................................... 130
B E Z U G S Q U E L L E N V E R Z E I C H N I S . . . . . . . . . . . . . . . . . . . . . . . . . 112
ALUMINIUM · 1-2/2009
CONTENTS
EDITORIAL
A difficult year lies ahead of us .............................................. 3
NEWS IN BRIEF
People, companies, markets .................................................. 7
ECONOMICS
Energy management: a challenge for coil coating .......................... 14
Activities of aluminium producers during 2008 ......................... 20
S P E C I A L : A L U M I N I U M S M E LT I N G I N D U S T R Y
ABB rectiformer substation EPC package for Qatalum .................
Mud-to-money – minimise bauxite residue and maximise profits ....
Converting pneumatic pot ramming machines to electric operation ..
Today’s carbon extrusion process and presses ...........................
Training PTM operators with ECL’s reality driving simulator ...........
When ventilation meets science ................ ............................
A new approach to raw material selection for aluminium smelters . .
An innovative improvement of the Buss Kneader generation .........
Changes in operating practices boost Alro’s performance .............
56
26
30
34
35
38
40
42
48
50
CASTHOUSE SOLUTIONS
Casting process requirements for aerospace applications ..............
Cleaning and maintenance of crucibles and tubes/siphons............
System-wide solutions from Precimeter ...................................
T.T. Tomorrow Technology’s solution to improve aluminium
casthouse management and operator’s working conditions ..........
56
61
63
68
65
M E LT I N G F U R N A C E S
Installation of a new 135 tonne RTC melting furnace .................. 68
Modern furnace installation and design criteria ......................... 70
M A R K E T S A N D A P P L I C AT I O N S
Infrared thermal imaging system with camera link interface .......... 75
Audi: Lightweight desing – it’s an art .......................................... 76
Aluminium flying flag at BAU 2009 ....................................... 80
Inserenten
dieser Ausgabe
List of advertisers
C O M PA N Y N E W S W O R L D W I D E
Aluminium smelting industry ...............................................
Bauxite and alumina activities ..............................................
On the move...................................................................
Recycling and secondary smelting .........................................
Aluminium semis .................................. ............................
Suppliers............................................ ............................
Latest furnace projects of Seco/Warwick .................................
82
85
86
88
89
90
92
RESEARCH
Sodium penetration into carbon during
electrolysis with and without an aluminium pad ........................ 93
E V E N T S / D O C U M E N TAT I O N
Dates, Hannover trade fair 2009 .................................... 101/103
Literature service ............................................................. 107
Imprint ........ ...................................... ........................... 129
Preview ....... ...................................... ........................... 130
S O U R C E O F S U P P LY L I S T I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ALUMINIUM · 1-2/2009
ABB AB, Sweden
31
Bruker AXS Microanalysis GmbH
17
Buss AG, Schweiz
21
Buss ChemTech, Schweiz
33
Coiltec Maschinenvertriebs GmbH
16
Drache Umwelttechnik GmbH
45
Fata Hunter Inc., Italy
19
FLSmidth Möller
25
Glama Maschinenbau GmbH
13
Haarmann Holding GmbH
79
Hertwich Engineering GmbH, Österreich
2
innovatherm Prof. Dr. Leisenberg
GmbH + Co. KG
67
Inotherm Industrieofen- und
Wärmetechnik GmbH
36, 81
Micro-Epsilon Optronic GmbH
15
Pyrotek Inc., USA
29
Reed Exhibitions China Office, VRC
7
Reed Exhibitions Deutschland GmbH
9
Shanghai Jieru, VRC
91
SMS Demag AG
132
T.T. Tomorrow Technology SpA, Italy
11
Wagstaff Inc., USA
55
Windhoff Bahn- und Anlagentechnik GmbH 41
5
Bruker AXS
AKTUELLES
Hand-Metallanalysator
für schnelle Materialkontrolle
Global aluminium surplus to fall to 346,000
tonnes in 2010
Die Bruker AXS Microanalysis GmbH
präsentiert mit dem „S1TurboSD“
den ersten Hand-Metallanalysator,
der mit einem innovativen, preisgekrönten
Silizium-Drift-Detektor
(SDD) ausgestattet ist. Im Vergleich
zu herkömmlich verwendeten Detektoren lassen sich auch leichte Elemente wie Mg, Al, Si, S und P ohne
Global primary aluminium surplus
will fall from 1.25m tonnes in 2008
to 534,000 tonnes in 2009 and to just
346,000 tonnes in 2010, said Japanese trading house Marubeni Corp.
Producers face several hurdles, including rising stock levels, falling raw
material prices and the effects of the
global economic slowdown, which
could take some time to recover. On
the other hand, producers have been
aggressively cutting output and delaying or cancelling expansion projects,
helping to re-balance the supply-demand situation.
Consumption, which is forecast
to grow 2.9% in 2009 to 40m tonnes,
and 6% in 2010 to 42.4m tonnes, will
outpace global production growth of
just 1% next year to 40.5m tonnes and
5.5% in 2010 to 42.7m tonnes.
In particular, Chinese supply
growth is expected to drop sharply in
2009, up just 4.1% to 14.4m tonnes,
from the 10.3% growth projected for
2008. However, as the global economy picks up in 2010, Chinese supply
growth is expected to increase by
11.6% to 16.1m tonnes. Output from
the CIS is expected to increase by 3%
to 5.0m tonnes and by a further 2%
in 2010 to 5.11m tonnes, while North
American output is projected to fall
by 13.4% in 2009 to 4.83m tonnes, before recovering 2.1% in 2010 to 4.94m
tonnes.
Demand, meanwhile, is projected
to fall by 0.2% in North America to
6.28m tonnes, and by 0.6% to 7.11m
tonnes in Europe in 2009, before
increasing by 4.6% and by 2.5%, respectively in 2010. Chinese demand
is also expected to moderate in 2009,
rising by 7.2% to 14.51m tonnes. This
compares with 2008 projected growth
rate of 7.8%. However, by 2010, demand is expected to shoot up by 10%
to 15.97m tonnes.
LME prices are likely to be highly
volatile in 2009, ranging from a high of
USD2,500 to a low of USD1,700, with
the core range likely to be around
USD2,100, said Marubeni. This figure
is likely to rise to USD2,400 in 2010 as
the supply-demand balance tightens.
ziert werden können. Ein weiterer
Vorteil, auch in Verbindung mit der
High-Speed-Analysensoftware,
ist
die Messgeschwindigkeit. Für viele
Anwendungsbereiche lassen sich
Messzeiten von unter einer Sekunde
realisieren.
Bruker AXS produziert diesen
Detektor bereits seit längerem für
den Einsatz an Rasterelektronenmikroskopen und in Röntgenfluoreszenzgeräten für
den Laboreinsatz. Auf
Basis des bewährten
Vorgängermodells
wurden zahlreiche Verbesserungen integriert.
Die neueste Akkutechnologie ermöglicht
nun einen Messbetrieb
bis zu sieben Stunden.
Hand-Metallanalysator S1TurboSD von Bruker AXS
Das robuste, ergonomische Gehäuse hält den rauen Belästiges Zubehör wie Vakuumpumpe
oder Heliumgasflasche messen. Für
dingungen beim täglichen Einsatz
den Anwender bedeutet dies, dass
problemlos stand.
deutlich mehr Werkstoffe identifiAls Bedienelement dient ein PDA,
der hinsichtlich Datenspeicherung
mittels SD-Karte oder Bluetooth-Datentransfer mittlerweile zum Standard bei vielen Industrieprodukten
VOA mit neuer
geworden ist. Der PDA kann durch
Geschäftsführerin
eine Adapterschutzkappe vor äußeren Einflüssen wie Regen oder Staub
Der Verband für die Oberflächenveredelung von Aluminium e. V. (VOA),
geschützt werden. Ein Sicherheitsmechanismus schützt den PDA im
Nürnberg, hat mit Alexa A. Becker
Vergleich zu anderen Systemen vor
seit 1. Januar 2009 eine neue Geschäftsführerin. Die 49-jährige Juristin
unerlaubter Entnahme durch nicht
aus München tritt die Nachfolge
autorisierte Personen.
des im Mai 2008 verstorbenen und
Eine einfache Menüführung über
langjährigen Geschäftsführers Michael
eine Auto-Modus-Funktion gewährleistet, dass stets das richtige MessMiddendorf an.
Die neue VOA-Geschäftsführerin
programm verwendet wird. Dem Anwird sich folgenden Aufgaben widwender stehen Analysenprogramme
men: Unterstützung der Mitgliedsunfür verschiedenste Werkstoffe zur
Verfügung. Umfangreiche Legierungsternehmen im technisch-wissenschaftlichen sowie betriebswirtschaftlichen
tabellen ordnen der Analyse schnell
Bereich, Stärkung der politischen
und präzise den richtigen Werkstoff
Lobbyarbeit auf regionaler und interzu. Diese stehen als Excell-Tabellen
nationaler Ebene sowie Koordination
zur Verfügung. Der Anwender kann
der Presse- und Öffentlichkeitsarbeit.
jederzeit die Legierungstabellen auf
Auch die Akquisition von Neumitglieseine individuellen Anforderungen,
dern sei ein wichtiger Arbeitsschwerzum Beispiel auf hausinterne Matepunktthema.
rialbezeichnungen anpassen und im
Programm hinterlegen.
6
ALUMINIUM · 1-2/2009
NEWS IN BRIEF
Hydro inaugurated new recycling furnace in Hamburg
M. P. Steffen
Hydro inaugurated a new recycling furnace at
its aluminium rolled products plant in Hamburg.
The €12m investment underlines the company’s
mission to create a more viable society by developing natural resources and products in innovative and efficient ways. The furnace in Germany
is capable of swallowing up to 50,000 tpy of used
aluminium and remelting the metal for its next
application.
The twin-chamber furnace is one of the largest and most
advanced of its kind
Hydro expects this process to save more than
400,000 tpy of CO2 equivalents, compared with
the production of virgin aluminium metal. The
twin-chamber furnace is one of the largest and
most advanced of its kind. The operation starts
by removing of any lacquer, adhesives and compound materials. The emerging heat and gases
from this smouldering process is then used directly in the subsequent metal melting process.
As a result, less energy is used than in other
remelting furnaces.
“We have had the climate in mind with this
furnace, but it will also help secure the competitiveness of our plant in Hamburg”, says Oliver
Bell, who is responsible for Hydro’s rolled products operations.
Production cuts at Hydro smelter in Neuss
In December 2008, Hydro Aluminium, the German division of Norsk Hydro, confirmed to
Reuters that production cuts were planned at its
German operations because of falling demand.
A spokesman said some six of the 474 production cells for primary aluminium output would
be taken out of operation at its smelter in Neuss
in central Germany. He went on to say that other
pots might be taken out in the coming weeks after their maintenance was completed. He added
that the 190,000 tonne secondary aluminium
smelter and rolling mill in Hamburg would close
for about ten days weeks longer than normal over
the Christmas period.
ALUMINIUM · 1-2/2009
AKTUELLES
Die SMS-Gruppe mit Sitz in Düsseldorf, einer der führenden Anlagenbauer für Stahl- und Aluminiumwerke weltweit, hat im abgelaufenen Jahr
2008 bei den Auftragseingängen noch
einmal zugelegt, und zwar auf rund
5,4 Mrd. Euro (2007: 5,15 Mrd. Euro).
Der Umsatz betrug 2008 gut 3 Mrd.
Euro; er folgt mit der im Anlagenbau
üblichen Zeitverzögerung dem Auftragseingang nach.
Aufgrund der bis vor wenigen Monaten starken Weltkonjunktur fuhr
die Gruppe 2008 erneut ein Rekordergebnis beim Auftragseingang ein;
seit September sind jedoch auch bei
SMS deutlich weniger Aufträge angekommen. Aufgrund des Rückgangs
der Projekttätigkeit wird daher für
2009 ein deutlich niedrigerer Auftragseingang erwartet. Der hohe Auftragsbestand aus den vergangenen
Boomjahren sichert jedoch
die Beschäftigung für ein
bis zwei Jahre, so SMS.
Die wichtigsten Märkte für den Anlagenbauer
waren 2008 weiterhin
Russland, Indien und
China. Neben der guten
Geschäftslage im klassischen Maschinen- und
Anlagenbau konnten vor
allem die Wachstumsfelder
Elektrik, Automation und
Service zum gestiegenen
Auftragseingang bei SMS
beitragen. Die seit Jahren
verfolgte Strategie, als Systemanbieter entlang des
gesamten Lebenszyklusses
einer Anlage zu agieren,
hat maßgebend zum Geschäftserfolg beigetragen.
SMS
SMS-Gruppe: Auftragseingänge rückläufig, Auslastung hoch
Kaltwalzwerk bei Shandong Nanshan Industry
Agor verkauft seine kanadischen Töchter Alufoil sales dip down
Agor
Die unter Liquiditätsproblemen leidende Agor AG, Köln, wird ihre kanadischen Aktivitäten zur Aufbereitung
von Salzschlacke verkaufen. Dies hat
der Aufsichtsrat Mitte Dezember beschlossen. Konkret geht es sich um die
Alsa Services Canada Inc. mit ihren
beiden 100%-Töchtern Alsa Alumi-
Als Grund für den Verkauf gibt Agor
an, dass sich die schon schwierige
wirtschaftliche Lage dieser Gesellschaften wegen der in jüngster Zeit
eingetretenen
Auftragseinbrüche
weiter verschlechtert habe. Für die
Liquididätsprobleme des Unternehmens sind jedoch nicht allein die
kanadischen
Töchter
verantwortlich. Bereits
Anfang Dezember hatte
Agor mitgeteilt, dass die
Liquidität durch Verluste der Salzschlackeaufbereitungsanlage im
süddeutschen
Töging
erheblich belastet sei. In
Verhandlungen mit wichtigen Gläubigerbanken
sei eine Stundung von
Drehtrommelofen in der Recyclage-Anlage Baie Comeau
Krediten bis Mitte Januar
nium Canada Inc., Montreal, und
2009 vereinbart worden.
Recyclage d’Aluminium Quèbec Inc.
Bereits Anfang November verDie Gesellschaft in Quèbec betreibt
wies das Unternehmen darauf, dass
zwei Umschmelzwerke, in denen
rückläufige Schlackenanlieferungen,
vorwiegend Krätzen aus der kanaAbsatzprobleme für das Aluminiumdischen Primäraluminiumerzeugung
oxidprodukt Serox sowie zu bedieverarbeitet werden. Die Gesellschaft
nende hohe Verbindlichkeiten die
in Montreal ist eine SalzschlackeaufLiquidität des Agor-Konzerns „sehr
bereitungsanlage.
stark“ belasten.
8
According to the European Aluminium Foil Association (EAFA) European aluminium foil deliveries of the
first three quarters in 2008 totalled
663,900 tonnes, down 4.9% on the
corresponding period in 2007. Third
quarter shipments were down 6.4% to
198,300 t (2007: 211,900 t).
The global economic downturn especially in the automotive industry led
to a drop of 10% in the thicker gauges
from July to September 2008. Thinner
foils used for flexible packaging applications and household foil decreased
by 3.3% in the same period.
Sales within the EAFA region were
almost 6% down on the third quarter
of 2008, and year-to-date figures show
a similar fall. Exports fell more than
10% from July to September but were
comparatively stable for the first nine
months of 2008.
“After several record years for the
aluminium foil industry at least the
first months of 2009 remain challenging. We hope that the current recession will be only very limited and that
we begin to see light at the end of the
tunnel in later 2009”, said EAFA’s Executive Director Stefan Glimm.
ALUMINIUM · 1-2/2009
NEWS IN BRIEF
U.S. industry goes for higher
recycling rate for UBCs
The Aluminum Association has announced an industry
wide effort to increase the industry’s recycling rate for
used aluminium beverage containers to 75% by 2015.
Today, the sector recovers about 54% of the aluminium
containers produced in the U. S. While aluminium cans
are already the most widely recycled beverage container
in the country, each year Americans still discard over 50
billion aluminium cans which end up in landfills.
Recycling plays a critical role in maintaining the aluminium can as an environmentally sustainable package.
Raising the recycling rate of aluminium cans to 75%
would result in significant energy savings of 139.7 million MBTUs. In terms of greenhouse gases, this would
contribute to avoiding nearly nine million tonnes, which
is equivalent to removing more than 1.6 million cars from
the road over a year.
To achieve the recycling target, the Aluminium Association will work in partnership with other stakeholders to increase public education, improve the recycling
infrastructure and explore new policy initiatives. The
Association will encourage and assist local and state
governments to consider a range of options, including:
• Growing and strengthening voluntary recycling programmes, such as curbside recycling initiatives.
• Considering deposit legislation as an option for all
beverage containers. Container deposit programmes are
a proven, sustainable method of capturing beverage cans
for recycling. States that have deposit programmes have
the highest can recycling rates, on average at 74% or
higher, while the recycling rate in non-deposit states is
around 38%.
• Exploring the role that mandatory recycling programmes and landfill bans can play a part of the solution.
The U.S. aluminium industry’s recycling rate peaked
at 68% in 1992, but in the following years declined to as
low as 50%. More recently the recycling rate has been
gradually increasing again, growing by 2.2 percentage
points in 2007.
ALUMINIUM
AROUND THE WORLD
29 - 31 March 2009, Dubai
www.aluminium-dubai.com
8th World Trade Fair & Conference
14 - 16 September 2010
Essen, Germany
30 June - 2 July 2009, Shanghai
www.aluminiumchina.com
25 - 27 February 2010, Bombay
www.aluminium-india.com
Your access to the dynamic
aluminium markets world-wide.
New EAA Chairman elected
Rudolph P. Huber, President of Alcoa’s European Region
and Vice President of Alcoa Inc., has been elected Chairman of the European Aluminium Association (EAA). He
succeeds Christel Bories. His mandate began on 1 January 2009 and lasts for two years.
Mr Huber was named President of Alcoa European
Region in May 2006. He coordinates Alcoa’s activities
and profile across Europe. He joined the company in
1981 in Lausanne, Switzerland, as credit manager for
Europe, progressing to treasurer, European region, in
1986. Since then, he assumed several positions in Alcoa
group, both in Europe and in the U.S.
ALUMINIUM · 1-2/2009
www.aluminium-messe.com
Organiser:
WIRTSCHAFT
10
ALUMINIUM · 1-2/2009
TOMORROW
TECHNOLOGY
SYSTEMS AND EQUIPMENT FOR THE MET
METAL INDUSTR
INDUSTRY
WE
TOD
AY THE
WE DELIVER
DELIVER TODA
TODAY
THE TECHNOLOGY
TECHNOLOGY OF
OF TOMORROW
TOMORROW
MULTIFUNCTIONAL FURNACE TENDING VEHICLES AND EQUIPMENT
AUTOMATIC SKIMMING AND FURNACE CLEANING EQUIPMENT
SPECIAL HEAVY TRANSPORT VEHICLES UP TO 50 TONS
ANODE HANDLING & MULTISIZED ANODE SLOTTING MACHINE
T.T. Tomorrow Technology S.p.A. designs and builds special vehicles and equipment to improve the
operations and enhance the working conditions in the aluminium cast-house and Primary Rodding shop.
The products made by T.T. Tomorrow Technology are customs-designed to meet specific technical and quality needs
of any customers. All of them are ve ry appreciated for the easy of use, the efficiency and the rapid payback.
T.T. Tomorrow Technology S.p.A Via dell’Artigianato, 18 - 35020 DUE CARRARE - Padova - Italy - [email protected]
Tel. +39 049 912 88 00 - Fax +39 049 912 88 88
www
ww
w.tomor
.tomorrrowtechnolog
owtechnology
y.it
WIRTSCHAFT
Produktionsdaten der deutschen Aluminiumindustrie
Primäraluminium
Sekundäraluminium
Walzprodukte > 0,2 mm
Press- & Ziehprodukte**
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Okt
50,2
13,8
76,0
17,1
170,7
0,4
55,4
6,0
Nov
49,7
18,5
75,0
2,6
155,8
-4,9
53,7
3,1
Dez
52,2
21,9
57,2
-7,1
119,1
-4,1
30,9
-10,6
Jan 08
52,8
28,9
71,1
-2,6
154,3
4,4
51,4
0,6
Feb
49,4
33,0
69,3
-3,8
159,2
2,9
53,1
6,4
Mrz
52,6
26,9
64,2
-17,0
166,2
-6,1
48,4
-11,5
Apr
50,6
21,1
74,0
6,6
175,2
10,9
55,2
16,9
Mai
52,6
13,5
65,2
-10,2
159,3
-4,4
47,4
-6,8
Jun
50,8
9,2
68,4
-8,2
164,2
-0,3
53,6
3,7
Jul
52,1
7,0
62,5
-14,4
166,7
-0,2
53,5
0,4
Aug
51,8
5,8
49,4
-24,6
147,2
-10,6
49,0
-4,8
Sep
49,9
6,2
61,9
-13,7
157,7
0,6
51,6
2,8
Okt
51,2
2,0
57,9
-23,9
152,7
-10,6
50,4
-9,0
* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf
Primäraluminium
Walzprodukte > 0,2 mm
12
Sekundäraluminium
Press- und Ziehprodukte
ALUMINIUM · 1-2/2009
WIRTSCHAFT
European Coil Coating Association
European Coil Coating Association
Energiemanagement – eine Herausforderung für die Bandbeschichtung?
Energy management:
a challenge for
coil coating?
B. Rieth, Meerbusch
B. Rieth, Meerbusch
Was bedeutet Nachhaltigkeit für die
Bandbeschichtungsindustrie? Da es
hierzu noch keinen gültigen Maßstab
gibt, an dem die verschiedenen in der
Bandbeschichtung tätigen Unternehmen die Effizienz der dabei eingesetzten Energie beurteilen können, hat die
ECCA 2008 unter ihren europäischen
Mitgliedsunternehmen eine Erhebung
der umweltrelevanten Indikatoren
für das Jahr 2007 durchgeführt. Im
Vordergrund standen dabei umweltbezogene Leistungsindikatoren für
Energienutzung, Wassernutzung und
-ableitung, Abfall und Emissionen
von flüchtigen organischen Verbindungen. Diese Erhebung soll zum
Jahreswechsel 2008/09 veröffentlicht
werden. Einige Ergebnisse wurden
bereits auf der Konferenz vorgestellt:
Pro Quadratmeter beschichteter
Fläche wurden im Durchschnitt 1,8
kWh Energie in Form von Gas (82%)
und Elektrizität (16%) verwendet.
Der Energieeinsatz ist
auch die Hauptquelle für den CO2-Ausstoß, der mit durchschnittlich 396 g/qm
ermittelt wurde. Die
Erhebung zeigt, dass
der Energieverbrauch
pro
Quadratmeter
beschichteter Fläche
zwischen den betrachteten Beschichtungslinien stark variiert.
92 Prozent der Linien verwenden die
thermische Nachverbrennung zur Beseitigung flüchtiger Stoffe,
91 Prozent dieser Einrichtungen sind für
eine Wärmerückgewinnung ausgerüstet.
Der durchschnittliche
VOC-Ausstoß
der
Bandbeschichtungsindustrie beträgt 0,63
Bandbeschichtete Alu-Paneele, Bahnhof Potsdam
g/qm.
Strip-coated aluminium panels, train station in Potsdam
‘Energy Management’ was the central theme of the ECCA’s Autumn
Conference in November 2008, for
which over 200 participants came
to Brussels. The conference addressed a subject that is extremely
topical for coil coating which, as
a combination of chemical and
thermal processes, uses energy in
many forms. Besides a review of
the present status of EU energy
policies and their impact on the
coil coating industry, new processes were presented which promise
energy savings. Those attending
were informed about early results
of the first ECCA sustainability
report. A further ECCA project is
dedicated to the energy performance of buildings comprising coilcoated structural elements.
Alcan Singen
„Energiemanagement“ war das
zentrale Thema der ECCA-Herbstkonferenz im November 2008,
zu der über 200 Teilnehmer
nach Brüssel kamen. Die Konferenz sprach damit eine überaus
aktuelle Thematik für die Bandbeschichtung an, die als Kombination von chemischen und thermischen Prozessen Energie in vielfältiger Form nutzt. Neben einem
Überblick über den gegenwärtigen
Stand der EU-Energiepolitik und
deren Auswirkungen auf die
Bandbeschichtungsindustrie wurden neue Prozesse vorgestellt, die
Energieeinsparung versprechen.
Die Teilnehmer wurden über erste
Ergebnisse des ersten ECCA-Nachhaltigkeitsberichtes informiert. Ein
weiteres Projekt der ECCA widmet sich der Energieeffizienz von
Gebäuden mit bandbeschichteten
Fassadenelementen.
14
What does sustainability mean for the
coil coating industry? Since there has
hitherto been no accepted standard
against which the various enterprises
engaged in coil coating can assess the
efficiency of their use of energy for
this, in 2008 the ECCA carried out a
survey among its European member
companies concerning environmentrelevant indicators, covering the year
2007. This focused upon environment-related performance indicators
for the utilisation of energy and water,
water disposal, waste product generation and emissions of volatile organic
compounds (VOCs). The survey is to
be published at the end of 2008. Some
results were already presented at the
conference:
On average, 1.8 kWh of energy in
the form of gas (82%) and electricity
(16%) are used per square metre of
coated surface produced. The use of
energy is also the main source of CO2
output, which averaged 396 g/m2.
The survey shows that energy consumption per square metre of coated
surface varies markedly between the
coating lines considered.
ALUMINIUM · 1-2/2009
-EPSIL
RO
H
15 Jahre
ic Gmb
berührungslos
messen
MIC
Geschwindigkeit
Länge
Reckgrad stand alone
on
ALUMINIUM · 1-2/2009
Eine große Rolle beim Bandbeschichten spielt der Einsatz von Wasser: Sowohl zum Spülen bei der Vorbehandlung als auch zum Abkühlen
nach dem Härten der Beschichtung
wurden durchschnittlich 7,56 l/qm
verbraucht.
Eine Bandbeschichtungslinie erzeugt eine durchschnittliche Abfallmenge von 25 g/qm beschichteter
Fläche. 2007 betrug das Abfallaufkommen der europäischen Coil-coatingIndustrie rund 38.500 Tonnen.
Angesichts der vorgetragenen
Durchschnittswerte erhebt sich die
Frage, ob diese nun als „normal“ oder
„hoch“ einzustufen sind. Eine solche
aktuelle Erhebung kann mangels
früherer Vergleichswerte natürlich
nur eine Momentaufnahme sein. Sie
gibt aber den Bandbeschichtern die
Möglichkeit, ihre eigene Leistung
anhand dieser wichtigen umweltrelevanten Aspekte zu vergleichen und zu
beurteilen, wo Verbesserungspotenziale liegen. In diesem Kontext wurde betont, dass die kontinuierliche
Bandbeschichtung immer noch die
umweltfreundlichste Art ist, ein Aluminium- oder Stahlband mit Farbe zu
versehen.
Welche aktuellen Regularien aus
Brüssel betreffen die Bandbeschichtung? Die europäische Energiepolitik betrifft die Bandbeschichtung in
vielfältiger Form. Das gilt sowohl für
Verordnungen, die den Betrieb der
Anlagen regeln, als auch für solche,
die dem Einsatz der Fertigprodukte
gelten.
Zur ersten Gruppe zählt die im
Juni 2007 in Kraft getretene REACHVerordnung, ein Regelwerk der EU
zur Kontrolle von Chemikalien, über
das wir in dieser Zeitschrift bereits
mehrfach berichtet haben. REACH
ist wegen seiner Bestimmungen zum
Umgang mit Chemikalien von großer
Bedeutung für die Bandbeschichter,
da es diesen in Zukunft große Verpflichtungen auferlegt. Der aktuelle
Beitrag der ECCA ist die Mitwirkung
bei der Ausarbeitung der vorgeschriebenen Expositionsszenarien mit ausführlichen Angaben zu den einzuhaltenden Bedingungen, die sicherstellen, dass der Umgang mit bestimmten
Stoffen sowohl für Personen als auch
für die Umwelt sicher ist. Ziel ©
O
ON ptr
92 percent of the lines use thermal after-burning to remove VOCs and 91
percent of the installations concerned
are designed to recover heat. The
mean VOC output in the coil coating
industry is 0.63 g/m2. The use of water plays a major role in coil coating:
both for rinsing during pretreatment
and for cooling after the curing of the
coating, on average 7.56 l/m2 are used.
On average, a coil coating line generates waste products amounting to 25
g/m2 of coated surface. In 2007, the
European coil-coating industry deposed some 38,500 tonnes of waste.
Having regard to the reported average values, the question arises whether these are now to be regarded as
‘normal’ or ‘high’. A current survey of
this type, it is true, can of course only
be a ‘snapshot’ because of lack of earlier comparison data. But it provides
coil coaters with the opportunity to
compare their own performance as
regards these important environment-relevant aspects, and to evaluate where potentials for improvement
exist. In this context it was stressed
that continuous coil coating is still the
most environment-friendly method of
endowing an aluminium or steel strip
with colour.
Which current directives from
Brussels are of relevance to coil coating? European energy policies are
relevant to coil coating in many ways.
This applies as much to directives that
regulate the operation of plants as to
those which concern the use of the
finished products.
The first group includes the
REACH Directive that entered into
force in June 2007, an EU framework
of rules concerning the control of
chemicals, which we have already
commented upon many times in this
journal. Owing to its provisions on
dealing with chemicals REACH is
very important for coil coaters, since
it imposes major obligations upon
them in the future. The ECCA’s current contribution is collaboration in
working out the prescribed exposure
scenarios, with detailed information
about the conditions to be maintained
in order to ensure that the way certain substances are handled and used
is safe, both for people and for the
environment. The ECCA’s aim ©
ASCOspeed
die neue
Generation.
www.micro-epsilon.de
MICRO-EPSILON Optronic GmbH
D-01465 Dresden-Langebrück
Tel. 035 201 / 729-0
[email protected]
WIRTSCHAFT
Fata Hunter CCL
von ECCA ist es, die Zahl der Expositionsszenarien so gering wie möglich
zu halten.
Das Baugewerbe ist nach wie vor
der Hauptabnehmer für kontinuierlich beschichtete Bänder. In diesem
Bandbeschichtungslinie von Fata Hunter
Fata Hunter coil coating line
Zusammenhang bergen die neuen
Verordnungen zur Energieeffizienz
von Gebäuden durchaus Chancen für
den Einsatz „intelligenter“ Coil-coating-Produkte. Von besonderer Bedeutung bei der Verfolgung des Ziels,
den Gesamtprimärenergieverbrauch
der Europäischen Union bis 2020
um ein Fünftel zu reduzieren, ist das
IEE(Intelligent Energy Europe)-Projekt, das unter anderem einige Coilcoating-typische Endprodukte wie
Gebäude (z. B. Passivhäuser), Hausge-
räte und Transportmittel fördert. Ausgewählte Projekte werden von der EU
mit 730 Millionen in den Jahren 2007
bis 2013 gefördert. Die Investitionen
sollen sich durch eingesparte Energieverbräuche rechnen. Die derzeitige Einsparung
der geförderten
Projekte liegt bei
80.000 MWh,
ein zusätzliches
Potenzial wird
in einer Größenordnung von
300.000 MWh
gesehen.
Wieweit betreffen
BREF
und BAT die
CCL-Industrie?
Mit Blick auf die
Bedeutung der
Energieeffizienz
hat die Europäische Kommission ein Referenzdokument
für beste verfügbare Techniken,
BREF
(Best Available
Techniques
Reference
Document),
erstellt. Das
jüngste ergänzt sieben andere BREFDokumente, die sich auf die Bandbeschichtung beziehen, aber gegenwärtig noch nicht bindend sind. Der BAT
(Best Available Technique)-Gesichtspunkt wird eine wichtige Rolle bei der
Harmonisierung der Verordnungen
zwischen der Europäischen Kommission, den Mitgliedsstaaten und der Industrie spielen. Der Maßstab für die
Definition von BAT ist höchste Effizienz beim Umweltschutz, erreicht
unter technisch und wirtschaftlich re-
n
n3
-/
n44-/3
n'/5//33-//3
n 3-6
-/
n+/
n4//
n/3
n-33-/
n03
/3
n,4./6/
-/
n!73423//
n&23//
n*-1/0332
)%',!(-/5/33/.#
.$8+./31-4/8"3/4/./3
*/8"-7
666//8/
-0//
16
is to keep the number of exposure
scenarios as small as possible.
As ever, the building industry is
the main customer for continuously
coated strips. In this connection the
new directives on the energy efficiency of buildings certainly provide
opportunities for the use of ‘intelligent’ coil coating products. Particularly important in pursuing the target
of reducing the total primary energy
consumption of the European Union
by a fifth by 2020 is the IEE (Intelligent Energy Europe) Project, which
inter alia promotes some coil-coatingtypical end products such as buildings
(e. g. energy-neutral housing), household appliances and transport means.
Selected projects are being subsidised
by the EU to the tune of 730 million
euros between 2007 and 2013. The
investments are to be calculated in
relation to energy consumption saved.
The current savings attributable to the
projects promoted amount to some
80,000 MWh and additional potential
of the order of 300,000 MWh is envisaged.
How relevant are BREFs and BAT
to the coil coating industry? As regards the significance of energy efficiency, the European Commission
has produced a reference document,
BREF (Best Available Techniques Reference Document). The latest BREF
document supplements seven other
BREFs, which relate to coil coating
but are at present not yet binding.
The BAT (Best Available Technique)
point of view will play an important
role in harmonising the directives
between the European Commission,
the Member States and industry. The
standard for the definition of BATs
is maximum environment protection
effectiveness, achieved under technically and economically feasible
conditions using technologies which,
besides utility, also take account of
design, operation, maintenance and
final decommissioning.
A consolation for the constructors
and operators of coil coating lines: the
bewildering variety of BREFs issued
to date are still only recommendations for the time being. These is still
no European technology platform that
would enable a consensus to emerge.
For coil coaters the BREFs are thus
ALUMINIUM · 1-2/2009
ECONOMICS
only a general description of procedures, without information that motivates specific measures by individual
companies.
Drying technologies
from the energy standpoint
The theme of ‘energy management’ offered participants at the conference a
good opportunity to show and compare the various designs of furnaces
for drying and curing coatings, in relation to their energy efficiency.
The most widely used type are still
gas-fired catenary furnaces, followed
by floating furnaces. Even with these
conventional forms manufacturers
strive to improve efficiency, for example from 65 to 75 percent, to boost
production, and thus at the same time
to reduce specific energy costs by up
to 15 percent. This is achieved inter
alia by automatic strip threading, precise furnace adjustment and quickchange coaters. The availability of the
furnace can also be increased by specific measures to reduce planned idle
times. This can be done by avoiding
condensate formation in the furnace
by effective air circulation, which
keeps all the inside surfaces hot during operation. Also important is good
accessibility of the furnace interior, to
speed up cleaning work.
Besides conventional furnace
technologies, new methods are making their way onto the market, including NIR (Near Infra-Red) heating. This process not only gives the
shortest curing times and, associated
with that, the smallest space requirement. Specifically to be considered
is the question of energy efficiency.
Since electrical energy is used, there
is substantial location-dependence of
power production from the use of fossil fuels such as coal. Consequently,
conditions are different as between
Germany compared, for example,
with France (higher proportion of
nuclear power) or Scandinavia (more
hydroelectric power generation). Regardless of location, moreover, consumption also varies depending on
whether standard paint or NIR-optimised paint are used.
These are also advances in other
technologies such as induction curing. For physical reasons, how- ©
alisierbaren Bedingungen unter Einsatz von Technologien, die neben der
Nutzung auch Konstruktion, Betrieb,
Wartung und letztlich die Außerbetriebsetzung berücksichtigen.
Beruhigend für den Anlagenbau
und Betreiber von Bandbeschichtungslinien: Die verwirrende Vielfalt
der bisher erarbeiteten BREFs sind
derzeit nur Empfehlungen. Immerhin
gibt es noch keine europäische Technologieplattform, die eine Verständigung ermöglichen würde. Für die
Bandbeschichter sind die verschiedenen BREF-Dokumente somit nur
eine allgemeine Beschreibung von
Prozeduren ohne Aussage, welche
konkreten Maßnahmen von den einzelnen Firmen zu ergreifen sind.
Trocknungstechnologien
unter Energieaspekten
Das Thema „Energiemanagement“
bot den Teilnehmern der Tagung
eine gute Gelegenheit, um die unterschiedlichen Bauformen von Öfen
zum Trocknen und zum Aushärten von Beschichtungen mit Blick
auf deren Energieeffizienz ©
Bruker AXS Handheld
S1 TURBOSD
• Handspektrometer für alle Aluminiumsorten
Unsere Technologie
– Ihr Gewinn
• Ausgezeichnetes Preis-/Leistungsverhältnis
und andere Metalle
• Analyse von Aluminium, Silizium und
Magnesium ohne Vakuum oder Heliumspülung
• Messzeiten unter 1 Sekunde
Der Bruker S1 TURBOSD Metallanalysator ist das erste Handspektrometer
mit SDD-Technologie für höchste Genauigkeit und Schnelligkeit.
www.handheldxrf.com [email protected]
Tel.: + 49 (2302) 178-3408 Fax: + 49 (2302) 178-0897
WIRTSCHAFT
darzustellen und zu vergleichen.
Am meisten verbreitet sind immer
noch gasbeheizte Durchhangöfen,
gefolgt von Schwebeöfen. Auch bei
diesen konventionellen Bauweisen
gibt es Anstrengungen der Hersteller, über eine Verbesserung des Nutzungsgrades, zum Beispiel von 65 auf
75 Prozent, die Produktion zu steigern
und damit zugleich die spezifischen
Energiekosten um bis zu 15 Prozent
zu senken. Erreicht wird das unter anderem durch automatische Bandeinfädelung, präzise Ofeneinstellungen
und Schnellwechsel-Coater. Auch
die Verfügbarkeit des Ofens lässt sich
durch gezielte Maßnahmen zur Reduzierung geplanter Stillstände erhöhen. Dies kann durch die Vermeidung
von Kondensatbildung im Ofen durch
gute Luftumwälzung erreicht werden,
die alle inneren Oberflächen während
des Betriebs warm hält. Von Bedeutung ist auch eine gute Zugänglichkeit
des Ofeninneren zur Abkürzung von
Reinigungsarbeiten.
Neben den konventionellen Ofentechnologien drängen neuere Technologien auf den Markt: Hierzu gehört
die NIR(Near Infra Red)-Erwärmung.
Dieses Verfahren weist nicht nur die
kürzesten Aushärtzeiten und damit
verbunden den geringsten Platzbedarf auf. Spezifisch zu betrachten ist
die Frage der Energieeffizienz. Da
hier elektrische Energie zum Einsatz
kommt, gibt es eine große standortbezogene Abhängigkeit der Stromerzeugung vom Einsatz fossiler Rohstoffe
wie Kohle. Damit gelten in Deutschland andere Voraussetzungen als in
Frankreich (höherer Anteil Nuklearstrom) oder in Skandinavien (höherer
Anteil Wasserkraft). Unabhängig vom
Standort variiert der Verbrauch auch
in Abhängigkeit davon, ob Standardlacke oder NIR-optimierte Lacke zum
Einsatz kommen.
Fortschritte gibt es auch bei anderen Technologien wie der Induktionsaushärtung. Deren Einsatz ist allerdings aus physikalischen Gründen
bei einer wirtschaftlich sinnvollen
Ausführung der Induktoren in der
Aluminiumindustrie nicht möglich.
Gleiches gilt auch für neuerdings entwickelte Hochfrequenztrockner, die
ebenfalls auf Induktivbasis arbeiten.
Alternativ zu den thermisch wir-
18
kenden Aushärtprozessen wird das
„kalte Härten“ angeboten, das auf der
UV-Technologie basiert. Vor allem
können mit der UV-Beschichtung
hochfeste Stoffe mit bis zu 100 Prozent Feststoffgehalt formuliert werden. Bei dem Verfahren handelt es
sich um einen chemischen Prozess,
bei dem die Polymerisation durch
UV-Energie eingeleitet wird. Im Gegensatz zum thermischen Prozess
kommt es hier zu keiner Aussonderung flüchtiger organischer Substanzen. Erforderlich sind allerdings
spezielle Lacke mit Photoinitiatoren.
Der gesamte Vorgang benötigt nur
einen Bruchteil der Zeit, die andere
Verfahren beanspruchen. Neben einer Pilotanlage, die seit vier Jahren in
Betrieb ist, gibt es in Europa bisher
zwei kommerziell arbeitende Linien,
eine für Anti-fingerprint-Decklack
auf Hausgeräten und eine für Bänder
aus rostfreiem Stahl.
Aus Sicht der Lackhersteller gibt
es neben den bekannten Aushärtverfahren noch einen anderen Gesichtspunkt, der in der Debatte um Energieaufwendungen von Bedeutung ist,
und zwar die Nutzung der Energie,
die in den eingesetzten Rohstoffen
vorhanden ist, die in den verschiedenen Beschichtungsarten verwendet
werden. Hier ist die Datenlage aber
derzeit noch mangelhaft.
Alle Beiträge der Konferenz haben gezeigt, dass die europäischen
Anlagenbauer und Betreiber das
Energiemanagement bei der Bandbeschichtung ernsthaft und verantwortungsvoll betreiben. Bedauerlich ist
jedoch, dass die europäischen Bandbeschichter, dies zeigten die vorgetragenen Importstatistiken während
der Konferenz, einem zunehmenden
Wettbewerbsdruck von außereuropäischen Ländern ausgesetzt sind,
in denen Umweltschutz und Energieoptimierung eine nur untergeordnete
Rolle spielen.
ever, an economically viable design
of the inductors precludes their use
in the aluminium industry. The same
applies to recently developed highfrequency driers, which also operate
on an inductive basis.
As an alternative to thermal curing
processes, ‘cold curing’ based on UV
technology is also available. Above
all, UV coating allows high-strength
materials with a solids content of
up to 100 percent to be formulated.
The method is a chemical process in
which polymerisation is initiated by
UV energy. In contrast to the thermal process, in this case there is no
separation of VOCs. However, special
lacquers containing photoinitiators
are needed. The process as a whole
takes up only a fraction of the time
demanded by other methods. Besides
a pilot plant that has been operating
for four years, in Europe there are so
far only two commercially operating
lines, one for an anti-fingerprint topcoat on household appliances and one
for stainless steel strip.
From the standpoint of lacquer
manufacturers, besides the known
curing methods there is another aspect which is significant in the debate
about energy consumption, namely
the use of the energy content of the
raw materials used in the various
types of coatings. In this connection,
however, not much information is
available at present.
All the conference contributions
showed that European plant manufacturers and operators are keenly
and responsibly committed to energy
management in coil coating. Regrettably, however, as shown by the import statistics reported during the
conference, European coil coaters are
being exposed to increasing competitive pressure from countries outside
Europe, in which environment protection and energy optimisation are
regarded as only of secondary importance.
Autor
Author
Dipl.-Ing. Bernhard Rieth ist Marketingspezialist und freier Fachjournalist. Als
Inhaber der Marketing Xpertise Rieth in
Meerbusch berät er Ausrüstungspartner
der NE-Metall-Halbzeugindustrie in Marketingfragen.
Dipl.-Ing. Bernhard Rieth is a marketing
specialist and freelance technical journalist. As proprietor of Marketing Xpertise
Rieth in Meerbusch, Germany, he advises
equipment partners of the NF metals semis
industry on marketing-related matters.
ALUMINIUM · 1-2/2009
ECONOMICS
Activities of aluminium producers during 2008
It would be unfair to
blame the aluminium
industry for the glut
and tumbling prices
on the metal market.
Only a year ago the
real economy was
booming: then it was
hit by rocketing energy costs and now
by a credit crisis that
not even the big banks
foresaw. New plant capacity and expansions
in progress suddenly
become debt burdens
and more difficult in
Alcoa entered into new, long-term power contracts for its Canadian smelters, such as Deschambault
finance through the
shocked stock markets. On the other
aluminium sector. Companies will be
paid Alcoa USD2m for its 10% stake
hand, the industry’s raw material and
forced to cut production at unprofin Valco.
energy costs have also come down.
itable plants, to reconsider investThe company reached an agreeBut at the end of the chain, consumment programmes, to abandon new
ment with the government of Quebec
ers are buying fewer goods, so there is
projects, and to put on hold expanin Canada on a new, renewable encurrently overcapacity. Aluminium’s
sion programmes that are already in
ergy contract to supply Alcoa’s three
regular long-term growth is sure to
progress. Despite this gloomy ecosmelters in the province (Becancour,
return after this recession, but until
nomic environment, even if the gloBaie Comeau and Dechambault)
then many companies will have to
bal economy falls into recession durthrough the year 2040 and so enabling
shut down capacity or even struggle
ing the coming year, and even if the
Alcoa to invest USD1.2bn to upgrade
to survive.
demand for aluminium drops by 10%,
and expand aluminium production at
still the medium term prospects are
Baie Comeau to 548,000 tpy.
for
strong
growth.
As
throughout
its
Due to the global financial crisis,
Facing a challenging time
120-year industrial history, aluminAlcoa closed its 270,000 tpy RockThe global aluminium industry is
ium remains a metal of the future.
dale, Texas, aluminium smelter due
facing a challenging time. Since SepThe situation in the aluminium into uncompetitive power price and
tember it is clear, the global economy
dustry today provides an opportunity
weak overall market conditions, and
is already in a recession and will refor companies to become even more
it curtailed an additional 350,000 tpy
main so during 2009. From the ailing
competitive and enhance their effiof aluminium production elsewhere.
banking world, the stock exchanges
ciency by exploring new opportuniCombined, Alcoa’s curtailment efhave transmitted the crisis to the real
ties. Under the pressure of the present
forts in the second half of 2008 toeconomy. Already more than 75%
economic situation, new smelter
talled 15% of its annualised output, or
of aluminium producers in Europe,
projects will be reviewed, abandoned
615,000 tpy. Furthermore, partial potthe USA and China have production
or delayed.
line curtailments will concern smeltcosts, which exceed their break-even
The following review summarizes
ers in Ferndale, Washington, and Baie
aluminium price at USD2,500 per
the main events in the primary aluComeau, Quebec. Alcoa’s new smelttonne. With prices down to USD1,800
minium industry for 2008 and reports
ing production rate is approximately
per tonne or less high-cost smelters
on the producers in alphabetical or3.5m tpy, with approx. 1m tpy idled.
will find it difficult to survive if they
der.
Costs for the curtailments are still bedo not quickly adjust their capacities
ing finalised.
to the market conditions. Today the
The Suriname government has
Main events in the
aluminium industry is the metals and
entered
into talks with Alcoa and
aluminium industry
mining sector with by far the highest
BHP Billiton to build an aluminium
concentration of unprofitable proAlcoa sold its stake in the inactive
smelter and hydroelectric dam in the
duction facilities, so we must expect
200,000 tpy Valco aluminium smeltsmall South American country, which
fundamental changes in the global
er to the Ghana government, which
wants to generate more revenue from
20
ALUMINIUM · 1-2/2009
Alcoa
Rudolf P. Pawlek, Sierre
ECONOMICS
its prosperous bauxite industry.
Alcoa and the Brunei Economic
Development Board (BEDB) signed
an updated memorandum of understanding (MoU) to enable more detailed studies into the feasibility of
establishing a modern, gas-powered
aluminium smelter in Brunei Darussalam. The facility would have initial
operating capacity of 360,000 tpy with
potential for expansion to 600,000 to
700,000 tpy.
Alcoa also plans to build a 340,000
tpy aluminium smelter in Greenland.
If feasibility is proven, production at
the new smelter could start in 2014
or 2015.
In October Alcoa announced it
remains committed to building a second smelter in Iceland, despite the
fact that the county’s financial system
is teetering on the verge of national
bankruptcy.
Fjardaal, Alcoa’s first Icelandic
aluminium smelter is now producing
aluminium at near its nameplate capacity of 340,000 tpy.
Argentine aluminium producer
Aluar started up the Phase I expansion of its Puerto Madryn aluminium
smelter, thereby lifting capacity by
137,000 tpy to 410,000 tpy.
Aluminium Bahrain (Alba) is working on a plan to increase its production capacity by about 40% to benefit
from expecting future aluminium demand. Alba is seeking to boost its annual production by 350,000 tonnes to
more than 1 million tonnes.
Aluminum Corporation of China
Ltd (Chalco) will team up with Malaysia’s MMC and Saudi Arabia’s
Binladin for a joint aluminium project
in Saudi Arabia. The project, to cost
USD4.5bn, includes an aluminium
smelter and a power plant in Jazan
Economic City. The smelter will have
a capacity of 1m tpy.
India’s Ashapura Minechem Ltd
(AML) has submitted to the government of the eastern state of Orissa its
plans to set up an integrated aluminium complex. This complex would
comprise a 500,000 tpy alumina refinery, a 150,000 tpy aluminium smelter
and a 3,000 MW captive power plant.
Ashapura Minechem was also in
talks with Adani Group for a 50:50
joint venture to produce 500,000 tpy
of aluminium at Mundhra in Gujarat,
India.
Azerbaijan’s aluminium capacity
will more than double once Azeraluminium (Azeral) has built its second
smelter with capacity to produce
100,000 tpy of aluminium, as part of
the country’s plans to reduce its dependence on oil exports. Azeral began
building the new smelter in March
2008 at a cost of USD230 million, and
completion is expected by the end of
2009.
Early in February 2008, BHP Billiton, the world’s biggest mining company, raised the stakes in its campaign
to win control of rival Rio Tinto, making a formal bid of 3.4 BHP shares for
each Rio share, an offer worth more
than £75bn (USD147bn). The bid was
a 45% premium to Rio’s closing share
price the previous day.
At the end of November BHP Billiton decided to drop its bid for Rio
Tinto, citing unacceptable risks as a
result of deteriorating global economic conditions and sharply lower commodity prices. BHP blamed the global
financial crisis and associated falls in
commodity prices. Accordingly, the
greater debt exposure of purchasing
Rio plus the need to divest excess assets, have become unacceptable risks
to the shareholder value.
Given the economic climate, BHP
also does not expect to be able to
achieve fair values for any assets it
must sell for the merger to proceed.
These include the divestment of iron
ore and metallurgical coal assets ©
WWW.BUSSCORP.COM
The leading Mixing Technology
for Anode Pastes
For over 50 years BUSS Kneader Series KE and CP are
the benchmark in reliable and economical compounding
of anode pastes. Benefit from the expertise of the
market leader.
ALUMINIUM · 1-2/2009
Booth 12 6
ECONOMICS
22
duce 440,000 tonnes per year.
Emal International signed an MoU
to build a 1.4m tpy greenfield aluminium complex in Saudi Arabia.
In 2008 Dubal raised the production capacity of its Jebel Ali plant to
950,000 tpy.
Eurasian Natural Resources Corp.
(ENRC) has inaugurated its alumin-
smelter was designed on a production
cost of just USD1,800 per tonne. Even
with currently depressed aluminium
prices, the project should still operate
with a solid margin
In November, Hydro decided to
reduce production in the oldest part
of the Karmøy aluminium plant, the
Søderberg potrooms, by 120,000 tpy
Emal
so as to remedy European Union antitrust concerns. Other concerns that
constituted unacceptable risk were
the prospective debt level, given the
difficult economic conditions and the
ability to divest other non-core assets
from Rio’s earlier merger with Alcan.
BHP intends to write off the USD450m
incurred in progressing the merger
over the last 18 months.
US aluminium producer Century
Aluminum announced an investment
programme to upgrade technology
and to incrementally increase production at its Hawesville Kentucky
smelter in the US. Investments of
USD68m over the 2008 to 2010 period would improve operations and
increase metal production from 2007
levels by 3,000 to 5,000 tpy by 2009,
and then by another 8,000 to 10,000
tpy by 2010.
In April 2008, Century Aluminum
entered into a joint venture agreement with Pingguo Qiangqiang Carbon Co., Ltd to acquire a 40% stake
in Baise Haohai Carbon which owns a
newly constructed carbon anode and
cathode facility located in Guangxi
Zhuang region of south China.
In February 2008, Century Aluminum started construction of its
250,000 tpy aluminium smelter at
Helguvik in Iceland.
Brazil’s Companhia Brasileira do
Aluminio (CBA), part of the Votorantim Group, plans to expand its primary aluminium production to around
570,000 tpy by 2009. The forecast is
for an increase of over 20% in capacity compared with 2007.
Emirates Aluminium (Emal), a
company made of Dubai Aluminium
(Dubal) and Mubadala Development,
intends to build a 700,000 tpy aluminium smelter at Béni-Saf in Algeria including a 2,000 MW gas-fired power
plant.
Dubal and Mubadala Development
are partners in Emal’s Taweelah aluminium smelter, which is being built
in Abu Dhabi. Construction of the first
700,000 tpy smelter is to be completed by 2010, with plans for the smelter
to double its capacity to 1.4m tpy in a
second phase.
Dubal and Indian conglomerate
Larsen & Tubro want to build an aluminium smelter in Orissa state to pro-
Emal’s Taweelah aluminium smelter is to be completed by 2010
ium smelter in Pavlodar, Kazakhstan,
with initial capacity of 62,500 tpy.
As planned, output will increase to
125,000 tpy in 2008 and to 250,000
tpy by 2011.
India’s largest aluminium producer Hindalco Industries announced
an aluminium capacity of 1.7m tpy:
construction has started on the Aditya Aluminium greenfield project
in Orissa, which includes a 390,000
tpy aluminium smelter. Hindalco
Industries currently produces more
than 450,000 tpy of aluminium, and
plans to add another 500,000 tpy in
Orissa, as well as 390,000 tpy each in
Jharkhand and Chhattisgarh.
Hydro Aluminium, Oslo, Norway,
is still on track to start production at
its Qatar Aluminium Ltd (Qatalum)
project at the end of 2009, despite
the current challenging economic environment. The primary aluminium
smelter in Mesaieed, Qatar, is expected to have an initial output of 585,000
tpy, and it was about 41% complete
at the end of the third quarter. The
from December in order to meet
sharply falling demand in the aluminium market. When Søderberg technology has been phased out – which will
be the case by the end of the first quarter 2009 – production at the Karmøy
plant will stand at around 170,000 tpy.
The current market situation has also
made Hydro temporarily shelve its
plans for a new, modern production
line at Karmøy.
In May, Hydro launched a new 420
kA electrolysis cell in the pilot plant
at the Årdal Research Center. Hydro’s
ambition is to exceed even this, and to
attain 450 kA in a few years’ time. This
high amperage is one of the most important reasons for the cost-efficiency
of the HAL4e technology.
Impexmetal will close its 54,000
tpy Huta Aluminium Konin SA primary aluminium smelter in Poland in
the first half of 2009 as a result of high
energy prices. The shutdown will take
between three and six months. Energy
prices, which now account for about
40% of production costs, are expected
ALUMINIUM · 1-2/2009
ECONOMICS
deal depends on approval from both
Corus and Klesch’s board of directors.
It also requires European Union regulatory approval and other regulatory
clearances. There is no timeline set
for reaching an agreement.
India’s National Aluminium Co.
(Nalco) has chosen a location in Richards Bay, South Africa, to build a
500,000 tpy aluminium smelter and
a captive power plant. Furthermore
Nalco agreed to invest USD3bn in a
500,000 tpy aluminium smelter in the
Indonesian province of Sumatra. The
company also received an expression
of interest from a government-owned
Iranian firm for a joint venture to set
up a 310,000 tpy aluminium smelter
in Iran.
With USD400m in Chinese funding, Alutrint Ltd is building a 125,000
tpy aluminium smelter in Trinidad
and Tobago. Alutrint is 60% owned by
the National Energy Corp. of Trinidad
and Tobago Ltd. The remaining 40% is
held by Sural CA, Caracas, Venezuela,
which will act as the project’s downstream joint-venture partner. The
USD540m aluminium complex will
Hydro
to rise further by more than 50% in
2009. Low demand and metal prices
have also contributed to the decision
to close the plant in Konin.
JSW Aluminium, located in Mumbai, plans to put up a 1m tpy aluminium smelter in Chhattisgarh. The
smelter will be located near Jindal
Steel and Power, another JSW company, and will be built in three phases of
around 330,000 tpy each. A feasibility study has been launched to assess
the project. The Chhattisgarh state
government has allocated the land
required for the smelter, as well as a
coal mining concession to support a
2,000 MW captive power plant.
Private equity company Klesch &
Company, headquartered in London,
has signed a USD8bn deal to build a
300,000 barrel per day refinery and
a 725,000 tpy greenfield aluminium
smelter in Libya.
In November 2008 Corus signed
a non-binding letter of intent to sell
two aluminium smelters to Klesch &
Co. The letter of intent concerns the
disposal of two smelters located in
Delfzijl (the Netherlands) and Voerde
Hydro’s Karmøy plant – soon producing without Søderberg potlines
(Germany) that have a combined
production capacity of more than
200,000 tpy of primary aluminium.
The non-binding letter of intent allows the two companies to start negotiations and due diligence. A final
ALUMINIUM · 1-2/2009
be built using technology and labour
from the China National Machinery
& Equipment Import & Export Corp.
(CMEC). The government will pay the
remaining USD140m for the project.
Press Metal, a Malaysian alumin-
ium fabricator, announced that its
plans to build a smelter were on track.
The first phase of the USD689.3m
smelter in Malaysia’s Sarawak state
on Borneo island will be completed
in time by the middle of 2009.
China’s Qingtongxia Aluminium
Group (QAG) is mulling an aluminium smelting project of at least 1m tpy
in northwest China’s Ningxia autonomous region.
Rio Tinto Alcan agreed to partner
Algerian private company Cevital in
an aluminium smelter project costing
about USD7bn. The first phase of the
project would involve a smelter with
a capacity of 720,000 tpy of primary
aluminium.
Rio Tinto Alcan discussed with the
South African government the timing
of the Coega smelter project near Port
Elizabeth, South Africa. The project
has been delayed by four years already by an inability to secure power
supplies.
The British Columbia Utilities
Commission approved an amended
power deal between Rio Tinto Alcan
and BC Hydro, which opens the door
for the company to proceed with its
much-flagged upgrade and expansion
of the Kitimat smelter. The project
would involve a major technology upgrade at the plant and a 125,000 tpy
boost to capacity from 275,000 tpy to
400,000 tpy.
Rio Tinto Alcan accelerated a prefeasibility study to expand its Alma
smelter in the Sagueny-Lac-St. Jean
region of Quebec from 400,000 tpy
to 570,000 tpy. Plans also include a
possible future expansion of an AP50
pilot plant.
Rio Tinto Alcan officially opened
its newly commissioned USD225m
pilot plant for the treatment of spent
potlining in Saguenay, Quebec. The
plant will be able to treat about 80,000
tpy of spent potlining.
State-owned Abu Dhabi Basic Industries Corporation (ADBIC) was in
talks with Rio Tinto Alcan about developing of an aluminium smelter in
al-Ruwais. With an estimated cost in
the first phase of USD5bn, the smelter
would be built over three phases, each
for 700,000 tpy of aluminium.
Rio Tinto Alcan announced the
development of 2.5m tpy alu- ©
23
ECONOMICS
24
Rio Tinto Alcan has cut output by a
third or 44,000 tpy at its Lynemouth
aluminium smelter in the UK, and is
gradually reducing output at its Chinese smelter in Ningxia.
China Nonferrous Metal Industry’s
Foreign Engineering and Construction
Co (NFC) signed a deal with project
owner Sabzevar Pars Sarbedaran
Aluminium Industrial Complex to set
up an aluminium complex with a capacity of 120,000 tpy in northeastern
Iran. The plant would be built over
three years with an investment of
USD775m in the town of Sabzavar in
Razavi Khorasan province. Sabzevar
Pars Sarbedaran Aluminium Industrial Complex is owned by Tousea-e-rah
Avard Parsian Co.
Russia’s aluminum giant UC Rusal
has signed a memorandum of understanding with the Libyan State Economic and Social Development Fund
(ESDF) to create a joint venture to de-
Venezuela signed a cooperative agreement to create a joint venture between
UC Rusal and Corporacion Venezolana de Guayana (CVG). They plan to
build an alumina and aluminium complex in Venezuela with a capacity of
750,000 tpy of aluminium and 1.4m
tpy of alumina. The Venezuelan government will arrange to provide the
4 GW of electricity needed to power
the plant, possibly by building a cokeburning power station.
Rusal signed an MoU with China
Power Investment Corporation (CPI)
for a strategic partnership to create a
vertically integrated aluminium production complex with a minimum
capacity of 500,000 tpy.
Rusal started construction of the
750,000 tpy Tayshet Aluminum Plant.
The first batch of aluminium is to be
made at the end of 2009. Rusal started
up production of a new 170,000 tpy
potline at its Irkutsk smelter in Sibe-
UC Rusal
minium smelter plants in India. The
likely locations are either in Orissa or
Andhra Pradesh.
Rio Tinto Alcan and Malaysia-listed Cahya Mata Sarawak Bhd (CMS)
signed a preliminary agreement with
a utility company to supply power
to a planned 500,000 tpy aluminum
smelter in the East Malaysian state of
Sarawak. The project has been granted a manufacturing license.
Sohar Aluminium started up its
350,000 tpy smelter in June. The
USD2.4bn project is 20% owned by
Rio Tinto Alcan. Oman Oil Co. and
the Abu Dhabi Electricity and Water
Authority each hold a 40% stake in
the smelter project.
At the end of 2008 Rio Tinto Alcan
said it will review a USD10.6bn aluminium joint venture with Saudi firm
Maaden. The project could be delayed
by one to two years. However, Maaden
would push the 740,000 tpy smelter
project through with
or without its partner, should Rio decide to drop. There
is no doubt on the
long-term viability of
the project.
Aluminium production at Rio Tinto
Alcan’s Tiwai Point
smelter in New
Zealand was cut by
the equivalent of
about 280 tonnes
per day due to the
failure of an electrical transformer at
the beginning of November. The smelter
can produce up to
350,000 tpy, but it
was already operating at a reduced rate
of 315,000 tpy. One potline has been
shut, causing lost production estimated at around 8,500 tonnes per month.
The smelter has been running below
capacity since May to help reduce
demand on New Zealand’s national
electricity grid.
Rio announced a USD90m investment in the modernisation of its Lochaber plant in Scotland to increase capacity by 7,000 tpy to 50,000 tpy.
UC Rusal started up production of a new 170,000 tpy potline at its Irkutsk smelter
velop an energy and metals complex
in Libya. The agreement sets out a plan
to develop an aluminium smelter with
a capacity of 600,000 tpy and a 1,500
MW natural gas power station.
Alscon, a smelter in south Nigeria
owned by UC Rusal, resumed operations in February 2008. UC Rusal
hopes to get the plant to its 197,000
tpy capacity by 2010.
The governments of Russia and
ria. The company suspended the Komi
Aluminium project for two years because it has failed to find access to an
energy source.
Rusal and Japan’s Mitsui has expressed interest in joining its project
to build two aluminium smelters (total
capacity 1m tpy) and adjoining power
plants in Sakhalin.
Rusal has begun to shut down production at the Zaporozhye Alumina
ALUMINIUM · 1-2/2009
ECONOMICS
and Aluminium Complex in Ukraine
because current metal prices make
the plant unprofitable. The complex
produces 113,000 tpy of aluminium
and 265,000 tpy of alumina. The
cost of electricity at the complex has
jumped in the past two years and now
accounts for about 48% of the production costs. Rusal plans to suspend production at the complex until the tariff
issue is solved and the situation on
global markets improves.
At the end of November Montenegro’s aluminium plant KAP announced a 50% output cut representing 60,000 tpy, in response to falling
metal prices and high energy costs.
KAP has a nameplate capacity of
280,000 tpy of alumina and 102,000
tpy of aluminium, but it produced
123,000 tonnes of aluminium in 2007.
The smelter is 58% owned by Central
European Aluminium Company, an
arm of UC Rusal’s parent company
Basic Element. KAP‘s key problem is
its consumption of 2.0m MWh of elec-
tricity a year, 1.2m MWh of which it
gets at subsidised price of 40€/MWh,
but it pays double to import the remaining quantities. The current cost
to produce a tonne of aluminium runs
at USD3,000.
Vedanta’s new 500,000 tpy smelter
in the eastern Indian state of Orissa
produced its first aluminium by the
end of March 2008.
The company is planning a 650,000
tpy aluminium smelter and a 3,000
MW power plant at a cost of USD5bn
in West Bengal, and signed an MoU
with the West Bengal government.
Vedanta’s subsidiary Madras Aluminium Co. (Malco) is on target to
complete the expansion of its alumina
refinery from 85,000 tpy to 120,000
tpy by about May 2009, and its smelter
capacity from 40,000 tpy to 65,000
tpy. But in November Madras Aluminium temporarily cut aluminium
production by 60% on lower global
aluminium prices and higher input
costs.
Vedanta started trial production at
its 250,000 tpy aluminium smelter at
Jharsuguda, Orissa state. This takes
Vedanta Resources’ total capacity to
almost 700,000 tpy. The company has
also started work on another 600,000
tpy brownfield aluminium smelter at
Korba at the Balco site.
The company expects to reach its
target of 1m tpy of aluminium metal
capacity by the start of the next financial year (March 2009) when the second phase of the Jharsuguda smelter
will be commissioned.
Vimetco will reduce aluminium
output in 2009 by up to a quarter of
capacity, and will cut its workforce at
its Romanian operations, as part of a
series of measures to lower costs in
the face of deteriorating market conditions. This cut of up to 65,000 tpy in
Romania will reduce Vimetco’s output
by 160,000 tpy in total: the company
also plans to reduce output in China
by 95,000 tpy as well as to delay new
N
projects there.
One Source, One Partner
for all of your Pneumatic Material Handling Needs
Direct Pot Feeding
Complete Pre-assembled Modules
Silo Feeding
Turbuflow® Dense Phase Conveying
Loading Systems
High Performance for Alumina Handling Systems
FLSmidth Möller specializes in design, engineering, procurement, erection and commissioning
of pneumatic material handling systems for turnkey projects and components for the alumina
industry. For more than 70 years FLSmidth Möller has stood for high quality standard systems
with more than 5,000 references worldwide.
FLSmidth Moller GmbH
Haderslebener Str. 7 25421 Pinneberg Germany
Tel +49 4101 788-0 Fax +49 4101 788-140
Email: moeller@flsmidth.com
www.flsmidthmoeller.com www.flsmidthminerals.com
FLSmidth Möller – High Performance, High Efficiency
A L U M I N I U M S M E LT I N G I N D U S T R Y
ABB rectiformer substation EPC package for Qatalum
Images: ABB
M. Wiestner and C. Winter, Baden
Qatalum site: 220 kV cable-road crossing
Qatalum will be the first aluminium smelter going into operating
in Qatar, and it will also be the
first smelter worldwide operating
with 1,750 VDC. As ABB is also
supplying the power plant substation, Qatalum will be world’s first
smelter with ABB’s integrated
blackout protection.
The rectiformer substation for Qatalum’s potlines 1 and 2 was awarded
on an EPC (Engineering, Procurement,
Construction) base to ABB Switzerland
in June 2007. As engineering and management resources have been drying
out for some time now, the traditionally piecemeal project approach has been replaced
by a larger package of integrated EPC solutions.
Now that new smelters
have reached power requirements of more than
500 MW per potline, an
optimised overall power
system concept for them
becomes very important.
This coordinated system
approach, as well as best
technical solution, eliminates cost overruns and
guarantees delivery on
time.
26
When the phase one of Qatalum
begins operation, more than 1,000
MW will need to be controlled and
converted to DC power for efficient
smelter operation.
At Qatalum the power plant and
the rectiformer station are two different EPC packages. Whereas the 220
kV GIS (Gas Insulated Switchgear)
is within the power plant scope, the
1,500 metre 220 kV cables runs are
part of the rectiformer substation
package. As the power plant EPC contractor has awarded the 220 kV GIS
with its latest control and protection
system based on IEC 61850 protocol
to ABB Switzerland, this simplified
both substation integration and interface coordination, and guaranteed the
overall system approach.
Rectiformer EPC package scope
The rectiformer substation scope
consists of the following turnkey delivers:
• Overall system design, studies and
performance calculations
• 220 kV cable runs and termination
to the GIS and the transformers
• 1,750 VDC / 85 kA rectiformers
• DC collector bus bar design,
supply and installation
• 70 MVAR harmonic current filters
ABB’s ELK-14, 300 kV GIS
ALUMINIUM · 1-2/2009
SPECIAL
•
•
•
•
•
•
•
operated of the regulation
transformer tertiary winding;
each filter can be energised via
a synchronised 33 kV breaker
SCADA system (system control
and data acquisition)
33 / 0.4 kV distribution for the
substation
Fire detection and deluge system
for the entire substation
Detailed civil works design and
supervision
Interface to the 220 kV GIS which
ABB Switzerland supplies to the
power plant EPC package
Substation controls and protection with the new IEC 61850
protocol
Overall system integration and
interface coordination with the
other EPC package suppliers.
A L U M I N I U M S M E LT I N G I N D U S T R Y
GIS can serve both power plant and
smelter. The GIS connects on the one
side directly to the generator step-up
transformers, and on the other side
to the rectiformers. The interfacing
of the GIS controls and protection is
normally a very demanding task for
the EPCM engineers, who are usually
faced with a long and painful exercise. At Qatalum the GIS controls and
protection as well as the rectifier control system will be supplied by ABB
Switzerland, thus allowing a seamless
interface.
DC application. The Qatalum rectifier
frame design is made for 2,000 VDC,
with semiconductors and fuses fit for
1,750 VDC.
Rectiformer bay
and substation layout
Traditionally the rectiformer units arrangement is in line with the potroom
front for the most efficient connection of the substation to the potroom.
Substations occupy a larger footprint
as their power has grown up to 200
MVA, and now need a new arrangement with the rectiformer units facing each other. This arrangement required an in-depth study of the forces
applied by the DC collector bus bar,
as well as the effect of having different lengths of bus bars between the
rectiformer and the potroom.
220 kV cable routing
Rectiformer control system
The cable routing to the two potlines
needs to interface with many different
EPC packages suppliers and so needed
integration into the overall road concept. Cable-road crossing points need
to be put in place and cables laid in the
ground well before many other activities can start. With 10 feeders and an
average cable length of 1,500 metres
the cable trench alone will require excavating some 35,000 m3 of soil.
220 kV GIS with
IEC 61850 enhanced controls
By locating the power plant and the
smelter within a close area, a single
Rectiformer bay
ALUMINIUM · 1-2/2009
2,000 VDC rectifier design
2,000 VDC rectifier design
Having already reached 1,650 VDC
at Sohar Aluminium, Qatalum specified 1,750 VDC as maximum smelter
operation voltage. ABB has conducted detailed rectifier design studies
and type test on its standard rectifier
design used for many years, so only
minimal alterations were required the
make the design suitable for this HV
The rectiformer station consists of
five units, with the possibility to
add a sixth unit at a later stage. The
rectiformer units can be controlled
from the central control room via the
SCADA system as well as from the
master controller. Both these control
links can also connect to the power
plant via a fibre optic cable so as to
regulate power plant and smelter substation together for load control. This
interconnection is required in particular during ‘island’ operation when
the power plant will not be connected
to the Qatari utility grid. Qatalum will
receive the most modern control ©
Rectiformer substation
27
A L U M I N I U M S M E LT I N G I N D U S T R Y
and power quality equipment fit perfect together. A team consisting of
experts in transformer, rectifier and
harmonic currents filter must work
together on this. They simulate the
power grid with the different operation points, as well as the pot line operation behaviour, and then they select suitable parameters for the power
quality system.
Summary
Typical 33 kV harmonic current filter
room visualisation system, with large
screen mimics based on ABB extend
working station 800xA
Power quality control
With single potlines going above 500
MW, power quality has become a very
demanding issue. The power system
must be able to cope with many different operation scenarios to ensure
reliable smelter operation.
Power factor control and minimal
harmonic currents distortion are
only two of the many parameters to
be addressed. At Qatalum the power
quality targets have been set very
high, and in this industry they are
the highest worldwide. These power
quality requirements can only be met
by using an overall system approach.
For example: by selecting a suitable
transformer design and by specifying
tolerances such that the rectiformer
Qatar’s first smelter will receive what
is in many areas the most modern rectiformer substation anywhere in the
world, ensuring a seamless interface
between ABB electrification in the
power plant and the EPC substation
package. Environmental and power
quality levels will be a new benchmark for smelters around the world.
Authors
Max Wiestner is Industry Manager Primary Aluminium of ABB Switzerland.
Christian Winter is Chief System Engineer
Rectiformers of ABB Switzerland. Both are
based in Baden, Switzerland.
Rectiformer control system architecture
28
ALUMINIUM · 1-2/2009
A L U M I N I U M S M E LT I N G I N D U S T R Y
Mud-to-Money
Minimise bauxite residue and maximise profits
R. den Hond, Oegstgeest
Bauxite residue disposal is the
paramount environmental issue
in alumina refining, and so a top
priority is process innovation to
minimise the amount of residue
generated. Mud-to-Money (M2M)
technology provides this innovation through a novel, patented
combination of well-known process and equipment technologies.
M2M technology also makes alumina refining more sustainable,
thanks to full bauxite utilisation
(i. e. virtually no extractable alumina losses in the residue), so
that it yields more alumina. M2M
technology has very attractive
economics and can be conveniently implemented in existing
and in greenfield refineries. It is
envisaged that M2M technology,
in combination with dry residue
stacking, will become the international standard for bauxite residue
management.
The benefits of M2M technology for a
specific refining project can be readily evaluated through a project study.
Supplier of M2M units is Hencon,
with technology support from Alcor
Technology and Alfa Laval.
Bauxite residue disposal
mud disposal.
• Minimise residue generation by
minimising extractable alumina losses with residue. This approach, which
also increases the amount of alumina
produced from a given bauxite input,
is the subject of this article.
Alumina extraction
and crystallization
Production of alumina from bauxite
comprises cycling of a caustic soda
solution as extraction liquor through
an elevated temperature digestion
stage for dissolution of extractable
alumina and a low temperature crystallization stage for crystallization of
pure alumina hydrate. In digestion
ground bauxite is mixed and heated
with caustic soda solution with a low
A/C ratio labelled spent liquor, resulting in a caustic soda solution rich in
dissolved alumina (high A/C ratio),
labelled green or pregnant liquor,
and an undissolved residue containing some extractable alumina due to
incomplete extraction. The green liquor is super-saturated with alumina,
whilst unextracted gibbsite in mud
acts as seed for premature gibbsite
crystallization, also named reversion.
The digestion discharge slurry is fed
to decanters for separation of clear
green liquor from mud slurry. The decanter underflow passes through mud
washers where reversion continues.
Images: Alcor Technology
Current primary aluminium production is some 45m tpy, requiring alumi-
na refineries to convert about 220m
tonnes of bauxite into 90m tonnes
of alumina and some 90m tonnes of
bauxite residue. International practice is to store residue, also labelled
red mud, in large purpose built areas. Residue storage is a significant
environmental issue in the alumina
industry because of its volume and of
its caustic soda content, which could
pollute rivers or ground water.
Hence it is no surprise that the industry has made huge efforts to develop applications for this residue, with
the aim of reducing the amount which
has to be stored. However, until now
no application has arisen that would
provide a significant outlet for bauxite residue. Hence the focus is now on
residue management methods. These
should minimise environmental impact comprising by applying the following principles:
• Minimise caustic soda concentration in the liquid associated with
stored residue. This is achieved in
residue wash lines, involving high rate
decanters, and using modern flocculants to obtain high underflow solids
concentration.
• Store the residue as to minimise
environmental emissions. This involves storing the residue at high solids concentration, and avoiding the
release of associated liquid to the environment. This method is referred to
as dry residue stacking or thickened
Fig. 1: Second re-digestion step between decanter and first washer
30
ALUMINIUM · 1-2/2009
SPECIAL
Profit versus environment
A practical aspect is that as the green
liquor A/C ratio increases, alumina
production increases. On the other
hand, the rate of premature crystallization of gibbsite on mud also increases, resulting in greater losses
of extractable alumina with residue.
Hence operating conditions in the digestion stage must be a compromise
between two conflicting objectives:
• High alumina production rate requires ‘overcharging’ the extraction
liquor with bauxite; unfortunately this
results in more unextracted alumina
left in the residue (i. e. exacerbating
the environmental issue), and
• High alumina yield requires ‘undercharging’ the extraction liquor
with bauxite, resulting however in
less alumina productivity (i. e. less
cash generation).
Consequently a refinery is in practice run at conditions reflecting a balance between productivity and yield.
Optimum alumina loss
Usually a refinery operates at optimum economics when about six percent of the alumina is lost with residue to storage. Higher percentages
correspond to plants processing low
cost bauxite with low reactive silica
content. A lower alumina loss with
the residue usually points to a refinery
producing at a rate which is below the
optimum economic point.
A L U M I N I U M S M E LT I N G I N D U S T R Y
of the well known re-digestion process (double digestion) and spiral heat
exchanger technologies.
M2M process
The existing first digestion step aims at
maximising alumina production rate,
and, after decantation, it produces the
main green liquor flow and a residual
bauxite slurry flow. The slurry is then
mixed with some additional spent liquor and undergoes a second digestion
step. This additional step aims at maximising alumina yield, and it produces
an additional green liquor flow and a
reduced residue slurry flow. The final
residue is washed and transported to
disposal areas.
By inserting the second digestion
step in the transfer line between the
decanter underflow and the first resi-
due washer feed (Fig. 1), the new twostep digestion process combines the
best of two worlds: increased alumina
production rate as well as minimal
extractable alumina loss with residue, thus minimising environmental
impact.
The success of M2M technology is
based upon the use of modern flocculants and flocculation technologies in decantation. These reduce
the amount of green liquor left in the
primary residue, thus significantly
reducing the amount of slurry to be
re-digested.
Capital and operating costs for the
second digestion step are relatively
low because they are simple and efficient. The refinery produces less
residue and so takes in less residue
wash water. This means that plant
evaporation requirements are ©
We stick with it
thru thick and thin!
M2M technology and process
M2M technology solves the dilemma
of conflicting digestion objectives by
replacing the single step digestion
process for Gibbsitic bauxite by a
two-step (or double) digestion process. M2M is short for Mud-to-Money,
referring to the profitable recovery of
alumina from red mud. M2M technology is applicable to Gibbsitic bauxite
digestion, including atmospheric
digestion, and sweetening digestion
variations, i. e. for about 50 percent of
the global alumina production capacity. The M2M technology patent [1],
comprising process and apparatus
for the two-step digestion of Gibbsitic
bauxite, presents a novel combination
ALUMINIUM · 1-2/2009
From 10 to 10, microns to millimeters
The Millmate Thickness Gauging System (MTG)
offers an extended measurement range from 10
microns to 10 millimeters (0.01 mm – 10 mm).
The latest addition to the MTG family, MTG
Foil Gauge, measures down to 10 microns (0.01 mm) with extreme
accuracy during production. The non-contact, material-independent
thickness gauge is based on the Pulsed Eddy Current (PEC)
technology, posing none of the radiation risks associated with X-ray or
isotope gauges.
MTG makes gauging simple for thick and thin non-ferrous metals.
ABB AB
Force Measurement
Phone: +46 21 32 50 00
Internet: www.abb.com/pressductor
© Copyright 2008 ABB.
A L U M I N I U M S M E LT I N G I N D U S T R Y
Cold in
Hot out
Hot in
Cold out
Fig. 2: Flash vessel – heaters (left) versus spiral heat exchanger (right)
lower with the second digestion step
and so do not need a conventional
flash vessel – heater system for heat
recovery. Instead, a spiral heat exchanger system (Fig. 2) recovers heat.
Spiral heat exchangers have a much
higher heat exchange efficiency, because they transfer heat without using of flash steam as an intermediate
energy carrier. This avoids raising
the liquor boiling point, and allows
heat transfer to follow a continuous
counter-current pathway rather than
a discontinuous, staged pathway.
As a result, the second digest needs
only a relatively small external heat
supply. Also, a spiral heat exchanger
system costs much less than a conventional flash vessel – heater system, because the spiral heat exchanger system
involves substantially less equipment.
M2M units
M2M technology can be readily implemented in existing refineries or
incorporated into greenfield projects,
by inserting one or more M2M units.
Fig. 3: M2M unit
32
Each unit consists of an M2M heater
and an M2M digester vessel in which
gibbsite, auto-precipitated or not yet
extracted, is recovered from the preliminary bauxite residue.
Like the mined bauxite, the slurry
differs from plant to plant, so some
basic analytical laboratory work is
needed to optimise the design of the
M2M units for each refinery. Installation of modular M2M units also requires some construction work in the
refinery, e. g. charge and relay tanks
and a hot water system.
Fig. 3 illustrates an M2M unit which
consists of the equipment shown
within the dotted circle of Fig. 1. The
original connection between decanter
and first washer remains in place as
a by-pass, which returns the plant to
its pre-M2M configuration in case of
maintenance of the M2M unit.
The decanter underflow slurry
feeding the M2M unit has already
been de-silicated in the main digestion units, therefore scale formation
is not a concern. The design of the
spiral heat exchangers, including
feed and discharge arrangements and
construction material, is such that
they can handle a dense and abrasive
slurry, avoiding both erosion and solids build-up. M2M technology was
developed in close cooperation with
Alfa Laval which has extensive experience in design and supply of spiral
heat exchangers for mineral processing applications.
Environmental benefits – less mud
After implementation of M2M technology, virtually all available alumina
is extracted from the residue, so that
bauxite utilisation is maximised and
residue generation is minimised.
Greenhouse gas emissions per tonne
of alumina remain constant. The following are typical results:
• 8 percent less residue generation
per tonne alumina
• 4 percent less bauxite consumption
per tonne alumina
• 4 percent less caustic soda lost to
the residue per tonne alumina.
The reduced environmental im-
Fig. 4: M2M units in the area of washers and decanters
ALUMINIUM · 1-2/2009
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
pact, including smaller residue disposal area needed,
may help to obtain environmental permits for greenfield
or expansion projects.
Economic benefit – more alumina
The main aspects influencing project profitability are
operating and capital cost, together with construction
time. The additional alumina production from M2M
technology is approximately four percent, but it does not
require bauxite mining, crushing, transportation, grinding, slurry holding, liquor decantation, residue washing,
evaporation or impurity removal. Hence the operating
cost of the incremental alumina production is limited
to energy costs (power, steam and calcination fuel) and
incremental fixed operating costs. Economic evaluations
indicate that implementing M2M technology is an economically attractive option with a typical payback period
of about one year.
The M2M unit is stand-alone, and its installation
does not interfere with routine refinery operations, i. e.
installation can be carried out without an overall plant
shutdown. Implementation of an M2M project could be
achieved within a year.
Once a refinery has implemented M2M technology,
thereby improving its cash flow and environmental performance, then additional benefits are feasible. By resolving the conflicting objectives in digestion, the plant
can then increase green liquor A/C ratio beyond the old
optimum level. As a result, the refinery can increase its
productivity by approximately five to ten percent for only
marginal increases in operating and capital costs.
t
t You a
…mee
009
TMS 2ncisco
a
San Fr Booth No. 538
– 19,
Feb. 15
Out Of One Hand:
Customized Equipment
Green Anode Plants
Pitch Melting Plants
Coke Drying Plants
AIF3 Plants
HTM Plants
Conclusion
M2M technology is a novel, patented combination of
well-known process and equipment technology. Implementation of the technology typically reduces residue
generation by eight percent and increases alumina production by four percent. An investment in M2M technology typically has a payback period of one year. Implementation of the technology does not interfere with
routine refinery operation. It is envisaged that M2M
technology, in combination with dry mud stacking, will
become the international standard for bauxite residue
management.
We Engineer Your Plant
References
[1] R. den Hond, Method and apparatus for the extraction of
gibbsite from bauxite, (2004), WO 2006/031098 A1.
[2] R. den Hond, I. Hiralal and A. Rijkeboer, Alumina yield in
the Bayer process: past, present and prospects, Light Metals 2007, ed. M. Sørli, (TMS, Warrendale, Pa), pp.37-42.
Author
Roelof den Hond is Director of Alcor Technology, based in
Oegstgeest, The Netherlands.
ALUMINIUM · 1-2/2009
Hohenrainstrasse 10; CH-4133 Pratteln 1; Switzerland
+41 (0) 618 256 462; [email protected]; www.buss-ct.com
33
A L U M I N I U M S M E LT I N G I N D U S T R Y
Converting pneumatic
pot ramming machines to electric operation
J.-J. Grunspan, Tremblay en France
As is well known in the aluminium smelting industry, the Brochot
pot ramming machine has become
standard for lining or re-lining
the electrolytic pots. Originally
designed over 30 years ago, the
machine has evolved considerably
over the years, the biggest single
change being that new machines
are all electrically driven whereas
the original ones were entirely
pneumatic.
Brochot
The first drives were pneumatic because there was a widespread fear in
the industry at that time that the high
magnetic fields in a potroom would
adversely affect electric motors and
their controls. In the mid 1990s, however, at the request of Hydro Aluminium, Brochot investigated the effectiveness of electrically driven ramming machines, and in
particular, how
to protect
them
and their controls from high magnetic fields. This development enabled
Brochot to build machines capable
of running in magnetic fields up to
100 Gauss, machines which then became standard. Today the ramming
machines can cope with even higher
fields – certainly up to 150 Gauss
– with some adjustments.
In view of these machines’ evident
advantages, especially as experience
has proved their ability to work satisfactorily in even the highest magnetic
fields, many smelters still using the
old pneumatic machines have enquired about the possibility of conversion to electric. As a result this is
34
now a regular service being offered by
Brochot.
How pneumatic
pot rammers are converted
There are three drive units on the ramming machine: the motor that drives
the gantry along the rails, the motor
that moves the carriage above the gantry, and the vibrator itself, which is by
far the biggest consumer of power. In
addition there is a pneumatic jack for
raising and lowering the tool onto the
seam, and a hydraulic jack controlling
the inclination of the ramming tool.
This last is also pneumatically controlled. However, these low-power
functions remain
pneumatic, because
their consumption of
For more
than 30 years
Brochot has been the world
leader in pot ramming. Since 1997, the
company has delivered about 30 electric
pot ramming machines.
compressed air is negligible. Also, a
compressed air cylinder is simpler
and better than a motor driven hoist,
and the hydraulic jack is best for
maintaining steady pressure on the
seam while ramming. However, in the
electric version, these pneumatics are
controlled by solenoid valves, that is,
by the same control panel as the rest
of the electrical gear.
In converting, each of the three
motors mentioned above is replaced
by an electric one. In particular, the
ramming action is effected by an out-
of-balance electric motor instead of
a reciprocating pneumatic ram – not
only is this less noisy but its rotating
speed and amplitude are more easily
controlled – and recorded.
The conversion therefore consists
of removing the former pneumatic
motors, replacing them with suitable
electric ones, and wiring them up to
a motor control cabinet. The only remaining pneumatics are the cylinder
for raising and lowering the tool, and
the pneumatic controller of the hydraulic jack – and they use so little
compressed air that this can be supplied from a local electric pump.
Advantages of the
electric conversion
The main advantages of the electric
over the pneumatic machine are:
• The machine is completely independent of the compressed air supply, which not only eliminates the
need for air piping, but also ensures
constant operating conditions (voltage is constant, but air pressure can
fluctuate, especially in competition
with demand from other units. Thus
air pressure variations can cause variations in ramming intensity, i. e. density of compacted seam).
• The electric gantry movement
is much smoother and can be more
precisely controlled, as can that of the
carriage that carries the vibrator.
• The ramming tool can be positioned
more finely – to within a millimetre.
• The electric machine is designed to
operate in any ambient temperature
whatsoever (from the hot damp conditions of the Arabian Gulf to sub-Arctic
conditions of Canada and Siberia).
• The electric controls allow the operator to use a remote control panel,
which he carries on straps round his
neck and shoulders. This not only
gives him full control of all the operating parameters, but also means:
a) He is no longer in physical
contact with the machine and so
ALUMINIUM · 1-2/2009
SPECIAL
is less subject to the stress of its
vibrations
b) Freed from a machine-mounted
control panel, he can place himself in the most convenient
position to observe, position and
control the work of the compactor
and tool
c) He is no longer obliged to
remain inside the pot, which so
avoids some safety hazards.
• Eliminating pneumatic eliminates
the risk of spraying of pneumatic oil,
thus virtually ending any risk of depositing oil on the cathodes.
• The need for muscle power and
skill is almost completely eliminated.
The data box
Since quality control requires good
accuracy and repeatability of the
A L U M I N I U M S M E LT I N G I N D U S T R Y
ramming operation, the elimination
of fluctuations in air pressure is a
major advantage. The importance of
quality control is reflected by the now
almost universal use of Brochot’s data
box, which records all the operating
parameters of every pot rammed. This
unit records, on a standard PCMCIA
card, not only the speed and duration
of each ramming operation, but the
pressure of the tool on the seam and
its angle, as well as identifying the pot
and the ramming sequence number
and the positions of the carriage and
rotating tower.
This data is then transmitted (in
the form of a table under Excel or any
suitable software) to a compatible PC
which generates a specific pot ‘map’.
This increases the options for analysing the operation and identifying
the cause, in the event of pot failure.
Clearly this electronic record is more
consistent with an all-electric machine
than with a pneumatic one, though
data boxes have been installed on the
older, pneumatic, machines as well.
Conclusion
This new conversion service being offered by Brochot enables most users
of the original pneumatic pot rammer
to benefit from the improved convenience of the electric machine as well
as from the greater accuracy and repeatability of its operation.
Author
Jean-Jacques Grunspan is Managing Director of Brochot S.A., based in Tremblay en
France.
Today’s carbon extrusion process and presses
J. D. Sabin, Niagara Falls
Erie Press Systems is well known
as a supplier of extrusion presses
for making carbon cathodes and
electrodes for the aluminium
and steel industries. The extrusion process has seen significant
improvements in several of the
components in the production of
cathodes.
Images: Erie Press Systems
Aluminium smelting using the HallHéroult process consumes large
amounts of electricity. The quality
of the cathodes used to conduct the
electricity is affected by both the raw
materials and by the processing. The
better the quality and the higher end
density, the less resistance to the electric current. A tilt type extrusion press
with vacuum tamping can provide the
highest quality product.
Manufacturing process
Process flow
Cathodes for the aluminium industry
are made from a range of raw materials such as (1) gas calcined anthracite
coal, plus a graphite filler, (2) electrically calcined anthracite coal with a
ALUMINIUM · 1-2/2009
graphite filler, (3) semi-graphite, in
which all aggregate is graphitised and
baked, and (4) aggregate and filler that
can be fully graphitised [1].
Process flow
Before the extrusion process, the raw
materials are screened to various ©
35
A L U M I N I U M S M E LT I N G I N D U S T R Y
Particle alignment
Friction resistance
fractions of particle size and flour, and
then weighed in precise proportions.
The aggregate is thoroughly mixed
with a binder and additives in heated
mixer(s) and then cooled to extrusion
temperatures.
The output end of a container
known as a mud cylinder is mounted
with a reducer section, if necessary,
and the required extrusion die which
defines the size and shape of the extrusion. The mud cylinder is rotated
to vertical, an extension platen is lowered onto the mud cylinder, a clamp
ram seals the bottom/outlet end of the
extrusion die, and the mud cylinder is
filled through the mix charging hopper to the top of the mud cylinder extension. A vacuum shroud is lowered,
sealing the top of the mud cylinder
extension, the mix is then vacuum
()##!)#$*
!
&#$#
36
!"!#$ %
'''%!#$ %
degassed, and a
vertical hydraulic
ram tamps (compresses) the mix to
a controlled level
or tonnage setting. Degassing the
mix removes air in
it, and so allows
higher tamped mix
density.
After the vacuum is removed, the
tamp ram and mud
cylinder extension
are retracted, and
the mud cylinder
is rotated to horizontal and aligned
to a main extrusion
ram. The force applied by the main
extrusion
ram
pushes the mix
though the extrusion die onto a powered run-out table where it is measured, weighed, sheared to the required
length and stamped. The formed piece
is cooled just after extrusion to enable
handling to the next process of baking.
During the baking process the
semi-plastic material is transformed
into a hard shape by heating to
temperatures of 1200 ºC. For the
kind of cathode destined to be fully
graphitised, the baked product is then
subject to graphitising temperatures
up to 3,000ºC in a further process
called graphitisation. When the material is graphitised, the process
forms a crystalline
structure
in the carbon
body that has a
very low electrical resistance.
After baking
and/or graphitisation,
the
product may be
partially or fully
machined with
slots or holes to
accommodate
the
negative
electrode
rod
used in the aluminium cell.
Extrusion fundamentals
Pre-tamping allows the maximum
compaction prior to extrusion without preferential alignment of the particles. What happens to the mix as
it is extruded through a die? During
extrusion, the particles, due to their
shape, become preferentially aligned
as indicated in the sketch above.
Material flow
To illustrate the kneading action on the
mix as it is forced through a reduced
section area during extrusion, we can
picture a mass of mix in a chamber
called the mud cylinder. The reducer
section normally accommodates several die exit sizes and shapes. The die
itself has a curved or angled straight
section leading to the straight away.
Friction resistance to the flow of
mix is both external and internal. Material closer to the die surface is subject to more shear, and the centre of
the product is mainly in unbalanced
compression to undergo stretching.
Die design
The reduction area of the die is shaped
according to one of a range of designs
that are subject to some variations. The
three designs generally known as reduction curves are the involute curve,
the antifriction curve and the conical
design. As indicated below, the involute curve is the most severe.
Die curves
ALUMINIUM · 1-2/2009
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
Features of the Erie press system
• Tamp vacuum system has large accumulator tank(s) to
provide rapid draw down of the vacuum.
• State of the art hydraulic systems, including cartridge
valve manifolds, high performance proportional valves,
and energy efficient pumps and motors. All tonnages and
speeds are precisely controlled, and press operation is
optimised for maximum production.
• Instrumentation screens and controls for vacuum,
tamping, and extrusion help the operators in production,
and help maintenance workers to diagnose problems.
• Hydraulic oil heating system circulates and maintains
the hydraulic oil at proper temperature for cold weather
start-up. Mud cylinder, main extrusion ram face, reducers and dies are temperature controlled by zoned oil
heating units.
• Charging hopper directs the mix from the conveying
system into the mud cylinder.
ALUMINIUM · 1-2/2009
• Flying shear and adjustable run-out table to measure,
weigh, shear, and stamp each cathode as extruded.
• Die hoist arrangement, with jib crane and hoist for
reducer and for die change handling.
©
37
A L U M I N I U M S M E LT I N G I N D U S T R Y
Conclusion
handling mechanisms, weighing and
stamping of the product after shearing, as well as connection to factory
supervisory software, and expanded
diagnostic capability.
Erie Press Systems manufactures carbon extrusion presses to customer
specifications. These presses incorporate the latest hydraulic and electronic controls for maximum productivity,
reliability, and maintenance efficiency. Additional features may include
die preheat stations, expanded die
References
[1] L. P. Lossius and H. A. Øye, Metallurgical and Materials Transactions,
Vol. 31B, December 2000, p. 1213
Author
Jesse D. Sabin, a native of Niagara Falls, NY,
has been an ongoing consultant for Erie
Press Systems for the extrusion of cathodes
and electrodes, with over 30 years of experience in the carbon and graphite industry.
Training PTM operators
with ECL‘s virtual reality driving simulator
N. Dupas, Ronchin
A typical greenfield project with one
potline needs 60 operators to drive
the PTMs over eight hour shifts, and
each one of them follows a 150 to 200
hours training sessions. Trainees have
to spend at least 50 to 100 hours on
driving practise so as to gain a suitable level of dexterity before they can
start in production. Only after several
more weeks of driving they will become fully efficient. Consequently,
a solid recruitment preparation and
organisation is necessary in order to
ensure a high enough availability rate
for the cranes as soon as the first metal
is poured. Not only are some of the
PTMs taken up for training purposes,
but the newly qualified operators also
work a lot slower because they have
not had time yet to gain sufficient selfconfidence before they start production.
Furthermore, during the first year
of the smelter’s start-up, driving mistakes are common due to the complex-
38
Images: ECL
In the potroom, ECL’s Pot Tending
Machines (PTMs) working on the
electrolysis pots are among the
vital elements in the primary aluminium production process. These
cranes are equipped with specific
tools for the anode changing procedure, and they need operators
with a good level of dexterity and
practise to drive them safely and
efficiently. The training of new
recruits at start-up is a long and
costly process.
ECL simulator
ity of the machines and the processes.
They often result in broken PTM tools
or worse, in damaged pot superstructures, leading to start-up delays.
Virtual reality
with real-life controls
Just as commercial airplane pilots
train on flight-simulators, so aluminium smelters recruits can now train
to become qualified pot tending machine ’pilots’ before they even enter
the potroom. ECL has designed a vir-
tual reality PTM
driving simulator that puts the
trainee inside a
real crane control cabin. It can
be installed in a
5 x 6 metre meeting room, and a
‘portable’ version is currently
being designed.
Using real-life
driving controls
(joysticks and
touch-screen
interface), the
recruit
faces
a large screen
which displays
a 3D virtual
potroom. To increase the feeling of reality, he
is equipped with
a head-tracking system that allows the
image to react to his head’s position:
this allows him to look behind ‘obstacles’ by learning to the left or the right,
just as he would in real life.
The virtual potroom and crane designs are based on the real smelter’s
building and electrolysis pots, and on
the specific cranes that it will be using.
Anode pallets, superstructures, hoods,
positive risers, fume ducts and all the
particular features of the potlines and
the operation equipment can be simulated. The programme reproduces
ALUMINIUM · 1-2/2009
SPECIAL
each tool, function and production
situation so that the driver will interact with virtual floor operators and
with other virtual PTMs operating in
the potroom. Training sessions are
tailor-made to the customer’s requirements, and they take into account the
production and safety procedures.
The instructor and other trainees can
also monitor the simulation in a separate room for training purposes.
A typical training programme
starts with simple driving exercises
in which the trainee has to drive the
PTM between two points with increasingly complex movements: long travel
and cross travel translations, rotation,
Driver’s virtual 3D view from the simulator
or a combination of the three. When
the trainee has reached a sufficient
level of dexterity in driving around,
then he can start operating the virtual PTM on the virtual pots, successively using each crane’s tools. All of
the process steps are simulated: crust
breaking, single or double anode extraction, anode hole cleaning, anode
positioning and gauging, and finally
anode covering. Other functions and
options, such as refilling the superstructures’ hoppers, can be simulated
at the customer’s request.
The programme records the du-
ALUMINIUM · 1-2/2009
A L U M I N I U M S M E LT I N G I N D U S T R Y
ration of the procedure, the number
and scale of virtual collisions and
the quality of the trainees work during the exercises. A global evaluation
system takes all these factors into account to help the instructor determine
if the recruit is ready to work in the
potrooms. The replay function helps
the trainee pilot to better understand
his mistakes and to improve his skills
more quickly, by showing him inside or outside views. At the end of
the training sessions, the programme
generates full reports for future reference.
While practising, the trainee can
be put into simulated emergency
situations, such
as presence of a
floor operator,
proximity of a
potline vehicle,
fire in the electrolytic cell, to
practise and to
be ready to take
appropriate action in case of
a real safety
issue.
Such
emergency
situation training is of course
not possible if
the recruit can
only train on a
real ECL PTM.
Being able to
acquire the appropriate emergency reflexes
through virtual
reality
practising greatly
increases the safety of the potroom.
Faults and breakdowns can also be
simulated for training maintenance
operators: diagnostics can be made as
in real-life situations, using the PTM
controls and the crane’s touch-screen
embarked computer.
Contributing to the
smelter’s efficiency and safety
employment candidates. By screening out recruits who do not have the
psychomotor skills needed to drive a
PTM, the simulator makes the operators’ recruitment process simpler and
shorter, and it makes their training
less costly.
The ECL PTM driving simulator
can shorten the training time by at
least 25 percent. The instructor’s work
time can consequently be reduced, as
well as the number of operators shifts
dedicated to education. More importantly, the real cranes’ availability rate
increases significantly because they
are not taken up for training purposes.
This is most important at the smelter’s
start-up, when the crane’s workload is
high because pots need more frequent
attention.
The driving simulator also ensures
that operators are familiar with ECL
machine’s controls, with the production process, with the operation procedures and with the safety procedures before they even start operating
the real cranes. Their learning curve
is accelerated with a faster acquisition
of ‘muscle memory’ of the PTM’s controls. This reduces newcomers’ driving mistakes and production process
disturbances and thereby contributes
to a more efficient operation at the
smelter’s most critical time. It also
significantly cuts down the number
of costly breakdowns and damage
events to pots and machines, which
can easily represent a saving of several hundred thousands of dollars
every year.
The potroom is typically a hazardous environment in which heavy machinery plays a large part. No other
means of training can better help the
crane operators to gain the appropriate safety reflexes in case of emergency. Pilots are not only told what to
do, but they learn how to react quickly
and correctly when facing safety risk
situations. Therefore, the pot tending
machine driving simulator greatly
contributes to increasing the safety of
the smelter.
Author
Specific programmes have been developed to test, monitor and report
on new recruits abilities, so as to help
the HR team select the most suitable
Nicolas Dupas is the Marketing and Communication Manager of ECL, based in
Ronchin, France.
39
A L U M I N I U M S M E LT I N G I N D U S T R Y
When ventilation meets science
A. van Maarschalkerwaard, Katwijk
Ventilation in new smelters
Ventilation of large industrial buildings, and especially natural ventilation
or gravity ventilation, has always been
a specialty of Colt. The benefits of natural ventilation are clear and well accepted: there is no additional energy
needed to operate the system; it simply utilises the energy that is present
in the warm air. This buoyancy-driven flow is almost maintenance free.
Within the Colt group, which is
nowadays represented in more than
50 countries, the business unit Ventilation Heavy Industries is responsible for the ventilation systems in potrooms. To support the engineering of
the complete system, Colt Technology
is one of the resources available to provide technical support. The company
has access to a number of in-house
CFD engineers who can help provide
a crystal clear picture of the airflows
in and around the building.
Computational fluid dynamics
Computational fluid dynamics (CFD)
is a numerical simulation method that
can visualise and optimise fluid flows.
The technique is very popular in areas like airplane design, the automotive industry and even development
of formula one cars. Besides that, CFD
is a powerful tool for developing new
ventilation equipment and for investigating flows in or around buildings.
For the design of ventilation systems CFD has already been in use for
more than 15 years within the Colt
group, using Fluent and CFX as the
main software packages. The experience gathered in these years is backed
40
Images: Colt
Ventilation in potrooms has always
been a hot issue. Well engineered
systems to evacuate the surplus
of thermal energy from the potrooms are mandatory and should
be given the attention that they
deserve. Insufficient ventilation
could lead to overheating of pots
with the accompanying problems.
The Colt group has a long history
in the area of ventilation systems,
starting back in the year 1931.
Colt measurement in a potroom
up by extensive validation. Measurements have been taken at several
smelters under various ambient conditions. The CFD engineers themselves
are always involved in these measurements so as to keep them in touch with
practical applications. In this way we
have been able to get the best possible
match between the simulation and the
measurements in the actual situation.
Modelling a potroom is not the most
easy CFD task in the range of ventilation issues. The large size of a potroom
means we have to model a part of the
room. Depending of the CFD software
used, several approaches are possible.
We obtain the best results by defining a section of the potroom, and then
defining the ‘open’ ends of this slice
of building as ‘periodic’. This yields a
model with a flow pattern repeating
itself in the longitudinal direction of
the building. This modelling approach
maintains the necessary level of detail,
and ensures the desired accuracy of the
results. Still, even with this strategy, a
model will consist of over one million
calculating volumes. In models which
investigate wind influence at the same
time, this calculating mesh could grow
to five million cells or more.
For a realistic calculation of the
thermal energy transfer from the pot
to the surrounding air, the heat source
in the model must have the right
definition. Development of buoyant
plumes much depends on the energy
density of a heat source.
At the moment there are several new
smelters under construction that are
being equipped with Colt ventilation
systems. Most of them are using the
360 kA pot technology. All of the designs involved computer simulation
to optimise ventilation design. The
most evident benefit of simulations is
the clear overview of airflow they will
provide to help us to choose the right
ventilation strategy. Especially the estimation of the airflow along the pot
wall is of great importance.
The arrangements of the pots, as
we see it in most new smelters, have a
very typical asymmetric pattern with
regard to the building’s geometry. This
provokes, obviously, an asymmetric
flow pattern within the potroom. We
are not saying that this phenomenon
should be proscribed as something
bad, but it should be given some extra
attention. At the tapping side of the
pots we find the area where the most
activities of man and machine occur.
That very same area is the spot where
we tend to find the typical ‘large eddies’. These regions of recirculating
air are introducing at the working
level a volume of air that was already
contaminated by the process.
From a health and safety point of
view, employees should not be thus
exposed to unhealthy components
like hydrogen fluoride and fine dust.
A large part of the dust found in potrooms is respirable, which means
that the particles can penetrate deep
into personnels’ lungs, and will affect
their health. An improved ventilation
arrangement can achieve both better
cooling of the pot and a better working environment at the tapping side.
And again, here lies an important role
for simulations.
One of the key elements is the
barrier between the pot area and the
steel structure, often represented by a
‘claustra wall’. This part of the structure
acts as a resistance to the airflow, and
will establish a balance between the
flow through the claustra wall, and the
flow through the grills around the pot.
ALUMINIUM · 1-2/2009
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
Figure showing the airflow along a pot arrangement with 360 kA technology
The question is: what should this balance look like? And would it be helpful if we could control this balance?
Product development
CFD can be used in every area which
involves fluid flows, including the airflow through our products. If all the
prototypes that we have evaluated
in the past years had been built and
tested physically, this exercise would
have been much more expensive. The
simulations also saved us a lot of time
in the process of finding the right mix
of low resistance to the airflow and
optimal protection from rain. With
the rising amperages of the modern
smelters, the demand for wider ventilators has become a fact. That means
that the louvers of the ventilator much
bridge a wider gap, which challenges
us with the task of designing a rigid
louver that can do the trick.
The solution to improving constructional strength of the louver lies
in the choice of material. Most of the
readers of this magazine are familiar
with the variety of aluminium alloys,
all with their own specific combination of properties. The differences
in strength and corrosion resistance
between the different alloys are surprising. One of the materials that
suits this application is an alloy in the
3000 series, with manganese as the
main supplement. This alloy can be
work-hardened to meet the desired
strength. Using this alloy in H36 temper gives an adequate mechanical
strength, combined with excellent
resistance to corrosion.
Ventilation integrated
Although Colt does not build potrooms, we are still willing to play a
role in the design phase of the building
itself. There is a connection between
the ventilation and structural ©
Transport Systems
! Anodes
! Ladles
! Oven charging
Please visit us: TMS 2009
138th Annual Meeting & Exhibition
February 16-18, 2009 · San Fransisco, USA
Stand No. 630
Windhoff Bahn- und Anlagentechnik GmbH
Hovestr. 10 · D-48431 Rheine
Phone: +49 5971 58-0 · Fax: +49 5971 58-209
[email protected] · www.windhoff.de
ALUMINIUM · 1-2/2009
41
A L U M I N I U M S M E LT I N G I N D U S T R Y
features that might save money if well
integrated. For example, the openings
in roof and wall can be optimised during the design process of the potroom,
and so can items like claustra walls
and grills around the pot.
It cannot be denied that the potroom
itself has a major influence on airflow,
and should therefore be seen as an integral part of the ventilation system.
The amount of surplus energy
being released in a potroom is well
known, so there are not too many ‘unknowns’ to set up a good simulation in
an early stage.
With the development of processes
that require higher currents (up to 500
kA in the near future) the demand for
ventilation will further increase. For
now and in future developments Colt
will keep innovating ventilation systems, from a specific design point of
view as well as with the perspective of
designing new products that perfectly
match the needs of the modern smelter.
Figure showing flow through claustra wall
Author
André van Maarschalkerwaard is with
Colt Technology where he is technical
consultant for building simulations. Since
more than ten years he is involved in CFD
simulations for industrial ventilation.
Figure showing velocities in Colt labyrinth
A new approach to
raw materials selection for aluminium smelters
R. von Kaenel, L. Klinger, J. Antille, Sion and H. O. Bohner, St. Gallen
Raw materials properties are very
important factors in aluminium
production cost as they affect all
consumptions. In recent years,
the properties of coke and pitch
are becoming a serious concern to
the aluminium industry, as their
properties are degrading while
their cost is rising. The ‘Optimat’
software has been developed to
help in predicting how the choice
of various materials would affect
the production cost of aluminium.
It applies to both prebake and
Søderberg processes. For instance,
one may wish to replace prebaked
anodes from another supplier, or
42
simply to change the coke supplier
for an anode plant.
The price of coke is directly linked to
the coke quality, but what does it mean
for the aluminium specific cost? This
is the type of question addressed by
Optimat software. The main source
of complexity and difficulties of such
software is to quantify the impact of
physical and chemical properties of
raw materials on cell performance indicators. In principle, we would like
to know the relation between any relevant property of a raw material and
any parameter that determines the
cost of aluminium production. How-
ever, the complete set of all possible
relations is certainly not known. The
desired information is thus incomplete, and this in more than one way:
a relation may be simply unknown, or
may be known in a weak sense (existence of dependence without good
knowledge of the quantification) or in
an ‘experimental’ sense (the dependence is fully determinate, but comes
from experience, statistical studies of
production data, as opposed as coming
from a real understanding and chemical and physical laws). In this work, we
make use of this last type of relation, in
order to estimate the specific benefit
to aluminium production, as a func-
ALUMINIUM · 1-2/2009
SPECIAL
tion of the choice of raw materials.
It is important to note here that any
change which Optimat takes into account is determined by material properties alone. In particular, this means
that it does not propose changes to
operational conditions that process
engineers would normally apply, nor
does it include such changes in the
calculations. For instance, if a new
alumina grade is used that changes
significantly the bath composition,
and thus the bath conductivity, then
the process engineer should compensate for this by adjusting of the anode
to cathode distance (ACD). However,
a change of the ACD is not a change
of the raw materials properties and is
thus not taken into account. The reasoning that supports this limitation to
only raw materials changes is twofold:
on the one hand, we want to keep the
reference situation constant, in order
to allow meaningful comparisons; on
the other hand, changes outside raw
materials may have consequences that
are unpredictable without using heavyduty studies. For instance, a reduction
in ACD has in turn a serious impact
on the magnetohydrodynamic state
of a cell, which can only be assessed
using specialised and computationally
intensive tools [43] that are clearly outside the scope of this work.
The Optimat’s intended use assumes that one starts by defining a
reference situation. This is done by
specifying the various design and
operational parameters as well as all
currently used raw materials. Then,
to explore the possibilities of using
new raw materials, one changes them
in the software, and the Optimat estimates the impact of this change on the
cost of aluminium production. Finally,
one may specify several possible materials to use and then let the software
determine which combination of these
materials yields the lowest production
cost. The software shows the effect of
each material consumption as well as
other key performance indicators.
The reference situation is determined by a number of parameters
(design, operational, current metal
purity, raw materials used) from
which the Optimat computes a reference specific benefit in US$/t aluminium. The reference benefit (and eco-
ALUMINIUM · 1-2/2009
A L U M I N I U M S M E LT I N G I N D U S T R Y
nomic model) is then used as a basis of
comparison for figures obtained using
new raw material(s).
This work takes into account several raw material categories:
1.) alumina (Al2O3)
2.) aluminium fluoride (AlF3)
3.) carbon products, depending on
technology:
(a) prebaked anodes
(b) green or calcined coke, petroleum or coal pitch.
It is up to the user to define, for each
raw material category, any number
of particular products he is using or
would consider using. A particular
product is defined by an identifier
(name and supplier) and its relevant
properties, including its price.
Impact of raw materials on
primary aluminium smelting
The choice of one raw material or the
other has an impact on many different aspects of aluminium production,
and thus, in the end, on the cost of
aluminium production. To compute
the impact of a raw material change
on specific aluminium production
price (US$/t Al), Optimat must use
relations that link raw materials properties (physical and chemical) to cell
performance indicators and cell properties (like current efficiency, carbon
consumption or emissions). To provide the full set of relations linking raw
materials properties to any cell parameter influencing the aluminium price
is a vast task that will need additional
research. However, many of these relations are known [1-40], and in this
work, we endeavoured to retain only
published and fully known relations.
By ‘fully known’, we mean relations
that allow us to perform numerical
computations (i. e., we reject relations
that merely state the existence of a
link between two quantities, without
allowing computations to be carried
out based on the relations).
The software considers that changing raw materials may have an impact
on the following items:
• raw materials consumption
(anode, fluorides, etc.)
• current efficiency
• energy consumption
• metal purity
• pot life
• emissions of CO2, SO2
• emissions of PAH, BaP, CF4, C2F6
• emissions of HF, F
• dust, carbon dust
• sickness rates.
For each raw material, two types of
properties are considered: physical
properties and impurities. As an example, we will describe the alumina
physical properties and impurities.
Alumina physical properties
The main physical properties of alumina are:
• the α-alumina content: the mass
percentage of α-alumina phase. Typical values are in the range of 5 to 30%,
but values near the lower end are
preferable, in order to obtain a good
crust quality (sufficient strength).
• the loss on ignition (LOI): loss of
weight (in %) when heating alumina
from 300°C to 1000°C, in order to
remove chemically bound water.
Low values are desirable to limit the
amount of moisture which enters the
bath, and which causes fluoride emissions. This parameter is related to others, like BET surface.
• hydrates: also known as gibbsite,
Al(OH)3 is one of the three minerals
that make up bauxite; hydrates found
in alumina have resisted calcination.
High hydrates content is thought to
be related to bath splattering (forming
volcanoes) for point-feed cells or excessive dusting for side-broken cells.
• the BET surface area: the area of
reactive network in alumina, in m2/g.
It is related to the granulometry of alumina (and thus is subject to change
during transportation). It is of importance to the rate of dissolution of alumina in bath and to the ability to react
with gaseous HF (importance for dry
scrubbing).
• the fines fraction: the percentage
of particles that are smaller than 43
μm (particles retained on a screen
with square section holes of the corresponding size). Larger alumina particles are more difficult to dissolve
in bath, but smaller particles lead to
dusting emissions and mechanical
handling problems.
• the attrition index: a measure of
the strength of agglomerated ©
43
A L U M I N I U M S M E LT I N G I N D U S T R Y
particles in alumina to resist becoming finer upon handling, transportation and/or abrasion in dry scrubbers.
Recommended values and effects on
operational parameters are given
in table 1. The impact correlation is
defined as the variation on the impacted parameter in % per variation
of the property in %. As an example, table 1 shows that 1% variation
of hydrate in the alumina will decrease the current efficiency by 0.1%.
Alumina impurities
Impurities in alumina consist of various oxides that represent a certain
mass percentage of the product. The
relevant impurities are listed in table
2. Most impurities have in impact on
current efficiency and metal quality.
However, Na2O and CaO also play a
role in bath chemistry for instance:
Na2O reacts with AlF3 to form
cryolite, and thus affects aluminium
fluoride consumption, while CaO is
the main source of Ca (and thus CaF2)
in the bath. As an example, we can cite
the well-known effect of Na2O content
in the alumina. This Na2O requires
a compensating addition of AlF3. A
typical value of Na2O in the alumina
is 0.5%, which needs a matching addition of 17 kg/t Al AlF3 (3.4 kg/0.1%)
in order to keep a constant bath ratio.
This obviously represents a significant
AlF3 cost for aluminium production.
Williams [38] proposes the following
ranking of alumina properties, among
those considered in the present model:
1.) fines
2.) attrition index
3.) loss of ignition (LOI)
4.) Na content
5.) BET
Table 1: Impact of alumina physical properties
Table 2: Impact of alumina impurities
44
ALUMINIUM · 1-2/2009
SPECIAL
6.) hydrate
7.) other impurities.
However, one has to be careful, as
some impurities such as phosphor and
vanadium severely reduce current efficiency. Table 2 also considers the
impact of aluminium norms defining
the standard level of purity expected
in the international market. A different premium can be attributed to
each metal norm. From tables 1 and 2
it can clearly be understood how each
parameter influences the process and
hence what specific production cost
it represents.
Finally, besides the alumina, similar tables are produced for green coke,
and for calcined petroleum coke, petroleum pitch, coal tar pitch, aluminium fluoride, anode butts, and prebaked anodes, i. e. all important material inputs participating to aluminium
production.
Economical model
Optimat computes the specific benefit
of producing aluminium with a selec-
A L U M I N I U M S M E LT I N G I N D U S T R Y
tion of a number of materials (as many
as desired) in each category. All possible combinations of the proposed
materials are analysed and compared
to a reference case.
Overview
The choice of raw materials is ultimately evaluated through its impact
on the specific benefit (US$/t Al). We
define this by: SB = LME +P −SC
where
SB [$/t Al] = specific benefit
LME [$/t Al] = LME price of aluminium (3 months)
P [$/t Al] = premium according to
metal quality
SC [$/t Al] = specific costs of production.
Premium: The premium paid or
received upon selling aluminium is
based on the metal purity and norms
it satisfies. A norm lays down the
properties that each given metal purity must satisfy. Examples of rules
are ‘the sum of all impurities must be
below 1,000 ppm’ or ‘silicon content
must be lower than 50 ppm’. If a giv-
en metal purity satisfies all the rules
for a given purity, this metal can be
sold with the associated premium (in
US$/t Al). The final premium used in
economical computations is the largest one among all norms which the
metal satisfies.
Production costs: Let us recall
that Optimat does not include costs
that are not affected by raw materials
properties, like capital cost, labour,
etc. The minimisation calculations are
performed on energy, raw materials
consumption, cathode, environment
and health. Thus:
SC = SEC +SRMC +SCC +SEVC +SHC
where
SC [$/t Al] = specific production cost
SEC [$/t Al] = specific energy cost
SRMC [$/t Al] = specific raw materials cost
SCC [$/t Al] = specific cathode cost
SEVC[$/t Al] = specific environment
cost
SHC [$/t Al] = specific health cost.
The calculation of each cost is very
easy once all specific consumptions
are known (materials, energy). ©
C
D
C
D
m
u
i
m
n
u
i
i
min
f or Alum
c assttiinngg
Drache
umwelttechnik
ALUMINIUM · 1-2/2009
45
A L U M I N I U M S M E LT I N G I N D U S T R Y
of each compound (in ppm) times
the Relative Potency Factor (0 to 1.4).
The ratio of BaP-equivalent to PAH
is about 15 to 25% [16]. Emissions to
the atmosphere (excluding wet scrubbers) are 1.60 kg PAH/t Al, 0.34 kg
BaP-equivalent [17]. Regarding health
proper, data from North-American
and Scandinavian smelters show:
• lung cancer risk: 16% over average
at 100 μg/m3 × years BaP-equivalent
exposure [3]
• bladder cancer risk: 33% over average at 100 μg/m3 × years BaP-equivalent exposure.
In Norway, the mortality of VSS
(only) workers shows:
• lung cancer: 30% over average at
Images: Kannak
The health cost is measured in sickness cases per 1,000 workers. The
user specifies the number of workers
corresponding to the number of cells
in the reference case, and a price per
sickness case incurred to the plant.
The following elements are considered which are much more critical
for vertical (VSS) or horizontal stub
(HSS) Søderberg cells than for prebaked cells.
Health impact of BaP in coal tar
pitches: coal tar pitch presents a
cancer risk several times higher than
petroleum pitch. In coal tar pitch, the
BaP content is 26,000 to 28,000 ppm
BaP-equivalent, where BaP equivalent is the sum of the concentration
Fig. 1 (above): Definition of the reference case
Fig. 2 (below): Analysis results
250 μg/m3 × years PAH exposure [28]
• bladder cancer: 30% over average
at 1,250 μg/m3 × years PAH exposure,
and 20% over average at 250 μg/m3 ×
years PAH exposure
• asthma, bronchitis and emphysema: 40% over average at 14 mg/m3 ×
years of F exposure.
Assuming a productivity of 200 t/
man-year and smelter productivity of
100,000 tpy (i. e., a workforce of 500)
for, say, 30 years, with a concentration in the working atmosphere (as in
1997 [22])
• PAH: 7 μg/m3 × 30 years = 210 μg
exposure
• F, total: 0.11mg/m3 × 30 years = 330
mg exposure,
this would mean: approx. 5 persons/
year would die of lung cancer, approx.
3 persons/year would die of bladder
cancer and approx. 0 persons/year
would die of lung diseases.
Regarding BaP in petroleum pitches (VSS and HSS), one can show that
there would be no cancer with petroleum pitch. Indeed, we have: BaP
content: max 200 ppm BaP equivalent
[2]; BaP-equivalent/PAH is 10 to 50%
[2]. Emissions: 0.1kg PAH/t Al, 0.05 kg
BaP-equivalent [17]. Thus, the working atmosphere exposure implies, for
PAH, 1 μg/m3 × 30 years, or 30 μg : no
cancer; for F, 0.016 mg/m3 × 30 years
amounts to about 0.5 mg.
Optimat software
Optimat software has a user friendly
interface that allows to define the reference case and to access a database
of raw materials data. Materials or
norms can be added, suppressed or
easily modified. Each element can be
set as active for the analysis or just
stay in the data base for later access.
Figure 1 shows the menu for defining
the reference case.
Conclusion
A very large number of correlations
link the choice of raw materials to the
profitability of aluminium smelters.
One needs to consider all combinations of materials with the effect of all
materials properties and impurities,
and their relationships to consumptions. This makes it almost impossible
46
ALUMINIUM · 1-2/2009
SPECIAL
to determine the impact of any material change on the global Hall-Héroult
process unless one uses a software
tool. Optimat provides a quantitative
answer to the choice of raw materials for any smelter and type of technology. It applies to Søderberg HSS,
Søderberg VSS, prebaked side break,
and prebaked with point feeders. It
can determine the variation of consumption and/or the financial impact.
Two materials can be easily compared
or a financial optimum can be found
by combining a large number of raw
materials of the same category in different proportions.
Reference
[1] 4th Australian Aluminium Smelter
Technology, 1992.
[2] C. Acuña, R. Marzin, M. de Oteyza and
R. Perruchoud, Petroleum pitch, areal alternative to coal tar pitch as binder material for anode production, Light Metals
(TMS) 1997, 549-554.
[3] B. Armstrong, E. Hutchinson, J. Unwin
and T. Fletcher, Lung Cancer Risk after
Exposure to Polycyclic Aromatic Hydrocarbons: A Review and Meta-Analysis, Environ. Health Perspect. 2004, 112(9), 970.
[4] W. Boenigk et al., Production of low
PAH pitch for use in Søderberg smelters,
Light Metals (TMS) 2002, 519-524.
[5] G. Bouzat, J.-C. Garraz and M. Meyer,
Measurements of CF4 and C2F6 emissions
from prebake pots, Light Metals (TMS)
1996, 413–417.
[6] E. Cutshall and L. Maillet, Vertical stud
Søderberg emissions using a petroleum
pitch blend, Light Metals (TMS) 2006,
547- 552.
[7] Experience with FRIA-alumina, 1966
to 1969.
[8] G. M. Haarberg, L. N. Solli and Å. Sterten, Electrochemical studies of the anode
reaction on carbon in NaF-AlF3-Al2O3
melts, Light Metals (TMS) 1994, 227-231.
[9] E. Haugland, G. M. Haarberg, E. Thisted
and J. Thonstad, The behaviour of phosphorus impurities in aluminium electrolysis cells, Light Metals (TMS) 2001,
549-553.
[10] W. Haupin and H. Kvande, Mathematical model of fluoride evolution from
Hall-Héroult cells, Light Metals (TMS)
1993, 257-263.
[11] Y. D. Kravtzova, A. S. Tayanchin and
V. K. Frizorger, Procedure for testing infiltration property of pitches, Light Metals
(TMS) 2005, 629-633.
[12] S. J. Lindsay, SGA requirements in
coming years, Light Metals (TMS) 2005,
117-122.
[13] U. Mannweiler, R. Perruchoud, R.
Marzin and C. Acuña, Reduction of PAH
by using petroleum pitch as binder mate-
ALUMINIUM · 1-2/2009
A L U M I N I U M S M E LT I N G I N D U S T R Y
rial: a comparison of anode properties and
anode behavior of petroleum pitch and
coal tar pitch anodes, Light Metals (TMS)
1997, 555-558.
[14] E. R. McHenry, J. T. Baron and K. C.
Krupinski, Anode binder pitch laboratory
characterization methods, Light Metals
(TMS) 1998, 769-774.
[15] J. Marks, PFC emissions measurements from Alcoa aluminium smelters,
Light Metals (TMS) 1998, 287-291.
[16] A. A. Mirtchi, A. L. Proulx and L. Castonguay, Reduction of the PAH emisions
for horizontal stud Søderberg potrooms,
Light Metals (TMS) 1995, 601-607.
[17] A. A. Mirchi et al., Reduction of PAH
emissions in Alcan Québec’s HS Søderberg smelters by evaluation and conversion to low PAH pitch, Light Metals (TMS)
2002, 571-575.
[18] K. Neyrey, L. Edwards, J. A. Ross and F.
Vogt, A tool for predicting anode performance of non-traditional calcined cokes,
Light Metals (TMS) 2005, p. 607-612.
[19] H. Onder et al., Petroleum Coke, editor Kennedy van Saun 1993, p. 75, fig. 36.
[20] T. G. Pearson and J. Waddington, Electrode reaction in the aluminium reduction
cell, Discuss. Faraday Soc., 1 (1947), 307-320.
[21] Pechiney and Alumax, Specifications
for CTP R+D Carbon, From the raw materials to the behaviour in Hall-Héroult cells,
p. 1.18 (2000).
[22] T. B. Pedersen et al., Results from implementation of point feeders and complete hooding on VS Søderberg pots, Light
Metals (TMS) 1998, 221-226.
[23] M. Pérez, M. Granda, R. García, R.
Menéndez and E. Romero, Preparation of
binder pitches by blending coal-tar and
petroleum pitches, Light Metals (TMS)
2001, 573-579.
[24] R. C. Perruchoud, M. W. Meier and
W.K. Fischer, Survey on worldwide prebaked anode quality, Light Metals (TMS)
2004, 573-578.
[25] R&D Carbon, Anodes for the Aluminium Industry, 1995, 394 pp.
[26] R&D Carbon, International Course on
Anode Manufacture, 2000, p. 1.2.
[27] J. G. Rolle and R. A. Czikali, Use of
coke reactivity for predicting anode air reactivity, Light Metals (TMS) 2001, 675-679.
[28] P. Romundstad, T. Haldorsen and A.
Andersen, Cancer incidence and cause
specific mortality among workers in two
Norwegian aluminium reduction plants,
Am J Ind. Med. 2000, 37(2),175-183.
[29] M. Sørlie and T. Eidet, Reactivity of
binder cokes in anodes, Proceedings of
10th Symposium on Light Metals Production, edited by J. Thonstad, August 1997,
119-136.
[30] M. Sørlie and T. Eidet, The influence
of pitch impurity content on reactivity of
binder coke in anodes, Light Metals (TMS)
1998, 763-768.
[31] Å. Sterten, P. A. Solli and E. Skybakmoen, Influence of electrolyte impurities
on current efficiency in aluminium elec-
trolysis cells, J. Appl. Electrochem., 28
(1998) 8, 78-789.
[32] J. Thonstad et al., Aluminium Electrolysis, 3rd edition, Aluminium-Verlag,
Düsseldorf, 2001, 359 pp.
[33] T. E. Jentoftsen et al., Mass transfer of
iron, silicon and titanium in Hall-Héroult
cells, Proceedings of 11th Intl Al. Symp.,
edited by G. M. Haarberg and A. Solheim,
Sept. 2001, 217-229.
[34] R. T. Tonti, R. D. Zabreznik and K.
Ries, Anode performance improvement
with low reactivity coke additives to the
binder matrix, Light Metals (TMS) 1992,
635-639.
[35] N. R. Turner et al., Development of petroleum enhanced coal tar pitch in Europe,
Light Metals (TMS) 2001, 565-572.
[36] K. van Saun K, Everything you always
wanted to know about Pet coke, 1993, p. 8,
tables 8 and 11.
[37] S. Wilkening, Reflections on the carbon consumption of prebaked anodes,
Light Metals (TMS) 1995, 715-724.
[38] F. S. Williams, Improving customer/
supplier relationships between alumina
refining and smelting, Light Metals (TMS)
1992, 241-245.
[39] R. H. Wombles and J. T. Baron, Laboratory anode comparison of Chinese modified pitch and vacuum distilled pitch, Light
Metals (TMS) 2006, 535-540.
[40] W. Zhang, X. Liu X, P. McMaster and
M. Taylor, Modelling of impurity balance
for an aluminium smelter, Light Metals
(TMS) 1996, p. 405-411.
[41] P. Béran et al. Current increase and
energy consumption, Light Metals (TMS)
2001, 179-184.
[42] J. Antille and R. von Kaenel, Alcan Primary Metal Europe, Reduction Technology Services Europe, Switzerland, Using a
magnetohydrodynamic model to analyze
pot stability in order to identify an abnormal operating.
[43] J. Antille, L. Klinger and R.von Kaenel,
www.kannak.ch (2008).
Authors
René von Kaenel is President of Kannak
S.A., a company he founded in 2004.
Dr. Laurent Klinger joined Kannak in 2005,
where he is developing modelling tools for
electrolysis cells, performing simulations
for a novel metallic inert anode, and participating in plant development projects.
Dr. Jacques Antille joined Kannak in 2004
where he is leading magnetohydrodynamic studies for the optimisation of the
electrolysis process as well as all measurement techniques.
Dr. Hans Otto Bohner founded K+T Engineers in 1983, a company specialising in
smelter technology evaluation, in smelter
audits, in process control algorithms and
in appreciation of industrial accident
claims.
47
A L U M I N I U M S M E LT I N G I N D U S T R Y
An innovative improvement of the Buss Kneader generation
A kneader is a key equipment
for producing of green paste for
anodes out of petroleum coke
and coal tar pitch. Kneaders are
still the leading technology as
the alternative solutions did not
convince the carbon people in the
aluminium industry. Although
some alternative machinery claims
to cost less in investment, would
that compensate for a decrease in
anode quality? But you may ask
yourselves, “The Buss Kneader
was developed in the 1950s and
has since been enhanced to match
the developing needs of the industry; so what innovative improvements can still be expected?”
The requirements for anode paste
production are unique and not comparable with those for other industrial carbon applications: kneading is
neither extrusion nor a simple mixing
process. The Buss Kneader includes
elements of both processes, and has
been optimised in close collaboration with end users and technology
partners. It combines in one operation many physical and mechanical
processes within the machine which
have been precisely identified and
analysed. The process area has been
adjusted correspondingly, so as to
ensure a consistently good product,
even coping with today’s changing
raw material properties, and smoothing fluctuations in input recipes.
The focus for development has
always been to keep pace with the
ongoing increase of production rates,
so as to stay one step ahead of the
smelters requirements. Since the early models there has been an enormous
increase in smelter capacity. This required constantly increasing kneader
sizes with longer process zones and
bigger diameters, so as to process
larger quantities with the same or
even better paste quality results.
Nowadays
Today we have reached the limits
of such ‘scale-up’, since further di-
48
Images: Buss ChemTech
M. Kempkes, Pratteln
mensional increase causes too many
structural problems. Such machines
place enormous static and dynamic
loads for the buildings and they can
only be transported and handled with
very specialised equipment. Therefore they are not the right answer for
an industry where plants are often
built in remote areas, far away from
the nearest city.
This sets severe limitations on
developing a new generation of machines, and poses the question: How
can we increase the process intensity
within the given dimensions, and still
avoid designing a logistical nightmare?
The K 600 CP kneader seems to
represent the maximum practical size
so far. It has proved itself in the field
with many successful installations,
and is manageable in terms of installation, structural building requirements
and maintenance. Yet we have still
found opportunities for further improvements. Key design parameters
for improved kneader are listed in the
box. These developments led to the
new kneader generation, the ‘Buss
ChemTech Paste Reactor’.
The process, now with harmonised
geometries, corresponding to the density rise within the product, reaches
the maximum conveying efficiency
without sacrifying the mixing effect.
In addition, optimised thrust flank
angles now easily achieve the maximum barrel filling grade by variable
and controlled shaft revolutions.
Key design parameters for improved kneader
•
•
•
•
•
•
•
•
•
•
•
•
•
Overall machine dimensions
unchanged from K600CP
Feeding of pitch
injected directly into process area
Feeding of solid components
with back-venting ability for air
Process sections
adapted to the present paste conditions
Feed section for solid components
improved conveying efficiency
Wetting and transition section
combine conveying and mixing
Mixing and kneading section
improve conveying and kneading/mixing
Dynamic throttling
self-regulating backpressure and energy dissipation
Stroke
less inertial force, less deflection
Gear box
reduced power peaks
Specific energy
same level or higher than traditional
Maintenance and wear
less wear, less frequent maintenance
Investment
decreased specific cost per produced tonne
ALUMINIUM · 1-2/2009
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
The Innovation:
Paste Reactor K 600 CP_X
The Paste Reactor K 600 CP_X produces the well-known high quality standard paste, and does so reliably in continuous throughput of 60
tonnes per hour (production range 25
to 60 t/h). The outside dimensions of
the paste reactor remain unchanged
compared to its forerunner K 600 CP,
since modifications mainly concern
the internal parts of the machine.
The new BCT Paste Reactor processes up to 33% more throughput
with the same good paste quality as
the K 600 CP Kneader thanks to several technical innovations:
1.) Feed of solid and liquid fraction
to the reactor is split: the coke is still
fed into the inlet opening of the Paste
Reactor barrel, but the liquid pitch is
now injected through one or several
of the first kneading teeth, directly
into the process area. This eliminates
any accumulation of sticky material at
the machine inlet, and it allows independent regulation of throughput by
precisely matching shaft revolutions
to the actual production rate. At the
entrance the machine is provided
with a separate vent for air and fumes
(see diagram Improvement by split
feeding of educts).
2.) New process zone: the kneading/mixing process compacts the
paste so that its density rises from the
beginning to the end of the barrel. This
requires symmetrically distributed
high process pressure and a constant
filling level within the different areas.
Detail of a Buss kneader
ALUMINIUM · 1-2/2009
Suitable adjustment of the thrust flank
angles in different process zones optimises both the kneading effect and
the filling level. The new process zone
now combines filling, dry compression, liquid pitch injection, mixing
and kneading, conditioning/homogenisation and dynamic filling control,
in one segment.
3.) Energy input control: throttling
elements at the end of the process
zone generate dynamic back pressure and replace the flap-die. Instead
of increasing energy input by limiting
the size of exit opening, we can now
increase pressure by more efficient
geometric means. This dynamic and
3-dimensional adjustment has been
achieved by changes of the helix angle
of this last process segment. It results
in full energy input into the paste instead of partial energy loss in the flapdie. This reduces the concentration of
mechanical load and so increases the
machine’s availability and reliability. See: controlled energy
impact through ‘constant
torque control’ in function of speed (see diagram
Increased specific energy
input).
4.) Increase of kneading/mixing steps: the
number of kneading/mixing steps within the barrel
has been increased, while
still keeping the same
overall size and the working diameter/length ratio.
5.) Service life: thanks
to the optimised material
inlet, to the re-designed
process parts, and to the
increased conveying effect, the kneader generates a higher throughput at
lower revolution rate. This noticeably
reduces the wear of the kneading elements, increases service life and reduces maintenance frequency.
Such innovations are the fruit of
decades of close cooperation with
the major aluminium producers and
research centres in the industry. They
build on expertise gained in building
complete anode plants, and this makes
an essential contribution to developing more successful with innovative
products and to assuring continuous
support for our clients.
The paste reactor, as the newest
member of the Buss ChemTech kneader family, is the perfect extension to
reach highest throughputs. It incorporates several innovations to increase
the product quality and efficiency
of the traditional Buss Kneaders, K
500 CP and K 600 CP, which are still
pacemakers in their capacity range.
A first K 600 CP_X will go into
production during the first quarter of
2009. Further orders are already in final negotiation stage. Such quick success is the best driver for our highly
skilled engineering and process team,
and it proves that the right decisions
have been made.
Author
Michael Kempkes is graduated mechanical engineer and Sales Manager for Buss
ChemTech since 2005. He has held several sales positions during his career and
is now in charge of General Sales Activities
and Product Development, with focus on
the Middle East region, and key accounts
worldwide.
49
A L U M I N I U M S M E LT I N G I N D U S T R Y
Changes in operating practices boost Alro’s performance
M. Cilianu, G. Dobra, F. Sterie, C. Stanescu; Slatina
converted and the second dry scrubbing unit was commissioned. During
this period important modifications of
the lining design were introduced:
• Increase in cathode length;
• Carbon slabs in the sidewall were
replaced by silicon carbide slabs;
• Fireclay bricks were removed from
the back of the sidewall slabs;
• Amperage was increased from 85
to 94 kA.
On April 30, 2002 Alro became
a private company as Vimetco purchased the main stock of shares.
With the help of a consultant team it
was decided that, by certain design
changes, the Alro pots would be able
to perform at much higher amperage, namely 120 kA, compared to the
original value of 83 kA, offering Alro
an output of 260,000 tpy, close to the
value achieved when all ten original
potrooms were in operation. Alro
ended 2007 with hot metal production of 262,500 tonnes which was almost a 40% increase since 2002.
History of Alro
From 95 to 120 kA
Established in 1965, based on Pechiney
technology, Alro began its operations
with two potrooms, producing 50,000
tpy. Production capacity has since
increased with the addition of new
potrooms and as a result, during the
1980s, the smelter reached its maximum capacity of 263,500 tonnes. At
the time Alro had four potrooms in
operation with 176 pots, each of 65
kA, and six potrooms with 128 pots,
each of 83 kA, side by side.
During 1990 to 1991, following
the 1989 Romanian revolution and a
change in national priorities, shortage
of power and low metal prices led to
a capacity reduction to 110,000 tpy.
Part of the shutdown capacity was
reinstated in 1994 and in 1995 Alro’s
management decided to modernise
all six higher amperage potrooms by
converting the pots to computer controlled point feeding, hooding and dry
scrubbing. The retrofitting process
was completed in the second half of
2002 when the last two potrooms were
As it takes several years to set a new pot
design, in order to operate at higher
amperage, the experience gained from
operating the 15 cell test section was
applied in the potlines as it became
available. Starting from the old pot design, a modified model was developed
to support the altered heat balance in
order to replace the pots that failed
before being able to test and establish
the best design in the test section.
Experience gained in the test section proved that differences between
designs tested here minimised if our
pot is bottomless, with no air ventilation under the shell and a fused monolith forms in the bottom after one
year of operation. Cell bottom temperatures were monitored through
the placement of thermocouples at
the cathode bottom – a concrete floor
interface. Those temperatures were
higher than expected and may have
been indicative of electrolyte penetration into the bottom bricks. Modifications applied:
50
• Increased cathode block length, in
order to keep the same cathode current distribution;
• Graphite content in cathode was
raised;
• Decreased thickness of the sidewall in order to accommodate the
longer cathode block;
• Dimensions of the cathode bar
were altered in order to eliminate
more heat through the cathode bar, to
improve the contact between the bar
and the block and to optimise cathode
current distribution;
• The shape of the cathode block
centre channel was altered;
• The shell plate thickness was substantially increased;
• A removable deck plate was applied
in the top of the shell and the beams
were reinforced in order to increase
Images: Vimetco
Changes in operating practices
have made Alro one of the most efficient and competitive smelters in
Europe. In the last five years amperage has increased from 94 kA
to 123 kA, production per pot and
per day has grown by 240 kg, the
anode effects per pot per day have
decreased from 0.4 to 0.04, current
efficiency has improved from 92%
to 96.2% and energy consumption
has gone down from 14.1 MWh/t
to 13.4 MWh/t. Operational safety
has also been improved through
the recent replacement of our 30
year-old rectifiers. New systems
for alumina [dense phase] transport have been developed and implemented in-house. In 2007 Alro
obtained certification for EN 9100
from DQS Germany and in 2008
was awarded the NADCAP certification for heat treatment and NDT
targeting to become an accredited
supplier of downstream products
for the aircraft industry.
1a: The FEM mesh (173,386 elements,
35,081 nodes)
1b: The temperature field (in Kelvin) – surface
colour map
1c: The temperature field (in Kelvin) – slices
Fig. 1: Modelling of Alro pots with FEM
ALUMINIUM · 1-2/2009
SPECIAL
the shell resistance and minimise the
shell bowing.
Anode dimensions were modified
in two steps to keep the same current
density:
• up to 108 kA, 1100 x 750 x 620 mm
anodes were used (two twin carbon
pieces of 550 mm);
• from 108 kA single longer carbon
block anodes were introduced.
Yoke and stub design was also
modified from a symmetric yoke with
90 mm stubs to an asymmetric yoke.
Until Alro was able to produce its own
longer anodes, anodes were imported.
The quality of the anodes proved a key
factor obtaining good performance
figures.
The physical and chemical processes that occur in an electrolytic cell
are very complicated and difficult for
mathematical modelling. These pots
were carefully studied with the finite
element (FEM) numerical analysis carried out on the current flow and conduction heat transfer processes that
occur in a 120 kA electrolysis cell such
as the ones in Alro’s plant in Slatina.
A L U M I N I U M S M E LT I N G I N D U S T R Y
The FEM results for the cell-corner
model are presented in Fig. 1.
Another important issue that appeared and had to be dealt with was
the increase in anode effect frequency, noted after first phase of amperage increase. To solve this problem,
an adjustment of the feeding strategy
was necessary. This consisted of:
• modification of the ratio between
the fast feeding frequency and low
feeding frequency;
• modification of the parameters that
control alumina addition after technological operations which brought
uncontrolled alumina, such as anode
change and tapping.
Alro’s pot has only two feeders and
therefore is more susceptible to anode
effects when one of the feeders is out
of order. Changes performed over the
feeding strategy compensated the increased alumina mass that has to go
into the pot (over 25% more) and no
additional feeder was necessary. To
optimise the thermal and mass balance of the pot, several changes were
necessary:
Fig. 2: Correlation between cathode resistance and cathode age
Fig. 3: Noise level for a group of pots
ALUMINIUM · 1-2/2009
• AlF3 addition strategy was modified
by altering the correlation between
bath temperature, AlF3 excess and AlF3
quantity that has to be added. Temperature set point was modified and
AlF3 excess set point from 10 to 11%;
• Centre concrete slabs between pots
were replaced by metallic gratings in
order to facilitate increased heat evacuation;
• The depth of the anode covering
layer was decreased below 10 cm;
• Suction flow of the two dry scrubbing units was increased;
• Minimising the anode cover increased the risk of air burn and consequently the modification of the anode
setting pattern was necessary.
Even though at higher amperage
the status of the pot can change faster, the frequency of bath temperature
measurements (daily) and the frequency of AlF3 excess determination
(every 3 days) were kept the same.
To better emphasise changes in
potroom performance, the operation
control software was modified to
present correlation between certain
parameters. Fig. 2 presents the correlation between cathode age and cathode resistance in potroom 6. In this
way any abnormalities and incorrect
measurements can be easily detected.
Other type of graphs that were
implemented compared the same parameters for a group of pots in order
to determine which pot had different
performance compared to the other.
Fig. 3 shows an example in this regard
presenting noise of a group of pots.
A pot materials database was also
implemented. This facilitated evaluation of different materials used to
reline the pots.
Autopsies were performed on several test pots in order to examine the
condition of the cathodes at 120 kA
and the impact of electrolyte penetration to the bottom. The integrity of the
cathode blocks in this condition was
carefully evaluated and determined
changes in construction practices and
careful selection of materials for pot
construction.
Other modifications of the operating practices and procedures were
necessary as follows:
• Depending on cathode type
and length, metal height was ©
51
A L U M I N I U M S M E LT I N G I N D U S T R Y
increased in order to release more
heat through the sidewall;
• Old ramming procedure based on
number of strokes and time measurement was replaced by a new ramming
procedure based on layer compaction
ratio measurement;
• Heat-up procedure was adjusted.
The number of shunts used during
the heat-up was increased from two
to three, and to protect the ramming
fillet we started using a sandwich type
material consisting of cryolite, coarse
crust and fine bath;
• Tapping schedule was modified
from 48 to 32 hours;
• Bath level was increased from 17
cm to 19 cm in order to keep the same
bath volume;
• Start-up procedure was adjusted
and the occurrence of the anode effect was eliminated. First a high AlF3
excess start-up was tested in order to
bring the pot to the normal operating
conditions as soon as possible, but
superheat measurements proved that
in this case protective ledge formation
on the sidewall was delayed. Therefore we later switched back to the low
AlF3 excess start-up and increased the
AlF3 excess to the normal operating
value in one month.
Amperage increase was different
from one potline to another and correlated to the potline evolution and to
the number of new cathodes installed.
In addition to the amperage increase,
24 additional pots were also installed,
four pots in the middle of each potroom, as there was enough unused
space in this area.
Eliminating the anode effect
Eliminating the anode effect (AE) was
a hard and long process and several
steps were implemented during this
time:
• The first step was to use all the
features of the modernisation – first
was using the feature of the software
in detecting all mechanical defects
– permanent contact and impossible
contact between crust breaker and
bath, implemented early 2002;
• Using thermal regulation: a change
in regular practice was made – measuring temperatures of the pot on a
daily basis and aluminium fluoride
analysis twice per week;
• Reduction of accidental and scheduled anode effects to the minimum
possible, monitoring all the AE tendency and correlating with feeding
characteristics;
• Refining the feeding programme,
implementing routine for mechanical
defects and technological procedures
(starting with disallowing pot operations such as tapping of the metal,
changing anodes, etc. until the parameters in the control rooms have been
changed depending on pot graphs);
• Intensive training for all operators in changing the anode practices,
dressing the pots, maintaining the
hole around crust breaker clean;
• Changing the start up procedure in
order to avoid AE of the new pots and
bath pots;
• Improving performance of power
regulation in rectifiers;
• Implementing procedures for overfeeding at potential accidental amperage reductions;
• Good survey on pot alumina supply
through the dense phase system from
daily silo to the pot hoppers.
Root cause analysis for each anode effect became a daily practice of
Fig. 4: Models of diagram revealing autopsies by pots
52
all pot supervisors. By implementing
this practice the pot failures have decreased considerably in the last two
years, the DC energy consumption
has lowered and Faraday efficiency
has increased as shown in Fig. 5.
Changes in the rest of the plant
Apart from the changes in the smelting plant, several changes were necessary in the rest of the plant to support
the additional metal production. The
following goals were considered:
• Stabilise the quality of the anodes;
• Reduce the consumption and, consequently, the cost involved;
• Implement continuous supply of
alumina to the pots;
• Increase the range of our product
(various alloys and dimensions) in
order to achieve enough flexibility in
our product mix;
• Improve working conditions and
increase productivity;
• Increase operational safety by
changing the rectifiers.
The modifications in the anode
plant consisted of: 1) one paste plant
capacity increase from 6.5 to 16 t/h
and 2) full automation of the paste
plants. A 30 year old anode press was
replaced by a vibro compactor and
the cooling tunnel was installed in order to produce larger anodes: three of
the six baking furnaces were retrofitted with state-of-the-art technology;
and all three baking furnaces were
connected to a fume treatment centre
in order to clean the exhaust fumes.
Modernisation of the baking furnaces
resulted in an significant natural gas
consumption decrease.
One particular issue concerning
the smelters is represented by the
continuous supply of alumina to the
pots; this supply is adjusted depending on the consumption requirements.
Therefore, it is necessary to have a
continuous and adjusted feed of alumina to the hoppers located on the superstructures of the electrolysis pots.
The hyper-dense phase feed system put in place by Alro addresses
and accomplishes these very requirements. Thus, the system consists of a
horizontal air slide located between
the storage zone (the day silo) and the
supply zone (the pot). The alumina
ALUMINIUM · 1-2/2009
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
hyper-dense phase ensures the conveying of
alumina with very high
material/air ratios. The
system is completely
automatic and is operated in all of the Alro potrooms. This system was
commissioned gradually Fig. 9: Development of alumina consumption
Fig. 5: Evolution of the Faraday efficiency and DC
starting August 2006 unenergy consumption
til late 2007.
The cast house was
also subject to major
changes including:
• Old 20-28 tonne
melting furnaces were
replaced by 42 tonne
furnaces;
• Old hot top billet
casting machines were Fig. 10: Evolution of value-added production versus
replaced by air-slip total cast aluminium output
Fig. 6: Amperage evolution in different potlines
casting machines with a
substantial boost of billet quality;
• The range of billet
sizes increased to 6, 7,
8, 9, 10, 11, 12 and 13
inches, tables for 12 and
13 inches were commissioned in autumn 2008;
• An additional rolling mill was started,
doubling the wire rod
Fig. 7: Evolution of AE frequency
Fig. 11: Reduction of GHG emissions at Alro
production capacity;
• Casting units for hard
alloy slabs with additional 60 tonne refills completely the upper channel
The 30 year old rectifiers were regenerative burner-fired furnace;
of the air slide which also consists of
placed in the turn-key project led
several balancing columns partially
• Homogenisation furnace for hard
by the consortium consisting of Siefilled with alumina. The fill height
alloy slabs;
mens/ABB/Inpec. Currently, the
• New saw machines for slabs and
balances the pressure of the fluidisaperformance of these rectifiers has
tion air. The balancing column creates
billets;
significantly improved the overall ef• Endow lab facilities with new
the potential conditions for alumina
ficiency as compared to the old one.
fluidisation which, by means of a low
equipment such as microscopes, PoDAs a consequence of Alro’s geoair flow, has the appearance of a hyFA for impurity analysis, ALSCAN for
graphic location, the company enper-dense bed in the air slide. The
H2 and stress corrosion.
larged its alumina storage capacity by
A focus for manageabout 30,000 tonnes through the conment was the technologistruction of a new dome type silo.
cal transfer based on the
Since 2003, Alro has invested apidea that improving the
prox. USD300 million to develop and
understanding of the opmaintain production capacity. These
erators and maintenance
investments have allowed Alro to
personnel will lead to betconsolidate its operations and realise
ter practices in all areas. As
cost savings. The long-standing ima result, key performance
portance Alro has given to developindicators were systematiing in-house technical expertise has
cally improved and output
allowed it to organically expand its
of value-added products
product portfolio and thereby distinwas substantially increased
guish itself from its competitors. Alro
as shown in Fig. 10.
Fig. 8: Dry scrubbing at the anode plant
offers a wide range of aluminium ©
ALUMINIUM · 1-2/2009
53
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 12: Casting units for hard alloy slabs
products to meet the specific needs of
its customers and to target the higherpriced market for these products. Alro’s product range includes primary
aluminium, value-added primary
aluminium products (such as billets,
slabs and wire rod,) and semi-finished
aluminium products (such as plates,
coils and sheet).
Alro’s training programmes, administered by its Professional Training
Centre, aims to upgrade the skills of its
employees so they can adapt to broader tasks to better utilise our existing
resources. We believe that Alro’s emphasis on training and development
helps its employees meet technical
and business challenges effectively.
Certifications
Alro has an ISO 9001 since 1996,
focusing on quality and customer
satisfaction. In 1998 it also gained
certification to the environmental
standard ISO 14001 and, in 2005,
OHSAS 18001. One of the key issues
was reducing emissions of fluoride
Fig. 14: New silo under construction
54
using two gas dry scrubbing
units treating over 4.5 million
m3/h from the potlines with
an overall efficiency of 99.7%.
The anode plant has complex
dedusting units, volatile dry
scrubbing units retaining emissions from coke in the anode
tower and from alumina in the
baking furnace treating. Anode butts are cooled, cleaned Fig. 13: Alro’s new rectifiers installed in 2007 and 2008
and crushed in state-of-the-art
machinery in the rodding shop. All
from the amperage and production intechnological streams for cleaning,
crease experience: by a selective use
crushing, transporting and recycling
of retrofit technology and by amperthe bath material into production also
age increase, a 40 year-old smelter can
occur in closed and sealed systems.
remain competitive on the market.
All Alro operations have Integrated
As happens in any major project,
Environmental Permits. As a result of
some drawbacks appeared, but the
the new technology implemented and
management team successfully surAE reduction policy the GHC emispassed them. All the employees must
sion has decreased by five times.
be congratulated for their valuable
In 2007 Alro obtained certification
contribution and their team work that
for EN 9100 from DQS Germany and in
has been necessary for the success of
2008 Alro obtained the NADCAP certhis important evolution of the plant.
tification for heat treatment and NDT,
accrediting the company as a qualiReferences
fied supplier to the aircraft industry.
Gheorghe Dobra, Cristian Stanescu et al.,
Alro’s business conduct brings
Cell capacity increase programme at Alro,
benefits to all our stakeholders, by
Light Metals 2005, p. 311-316.
increasing the productivity and the
Alexandru Morega, Marin V. Petre, Aucompetitiveness of our products and
rel Panaitescu, Current Flow and Heat
therefore expanding our range of cusTransfer in Aluminium Electrolysis Cell
– an FEM Analysis, Presentation at the
tomers. All of our actions are directed
symposium ‘Advanced topics in electrical
to ensure efficient operations while
engineering’, Bucharest, Nov. 2008
delivering best quality products. They
intend to maintain and further expand
Autoren
our position as a leading aluminium
producer in Central and Eastern Europe and to keep profit margins comparable to those registered by the largest producers in the industry.
Conclusions
One major conclusion can be drawn
Marian Cilianu, D. Sc. Eng., Investment,
Project Development and Strategy Director, Alro SA.
Gheorghe Dobra, D.Sc Eng., Managing
Director, Alro SA.
Florea Sterie, Operational Director
Primary Aluminum Division, Alro SA.
Cristian Stanescu, Technical Director,
Alro SA.
Fig. 15 : Plates produced at the processing division of Alro
ALUMINIUM · 1-2/2009
WAGSTAFF SOLUTIONS
SUSTAINABLE RESOURCES,
SUBSTANTIAL SAVINGS
In addition to the downstream scrap-reducing advantages of LHC,
aluminum producers using Wagstaff LHC Ingot Casting Technology
realize substantial energy savings and environmental benefits.
Increased casting speeds
Significant scrap reduction
Reduced water consumption
Reduced oil consumption
Reduced oil in water system
Contact Wagstaff:
t: +1.509.891.8058
or visit: wagstaff.com
The Leader in Direct Chill Casting Technology.
CASTING MACHINES N ROLLING INGOT CASTING SYSTEMS N BILLET CASTING SYSTEMS
AUTOMATION N METAL LEVEL CONTROL N WORLDWIDE SERVICE AND SUPPORT
CREATORS OF:
AIRSLIP®
N
NUMAX™
Wagstaff, Inc.
N
N
3910 Flora Rd.
EPSILON™
N
N
LHC™
N
Spokane Valley WA 99216 USA
VARIMOLD™
N
1.509.922.1404
N
N
SHURCAST™
Fax 1.509.924.0241
N
N
AUTOCAST™
www.wagstaff.com
CASTHOUSE SOLUTIONS
Casting process requirements for aerospace applications
L. Fortier and S. Hamer, Long Beach
parameters to impart critical properties into the material which will
remain throughout the production
and life cycle of the part.
The 2xxx and 7xxx aluminium alloy
families are used extensively in aerospace applications. The high strengthto-weight ratio still remains one of
aluminium’s clear advantages over
other traditional materials. For example, the high strength properties of
the 2xxx series make these Al-Cu alloys attractive for extruded structures
such as tension members, lower and
upper stringers, and seat tracks. The
strongest aluminium alloys are from
the Al-Zn-Mg or 7xxx series, and are
used in upper skins.
Many quality characteristics of the
extruded sections can be traced to
the casthouse which produce the raw
material for the extruder. To achieve
the necessary reliability, the raw material must be of premium quality,
and both management and operators
must give close attention to detail in
the casthouse to ensure that the best
aluminium ingot is supplied to the extrusion plant.
Casting processes
affecting billet quality
Furnace control: The process of producing quality billet begins in the
melting furnace which takes secondary metal from scrap, primary metal
from foundry ingot or molten metal
directly from the potline. Deleterious
elements such as alkali metals (calcium, sodium and lithium) from potline
metal and contaminants from scrap
all damage billet quality if they are not
controlled in the furnace or removed
in downstream metal purification and
treatment operations.
Desired alloy composition is
achieved by additions of hardeners
(pre-alloys) containing the required
Images: Almex
Irrespective of the end use, the
aerospace industry demands that
aluminium structures fabricated
for aircraft parts have to be of
premium quality and reliability, in
face of the high potential risk and
the industry’s liability towards its
customers. Despite the forming,
deformation, fabrication and heat
treatment processes that are involved in the manufacture of aerospace components and structures,
the required material properties
remain stringent. Fatigue resistance and fracture toughness are
critical performance parameters
in most aerospace materials. Tensile and compressive strengths
and fracture crack growth resistance are other key properties demanded in aerospace applications.
To meet these requirements, the
alloy selection is critical in the
design stage. Casting conditions
are among the most important
Overview of the casthouse operations
56
ALUMINIUM · 1-2/2009
CASTHOUSE SOLUTIONS
Melting furnace at a hard alloy facility in India
elements such as magnesium, copper, silicon, zinc and zirconium. Recovery efficiency is dictated by addition techniques. For example, magnesium, which has a lower density than
molten aluminium, tends to float and
burn brightly in the furnace chamber.
So, banding the magnesium or placing the charge in a basket is used to
quickly submerge the hardener and so
to ensure high recovery. Liquid metal
pumps are also often used to help submerge hardeners rapidly.
Slow, methodical stirring of the
molten metal in the furnace using an
Long-term growth
in aircraft market
Since the 1940s, aluminium has found
ever more use in the aerospace industry.
Initial usage was mainly for the military,
but following World War II, aluminium
diversified into space applications,
into commercial aircraft and also into
light personal aircraft and microlites.
The growth of the aircraft industry is
expected to continue over the foreseeable future due to the strong growth in
the emerging markets of China, India,
Australasia, and former Eastern Europe,
as well as in new uses developing for
light aircraft. In respect to commercial
aviation, Boeing’s current market predictions for 2008 through 2027 are that
they expect to sell about 29,400 new
airplanes in the world, while Airbus is
slightly lower at nearly 23,400 airplanes.
ALUMINIUM · 1-2/2009
appropriately coated stirring tool or
furnace pump ensures uniform composition. Inadequate stirring can lead
to chemical inhomogeneity in the bath
and to composition variations in the
ingot. However, over-aggressive stirring entrains oxides, refractory particles and hydrogen gas into the molten metal, and these in turn generate
various defects in the final product.
Training and good furnace practices
are therefore imperative for chemical
homogeneity and billet cleanliness.
Iron pick-up occurs if the stirring
tool is not preheated and adequately
coated with a suitable non-wetting
protective coating material. Iron has
a low solubility of 0.04% in solid
aluminium but a higher solubility of
0.69% in liquid aluminium, and it is
particularly deleterious in extruded
products. During solidification, brittle
iron-containing intermetallic phases
precipitate along grain boundaries,
where they reduce strength, fatigue
resistance and fracture toughness and
provide sites for crack initiation and
growth.
Excessively high furnace temperatures create conditions for hydrogen
diffusion into the molten metal and
excess oxide formation. At the casting machine, hydrogen sources are
atmospheric water vapour, combustion products and wet scrap, which
can also be highly explosive in molten
metal. During solidification hydrogen
is pushed out of the solidifying aluminium, so blowing unacceptable
closed pores in the billet. As with hydrogen gas, the presence of entrained
non-metallic particles decreases the
mechanical properties, such as ductility and fatigue crack initiation resistance in the final extrusion.
Good furnace practices also include a settling time which allows the
denser particles to sink to the furnace
floor, and allows the lighter unwanted
particles to float to the melt surface.
Skimming removes these particles together with the dross build-up on the
surface of the melt.
A technique of tapping the furnace
at the start of the furnace controls
excessive ‘rooster-tailing’. Spewing
of molten metal into the air creates
opportune conditions for the entrainment of hydrogen and oxides into the
molten metal flowing to the metal refining unit.
Furnace management also involves periodic hot cleaning, whereby
the walls are scraped and the floor is
raked, to remove debris and larger undissolved particles from the furnace.
Yearly, cold cleaning involves draining the molten metal from the furnace
and cooling the furnace for thorough
cleaning and refractory inspection.
This process involves a period of furnace downtime, but the payoff is the
consistent metal quality when the furnace reliably produces inclusion-free,
premium quality extrusion billet.
Attending to details in the management of the furnace is the first step in
the production of quality billet. Without furnace care, the resulting cast
aluminium ingot will contain high
levels of hydrogen and inclusions
and poor chemical homogeneity, all
of which reduce the quality of the
extruded part and hence lead to high
rejection rates.
Grain refinement: The inoculation of particles in the molten metal,
typically through titanium-boron rod
additions, provides nucleation sites to
refine grain size. Control of grain size
in the ingot is important to achieve
the optimum strength in the extruded
part. The energy required for crack
propagation is higher through a
fine structure than through a coarse
structure. Therefore, the more grain
boundaries, the greater the resistance
©
to crack propagation.
57
CASTHOUSE SOLUTIONS
Grain refiner rod on the feeding spool
The grain refining rod addition rates
are determined by the metal flow rate
and the furnace concentration of titanium. Attention to rod addition rate
is critical in ensuring fine grain size
in the billet. Furthermore, the potency
of the grain refiner rod varies, and the
use of high quality (and usually higher
priced) rod from reputable sources is
recommended. Poor quality rod increases the risk of non-uniform grain
refinement, and it also introduces the
potential of further inclusions in the
form of undissolved Ti or TiAl3 clusters.
Molten metal refining: Furnace
metal quality control is important,
as the greater the concentration of
contaminating particles and hydrogen in the molten metal, the greater
the requirement on the downstream
refining equipment to remove these
contaminants. Most refining operations can only remove 75 to 85% of
undesirable particles and at best 65
to 75% of dissolved hydrogen in the
incoming metal. Once entrained into
the solid billet, these inclusions and
voids cannot be removed.
Molten metal refinement occurs
in the degassing units which remove hydrogen gas, aluminium and
magnesium oxide inclusions, spinels
(MgAl2O4), refractory pieces, alkali
metals (Li, Na, Ca), and alkali metal
salts (NaCl, LiCl, CaCl2). Generally,
a combination of an argon carrying
gas with small additions of chlorine
flushes the hydrogen gas and clings
58
to contaminants particles from
the molten metal in the reactor
chambers. Generated by the action of the rotor-stator assembly, the gas stream is sheared
into tiny bubbles which float up,
attracting hydrogen and dragging contaminants to the metal
surface. Periodic skimming is
required during the cast to remove the dross accumulation.
Degassing unit manufacturers stringently focus on ensuring that these fine process gas
bubbles mix thoroughly into the
metal, and they try to maximise
the residence time of each bubble in the melt so as to increase
the effectiveness of hydrogen
and inclusion removal. Process
gas quality is also important, as
low quality gas can contain moisture
which reintroduces hydrogen.
Ceramic foam filters (CFF): Following the refining process, the molten
metal passes through a ceramic foam
filter which can be of varying pore
size dependent on the metal cleanliness required. Correctly preheating
the filter is important, as the liquid
aluminium would freeze in cold filter
pore and consequently plug them. Excessive inclusion levels can also plug
the filter pores. Plugged filters reduce
metal flow to the table and moulds,
causing metal level fluctuations and
starvation. These unsteady conditions
may lead both to run-outs and bleeding, along with variations in liquation
band thickness. Restricted metal flow
through the CFF over the duration of
a drop can thus indicate either inclusions from the metal upstream or an
inadequately preheated filter. If the
head level drop occurs, hitting or boring the filter is tempting, but the resulting contaminant shower reintroduces
inclusions into the molten metal. Even
upstream events, such as jarring of
the launder, can result in inclusions
showers. Training of operators in the
phenomena of CFF showers will reduce the frequency of inclusions reentering the molten metal. High quality metal feed to the CFF also allows
the use of a more dense and hence
more efficient filter element. The
denser filter improves the quality of
the final extrusion product.
Casting moulds: The structure and
properties of the billet depend on the
solidification conditions during the
casting process. It is therefore essential
to control temperature, casting speed,
water flow rate, temperature and quality, along with the lubricant contribute
The Almex liquid aluminium refining system
ALUMINIUM · 1-2/2009
CASTHOUSE SOLUTIONS
Large mould table for hard alloy casting
to the integrity of the billet. Control of
the casting parameters is imperative
to reduce micro-segregation, macrosegregation, liquation zone thickness,
porosity, cracking and grain size.
The moulds for hot-top casting are
made of several key components: the
header, mould body, ceramic ring,
graphite ring and water baffle. The
mould body is the support structure
for the other components; the ceramic
ring insulates the liquid aluminium
from rapid heat loss, while the graphite ring with its lubricant provides
the cooling interface for initial shell
solidification. Without lubricant, the
surface quality is degraded, as are the
subsurface structures. The internally
water cooled mould body initiates
the solidification of the aluminium,
and shell freezing initiates against the
graphite ring. The water baffle then
distributes the cooling water onto the
ingot below the mould, to directly
chill the solidified shell. It achieves
more rapid cooling through direct impingement of the water onto the solid
aluminium surface. Water quality is
important. The level of total dissolved
solids (TDS) and the pH of the water
affect the cooling capacity of the water and hence the quality of the billet
surface and subsurface layer.
Micro-segregation is the chemical
ALUMINIUM · 1-2/2009
variation across individual dendrites.
Aluminium is the main constituent
in the dendrite core, but the higher
solidification temperatures of the
peritectic elements (such as titanium,
vanadium, chromium and zirconium)
concentrates them closer to the dendrite core. These elements therefore
tend to be concentrated within the
cast grain. Eutectic elements (such
as magnesium, copper, silicon, zinc,
iron, gallium and tin) have lower solidification temperatures. They are rejected ahead of the solidifying front of
the grain, so creating enriched areas
along the grain boundaries. This localised chemistry variation is referred to
as micro-segregation. Inverse segre-
gation occurs when the shell freezes
and then partially remelts. Liquid
metal pressure forces lower solidifying elements to backfill the shrinkage
cavities at the surface.
Variation in the chemical composition across the ingot diameter is referred to as macro-segregation. Such
variations create property differences
particularly in thicker extruded parts.
Direct segregation occurs when lower
freezing elements are pushed to the
middle of the ingot. A liquation band
is generated during the casting process where heat is extracted from the
molten metal, creating a thin solidified
shell. This shell must be sufficiently
strong and stable to prevent tearing of
and bleeding from the surface of the
cast ingot. Due to the contraction response of the solidifying metal, the thin
shell pulls away from the mould wall
creating an air gap. Consequently, the
heat transfer is immediately reduced
between the mould wall and the billet
surface. Heat from the hotter interior
of the billet is still being transferred to
the cooler billet shell, thereby reheating and re-melting the solid shell.
As solute-rich liquid moves from
the centre towards the surface and
fills shrinkage pores, it forms a liquation band, also called inverse segregation. Hard alloys used in the aerospace
market are particularly susceptible to
the formation of this liquation band.
Hence, hard alloy ingot may need to
be scalped to remove this segregation
region before being extruded.
As the metal solidifies from the
surface to the centre, shrinkage porosity or coring in the centre of the
billet can occur if liquid is ©
Mould table showing lubricant lines
59
CASTHOUSE SOLUTIONS
microstructural features such as voids
and hard particles which negatively
affect fatigue, ductility and strength.
In hard alloys NEM can be avoided
by waiting steps at intermediate homogenisation temperatures so as to
allow time for solid state diffusion to
disperse solutes in the lower melting
solute-rich regions.
Also well regulated furnaces with
temperature tolerances of ± 5ºC are
essential. The furnaces must also have
good zone and ramping control to ensure optimum temperature uniformity
throughout the furnace and to prevent
temperature overshoots when passing
from the heat-up to soak phases.
Conclusion
Quality billet ready for homogenising
unavailable to fill the shrinkage cavities in the sump.
Accordingly, metal level control is
of great importance. Casting conditions contribute to the sump profile.
A flatter sump profile lowers internal
stresses, so the billet is less likely to
crack during solidification. Wipers
strategically located on the cast ingot
below the mould remove the water
film while the billet is still hot enough
to anneal. This in-situ anneal reduces
the internal stresses generated during the solidification of hard alloys,
so preventing cracking.
Casting speed not only dictates the
rate of heat extraction, but also affects
the final billet diameter. The billet diameter is proportional to the casting
speed: faster casting speeds, larger
diameters.
Water flow and water temperature
dictate the heat flux and must be able
to remove adequate heat from the
aluminium ingot. Furthermore, the
water volume and flow rate must be
sufficient to overcome the thermal
boundary layer of steam generated
by boiling water, which would bounce
off the ingot surface.
Homogenisation: Before being
extruded, all aluminium aerospace
alloys are thermally treated using
homogenisation practices to dissolve
soluble constituents, to reduce microsegregation, and to precipitate dispersoids for grain size control.
Hard alloys need several hours at
60
temperature for soluble elements to
diffuse from richer to more dilute
solute regions and to modify insoluble phases at grain boundaries. Zinc,
silicon, magnesium and copper are
soluble and so diffuse relatively fast,
while chromium, manganese, iron,
nickel and cobalt have low solubility and are slow diffusers. Chromium,
manganese, vanadium, zirconium and
iron precipitate during homogenisation and help control grain size.
If thermocouples malfunction
or if the operators heat the load too
fast, then non-equilibrium melting
(NEM) happens. NEM results when
solute-rich areas are heated to above
their local melting point. NEM causes
When manufacturing products suitable for aerospace applications, all
steps in the production process are
critical for optimal performance
characteristics. It is the attention to
detail that management must enforce
to ensure premium aluminium ingot
for extruders. Only if the internal
structure of the ingot is correct, the
downstream forming operations can
produce premium extruded products
for the aerospace industry.
Authors
Lorraine Fortier is Director for Process
and Quality Control at Almex. Shaun Hamer is Vice President for Projects at Almex.
Both are based in Long Beach, California,
U.S.A.
Homogenisation furnace
ALUMINIUM · 1-2/2009
CASTHOUSE SOLUTIONS
Cleaning and maintenance
of crucibles and tubes/siphons
D. Privé, Chicoutimi
Crucibles must be cleaned and maintained to optimise metal transportation from the potroom to the casthouse. Crucible cleaning involves first
the removal of metal/bath deposits,
followed by crucible preheating and
drying. Tube/siphon cleaning and
preheating are usually conducted in
a common location in the smelter.
Stas is known worldwide for the
manufacture of high technology
equipment for the aluminium industry. The efficiency and reliability of
those technologies have been proven
over the years, to the satisfaction of
customers such as Mozal, Mozambique; Hillside Aluminium, South
Africa; Aluminerie Alouette, Canada;
Aluminium Bahrain, Kingdom of
Bahrain; Alcan Alma, Canada; Sohar
Aluminium, Sultanate of Oman; Rusal
Taishet and Boguchansky, Russia; and,
more recently, Emirates Aluminium
in the United Arab Emirates.
Dirty crucible
ALUMINIUM · 1-2/2009
Images: Stas Inc.
A fully integrated solution for automated cleaning and maintenance
of crucibles and tubes/siphons is
now available through Stas Inc.,
which is known worldwide for
its foundry equipment. This integrated solution, where cost and
environmental factors are taken
into account, includes equipment
supply and integrated control/information systems.
Crucible cleaner, Alcan Alma
Hot and cold crucible cleaner
Crucibles need to be cleaned on a regular basis to remove deposits of bath
material and aluminium that accumulate on the interior sides and bottom and which would progressively
reduce the crucible capacity.
Crucibles are often cleaned manually or with machines after cooling to
room temperature. Such operations
cost time and money, and they can
damage the refractory lining. They
also expose operators to noise and
dust.
Stas has developed and commercialised a hot crucible cleaner, which
can rapidly clean both cold but hot
crucibles with an optimum cutting
action within a few minutes. Due to
the automatic action of the cleaner,
it saves considerable cost for operators’ time. Both single and dual head
machines are available for different
crucible sizes.
The Stas crucible cleaner is designed to include qualities such as
robustness, quality and reliability of
components as well as easy maintenance features.
Features and benefits of the equipment include:
• Cleans crucibles rapidly while they
are still hot, which means they can
be quickly returned for use. The
automatic cleaner can easily
©
Cleaned crucible
61
CASTHOUSE SOLUTIONS
treat 15 crucibles per shift.
• Cleans more than one size of
crucible.
• Cleans crucibles hot or cold.
• Has capacity to treat all crucibles of
a new plant, and still has comfortable margins for further expansion.
• Extends refractory life due to
uniform cutting action.
• Eliminates exposure of operators
to dust, hot particles and noise.
• Cuts under accurate computer
control; proprietary, optimum
advance of rotating cutting head.
• Obviates special crucible handling
or preparation: simply place
crucible on tilting table.
• Includes efficient dust collector
system.
Crucible preheaters and dryers
Worn crucibles for both metal and
bath are regularly relined with a refractory lining prior to returning to
service. It is important for safety and
quality that these linings are carefully
dried and preheated. An electrical
preheating and drying system has
been designed and commercialised
by Stas. It produces no pollutants and
is virtually noise free. This means
there is a considerable reduction in
energy costs, with a total control over
the entire heating cycle, thus ensuring
a more uniform heating distribution
prior to the first molten melt being
charged.
For safety purposes, a computer
system supervises and reports the
heating conditions of each crucible.
The basic equipment consists of
the following main modules: a heating lid, a structure, a lifting device for
Metal crucible preheater and dryer
62
the lid, a power panel and a control
station. Features and benefits of the
equipment include:
• Low operating, maintenance and
capital costs.
• Automatic operation: no
dedicated operator.
• No pollutants and noise free.
• Reduced energy costs.
• Better temperature control, avoiding cold spots and thermal shocks.
• Safe monitoring and reporting
conditions.
Tapping tube and
siphon pipe cleaning machine
Tapping tube cleaning machine:
Cleaning of tapping tubes is necessary to remove the accumulated residues inside the tubes. A tapping tube
cleaning machine (TTCM) designed by Stas includes an
electrically-
Tube cleaning station
driven cleaning tool powered through
a variable drive controller. The rotation speed adapts to suit the tube dimensions as well as the level and type
of obstruction. The cleaning machine
is designed for robustness and ease of
maintenance, and it uses high quality
and reliable components.
Features and benefits of the TTCM
equipment include:
• Cleans tapping tubes plugged with
bath, or partially plugged with a
mixing of bath and aluminium.
• Eliminates exposure of operators
to dust, hot particles and noise.
• Is an intrinsically safe machine.
• Powers TCM rotation of the
cleaning tool and translation of
the carriage using electric drive
and control.
Siphon cleaning machine: Deposits of
dross and aluminium progressively
build up on the interior walls: they
necessitate regular cleaning to keep
the openings free of obstruction, and
so maintain flow rate. Traditional
methods used to clean pipes are very
dangerous: the cleaning tool and hose
is normally pushed manually into
the tube. The operator risks contact
with the hot siphon and the rotating
head. The Stas siphon tube cleaning
machine improves operators security
level.
Stas has developed a semi-automatic or automatic pneumatic reamer
that can be installed in a potroom or
adjacent building. Within a few minutes it quickly cleans either straight
or curved tubes. Due to the extremely
rapid cleaning action, tubes can now
be cleaned before every siphoning operation, thus extending the life of the
tubes/siphons considerably.
Stas siphon tube cleaning machine
is designed to clean tubes whilst either
the crucible is on the stand (attached
to the cover), or else detached from
the cover. When the cover is on the
crucible, this saves time as
tubes do not need to be
removed, thus increasing productivity.
Features and benefits of the equipment
include:
• Cleans siphon/tubes
hot and, if necessary, whilst
attached to crucible.
• Adapts to different shapes and
sizes of tubes.
• Reams according to the contours
of the interior tube walls.
• Is available as fixed or mobile
units.
• Eliminates exposure of operator
to dust, hot materials and noise.
• Cleans faster than existing
methods.
• Uses no electricity.
• Adapts to different shapes and
sizes of tubes.
• Can function automatically: the
operator needs only to install and
to set up the pipe on its stand,
clamp it and start the automatic
cycle.
Siphon tube preheating system
Siphon tubes transfer liquid metal
from a crucible to a furnace. After
ALUMINIUM · 1-2/2009
CASTHOUSE SOLUTIONS
Siphon tube cleaning machine
cleaning and before placing the tube
into the furnace, the siphon and tube
need to be preheated, which can be
done using the siphon tube preheating station, an electrical machine used
Siphon tube preheating station
to preheat siphons before duty. The
siphon tube preheating station consists of a siphon support, a blower/
heater assembly and a collecting system.
Author
Dominique Privé is Marketing Manager
of Stas Inc., which is based in Chicoutimi,
Canada.
System-wide solutions from Precimeter
M. Terner, Hönö
The Continuous Level Probe (CLP)
is extremely accurate and it works
up to over 800°C (1472°F). The CLP
is a true high-tech product. Based on
induction, the sensor has been specially designed to withstand extreme
heat in everything from its form to the
materials employed. Together with an
appropriate protective tube, the sen-
ALUMINIUM · 1-2/2009
sor can be submerged directly into the
melt in a closed system without any
forced air cooling.
For aluminium applications, the
most commonly used protective tube
is made of sialon. It provides excellent
protection for the sensor in a
melting or holding furnace.
Stainless steel, titanium and
chrome steel protective tubes
are also available, depending on target metal and application.
In combination with an appropriate electronics box, also available
from Precimeter, the probe can be
integrated into an existing or a new
PLC system to be a part of the process
control. Figure 1 shows a furnace under CLP surveillance. The electronic
box is available in several versions
and constitutes a crucial part of the
CLP system.
The most basic box, MGK 1000
C, is analogue with a 4-20 mA output signal. The next model offered
is the MG 2001. This is an analogue
all-round electronic device. An LCD
display and four trimming devices are
located on the front plate to configure
the settings 0 to 100% in addition to
limit one and limit two. This box is
suitable for intermediate installation,
particularly in switchgear cabinets or
wall housings.
The third type of box is the MP
2010. This is a microprocessor controlled unit with LCD display and
keys for configuration on the front. As
the MG 2001, this box is
suitable for
intermediate
installation
in switchgear
cabinets or
wall
housings. These
products are
made from only the
Images: Precimeter
The real backbone in the Precimeter product portfolio is the ProH
Digital Camera metal level sensor.
This sensor is specially designed
and continually improved for molten metal applications. The focus of
the Precimeter business has traditionally been within the aluminium
foundry industry. Thanks to constant product and company development, however, the business has
expanded to include die casting as
well as iron foundry automation
applications. With the addition of
the sensors and actuators for die
casting, Precimeter has now extended its product range to include
systems for improved quality and
safety in an aluminium die casting
foundry. This article describes the
most important products and their
use in the die casting foundry.
Fig. 1
best
©
With offices and production in Sweden,
Germany and the U.S., the Swedish
based Precimeter Group is a global leader within the field of molten metal level
control. With the addition of regional
sales offices in Japan and Brazil, Precimeter has brought its service closer to its
world wide customers. The technology
is based on 20 years of R&D, combined
with experience in the foundry industry.
63
CASTHOUSE SOLUTIONS
quality materials, and are verified
with a good quality assurance system.
Each sensor is tested before delivery
and the results are documented. The
standard connector cable for furnace
control is one metre. However, greater
lengths are available upon request.
The non-contact Proximity Level
Probe (PLP) can be used to control the
maximum filling level of, for instance,
a holding or melting furnace. The PLP
withstands over 800°C (1472°F) and
is suitable for aluminium, magnesium,
lead, tin and zinc. This sensor is made
for smaller measuring ranges. The
PLP is designed to work in combination with the same electronic boxes
mentioned above for the CLP.
The range depends on the diameter of the head. The standard head,
with a diameter of 115 mm, can measure over a range of 100 mm. One of
the biggest advantages of the PLP is
that since it does not come into contact with the melt no metal adheres to
its surface, and so does not change its
performance with time.
Furthermore, Precimeter markets
the ProH Digital Camera Sensor. The
ProH combines high performance laser triangulation with all the control
functions you need to maintain an
accurate molten metal level. The pat-
Fig. 2
ented technology results in very high
performance and accuracy. The advanced technology makes it possible
to obtain stable readings even when
the material reflectivity changes dramatically and during harsh conditions
like steam and smoke. The ProH exists
in different models suitable for different measurement ranges.
One of the more popular applications for the ProH is the control of a
stationary or tilting furnace. The ProH
in combination with the appropriate
64
control system, i. e. the MLC-M1 as
seen in figure 2, very precisely controls the flow of the molten metal in
the launder. If needed, the control system will open the tap hole by initiating
a movement in the tap out actuator
(here a TXP-6E) based on the output
signal from the sensor. This type of
system gives a very accurate control
of the metal level in the launder.
Precimeter now markets a new actuator for gravity die casting applications. It is
Fig. 3
called the
MFX-01. The actuator
is used in open and close functions
and offers extremely good accuracy
in filling sand moulds. In combination
with the ProH and the PLP, a system
can be built up to accurately control
the filling level of a sand mould (Fig. 3).
Precimeter also offers the necessary
automation system to get the system
up and running properly. Thanks to
more precise filling of the sand mould,
end product quality will increase.
By avoiding unnecessary over-filling of the sand moulds, the scrap rate
can be reduced dramatically. This also
reduces the rate of remelt, thus further saving energy and raw material.
This also makes the implementation
of a Precimeter system for die casting
a good choice from an environmental
point of view.
The MFX-01 consists of the electro-pneumatic cabinet and a pneumatic actuator unit. The actuator has a
stroke of 60 mm and the air consumption is 0.83 NI per cycle at 6 bar.
As an alternative to electrode
scanning, Precimeter offers a purpose built sensor to allow positioning
of the exact operating point of the
spoon. The PLP replaces the unreliable electrodes in this application. The
specially developed sensor for robot
automation is called PLPR, where R
stands for Robot.
The PLPR is made for smaller
measuring ranges and is delivered in
two standard versions, with 50 mm or
100 mm measurement range. The sensor with the smallest measurement
range has a diameter of 70 mm and
the bigger has a diameter of 115 mm.
This means that the sensor does not
take up much space when mounted.
The PLPR is a non-contact sensor.
This means that no metal deposits will
build up on the sensor during the process. This is a common problem with
electrodes. As metals build up on the
electrodes, their precision and reliability deteriorate. This results in poor
casting quality and could be costly in
terms of remelts and rejects.
As oxides build up on the
electrodes, the risk of dipping the entire robot arm
into the melt increases, and
could result in costly down time. This
is something that will never occur
with the reliable non contact PLPR.
The sensor is delivered together
with the MGK 1000 C measuring electronics unit. Each system, consisting
of sensor and measuring electronics,
is calibrated to be used together. The
MGK 1000 C is analogue with a 0-10 V
output. It has 3 potential-free contacts
for the output signal. The power supply should be 18-36 V DC with a maximum current consumption of 15 W.
The PLPR is easily installed. If you
have an existing system with electrodes, you will easily get the fix point
of the sensor. From the maximum immersion point of the electrodes, just
add a safety distance of 5 mm and a
working point of 10 mm, thus fixing
the sensor 15 mm above the maximum electrode immersion depth.
The PLPR is pre-calibrated to the
desired measurement level at the
Precimeter lab before delivery. Each
probe is calibrated together with each
electronics box making up one PLPR
unit together. Therefore no calibration is needed before mounting. After
mounting, a re-calibration is needed
to fit the individual setup.
The re-calibration – or the calibration in the warm condition – is easy
to do. This specific calibration is made
to fit the setup on site. During the recalibration, the alarm levels of the
electronic box are set to fit the desired
levels. 0%, or the 0 level, is set to 0 V
ALUMINIUM · 1-2/2009
CASTHOUSE SOLUTIONS
Fig. 4: Proximity Level Probe used on a robot arm
DC and the desired maximum level is
set to 10 V DC.
If you observe the guidelines for
mounting and operation, no special
spare parts will be necessary. This is
because the sensor does not contact
the melt, so it is not subject to oxide
adherence or corrosion. The PLPR
is
designed
and built to
withstand temperatures up to
800°C (1472°F).
It will continue
to perform cast
after cast and
will not change
its performance
or output signal
over time. The
main
advantages with the
PLPR system
are as follows:
• easy calibration and instal-
lation;
• no contact with the melt;
• no metal build up;
• no oxide adherence;
• no robot arm repairs;
• less down time than electrodes;
• accurate approach of the point
of reference in every cycle, cast
after cast.
Given the above mentioned advantages, the implementation of the PLPR
system pays off extremely fast. Due to
the low maintenance and easy installation, Precimeter systems are known
to pay off as fast as within a year.
The last sensor to be introduced
here is the Ring Probe (RP). The ring
probe is similar to the other sensors
introduced in this article. It is suitable
for the control of the metal level in a
riser tube in for instance low pressure
die casting. The ring is pushed over
the tubing, so that the injection process can be started with rising metal
from a pre-adjusted reference point.
Author
Magnus Terner is a part time M. Sc. student
at Chalmers University of Technology in
Gothenburg, Sweden. He has worked for
Precimeter Group as its Marketing Manager since mid 2007, after finishing his
B. Sc. in Industrial Engineering and Management.
T.T. Tomorrow Technology’s solution to improve aluminium
casthouse management and operator’s working conditions
G. Magarotto, Due Carrare
The floating price trend for primary aluminium and the increasingly
difficult scrap availability on both
the domestic and international
markets are putting great pressure
on the secondary aluminium industry. To optimise melting power
the industry must invest in innovative solutions. It must also take
into account the need to update
and improve the working environment as well as the operators’
working conditions in line with
European and international rules.
T.T. Tomorrow Technology S.p.A.,
based in Padua/Italy, specialises in
designing and producing special vehicles and systems for the metallurgical industry. In this, its primary aim
is to offer a wide range of innovative
and efficient solutions. The company,
located in Due Carrare (Padua) in the
north-eastern industrial area of Italy,
has focused its study on activities pe-
ALUMINIUM · 1-2/2009
ripheral or subsidiary to the melting
into consideration all these elements
process, and has thoroughly analysed
and many others specific to each
the needs of both primary and secplant, and includes them in drawing
ondary aluminium foundries.
up a project whose main goal is to alThe overall picture emerging from
low the customer to use his own plant
this study is very complex. It reveals
to the utmost capacity but also at ©
Photos: T.T. Tomorrow Technology
that producers
having similar
melting capacity often obtain very different results
in production
and quantity,
depending on
the location of
their activity,
on the foundry
lay-out, on the
staff’s experience and on
the
subsidiary equipment
available. The
Loading of material into T.T. special vehicle unloading bin
company takes
65
CASTHOUSE SOLUTIONS
the lowest possible cost. The marketing model is based on the following
main hallmarks:
• constant evolution and innovation
of products, (more than thirty types of
multifunctional charging and drossremoval vehicles, charging machines
mounted on rails, and automatic skimmers are available in different sizes);
with the most important primary as
well as secondary aluminium companies, representing the largest share in
this sector on the Italian market, and
a large portion elsewhere in Europe.
These partners have adopted the
technical solutions offered.
The special equipment offered by
T.T. Tomorrow Technology also consists of multifunctional
vehicles and automatic
equipment which carry
out the following three
subsidiary operations of
the melting process:
1.) loading of the melting
furnaces;
2.) removal of surface
dross and stirring of the
bath;
3.) cleaning of the furnace
bottom and side-walls.
The objective is to
minimise the manpower
The cleaning of the furnace bottom side is performed by
needed to manage the fura tool flanged to the machine telescopic element
naces and thus to reduce
the loading, dross-removal
and cleaning times very substantially.
• a strong policy to foster customer
loyalty through attentive after-sales
Thanks to the special characteristics
activity and through training proof the products and to the adoption
grammes for the customers’ drivers,
of special automatic controls, the furso as to operate and maintain the
nace-loading, skimming and cleaning
equipment and vehicles at peak peractivities have become a well-manformance;
aged procedure since metal unloading
• round-the-clock service support:
is more uniform, dross removal is very
start-up, commissioning, emergency
rapid and cleaning is very precise.
repair and on-call support maximise
In particular the innovative loading
uptime and protect the customer’s acbin system of these machines allows
tivity;
them to fill up the melting furnace in
• preventive maintenance proa regular manner with any kind of
gramme to maximise the life of the
scrap, be it extrusions, billets, ingots,
vehicles and to minimise downtimes,
T-bars or generic scrap. The unloadreducing unplanned expenditure and
ing process for a 9-m3 bin takes only
component degradation. A reliable
a few seconds, so that the metal is immaintenance service improves opermersed immediately without splashating conditions while monitoring the
ing and without any damage either to
life cycle of the products.
the refractory lining or to the furnace.
The added value of the company’s
The advantages are evident.
products and solutions resides in the
The loading speed and optimisaability to support the customers’ tartion of the metal distribution inside
gets. A customised product is offered,
the furnace allows optimum burners
which also anticipates future properformance, since they always operduction needs. Product efficiency is
ate under the best working conditions.
complemented by prompt after-sales
This avoids remnants of unburnt gasservice carried out by qualified teches inside the furnace and the related
nicians assisted by an external team
emission problems.
of experts.
Another important advantage
The company’s strategy has reachieved by T.T. multifunctional masulted in established partnerships
chines is their use during the dross
66
removal and cleaning process. Previously, this was carried out either by
fork-lift trucks or by modified mechanical shovels, with the following
problems:
• long performance times,
• considerable damage to the furnace refractory lining;
• poor visibility for the operator;
• high heat exposure for vehicles not
designed for that purpose;
• high heat exposure for the vehicle
operator, who also risks metal splashes;
• considerable difficulty in controlling the dross to be removed;
• considerable difficulty in cleaning
the furnace bottom.
The use of T.T. Tomorrow Technology special machines has many
advantages, as follows:
• charging time for up to 9 cubic
meters of solid scrap is less than 1
minute;
• automatic checking and recording
of the weight of the solid scrap;
• automatic control of the charging
box position;
• no damage to the refractory lining
during operations;
• dross removal times reduced by
80%;
• precise control of the dross to be
removed;
• excellent visibility for the operator,
thanks to the lifting driver’s cabin;
• high level of safety for the operator and vehicle, since working conditions incorporate the most innovative
cabin protection;
• automatic control of the cleaning
tool pressure on the refractory lining
surface;
• drastic decrease of dust and fume
emission during charging and skimming operation;
• remarkable noise level reduction
during operations subsidiary to the
melting phases.
The special versatility of any of
these machines is greatly appreciated by T.T. customers. No special
knowledge is required to operate T.T.
multifunctional vehicles.
Author
Giovanni Magarotto is Managing Director
of T.T. Tomorrow Technology.
ALUMINIUM · 1-2/2009
Photos: Gautschi
M E LT I N G F U R N A C E S
Fig. 1: Gautschi 135 tonne RTC melting furnace
Installation of a new 135 tonne RTC melting furnace
O. Moos, M. Ducharme, Tägerwilen and E. Thanoukos, T. Saravas, Inofyta-Viotia
Gautschi Engineering GmbH of
Switzerland has recently delivered
a new Round Top Charged (RTC)
aluminium melting furnace to
Elval S.A. in Greece. A maximum
of 135 tonnes of aluminium can
be charged into the furnace and
melted with a melting rate of up to
30 tph. The design of the furnace
allows for an energy-efficient operation while meeting production
requirements and environmental
standards.
Elval is the sole Greek producer of
flat rolled aluminium products, with
production facilities located in Inofyta-Viotia, Greece, and Bridgnorth,
UK. The company was established in
1973 and has a production capacity
of 200,000 tpy of rolled products. The
company has grown over the past 35
years to become known world-wide
as a supplier of rolled products. Its
reputation is based on its knowledge-
68
able workforce and on a philosophy of
continuous improvement and investment in state-of-the-art equipment.
Gautschi Engineering, established
in 1922, is one of the world’s leading
suppliers of casthouse equipment for
the aluminium industry around the
world. As a supplier of melting and
holding furnaces, and of various types
of casting machines and heat treatment equipment, Gautschi understands the requirements of modern
production facilities.
The new furnace has been installed
in an existing building and implemented into an operating production
line for rolling slabs (Fig. 1). Originally, this production line consisted
of a closed-sidewell melting furnace,
a holding furnace and a vertical casting machine, including all necessary
peripheral equipment. To meet an
increased production output, Elval
decided to install an additional highperformance melting furnace – which
resulted in the purchase of a Gautschi
RTC melting furnace. Overall project
duration from contract award until
start of production was approx. 19
months.
The new melting furnace is typically charged with 100 to 110 tonnes of
solid metal consisting of clean scrap,
sows and ingots, using the overhead
crane and Gautschi charging buckets (Fig. 2). After the melting process
is complete, liquid metal from the
closed-sidewell furnace serves to top
off the liquid metal in the RTC melting
furnace. Once the melt has been homogenised and the composition of the
alloy verified, the metal is transferred
to the nearby holding furnace.
As this new furnace has been installed in an existing building, the
furnace layout was essentially determined by the space available and by
the operational requirements of the
casthouse. In the case of Elval, the
supplied round top charged melting
ALUMINIUM · 1-2/2009
M E LT I N G F U R N A C E S
furnace has an inside diameter of 9
metres and allows for a maximum
bath depth of 870 mm when fully
charged. Cleaning, de-drossing and
other activities inside the furnace can
be conducted through the door fitted
to the front of the furnace. An electrically operated gear box motor raises
and lowers the door, whereas pneumatically operated cylinders activate
the door clamping mechanism. A tight
seal between the door and the door
frame further minimises the energy
losses.
A conventional refractory design
uses high alumina bricks in the hearth
and in the lower and upper sidewalls.
This allows the construction to withstand the harsh casthouse environment. Special pre-cast refractory
sections are used for the door frame,
avoiding the need to provide a potentially dangerous cooling water system.
The burner ports were formed with
formable refractory material.
An air cooled steel ring supports
the dome-shaped self-supporting roof
refractory lining. A blower installed
on a platform attached to the steel ring
continuously supplies cooling air to
avoid any distortion of the steelwork
due to the excessive temperature
from the furnace. A dedicated crane
handles the furnace cover to charge
the furnace. After lifting up the cover
from its position on the furnace by approximately 150 mm, the crane moves
the cover sideways to give access to
the furnace interior for the charging
sequence.
Three regenerative burner pairs,
strategically positioned around the
perimeter of the furnace, optimise
heat transfer into the load. The integrated regenerative system ensures
cost-efficient operation while meeting environmental standards and
rational maintenance requirements.
Combustion air is taken directly from
inside the building. An additional
cold air burner is installed to avoid
the operation of the regenerative
combustion system during interruption in the production process (e. g.
due to maintenance shut downs of
the casting machine). However, the
power of this cold air burner is designed to keep the furnace hot and the
aluminium liquid respectively. It does
ALUMINIUM · 1-2/2009
Fig. 2: Charging the RTC melting furnace
not allow for a continuing melt cycle.
In addition, an electro-magnetic
stirrer located underneath of the furnace further decreases energy consumption through better homogeneity
of the bath and through lower metal
losses, due to limiting the bath surface
temperature.
Once
the
content of the
melting furnace
is ready to be
transferred
to
the nearby holding furnace, two
pneumatically
operated plugs
will open (Fig. 3).
The transfer of
the liquid metal
takes approx. 25
to 30 min. Using
such a system
ensures safe operation, as the
push button station to open and
close the tapping system is
installed at a safe distance from the
plug mechanism. Therefore, the operating personnel do not risk exposure
to liquid metal splashes.
The furnace was completed on time
and commissioned successfully, even
though the installation took place in
a fully operational casthouse. Good
cooperation of all parties involved
made this success possible. This furnace represents another milestone
in the history of Gautschi, as it is the
largest liquid metal furnace (by capacity) ever supplied by the company. As
with all of its products, Gautschi is
constantly improving the technology,
and adapts equipment to suit each
customer’s unique requirements and
to meet market demands.
Fig. 3: Pneumatically operated tapping device
Authors
Dr.-Ing. Oliver Moos is head of Research
& Development and Martin Ducharme
is Project Manager. Both are at Gautschi
Engineering based in Tägerwilen, Switzerland.
Dipl. Mechanical Engineer E. Thanoukos
is Technical Manager and Dipl. Mechanical Engineer T. Saravas is Project Manager.
Both are at Elval, based in Inofyta-Viotia,
Greece.
69
M E LT I N G F U R N A C E S
Modern furnace installation and
design criteria – overview and examples
C. Hamers and N. Jäger, Oberhausen
On existing furnace systems there are
some basic elements which can be
modernised without major downtime
and major invest costs. This would
interest foundries which need effective development and progress, but in
small steps.
Without touching existing infrastructure, such incremental improvements can be to
• modernise the door system
• install an automated bath thermocouple
• install a furnace pressure control
system in combination with flue gas
regulation valve and manually operated lids/doors on all smaller furnace
openings.
These elements can be installed
during a normal furnace revamp (e. g.
change of refractory lining on walls
or roof), because they can be pre-as-
70
sembled and then exchanged resp.
installed relatively quickly.
Modern furnace door installation
elements, connected by universal
joints into one common door holding frame; this flexibility serves:
- to keep the furnace chamber well
sealed by compensation for
thermal deformation
- to prevent flames from escaping,
as this would cause damage
- to prevent false air from entering,
as this would create dross
• Depending on type of furnace, the
furnace door frame may be water
cooled (recommended for larger furnace doors) so as to reduce thermal
deformation and to keep the furnace
front panel in its correct shape.
As an example of such a modern,
water-cooled furnace door system,
the Figs. 3 and 4 show a door of a
120 t melting/casting furnace, with
Figures 1 and 2 give an example of
how IST Industrieofen + StranggiessTechnik GmbH has modernised door
systems.
To remove the old door system,
we first prop up the old front of the
furnace using supporting beams.
Then we replace the old frame with
a new front plate incorporating the
structure for a new furnace door. A
modern furnace door installation, as
we understand it, contains the following key elements:
• The furnace door seals tightly,
when closed, yet when open gives
full and easy access to all of the
inside furnace
chamber
• A hydraulically
mechanism raises and
lowers the door,
using
either
one
cylinder
(via chains and
chain wheels),
or two cylinders (which can
be
equipped
with integrated measuring
systems
for
uniform level
movement)
• The
door
travels on some
mechanism
such as a rail
or
hydraulic
cylinder which
presses it against
the frame when
it closes
• The
door
panel is built
of two or three
Figs. 1 and 2: Door system before and after modernisation
ALUMINIUM · 1-2/2009
Photos: IST
As technology develops rapidly,
so automotive and aircraft industries impose ever high quality
requirements on the production
and processing of specific aluminium alloys. This also has a strong
impact on foundry quality needs
and on furnace design. So furnace
designers today are faced with the
following acute needs of aluminium foundries: to raise product
quality, permanently raise productivity, reduce energy consumption,
ensure rapid pay-back to amortise investment and/or quickly
generate profits from changes to
equipment and modernisation of
plant components. To meet these
major needs there are two possible
routes: to buy new, state-of-the-art
melting and casting equipment, or
to modernise existing equipment
without long down-times. This paper shows how technology can be
used to modernise existing equipment, as well as how such aspects
provide a focus for the design of
new melting and casting furnace
lines.
M E LT I N G F U R N A C E S
an opening of 9.2 x 1.95 m. The door
is equipped with two lifting and two
clamping cylinders, and with a water
cooled frame. The furnace has a bath
surface of approx. 64 m2 and it can
melt 22 t/h using 3 pairs of regenerative burner with 5 MW each (15 MW
in total). This system was installed in
1999 and it still operates to end-users’
satisfaction.
Bath temperature measurement
To maintain a correct and stable temperature in the melt, it is important to
have accurate and reliable temperature measuring and regulation devices. The point of measurement should
be located close to the furnace spout
(for precise burner control and temperature adjustment while casting),
and the measuring element should be
equipped with an automatic drive and
position control system.
This system ensures that the measurement will always be taken at the
same point in the melt (e. g. 200 mm
below bath surface).
The drive should also have an
electronic link to the furnace door
movement. This automated system
will then move the bath thermocouple whenever the door opens so as to
shield it from damage by skimming or
charging tools.
A double thermocouple protected
in a pipe made of Sialon gives a major
improvement in the precision and reliability of temperature measurement,
and hence in metal quality.
Furnace pressure control
and regulation system
To optimise heat transfer from the hot
burner gases to the charged metal, it is
important to keep such hot gases inside the furnace chamber for as long as
possible, before they escape through
the flue gas outlet. Also, cold air should
not enter the furnace. Therefore, the
furnace chamber should stay under a
slight overpressure. To establish and
maintain this overpressure, it is necessary to:
• install a properly sealed door system
• install a good lid or gate on all furnace body openings not permanently
used
• install a lid on the furnace outlet
spout.
In flue gas outlet, a pressure regulation valve (gate type or butterfly
type) should control the pressure in
the furnace. This valve, actuated by
electrical or pneumatic drives, regulates the flow of the flue gases going
out of the furnace chamber. It should
be sited after the first bend in the flue
gas pipe coming from furnace roof, as
the Fig. 6 (next page) shows.
This pressure regulation unit acts
on signals from a sensor with a probe
tube installed inside the furnace
chamber. The probe tube should be
close to the roof in an area of most
calm furnace atmosphere, i. e. far
away from turbulence around the
furnace door and the burner. It measures the pressure difference between
the atmosphere inside and outside the
furnace. It compensates for pressure
influences such as burners, chimney
draught and wind.
Note: if metal or dross treatment
employs chlorine, salts or other corrosive chemicals, then the valve blade
should be made of a ceramic material, which has higher resistance than
metal against corrosion attack by
chemicals in the hot flue gas.
A more durable blade reduces interruptions for maintenance works
and allows longer furnace operation.
Such a pressure regulation unit was
installed by IST in August 2006, and
is still running without having needed
any replacement.
Features of a major modernisation
of an existing furnace system
A further step, involving more changes
to the furnace and its infrastructure,
would be to modernise the burner
system and install a stirring system
(electromagnetic stirrer system), specifically needed for aircraft alloys and
certain other critical alloys. These
components need a major revamp of
the furnace, but this can still be done
within a slightly extended stand-still
period of a furnace line.
Burner system: The burner system
is a major element of a furnace, and so
it needs careful consideration when
updating existing furnaces as well as
when designing new installations. An
optimised burner system should include the following items:
• modern burner heads and nozzles
combined with furnace control elements as regards gas and air regulation
• electronically controlled gas/air
ratio control, to ensure the most effective and economic combustion (and
also to maintain a high level of safety
in operation)
• correct burner design, burner location, flame characteristics and flame
directions; it is most important to
choose these factors so as to optimise
heat transfer (rather than merely
installing a large burner capacity).
Besides these factors, the following
items also need to be considered:
- characteristics of the metal
©
Figs. 3 and 4: An example of a modern, water-cooled furnace door system
ALUMINIUM · 1-2/2009
71
M E LT I N G F U R N A C E S
surface resulting from the process
(dross on bath)
- need to reduce roof temperature
- effect of varying bath depth
- options to gently stir the bath to
redistribute the localised surface
heat (e. g. by devices like gas injectors, rotating mechanisms, or moving electromagnetic fields).
A very high burner capacity often results only in higher energy consumption, rather than in an optimised heat
transfer. This is due to the fact that
the area and the physical condition
of the metal surface are permanently changing during melting (and/or
skimming).
Consequently the firing rate should
be permanently adjusted to optimise
energy consumption as well as to
maximise heat transfer. Furthermore,
the heat requirements and heat absorption capacity of different alloys
can vary significantly, so they require
different process parameters.
The most efficient burner system
(no matter whether it is regenerative,
recuperative or cold air type) is a system
which operates at 100% capacity for
the largest fraction of the melting cycle.
An oversized burner must regulate
sooner to reduce its output. This results in less favourable heat transfer
and so in a longer melting cycle.
Figure 7 is one example of a furnace modernisation which employs
some of the smaller and some of the
major components mentioned above.
These changes modernised and converted an existing holding furnace
into a powerful and efficient melting
furnace by using the following main
elements:
• new furnace door system of the
sealed type; the door opening was
enlarged from 3.0 x 1.6 m to 3.87 x
1.7 m, giving access to a bath surface
is 28 m2,
• new burner system (change from
cold air system with 4 heads and 5.2
MW total capacity to a regenerative
burner system) with following key
data:
- 2 pairs of regenerative burners
with 6.2 MW each
- melting rate increase from 5.5 t/h
to approx. 10 t/h
- nominal energy consumption of
570 kWh/t
• installation of a furnace pressure
control system.
The result is a modernised furnace,
operating according to state-of-theart technology, taking good care of
environmental and energy consumption issues, and giving much higher
productivity.
Installation of a contact-free metal
mixing device: For certain alloys, it is
difficult to dissolve the different alloy
components and to keep them in solution. The traditional way to mix a
melt is by means of a stirring blade installed on the front of a fork lift truck,
which stirs the melt through the open
door shortly before
casting begins.
But such manual
mixing incurs serious heat losses, so
that the more uniform composition
is offset by variable
temperature of the
liquid metal and so by consistent alloy casting conditions. So to ensure
uniform metal quality, a non-contact
mixing method was developed: the
magnetic stirrer.
There are several different types
of magnetic stirrer, but the most
practical installation sits underneath
the furnace and stands free from the
furnace body. Such an installation
requires a non-magnetic window in
the furnace bottom. This is usually a
stainless steel plate which supports
the refractory lining. The stirrer can
be mounted on a moveable trolley
with a lifting mechanism.
This trolley brings the stirrer underneath the furnace, lifts it into its
working position, and keeps it there as
long as required by the programme in
the PLC system. Such a system can be
installed even in an existing furnace,
as Fig. 8 proves. For this 120 t melting/casting furnace the revamp engineering work and the supervision was
executed by IST.
First the furnace bottom was
cleaned and the lining was taken out
in the selected area.
Based upon mechanical stability
requirements and on FEM calculations, the window was cut in the bottom and the new supporting and ©
Figs. 5 and 6: Before and after the pressure regulation valve was installed
72
ALUMINIUM · 1-2/2009
Please be our guest
and discover the benefits of the
Aluminium ePaper yourself in a
free three-month trial:
M E LT I N G F U R N A C E S
reinforcing beams were installed. After this, the stainless steel plate was
installed and the refractory lining was
completed again.
All the work on site was carried out
within less than four weeks, including
the re-lining work and preheating of
the furnace.
Summary
A lot of furnace modernisation is
easy to do, and the improved quality
and quantity of metal produced will
repay the investment. To solve possible existing problems, it is important
to thoroughly investigate the current
Fig. 7: Revamp of melting furnace No.5 for HAW
equipment and its use.
When designing a new plant, it
is essential to first clearly define the
production circumstances as well as
the technology to be used, as well as
the targets to be reached. Based upon
such application data, modernisation
projects as well as modern furnace
designs can be developed to optimise
quality and quantity
requirements.
All modernisation
projects, independent of whether it is
modernisation
of
existing equipment
or greenfield installation, should be
studied through the
entire process. This
allows us to identify
the widest range of
positive effects and
to prioritise targets
such as to
• improve
melt
quality
• reduce negative
metallurgical effects
• increase productivity
• increase safety
• reduce
energy
consumption and environmental conflicts
• reach the optimum
return on investment
with the technology
installed.
A modern furnace
design as described
above is a key step
towards improving
casting quantity and
quality, so as to be
able to deliver high
quality products.
Authors
Fig. 8: Reconstruction of a furnace bottom
74
Christian
Hamers
and
Norbert
Jäger
are Managing Directors and partners of
IST Industrieofen +
Stranggiess-Technik
GmbH, based in Oberhausen, Germany.
ALUMINIUM · 1-2/2009
MARKETS AND APPLICATIONS
Anodisationsabwässer – Verwerten statt entsorgen
Um die Entsorgungssituation der
Anodisierbetriebe in der Schweiz näher kennen zu lernen, machten Mitglieder des Verbandes für die Oberflächenveredelung von Aluminium
(VOA) kürzlich Station in Schwyz. Der
Verein Schweizerischer Anodisierbetriebe (VSA) hatte die deutschen
Kollegen eingeladen. Der VSA-Vorsitzende Thomas Betschart betonte,
dass die Zusammenarbeit zwischen
den Ländern immer wichtiger werde.
Und die Schweizer Entsorgungsstrategie sei ein Erfolgskonzept.
So werden die Anodisationsabwässer als technische Neutralisationshilfsstoffe, zur Phosphatfällung,
Vorneutralisation oder zur Aufphosphatierung in den Abwasserbehandlungsanlagen (Kläranlagen) oder als
saurer Reiniger bei der Schweizer
Bahn verwendet. Wie der Vorsitzende der Technischen Kommission des
VSA, Peter Gschwend, erläuterte,
konnten auf diese Weise seit 1990
mehr als 23.000 Tonnen Na-Aluminat, 13.000 Tonnen aluminiumhaltige Schwefelsäure und 800 Tonnen
Phosphorsäure verwertet werden.
Jährlich bringen die Schweizer damit 250 Transporte auf den Weg.
Die Anodisierbetriebe erzielen einen
wirtschaftlichen Vorteil von über
350.000 Schweizer Franken jährlich,
da die Kosten bei rund einem Drittel
der konventionellen Entsorgungswege liegen.
Kaspar Knüsel vom Abwasserverband Schwyz bezifferte den Nutzen
für eine einzige Kläranlage auf mindestens 80.000 Euro pro Jahr – Kosten, die dem Steuerzahler erspart blieben, so Knüsel. Die Verwertung der
flüssigen Anodisationsrückstände sei
zwischen Erzeugern, Transporteuren
und Abnehmern vertraglich geregelt.
Jährliche Audits und Berichterstattungen sicherten das Konzept ab.
In einem Betriebsrundgang erhielten die VOA-Mitglieder Einblicke
in die betriebliche Praxis. Klärmeister
Beat Ulrich führte aus, dass zu Beginn
der Verwendung von Anodisationsabwässern die Arbeitsweise der Kläranlage an die Einsatzstoffe angepasst
werden musste. Aber schon nach kurzer Zeit sei es kein Problem gewesen,
in der Kläranlage die Anodisationsabwässer nutzbringend zu verwenden.
Friedhelm Scholten, Vorsitzender
der Technischen Kommission des
VOA, sieht in dem Schweizer Konzept deutliche wirtschaftliche und
ökologische Vorteile. Leider erkenne
man in Deutschland das erhebliche
Einsparpotenzial nicht. Häufig fehle
es an der notwendigen Beweglichkeit
bei Betreibern und Aufsichtsbehörden. „Hier in der Schweiz haben wir
eine echte Win-Win-Situation präsentiert bekommen, von der sowohl
die Anodisierbetriebe als auch die
Allgemeinheit profitieren“, meinte
Scholten.
N
Multiple cameras supported for automated process control and inspection applications
Infrared thermal imaging system with camera link interface
Ircon, a worldwide supplier of infrared (IR) noncontact temperature measurement, has announced its Maxline
2 system is now available with a camera link interface supporting multiple
thermal imaging cameras for a variety
of automated process control and inspection applications. The system’s
software has a built-in input/output
relay and networking capabilities,
enabling users to manage multiple
processes and communicate with
other systems, if needed, for greater
interoperability and control.
The Maxline 2 infrared thermal
imaging system provides highly efficient and reliable in-line solutions
for temperature measurement,
thermal monitoring and process
inspection in the manufacturing
and research fields. The Maxline 2
systems are available for specialised
applications, such as automated image analysis, fiber-optic preform inspection, and torpedo car inspection.
ALUMINIUM · 1-2/2009
Each system offers automatic calibration, ambient temperature and motion correction features, providing an
accurate and repeatable perspective
of process operations.
The Maxline 2 system with camera
link interface is a complete package
Raytek
consisting of all the hardware and
cable assemblies required to operate
the Maxline 2 thermal imaging camera when interfaced with a camera
link frame grabber. The kit provides
power, serial communication, composite video and 14-bit digital video
to and from the camera.
The Maxline 2 camera is a compact, sealed (NEMA 4 – IP67 rated),
stainless steel enclosed unit with no
external moving parts. An accessory
enclosure keeps the camera cool
and its lens clean in extremely
harsh environments. In addition,
a full range of accessories, such
as air purge and water-cooling options are available for use in hostile
locations. This allows the Maxline
2 system to operate with minimal
maintenance.
The high performance camera
has five temperature ranges and
multiple wavelengths, and is able to
process full-image (320x240 pixels)
temperature radiometry at 60 frames
per second. Fast frame rate and special algorithms allow temperature
measurement of moving processes.
N
75
MÄRKTE UND ANWENDUNGEN
Die ASF-Bauweise von Audi
Die große Kunst des Leichtbaus
Mit den Aluminiumkarosserien
der Modelle A8 und A2 hat Audi
die Gewichtsspirale des „Mehr
Komfort, mehr Sicherheit, mehr
Gewicht“ schon vor über zehn Jahren durchbrochen. Den A2 gibt es
zwar nicht mehr zu kaufen, doch
hat der Ingolstädter Autobauer
seine innovative Leichtbautechnologie kontinuierlich weiterentwickelt. Heute kommt sie unter dem
Kürzel ASF (Audi Space Frame)
bei vier Modellen zum Einsatz:
dem TT, dem TT Roadster, dem R8
und dem A8.
Mit der ASF-Technologie blickt Audi
auf einen Entwicklungsprozess zurück, der zu einer dreistelligen Zahl
an Patenten und zur Auszeichnung
„European Inventor of the Year 2008“
des Europäischen Patentamts geführt
hat. Die Marke hat sich ein breites
Aluminium-Knowhow aufgebaut, das
von der Zusammensetzung der Legierungen über das Gießen und Umformen bis zum Verbinden der Teile
reicht.
Das Gerüst der ASF-Karosserie
besteht bekanntlich aus Strangpressprofilen und Druckgussteilen aus
Aluminium. In dieses Gerippe sind
die Aluminiumbleche, etwa die Dachhaut, mittragend und kraftschlüssig
eingebunden. Je nach ihrer Aufgabe
weisen die Komponenten des Spaceframes ganz unterschiedliche Formen und Querschnitte auf. Wie die
Knochen im Skelett des Menschen
vereinen sie optimale Funktion mit
geringem Gewicht.
Strangpressprofile haben ihre
große Stärke in der gestalterischen
Flexibilität. So scheinen die Seitenschweller beim Coupé und beim
Roadster äußerlich identisch; im Inneren aber sind sie nach bionischen
Prinzipien topologieoptimiert und
ganz unterschiedlich verrippt, was
über ihre Steifigkeit entscheidet –
beim Roadster ist sie noch höher als
beim Coupé. Die Strangpressprofile
des TT bestehen generell aus innovativen Legierungen – das erhöht ihre
Festigkeit weiter und senkt das ©
76
Gewicht noch stärker.
Die extrem belastbaren Gusskomponenten kommen vor allem dort
zum Einsatz, wo lokal hohe Kräfte
eingeleitet werden und Multifunktionalität gefragt ist. Ein Musterbeispiel ist der A-Säulen-Knoten – als
multifunktionales Bauteil verbindet
er den Längsträger, den Schweller,
die A-Säule und den Scheibenquerträger miteinander. Wie alle Aluminiumgussteile zeichnet er sich durch
präzise Geometrie und Raumausnutzung aus.
Das TT Coupé und der Roadster
präsentieren eine neue Varian- ©
Grafik: Audi AG
The Audi ASF design principle
Lightweight design – it’s an art
More than ten years ago the Audi
A8 and the Audi A2, with their
aluminium bodies, put a stop to
the never-ending spiral of ‘more
comfort, more safety, more weight’.
Albeit the A2 model has been
sorted out, Audi has continuously
developed this pioneering weightsaving technology. Today ASF
(Audi Space Frame), as it is known,
is used for four Audi models: the
TT, TT Roadster, R8 and A8.
ASF technology can look back on a
development process that has brought
Audi a three-figure collection of patents and the ‘European Inventor of
the Year 2008’ award from the European Patent Office. The brand now
possesses broad-based aluminium
know-how covering everything from
the best metal alloys through casting
and forming to suitable component
joining techniques.
As is well-known, the framework
of an ASF body consists of extruded
aluminium sections and pressure
castings. This frame carries the sheet
aluminium elements, for example the
roof panel, which are rigidly connected to it and help to withstand
loads on the body. The elements of
the Audi Space Frame are very varied
in shape and cross-section, depending on the tasks they have to perform.
Like the bones of a human skeleton,
they combine optimal function with
low weight.
The big advantage of extruded sections is their design flexibility. ©
ALUMINIUM · 1-2/2009
www.
alu-web.de
Find out what’s going
on in the industry even
faster!
Read about the burning
issues even earlier!
Aluminium-ePaper –
your added PLUS to
the print medium!
As a special
thank-you gift
for your order,
we will also send
you the book
“Fundamentals
of Extrusion”!
Yes,
The subscription fee is to be paid by credit card:
Company
I/we would like to subscribe to ALUMINIUM +
Aluminium-ePaper straight away. The annual
subscription currently costs EUR 285.00 in Germany
(in Europe EUR 289.00, overseas USD 375.00).
ALUMINIUM appears
10 times a year. The
subscribtion also includes
Aluminium-ePaper – the
online version – and access
to the Aluminium Archive with its
full-text researche options.
I/we will be receiving the book “Fundamentals
of Extrusion” as a thank-you gift as soon as the
subscription fee is paid.
VISA
American Express
Euro-/Mastercard
First name, last name
Number
Department
Cardholder
Address
Valid until
Postcode, city
The fee is to be debited from our account (only possible within
Germany).
Country
Bank
Telephone
Fax
Bank code
Account no.
E-mail (for the notification)
The fee will be remitted on receipt of the invoice.
VAT ID number
Giesel Verlag GmbH
Postfach 120 158
30907 Isernhagen · Germany
Tel. +49 511 7304-122
Fax +49 511 7304-157
www.giesel-verlag.de · [email protected]
Date
Signed
.
Anz.Fast BWH
MÄRKTE UND ANWENDUNGEN
te der ASF-Technologie, indem Aluminium durch Stahl ergänzt wird.
Gewichtsersparnis
durch Hybridbauweise
Audi
Die innovative Hybridbauweise spart
gegenüber den Vorgängermodellen,
die noch voll auf Stahl setzten, bis zu
100 Kilogramm Gesamtgewicht. Vor
allem im Heckbereich der Bodengruppe, bei den Türen und der Heckklappe
nutzen die kompakten Audi-Sportler
voll verzinkte Stahlkomponenten.
Mit ihrem Mehrgewicht gegenüber
Aluminium sorgen die Stahlbauteile
für eine ausgewogene Gewichtsverteilung zwischen Vorder- und Hinterachse.
The side sills of the Coupe and Roadster bodies, for instance, look identical, and the same tools and machines
can be used to produce them. Inside,
however, they are topology-optimised
using bionic principles, and the ribs
that govern their rigidity therefore
have different patterns – the Roadster
needs greater rigidity in this area than
the Coupe. In all cases, the extruded
sections used for the TT’s body are
made from advanced aluminium alloys, to increase their strength still
more and lower their weight at the
same time.
The castings, which withstand extremely severe loads, are primarily
deployed where high forces are introduced locally and where intelligent
Audi TT – die Karosserie in Hybridbauweise spart deutlich Gewicht
Audi TT – the body in hybrid construction yields weight savings
Leer bringt der TT 2.0 TFSI nicht mehr
als 1.260 Kilogramm auf die Waage –
ein bemerkenswerter Wert für einen
Sportwagen. Seine Karosserie wiegt
nur 206 Kilogramm, die sich zu mehr
als zwei Dritteln (68%) auf Aluminium
und zu knapp einem Drittel auf Stahl
verteilen. In herkömmlicher Stahlbauweise würde die Karosserie fast
100 Kilogramm schwerer ausfallen.
Der Aluminiumanteil setzt sich aus 63
Kilogramm Blechen, 45 Kilogramm
Gussbauteilen und 32 Kilogramm
Strangpressprofilen zusammen. Die
Karosserie des Roadsters bringt 251
78
multifunctionality is required. A good
example is the A-post node, a hightech multifunctional component that
links the side member, sill, A-post and
wind-shield cross-member together.
Like all these aluminium castings, it
is notable for precision geometry and
maximum use of the available space.
Hybrid construction
to save weight
The TT Coupe and Roadster introduced a new variant of ASF technology, with steel used in addition to alu-
minium. This innovative hybrid construction principle cuts the car’s total
weight by as much as 100 kilograms
compared with the previous models,
which relied entirely on steel. At the
rear of the floor pan in particular, for
the doors and for the trunk lid, these
compact Audi sports cars contain fully galvanised steel elements. Although
these steel components weigh more
than aluminium, they help to achieve
well-balanced front and rear axle load
distribution.
The TT 2.0 TFSI weighs only 1,260
kilograms unloaded – a splendid figure for a sports car. Its body weighs a
mere 206 kg; this figure is made up of
140 kg of aluminium (68%) and 66 kg
of steel. An equivalent body built in
steel by conventional
methods would be almost 100 kg heavier.
The aluminium used
in the body consists of
63 kg of sheet, 45 kg
of castings and 32 kg
of extruded sections.
The Roadster tips the
scales at 251 kg.
Audi’s wealth of
experience is invaluable when aluminium
and steel components
have to be joined. Various methods are employed: punch riveting,
clinching and adhesive
bonding. The problem
of contact corrosion
between these two
metals has been solved
by choosing adhesives
that form an isolating
layer. Camera systems
monitor their correct application. A
fourth joining technique is new: selftapping screws inserted by robots
generate friction that melts the surface of the component, so that they
can penetrate completely into the
material and form a rigid connection.
Another innovative concept used on
the TT is the aluminium zero-gap joint
between the roof and the side section,
which is produced by laser welding.
The Audi TT with its hybrid
ASF, constructed in Ingolstadt,
Germany, but shipped to Györ in
Hungary for final assembly, has char-
ALUMINIUM · 1-2/2009
MARKETS AND APPLICATIONS
Kilogramm auf die Waage.
Auch bei der Verbindung zwischen den Aluminium- und den Stahlkomponenten profitiert Audi von
seiner großen Erfahrung beim Stanznieten, Clinchen und Kleben. Das
Problem der Kontaktkorrosion zwischen beiden Metallen ist durch den
Klebstoff gelöst, der eine trennende
Schicht bildet; Kamerasysteme überwachen seinen korrekten Auftrag.
Neu ist eine vierte Fügetechnologie – die so genannten selbstfurchenden Schrauben, von Robotern
eingebracht, schmelzen durch ihre
Reibung die Oberfläche des Bauteils
auf und dringen vollständig und kraftschlüssig in den Werkstoff ein. Eine
weitere innovative Lösung am TT ist
die Aluminium-Nullfuge, die durch
Laserschweißen zwischen dem Dach
und dem Seitenteil entsteht.
Der Audi TT mit dem Hybrid-ASF,
der in Ingolstadt gefertigt und im ungarischen Werk Györ endmontiert
PROFHAL ALUMINIUM PROFIL
BEARBEITUNG GMBH
© Kastenhuber Wergeagentur/Fotodesign · Tel. (0 9142) 204 558
Ein Unternehmen der
HAARMANN-GRUPPE
Dettenheimer Straße 30
D-91781 Weißenburg
Tel. +49-(0)91 41-8 55 65-0
www.profhal.de
ALUMINIUM · 1-2/2009
wird, weist Eigenschaften auf, die
hervorragend zu einem Sportwagen
passen. Gegenüber dem Vorgängermodell wuchs die statische Torsionssteifigkeit beim Coupé um etwa
50 Prozent, beim Roadster sogar um
mehr als das Doppelte. Zudem bietet
der ASF hohen Schwingungskomfort
und beste Crashsicherheit.
Das geringe Gewicht sorgt für
mitreißende Fahrdynamik und hohe
Effizienz. 100 Kilogramm Ersparnis
bedeuten etwa 0,3 Liter Minderverbrauch pro 100 Kilometer beziehungsweise 7,5 bis 12,5 Gramm weniger Kohlendioxidausstoß je Kilometer. Die Kunden honorieren diesen
Fortschritt ebenso wie die Experten:
Die neue Hybridbauweise von Audi
erhielt Ende 2006 den Euro Car Body
Award, den wichtigsten europäischen
Innovationspreis im Karosseriebau.
Schon 2003 war diese Auszeichnung
an Audi gegangen – für den AFS des
Audi A8.
N
www.haarmann-gruppe.de
acteristics that suit a sports car outstandingly well. Compared with the
previous model, the Coupe’s static
torsional rigidity is about 50 percent
higher, while that of the Roadster in
fact more than doubled. At the same
time, however, there is a high level of
freedom from bothering vibration and
excellent crash impact absorption.
Low weight is one of the keys to
captivating road dynamics and high
efficiency. To reduce a car’s weight by
100 kilograms is to improve its fuel
consumption by about 0.3 l/100 km,
and also to emit between 7.5 and 12.5
grams less of CO2 per kilometre. Customers and trade experts alike have
praised this tendency: at the end of
2006, Audi’s new hybrid body design
principle received the Euro Car Body
Award, the most important European
trophy for innovation in body construction. Audi has already gained
this award in 2003, for the ASF used
for the Audi A8.
N
PROFHAL entwickelt, fertigt und veredelt
hochwertige Aluminium-Profil-SystemKomponenten für unterschiedlichste
Anwendungsgebiete.
INDIVIDUELLE LÖSUNGEN
AUS ALUMINIUM
79
MÄRKTE UND ANWENDUNGEN
Aluminium zeigt Flagge auf der BAU ‘09
Aluminium flying
flag at BAU ‘09
Türen über Fassadenverkleidungen
bis hin zu Dach- und Wandsystemen.
Im anspruchsvollen Objektbau ist der
leichte Werkstoff weiterhin eines der
wichtigsten Bauprodukte.
Die Gestaltung und Konstruktion
großzügiger Fassaden für moderne
Büro-, Verwaltungs- oder Produktionsgebäude wird auch in Zukunft in
großem Umfang nur mit Hilfe von Systemprofilen aus Aluminium möglich
sein. Ihr geringes Gewicht in Kombination mit hoher Stabilität macht es
Die Nachfrage nach Aluminium hat
Planern vielfach erst möglich, den
in den vergangenen Jahren stänBauherren optisch ansprechende
Lösungen vorzulegen. Und die ausdig zugenommen. 2007 wurden in
geklügelten Systeme der verschiedeDeutschland rund 3,5 Mio. Tonnen
Aluminium verarbeitet. Nach dem
nen Hersteller machen es modernen
Verkehrssektor ist die Bauwirtschaft
Metallbaubetrieben vielfach erst
möglich, die Gestaltungswünsche der
mit einem Anteil von 15 Prozent am
Architekten umzusetzen.
Jährlich werden hierzulande
520.000 Tonnen
des Leichtmetalls
für Fenster, Türen und Fassaden
verwendet.
Die
Betonung liegt dabei auf dem Wort
verwendet. Christian Wellner, Geschäftsführer des
Gesamtverbandes
der Aluminiumindustrie (GDA)
erklärt dazu: „Immerhin werden
nahezu einhundert Prozent aller
Fassaden, Bleche
oder Profile bei
einem Abriss oder
bei RenovierungsDezente Aluminium-Fenstertechnologie des Frankfurter RadissonHotels
arbeiten
ohne
Qualitätsverlust
Discreet aluminium windows technology at the Frankfurt
Radisson Hotel
wiederverwertet.
Es ist dabei auch
Gesamtabsatz der wichtigste Markt
egal, ob aus einem Alufenster ein
für die Branche. Moderne MetallMotorblock wird oder wieder ein
baubetriebe setzen hochwertige und
Fensterprofil entsteht.“
technisch anspruchsvolle Lösungen
Zur BAU 2009 in München stellen
in Aluminium für Architekten um. Das
alle wichtigen Systemhäuser neue
Spektrum der Anwendungen reicht
Produkte und Entwicklungen vor,
von Bauelementen wie Fenstern und
die energieeffizientes Bauen mög-
The aluminium industry is expecting positive impulses from the
world’s largest trade fair devoted
to the building industry, BAU 2009
in Munich. About 100 aluminium
producers and processors will be
exhibiting at the building industry’s leading international exhibition, and presenting innovations
and established applications relating to aluminium as a building
material.
Wicona / Roto
Positive Impulse erwartet die
Aluminiumindustrie von der BAU
2009, der weltgrößten Baumesse,
die alle zwei Jahre in München
ausgerichtet wird. Rund einhundert Aluminiumhersteller und
-verarbeiter präsentieren sich auf
dieser internationalen Leitmesse
der Bauindustrie und zeigen Innovationen und bewährte Anwendungen rund um den Werkstoff
Aluminium.
80
The demand for aluminium has increased continuously in recent years.
In Germany, about 3.5 million tonnes
of aluminium were processed in 2007.
After the transport sector, the building sector, which accounts for 15
percent of aluminium usage, is the
second most important market for the
industry. Using aluminium, modern
metal fabricators turn high-quality
and technically demanding solutions
into reality for architects. The range
of applications of aluminium extends
from components such as windows
and doors via curtain walling through
to roof and wall systems. In upmarket
commercial construction, the light
metal continues to be one of the most
important building products.
The design and construction of large-format façades for modern office,
administrative or production units
will only be possible on a large scale
in future, too, with the help of system
profiles made from aluminium. It was
the metal’s low weight and stability
that first made it at all possible for
designers to present their clients with
optically appealing solutions. And it
is only thanks to the well thought-out
systems offered by various manufacturers that modern metal fabricating
plants are at all able to turn architects’
design wishes into reality.
Some 520,000 tonnes of the light
metal a year are used in Germany for
windows, doors and façades. The emphasis here is on ‘used’; “After all, almost 100 percent of all façades, sheet
or profiles can be recycled after demolition or renovation work without
any loss in quality. It does not matter
whether an aluminium window is used
ALUMINIUM · 1-2/2009
Schüco
MARKETS AND APPLICATIONS
Vollintegrierte Energiefassade: Transparente
Photovoltaikmodule in Dünnschichttechnologie beherbergen miteinander verschaltete Solarzellen innerhalb
eines Isolierglasverbunds. Das Lochbild der Module ist
objektspezifisch anpassbar.
Roto
Fully integrated energy façade: transparent photovoltaic modules house interconnected solar cells in an
insulating glass unit. The grid pattern of the modules
can be adapted for each individual project.
(EnEV) make improved Uwvalues necessary. Systems
providers satisfy these requirements using different
solutions. Depending on the
specific requirements and
planning demands, planners
and metal fabricators have
the possibility to ‘incorporate’ differing insulating values into the profiles. It is important here that a uniform
and consistent impression
be created from the outside.
At the same time, development engineers are focussing
on manufacturing and erection. Many of the exhibitors
will be presenting solutions
in Munich that should help
processors produce more
economically.
Good opportunities
in the solar market
A key topic for aluminium
is the booming solar market. There is good business
potential here for the aluminium industry and metal
fabricators. The lightweight
material serves as the basis
for numerous applications.
Façade structures, light and
durable supports for the attachment of solar modules,
whole roof-top installations
or louvre blade elements
that are positioned in front
Fenster- und Türbeschlagtechnologie aus Aluminium
spielt in der Sortimentspolitik der Roto Frank AG künfof the building envelope
tig einen noch größeren Stellenwert. Der Bauzulieferer
are just a few of the examwidmet seinen Messeauftritt zur BAU 2009 allein dem
Thema „Aluminium“.
ples. In many respects, aluminium plays a ‘supportWindow frames and door fittings made of aluminium
will, in future, play an even more important role in Roto
ing’ role when it comes to
Frank AG‘s product range. At BAU 2009 the company
the construction of solar
will concentrate on presenting its aluminium products.
units. Whether it be for solar heating or electricity generation,
to make an engine block or whether
the easy-to-maintain and corrosion
it is again used to make a window
resistant metal is ideally suited as a
profile,” says Christian Wellner, Mastructural material for such units. “Benaging Director of GDA, the associaing as light as possible is particularly
tion of the aluminium producing and
important on roofs or façades”, says
processing industry in Germany.
Wellner. “The solar branch is increasAt BAU 2009 in Munich, all of the
ingly using aluminium, however, for
leading system houses will be prethe frames and structural frameworks
senting new products and developments that facilitate energy-efficient
of modules and collectors. Numerous
suppliers of solar systems now use the
building. In Germany, the requireshiny metal exclusively.”
ments of the Energy Saving Ordinance
N
ALUMINIUM · 1-2/2009
lich machen. Die Anforderungen der
Energieeinsparverordnung (EnEV)
machen verbesserte Uw-Werte notwendig. Mit Hilfe verschiedener Lösungen erfüllen die Systemanbieter
diese Forderungen. Je nach Bedarf und
Planungsvorgabe haben Planer und
Metallbauer die Möglichkeit, unterschiedliche Dämmwerte in die Profile
„einzubauen“. Wesentlich ist dabei,
dass von außen ein einheitlicher und
gleich bleibender Eindruck entsteht.
Gleichzeitig haben die Konstrukteure
auch die Fertigung und Montage im
Blickfeld. Viele der Aussteller stellen
in München Lösungen vor, die dem
Verarbeiter dabei helfen sollen, kostengünstiger zu produzieren.
Gute Chancen im Solarmarkt
Gute Auftragschancen für die Bauwirtschaft wie für die Aluminiumindustrie und das verarbeitende Handwerk
bietet der boomende Solarmarkt. Der
leichte Werkstoff dient als Basis für
zahlreiche Anwendungen. Fassadenkonstruktionen, leichte und haltbare
Ständer für die Befestigung von Solarmodulen, ganze Dachanlagen oder
Lamellenelemente, die der Gebäudehülle vorgesetzt werden, sind nur
einige Beispiele. Aluminium spielt
Anzeige
für den Bau von Solaranlagen in vielerlei Hinsicht eine „tragende“ Rolle.
Pflegeleicht und korrosionsbeständig,
eignet es sich bestens als Konstruktionswerkstoff für solche Anlagen,
zum Beispiel für die solare Wärmegewinnung oder Stromerzeugung.
Möglichst geringes Gewicht ist vor
allem bei Anwendungen auf Dächern
oder an Fassaden von Bedeutung.
„Die Solarbranche verwendet Aluminium jedoch auch zunehmend für die
Einfassung und Rahmenkonstruktion
von Modulen oder Kollektoren. Zahlreiche Anbieter von Solarsystemen
setzen mittlerweile ausschließlich
auf den glänzenden Werkstoff“, sagt
Wellner.
N
81
CO M PA N Y N E W S W O R L D W I D E
Norsk Hydro
Aluminium smelting industry
Progress may slow at Alcan smelters
Rio Tinto Alcan is proceeding with
planned aluminium smelter expansions in Canada, but has warned that
progress could be slowed due to the
massive capital spending cuts announced in December.
The company remains committed
to the Kitimat modernisation project,
but is slowing it down. Rio is waiting
global demand for aluminium to rebound before committing more capital to the project. But the USD500m
already pledged to the modernisation
remain in place. The project will move
forward at a slower rate, so that when
markets do pick up and the price does
become a bit more favourable, Rio will
be able to put the project back on an
accelerated course. A modernisation
at Kitimat in British Columbia will
replace the 50-year-old, 277,000 tpy
Søderberg smelter with a 400,000 tpy
smelter using Aluminium Pechiney
(AP) technology. The project, which
Noranda set to
lash 338 more jobs
see, Salisbury/North Carolina and
Newport/Arkansas. The company has
already made several rounds of layoffs. In December, it cut a further 89
hourly employees at its New Madrid
smelter, in addition to the 35 employees terminated in November.
The New Madrid smelter is currently undergoing a USD48m expansion project that will increase production capacity to 277,000 tpy from
259,000 tpy currently.
Noranda Aluminum Holding Corp.
will undergo company-wide work
force and business restructuring to
reduce its operating costs, conserve
liquidity and improve operating efficiencies. The company’s workforce
restructuring plan will eliminate
about 338 jobs, of which 228 in Noranda’s upstream business, 96 at its
downstream rolling mills, and 14
contract workers. The restructuring
should save cash and operating costs
of approx. USD23m per year.
The reductions in its upstream
business will occur during the fourth
quarter of 2008 and the first quarter
of 2009. The downstream reductions,
largely due to be completed in the
fourth quarter, will affect Noranda’s
rolling mills in Huntingdon/Tennes-
82
Madras Aluminium
temporarily shuts production
Madras Aluminium Co. will temporarily suspend its entire aluminium production with immediate effect due to
the continuous fall in the prices of the
white metal. Its alumina refinery will
operate only for cater to other indus-
has been approved by the British
Columbia Utilities Commission, will
draw power from Alcan’s Kemano
hydroelectric station. The company
had previously announced a tentative
completion date of 2011. The price tag
of the entire project was previously
put at USD2.5bn.
Rio Tinto Alcan also will continue
with the pre-feasibility study for two
additional phases at its AP50 pilot
plant in Saguenay, Quebec. Preliminary work has already started on the
first phase of the AP50 demonstration
plant, which will have 44 aluminium
smelting pots with initial production
of 60,000 tpy. Power will come from
company-owned hydroelectric plants.
The company could eventually spend
approx. USD2.5bn to build a 200,000
tpy AP50 smelter.
But one victim, at least in the short
term, might be the USD1bn expansion
of the Alma 2 smelter in the Saguenay
/Lac-St.-Jean region of Quebec. This
is the least advanced of the three
Canadian smelter expansions, and at
this point will not be advanced, but it
will be ready to go as soon as markets
change. The plan was to increase the
smelter’s capacity by around 190,000
tonnes to some 600,000 tpy, which
would have made it one of the largest
aluminium smelters in North America.
trial requirements. The firm’s power
plant will, however, continue to operate and sell power to third parties.
Tajikistan cuts aluminium
output due to low prices
Tajikistan is cutting monthly aluminium output by about 10% year-onyear due to falling global prices for the
metal. If the situation does not change,
the cut will be extended to 20%. In
2008, Talco will produce 400,000
tonnes at most. State-owned Talco
in 2007 produced 419,260 tonnes of
aluminium, the Central Asian country’s key source of hard-currency
revenue. It had earlier planned to
produce 427,000 tonnes of the metal
this year. Metal producers worldwide
have slashed output and abandoned
investment projects as the global fi-
ALUMINIUM · 1-2/2009
CO M PA N Y N E W S W O R L D W I D E
nancial crisis reduced demand for
their products and commodity prices
have fallen sharply from record highs.
Tajikistan produced 365,035 tonnes
of aluminium in the eleven months
from January to November 2008.
Production fell 8.1% year-on-year in
November. Furthermore, Talco would
not risk laying off workers for fear of
social tension. The smelter is already
incurring losses, although these are
not huge. Aluminium exports no
longer generate any profits.
Alcoa plans to trim
Italian Fusina smelter output
Alcoa plans to trim output at its Fusina smelter in the industrial suburb of
Venice in northern Italy, as global economic downturn hits aluminium demand. Alcoa has said it would curtail
its global output by 615,000 tonnes in
the second half of 2008, representing
15% of its annual output. Alcoa would
resort to limited temporary layoffs and
voluntary early retirements to deal
with Fusina production cuts, and has
been in talks with trade unions about
it. The company bought the 45,000 tpy
Fusina smelter in 2006. It produces
primary aluminium and flat rolled
products and employs 139 people.
closure of the smelter Kaiser has no
obligation to fund the cost of Anglesey. A closure would have no direct
impact on the company’s core fabricated products.
Anglesey set to return
to full production
Rio may cash out amid
China aluminium reshuffle
Anglesey Aluminium Metals Ltd announced to return to full production
in the fourth quarter of 2008, but its
future is still very much in doubt as
a long-term energy solution has yet
to be found. The plant in Holyhead,
Wales, suffered a failure in the rectifier in June. This resulted in a fire in one
of the power transformers, forcing the
smelter to operate at only one third
of its 145,000 tpy capacity. Therefore
third quarter results of the primary
aluminium division were negatively
impacted by approx. USD20m by the
Anglesey outage. There is still a great
deal of uncertainty over what will
become of the plant when the Wylfa
nuclear power station, which supplies
the plant, closes in 2010. In case of the
Rio Tinto may raise much-needed
cash by selling out of a Chinese aluminium joint venture whose co-owner is consolidating assets to prepare
for a takeover by another state-owned
company. Rio’s joint venture partner,
Qingtongxia Aluminium, is set to be
taken over by state-owned China
Power Investment Corp. to form
China’s second-biggest producer of
aluminium after Chalco. Qingtongxia
was in talks to buy back all Rio Tinto
shares in the joint venture smelter.
The joint venture smelter has 150,000
tpy of aluminium smelting capacity,
about a quarter of Qingtongxia’s total capacity. Rio Tinto acquired half
of a joint venture with Qingtongxia,
a smelter controlled by the gov- ©
Russia’s Rusal calls for state metals reserve
Russia’s UC Rusal called on the government to create a metals reserve to support the industry through the financial
crisis. Such a move would “restore fair
pricing”, cut the risks of a metals glut,
and allow the state to reduce its exposure
to equity investment risks.
Rusal did not specify the volume of
metals purchases it wanted the government to make. Rising metals prices would
provide the government with USD2.4bn
in additional budget revenues in 2009 to
2012 if it created the reserve. Rusal also
asked the government to consider a range
of other benefits to industrial producers, including reduced tariffs for natural
monopolies, long-term investment in the
electricity sector and support for industrial
projects worth at least USD1bn and which
also employed at least 3,000 workers.
Rusal is also involved in billions of dollars’ worth of new projects including the
construction of a smelter in Taishet, and a
new bauxite and alumina complex in Russia’s Komi Republic.
ALUMINIUM · 1-2/2009
UC Rusal invests in the development of a modified RA-400 cell
UC Rusal has expanded the RA-400 pilot area at the Sayanogorsk aluminium
smelter to test several new RA-400T cells
intended for use at the Taishet aluminium
smelter, which is currently under construction. The RA-400T upgrade and operational testing programme has cost the
company approx. USD35m.
The RA-400T has been designed by UC
Rusal’s Engineering and Technology Centre for the greenfield Taishet aluminium
smelter. This technology is an upgrade of
the basic RA-400 electrolysis cell, which
was first installed at the Sayanogorsk
smelter in 2005 and which is now ready
for industrial use. With its daily aluminium
output of three tonnes, the RA-400T will
become the most productive cell in the
world’s aluminium industry. Compared
with the RA-400, the new technology is
less energy-intensive, has a lighter busbar
and shorter cell-to-cell distance, which
saves shop floor space inside a potroom.
The modernised alumina point feeding
system also has a longer service life and
consumes less compressed air.
UC Rusal to cut
aluminium output
Russia’s UC Rusal plans shortly to close
several potlines at its Bogoslovsk and
Urals smelters. The potlines to be closed
account for 2% of the group’s output.
The number of potlines to be stopped
was not specified. The two plants in the
Ural mountains were built in 1939 and
1940 and they would require upgrading
to become more environmentally friendly.
As aluminium prices fall, Rusal plans to
preserve output volumes and staff numbers as best it can. Rusal will cut expenses, focus on its most efficient projects,
and trim output at its least profitable
plants. UC Rusal plans to raise output of
primary aluminium to 6.2m tpy by 2013
from the 4.4m tpy expected in 2008.
83
CO M PA N Y N E W S W O R L D W I D E
ernment of the Ningxia region, when
it bought Canadian aluminium firm
Alcan for USD38bn in 2007, a deal
that has left it struggling to shake off
USD40bn in debt. Rio has pledged
to raise USD15bn in asset sales but
has raised just USD3bn so far. When
BHP Billiton abandoned its hostile
bid for Rio in November, punishing
Rio’s share price, the company was
faced with the challenge of selling assets while the market for its products
collapsed amid the global financial
slowdown.
After completion of the takeover,
China Power would buy coal mines
and build power plants to supply adequate electricity for energy-hungry
aluminium production at the smelter.
China Power and Qingtongxia, which
is minority-owned by Chinese firms,
were also building a 1.08m tpy aluminium smelter in Ningxia in four
equal phases. Construction of the first
270,000 tonnes of capacity was almost
finished and production might start in
the next few months. The new smelter
was 50% owned by China Power, 25%
held by Qingtongxia and 25% by Chinese metal trader Maike Group, the
official said.
China Power controls smelter
HMHJ Aluminium and Electricity Co.
Ltd, which operates 300,000 tpy of capacity in Inner Mongolia, and is building a 500,000 tpy aluminium smelter
in northwestern Qinghai province.
Nalco gets state go-ahead
for Indonesian smelter
India’s state-owned National Aluminium Co (Nalco) has received clearance
from Jakarta to build an aluminium
smelter and power plant in Indonesia.
The project, with estimated capacity of 500,000 tpy of aluminium and
1,250 MW of captive power, will cost
around Rs170bn (USD3.4bn). A feasibility report for the project is already
complete. Nalco is about to request
tenders for a detailed project report.
For this project Nalco will ship its surplus alumina from India to Indonesia
for conversion into metal. Nalco pro-
duces 1.57m tpy of alumina surplus to
its needs, of which it exports nearly 1
million tpy.
UC Rusal adopts a
new health and safety policy
UC Rusal adopted a new corporate
policy on health and safety, which
is in line with the best international
practice in this area. This H&S policy
sets out unified objectives, principles
and requirements for health and safety management. It allows the company to make full-scale use of available
resources and mechanisms in order to
implement its H&S strategy.
The important step forward made
in this policy is the unification of
standards for all the company’s production facilities in H&S-related areas, like planning and reporting H&S
costs, requirements for contractors to
ensure the same safety standards and
corporate criteria for assessing qualification of H&S managers on all the
company’s production sites.
Rio Tinto to slash debt by USD10bn by end 2009
Rio Tinto Alcan, the aluminium division of
global miner Rio Tinto, is committed to
erasing USD10bn by end 2009 from its net
debt of USD38.9bn. To do this, it plans
to slash its 2009 net capital expenditure
guidance to USD4bn, from over USD9bn,
and to sustaining levels in 2010. It also
plans to trim headcount by 14,000 employees and to increase the number of assets targeted for divestment. The detailed
package of measures is in response to the
unprecedented rapidity and severity of
the global economic downturn, said Rio,
admitting that demand conditions have
worsened considerably since its third-quarter review in October.
Between June 30 and October 31, Rio
Tinto had already cut debt by USD3.2bn.
Rio promised that some projects would
be cancelled and others deferred until
markets recover, but details would only be
revealed in the first quarter of 2009. For
2009, Rio estimates that iron ore production and shipments from its operations
will be around 200 million tonnes. Its
announced cuts of 2009 aluminium pro-
84
duction amount to about 200,000 tonnes,
or 5% of its capacity of 4.2 million tpy,
mainly by curtailing of production at
some higher cost smelters. Its share of
mined copper production is anticipated to
be about 830,000 tonnes.
Rio cuts aluminium
output in UK and China
Rio Tinto Alcan has cut output by a third
at its Lynemouth aluminium smelter in
the UK and is gradually reducing output
at its Chinese smelter. Some time in 2009
production will return to normal at the
Lynemouth smelter, which Rio inherited
as part its acquisition of Alcan in autumn 2007 and which reported output
of 44,000 tonnes in each of the first
three quarters of this year. At its Chinese
smelter in Ningxi province, Rio will gradually reduce by not putting pots back on
line when these have been relined. Ningxi
smelter, in which Rio Tinto Alcan owns
a 50% stake, produced 122,000 tonnes
in the first nine months of the year. The
company’s strategy is to lower output at
a regional rather than global level. The
company believes it stands in good stead
to weather the storm in the global financial and aluminium markets. At current
prices, European smelters are unprofitable, given the region’s high electricity
prices.
Rio cuts French
aluminium plants’ output
Rio Tinto Alcan cut production at its two
primary aluminium plants in France due to
a fall in demand. The company suspended
production of 29,000 tonnes of primary
aluminium at its largest French plant in
Dunkirk from the start of December until
the end of February, a period when its
electricity bill is highest. The Dunkirk plant
has a capacity of 273,000 tpy.
The company’s plant in Saint-Jean-deMaurienne would not restart production,
currently suspended for technical reasons,
of 23,000 tpy of aluminium. That amounts
to 17% of the plant’s annual capacity.
ALUMINIUM · 1-2/2009
CO M PA N Y N E W S W O R L D W I D E
Ormet’s Hannibal smelter
in line for power rate cut
Ormet Corp. is confident it will be able
to secure a power rate reduction of at
least 15% for its Hannibal smelter in
Ohio by the beginning of 2009. In late
2006, the company entered an agreement with American Electric Power
Co. Inc. (AEP) to provide electricity to
start the aluminium smelter in Hannibal. The company agreed to a contract rate of about USD50 per MWh
for an uninterruptible supply through
2008. Given the size of Ormet’s power
load as of 1 January, the company will
qualify for AEP’s rate for large industrial customers, which is currently
about USD37 per MWh. But Ormet’s
final power rate will depend on two
factors. On 31 July, Columbus, Ohiobased AEP filed its three-year electricity security plan requesting a 15% annual rate increase. The Public Utilities
Commission of Ohio (PUC) has 150
days from the filing date to approve or
deny AEP’s request. If PUC approves
the full rate hike, it would push the
industrial rate to about USD42 per
MWh. That rate would be ‘the ceiling’
for what Ormet would have to pay for
the Hannibal smelter. But Ormet’s rate
could still be significantly lower. On
1 May, Ohio Governor Ted Strickland
signed a law that allows for special ar-
ALUMINIUM · 1-2/2009
rangement contracts based on criteria
such as size of load, economic impact
on the community and impact of power costs on overall operations costs.
Ormet currently has an application to
enter into such a contract. The company also announced that it will soon
close a deal to sell some 300 undeveloped acres at its Burnside, Louisiana,
facility for USD9m. Ormet continues
to explore options for its Burnside marine terminal assets, including a possible sale or other disposition.
Ormet’s third-quarter loss narrowed to USD7.6m in the third quarter
from USD19.6m a year earlier, while
its sales from continuing operations
rose 4.6 % to USD127.6m from nearly
USD122m.
Ormet entered a tolling agreement
for 2008 and 2009 with Glencore International AG, Zug, Switzerland. Under the terms of the deal, the smelting
operation in Hannibal is dedicated to
producing for the remainder of this
year and all of next year aluminium
sows from Glencore-supplied alumina, for which Ormet receives tolling
fees. As part of the tolling arrangement, Glencore purchased substantially all of Ormet’s existing inventory
for alumina, molten aluminium and
finished goods.
Aluminium smelting
becomes profitable again
in China on falling costs
Aluminium smelting in China has become profitable again as costs have
dropped by around 30% over the past
two months on cheaper raw materials and energy. Alumina prices have
dropped to about 2,000 yuan (USD293)
per tonne recently, more than 33%
lower than some months ago. That’s
a saving of at least 2,000 yuan per
tonne of aluminium, which requires
two tonnes of alumina to produce.
Electricity fees have come down as
well, to 0.30 yuan kWh from 0.38 yuan
per kWh, this was a cost saving of a
further 1,200 yuan per tonne, assuming one tonne of aluminium requires
15,000 kWh of electricity to produce.
As result of the lower alumina and
power bills, the aluminium cost saving was more than 3,200 yuan per
tonne. Average aluminium costs are
now between 11,000 and 13,000 yuan
per tonne, down from around 17,000
yuan per tonne three months ago.
Chinese aluminium smelters began
to cut down output in October after
prices slumped. Chalco, for example,
said it planned to reduce output by
18% in 2008.
N
Bauxite and alumina activities
UC Rusal
As a result of the pro-active approach pursued by the company in
the H&S area, the Lost Time Accident
Frequency Rate (LTAFR) showed a
37% reduction over the period from
2004 to 2007. Last year, this rate at
the company’s operations was 0.19,
which made the company one of the
leaders among its global metals and
mining industry peers. In 2007, more
than USD50m were channeled into
H&S activities on UC Rusal production sites. The objective of the new
policy is to reach the zero accident
level and prevent accidents and fires
on Rusal’s production sites. The company’s H&S Policy is also designed to
maintain safe working conditions and
the health of the staff and to prevent
occupational diseases at all the company’s production facilities around
the world.
Cape Alumina IPO set to
raise more than USD15m
Australian bauxite hopeful Cape Alumina is extending its initial public of-
fering (IPO) after raising the minimum
USD15m. Cape Alumina is poised to
become the second significant bauxite producer in Australia after Rio
Tinto with its proposed 7m tpy ©
85
CO M PA N Y N E W S W O R L D W I D E
Pisolite Hills project in Queensland,
due to start production in 2012/13.
The IPO extension will allow Cape
Alumina to meet the Australian Securities Exchange requirement that
there be at least 400 shareholders
with marketable share parcels, and
could push funds raised to USD25m.
Cape Alumina had already secured
commitments of USD10.25m from
two investors on the launch of its IPO.
The two were an unnamed “a major
new investor”, and Chiping Xinfa
Huaya Alumina Co, one of China’s
largest aluminium companies, which
owns 17.5% of Cape Alumina and has
a 5-year off-take agreement for 1m tpy
of bauxite from Pisolite Hills. Production from the Pisolite Hills project is
targeted at export primarily to China’s
alumina refineries.
of the plant’s construction, and will finance the rest through a consortium
of Chinese banks. The company will
then transfer an 11% stake to Guyana
within three years of building the
plant, with Bosai Minerals retaining
the remainder.
The plant is expected to produce up
to 900,000 tpy of bauxite a year. Construction could begin as early as 2009,
but the start could be delayed because
of the impact of the global financial
crisis. Bosai Minerals took control of
Omai Bauxite Mining Inc. in February
2007. Omai, which has a production
capacity of metallurgy-grade bauxite
that could reach 2m tpy, has reserves
of 62m tonnes of bauxite at the Montgomery pit, and it controls another
124m tonnes through various agreements with the Guyana government.
Vimetco awarded permits for
bauxite prospection in Guinea
Global Alumina’s Guinea
alumina joint venture delayed
Vimetco announced that the Minister
of Mines and Geology in the Republic of Guinea issued to Vimetco two
permits for bauxite prospection. The
permits cover a total area of 832 km2
located in the prefectures of Boffa,
Fria and Dubreka in south western
Guinea. This follows promising results
from a reconnaissance permit issued
to Vimetco by the ‘Direction Nationale des Mines’ earlier this year for the
same area. The permits allow Vimetco
to prospect the area for three years
to determine if there is enough high
grade bauxite to justify developing
downstream operations. The drilling
programme is planned to start early
2009 and continue until the end of the
3-year license period.
Global Alumina’s joint venture bauxite and alumina project in Guinea has
secured the first round of its targeted
USD2.25bn in funding, as the alreadydelayed project was postponed for
another two years. If the programme
holds, then commercial production
could start by 2013. This is the second delay for the Guinea Alumina
Corp project, which has also been
beset by rising costs. In January the
costs rose by a third to USD4.3bn, and
Chinese alumina producer
eyes South America
Chinese alumina producer Bosai
Minerals Group Co. Ltd and the government of Guyana will conduct a
feasibility study to build a USD1bn
alumina plant in the southwest region of the South American country.
Bosai Minerals, which is based in
southwest Chongqing province to the
east of Sichuan, would pay for 30%
86
the start-up was pushed back nearly a
year to September 2011. News of the
postponement came after the African
Development Bank (ADB) agreed to
provide USD450m in financing for
the ambitious project, which contains
mining 10m tpy of bauxite for a 3.3m
tpy alumina refinery, with ramp up to
3.6m tpy within five years.
The joint venture is negotiating the
loans with International Finance Corp,
European Investment Bank, and with
export credits agencies from South
Africa, France, China and Australia.
It hopes to raise some USD2.25bn in
total, including the USD450m from
the ADB. The ADB has approved a
‘non-sovereign’ loan of USD200m and
undertaken to syndicate an additional
USD100m loan ‘on best efforts basis’
to be funded by participating commercial banks. ADB will also provide up
to USD150m in parallel co-financing
by development institutions. Guinea
Alumina is a joint venture between
Global and BHP Billiton, which both
own a third, Dubai Aluminium, which
owns 25%, and Mubadala Development Co, an investment vehicle of
the government of Abu Dhabi, which
owns 8.66%.
The Guinea government is pinning
its hopes on the project transforming
the country’s largely undeveloped
bauxite industry. Guinea has twothirds of the world’s bauxite reserves.
The project will raise the proportion
of bauxite processed from 12% to
On the move
Timothy T. Griffith will join Aleris as
Senior Vice President and Treasurer,
reporting to Kevin L. Brown,
Brown, Executive
Vice President and Chief Financial
Officer.
Alcoa has named Andrei Donets
President of its Russian operations, efeffective November 17.
Alcoa’s board of directors has apappointed Patricia F. Russo a director of
the company, effective immediately.
Alcoa Chairman Alain Belda was
honoured by the Asia Society for his
environmental leadership, including AlAlcoa’s progress to reduce greenhouse gas
emissions and address global warming.
Glencore aluminium trader Markus
Delwing is set to leave the Swiss tradtrading house.
The Aluminum Association has anannounced new Associate Member ComCommittee Chairman, David Pownall and
Vice Chairman, Jeff Lawrence.
Lawrence.
UK secondary aluminium group
Avon Metals has hired Nathan Richards
as a commercial trader from December.
FE Mottram Congleton’s Managing
Director Mike Dines has resigned from
his position to take up a new role with
technology company Chinook Sciences.
ALUMINIUM · 1-2/2009
CO M PA N Y N E W S W O R L D W I D E
more than 45%, the bank said. The
investment required is nearly double
the size of the West African country’s
GDP. It will create 14,000 direct and
indirect jobs during construction, as
well as about 2,000 direct full-time
staff during operation. Global Alumina continues to look for a strong
industrial and corporate party to buy
its stake in the venture. The venture
partners are taking a long-term view
of the market, hoping for a recovery in
prices and demand by the time of the
refinery starts up in five years time.
Antam raises stake in chemical
alumina project to 65%
Indonesian state-owned miner PT
Aneka Tambang (Antam) has increased its stake in a chemical-grade
alumina project in Kalimantan from
49% to 65%. Construction on the
proposed 300,000 tpy chemical-grade
alumina plant, under PT Indonesian
Chemical Alumina (ICA) in Tayan, is
expected to start next year, and commissioning expected in 2012. Antam
boosted its stake by buying over the
entire stake of Singapore’s Straits
Trading Amalgamation Resources
and a little bit more from Showa
Denko KK. Showa Denko KK still has
a 20% stake in ICA, while Marubeni
Corp holds the remaining 15%.
Jamaica eyes renegotiation
of Glencore alumina deal
The Jamaican government is attempting to renegotiate a forward-sales
alumina and bauxite agreement that
runs through 2011 with Swiss commodities trader Glencore International AG. The previous People’s National
Party (PNP) administration entered
into a forward sales agreement with
Glencore in 2005, which provided
USD200m up front to fill a budget
gap. But that agreement made few allowances for increases in energy or
production costs, and now Jamaica is
suffering large losses because of the
deal. Jamaica is now selling its alumina to Glencore at under market rate
and below production cost. For every
tonne of alumina produced under
ALUMINIUM · 1-2/2009
that arrangement the Jamaican government is losing USD175, and that
is an arrangement that will continue
into 2011.
Rio Tinto will develop bauxite mines
as a prelude to investment of nearly
USD2.5bn for a greenfield alumina
refinery and 2.5m tpy aluminium
smelter plants in India. The likely locations are either in Orissa or Andhra
Pradesh, which are ideal for scouting
bauxite mines. The company will perhaps go for 2.5m tpy of alumina and
1.4m tpy of aluminium to produce
aluminium in India. Currently it is
in talks with a number of companies
to share their bauxite resources. The
investment could be around 8,200
crore rupees for the entire project. Rio
also plans to secure coal supplies for
which it is eyeing a joint venture with
state-run Coal India Ltd.
previously shut down 720,000 tpy of
aluminium capacity, or 18% of its total capacity. Most Chinese aluminium
firms are making loss now due to weak
demand amid a global financial crisis
and a record level of metal stocks.
Chalco reduced the output of alumina at high-cost operations starting
late October, and shut down annual
alumina production capacity of 4.1m
tonnes as of November. That would see
the firm losing about 685,000 tonnes
of alumina output this year, or 6.2% of
China’s estimated annual production
of about 11m million tonnes in 2008.
That amount of alumina can produce
342,500 tonnes of primary aluminium.
Chalco had completed the issue of
5bn yuan five-year bonds, the second
tranche of a 10bn yuan medium-term
issue, with annual interest of 4.58%.
The first batch of 5bn yuan had been
issued in June. Chalco would cut capital spending by at least 20% in 2009
due to lower aluminium output. It targeted spending 20bn yuan in capital
investment in 2008.
Alcoa suspends Wagerup
alumina refinery expansion
Vinacomin plans
600,000 tpy alumina refinery
Alcoa has suspended work on its
expansion of the Wagerup alumina
refinery in Perth, Western Australia,
proposed to grow to 4.7m tpy from
2.6m tpy. The project will be revisited
when market conditions improve, energy supply for the expansion is secured and the government’s emissions
trading scheme understood. In October, Alcoa announced it would reduce
output at its alumina refinery at Point
Comfort, Texas, by about 25%, roughly
equivalent to 550,000 tonnes of alumina per year, by the end of November.
Point Comfort is part of Alcoa World
Alumina & Chemicals (AWAC).
Vietnam National Coal-Mineral Industries Group (Vinacomin) plans to
commission a 600,000 tpy alumina refinery in Lam Dong province in 2010.
The alumina will be produced from
the 3.96m tpy of bauxite Vinacomin
expects to mine in the Tan Rai and Bao
Lam districts in the province. For this
project Vinacomin secured a USD72m
loan from the Vietnam Bank for Industry and Trade, one of the four largest
state-owned banks in the country.
Rio Tinto to develop
bauxite mines in India
Chalco shuts down 38%
of annual alumina capacity
Aluminium Corp of China Ltd has
shut down 38% of its total alumina capacity, the second major capacity shut
announced within two weeks due to
sliding prices and weak demand. The
company, also known as Chalco, had
Cameroon alumina
investors form joint venture
Three companies aiming to develop
an alumina project in Cameroon
have formally created a joint venture
to manage the business. Cameroon
Alumina Ltd (CAL), which aims to
exploit a 1.2bn tonne bauxite deposit in the central African country,
comprises Dubai Aluminium (Dubal),
India’s Hindalco Industries and U.S.
firm Hydromine. CAL intends ©
87
CO M PA N Y N E W S W O R L D W I D E
to produce 3-3.2m tpy of bauxite. The
consortium intends to invest USD56bn in a bauxite mining and refinery
project near Ngaoundere, around 400
km to the north of capital Yaounde,
plus a railway line linking to the port
of Douala, some 600 km away. Production may begin in 2013.
Protests may stall alumina
projects in Andhra Pradesh
Mounting local protests in India’s
Andhra Pradesh state may stall
projects to add 4.5m tpy of alumina
and 750,000 tpy of aluminium capacities. The projects, by JSW Steel and
Ras Al Khaimah Minerals and Metals (RMMI), may be unable to secure
bauxite supplies due to growing opposition spearheaded by Maoists, political parties and environmentalists.
UAE-based RMMI’s 1.5m tpy alumina
refinery and 250,000 tpy aluminium
smelter projects in Viskhapatnam
district, may also not be allocated
land. JSW Steel, which has acquired
the land needed, has started foundation work on its 3m tpy alumina
refinery and 500,000 tpy smelter in
neighbouring Vizianagaram district.
Only state-owned Andhra Pradesh
Mineral Development Corp. has permission to mine bauxite in the state,
but the bauxite lies in forested areas
peopled by tribes opposed to mining.
In Visakhapatnam district alone, there
are an estimated 564.33m tonnes of
N
bauxite deposits.
Trimet
Recycling and secondary smelting
Commercial Alloys and its
smelters file Chapter 11
Commercial Alloys Corp., a scrap
processor based in Twinsburg/Ohio,
has filed for Chapter 11 bankruptcy
protection along with its affiliated secondary aluminium facilities, branded
Aluminum One, in Minerva/Ohio and
Scottsboro/Alabama. The seven companies comprising Commercial Alloys
and affiliates are described as having
USD230m in annual revenue and 199
employees. The company’s top 20
unsecured creditors are owed about
USD7.6m. The Chapter 11 proceeding will keep the companies operating
under court supervision.
Commercial Alloys was launched
88
in 1983 and began making aluminium from scrap in 2003 in Ohio. The
Alabama location started operating in
2007, using a reverberatory furnace
from a defunct facility. A rotary assist
furnace was added later in the year.
The Ohio plant can produce 54,000
tpy and the Alabama smelter 45,000
tpy. The smelters focus on remelt and
toll conversion, with products including specification alloys.
Aleris shutters secondary
aluminium plant in Indiana
Aleris International Inc. has permanently closed its specification alloys
plant in Tipton/Indiana. The second-
ary aluminium facility was idled at the
end of March 2008, and production
was transferred to other Aleris facilities in North America. Prior to halting production, the plant employed 55
people. The facility was acquired by
Aleris as part of its September 2007
purchase of Wabash Alloys LLC, Wabash/Indiana. Aleris has been aggressively cutting costs recently. The company wants to save between USD60m
and USD72m in 2008/09, which could
involve closing or idling nine plants
and laying off about 700 workers.
Stena Aluminium
halts Danish production
Aluminium alloy producer Stena Aluminium will stop output at its operations in Kolding, Denmark, by the end
of 2008 or early in 2009. The move is an
attempt to cope with the deteriorating
situation in the secondary aluminium
industry. The aluminium alloy producer intends to move its production
to Älmhult, Sweden, where the rest of
its production base is located. The two
operations have combined capacity of
90,000 tpy, but it is not known what
effect this move will have on that figure. Stena Aluminium is investigating
the various options open to its 56 employees in Kolding. Certain functions,
such as sales and purchasing, will remain in Kolding. Stena Jern & Metal
A/S, which recovers and process iron
and scrap metal, also intends to start
recycling activities in the same location, according to the company.
Stena Aluminium produces customised aluminium alloys from used
aluminium products.
The industry has suffered severe
setbacks in recent months. Demand
has declined from carmakers, the key
consumers of aluminium ingot, as new
car sales have fallen month by month,
resulting in plummeting prices.
Oldbury Aluminium
files for administration
Oldbury Aluminium Alloys closed its
doors on 21 November and an official
administrator has been appointed to
wind up the company. It is believed
ALUMINIUM · 1-2/2009
CO M PA N Y N E W S W O R L D W I D E
the action came as a surprise to the
UK secondary aluminium ingot producer’s staff of about 30 workers. The
administrator was unable to give any
figures relating to the company’s debt,
stating that it is now a legal matter, but
several companies are thought to be
owed money.
The secondary aluminium industry is under increasing pressure from
falling orders and cancelled contracts
from the automotive sector. But Oldbury had orders booked as far ahead
as January. Many ingot companies are
producing at about 30% below capacity to cope with dismal market conditions while diecasters are taking similar action and are extending Christmas holidays. Demand has dwindled
and prices for various grades of ingot
have fallen by about 40% over the past
six months.
Anheuser-Busch celebrates
30 years of UBC recycling
Arkansas Aluminum cancels
merger with Spectro Alloys
Anheuser-Busch (A-B) Recycling is
celebrating the 30th year of its programme to recycle aluminium cans.
Aluminium semis
ASIA
Alexin’s billet
casting site begins operation
Alexin LLC’s USD58m aluminium billet casting facility in Bluffton, Indianapolis, began commercial operations
during the first week of November.
The plant will eventually have the capacity to produce more than 95,000
tpy of billet from scrap. Alexin will
offer billet up to 400 mm in diameter
with finished lengths up to 7,100 mm.
ALUMINIUM · 1-2/2009
During the 30 years the company
estimates that it has collected for
recycling more than 460bn UBCs
(more than 6m tonnes of aluminium).
As a way to commemorate its anniversary, the company has developed
a new website that provides people
with information on recycling, and
shows them how to create recycling
programmes in their individual communities. Additionally, the company
is distributing thousands of recycling
containers to various A-B wholesalers
to help with recycling programmes.
More than 700 suppliers still have
equipment owned by A-Band use it to
process and then sell directly to their
partner – Anheuser-Busch Recycling.
The UBCs are sent to the company’s
smelting and processing plant where
they are converted into aluminium
sheet. Metal Container Corp., an AB subsidiary, purchases a large percentage of this processed aluminium
sheet and turns it into new aluminium
N
cans.
Vimetco
Arkansas Aluminum Alloys Inc. is
shutting down production and cancelling a planned merger with fellow
secondary aluminium producer Spectro Alloys Corp. Arkansas Aluminum
Alloys plans to temporarily shut down
its smelting operations in Hot Springs,
Arkansas. The shutdown span will be
long enough for Rosemount, Minnesota-based Spectro to be hiring some
of the Arkansas smelter’s employees.
Spectro also will be purchasing scrap
from the Arkansas smelter’s parent,
scrap processor A. Tenenbaum Co.
of North Little Rock, Arkansas. The
Arkansas smelter is capable of producing more than 81,000 tpy of aluminium alloy from scrap.
The facility has a 100,000-square-foot
manufacturing plant and accompanying 250,000-square-foot storage area.
Alexin is hoping to fill a niche in the
growing green construction industry.
Aluminium extrusions are commonly
used in green buildings, and Alexin’s
aluminium is Leadership in Energy
and Environmental Design (LEED)
certifiable. 80% or more of Alexin’s
final aluminium product will consist
of recycled scrap, and its natural gas
furnaces are the most efficient in the
industry. The company’s marketing
region will be within 250 miles of
Bluffton. The owners of Alexin are
individual investors, plus an unidentified private investment company.
Ess Dee buys majority
stake in Vedanta’s India Foil
Packaging firm Ess Dee Aluminium
Ltd has acquired a majority stake
in ailing Indian Foils Ltd, a Vedanta
Group firm. Ess Dee, which makes
packaging products for drug makers
and fast moving consumer goods, has
invested about 1.2bn rupees in India
Foils for a 85 to 90% stake. Ess Dee
Aluminium and Vedanta’s Madras
Aluminium Co. together invested
2.61bn rupees in India Foils in equity
and preferential shares as part of a
rehabilitation plan approved by the
Board for Industrial and Financial Reconstruction. With the acquisition of
India Foils, Ess Dee’s rolling capacity
would more than double to 37,000 tpy
from 18,000 tpy now. Of this, 12,000
tpy would be restarted in March 2009,
while the remaining would be added
by December 2009. India Foils ©
89
CO M PA N Y N E W S W O R L D W I D E
has three manufacturing units, of
which two are shut. Ess Dee expects to
restart an ingot-to-sheet making unit
in four to five months, while it would
consider restarting the third unit at a
later date. Ess Dee will focus on turning
around India Foils, and will start looking for further acquisitions after that.
EUROPE
Novelis mulls closure
of Rogerstone rolling mill
Novelis may close its rolling mill in
Rogerstone, South Wales, if aluminium demand fails to improve. The
company entered into a 90-day consultation period with trade union representatives. The rolling mill, which
produces foil stock, paint stock and
general engineering products, continues to operate as normal. The Rogerstone rolling mill is one of the largest
in the UK, employing 450 workers.
Persistent stock increases and negativity about the global economic outlook is putting pressure on all base
metals prices.
Novelis, a subsidiary of Hindalco
Industries, reported a net loss of USD103m for its second quarter ending
30 September 2008, reflecting rising
energy and input costs, falling metal
prices and currency movements.
NORTH AMERICA
and Cambridge and at its head office
in Oakville, all of which are located
in Ontario. The news is most dire for
the employees of the Alumetco plant,
who have been locked out since 10
November. The Canadian Auto Workers (CAW) union, which represents
the workers, said that it now questions why Burlington would choose
to lock out the workers, provoking a
labour dispute when it was so close
to bankruptcy.
The company owes about USD70m to creditors, including roughly
USD30m to the Royal Bank of Canada.
Burlington has about 500 employees
and lists Ford Motor Co., Dearborn/
Michigan, and General Motors Corp.,
Detroit, as major customers.
Alcoa on board for
NASA moon project
Alcoa Davenport Works was officially
certified to produce almost 453 tonnes
of aluminium lithium alloy to be used
in NASA’s new voyage to the moon
and beyond. NASA representatives
were at the Riverdale/Iowa plant for
meetings and observation. The space
agency awarded Alcoa a USD16.7m
contract in July 2007 for the Ares 1
project. Under the one-year contract,
Alcoa will produce aluminium for
the Ares 1 crew launch vehicle upper stage – the rocket that will carry
the next generation of explorers into
space.
Suppliers
Qinghai Ping An Aluminium
orders automated high-bay store
Qinghai Ping An Aluminium High
Precision Machining Industrial Co.,
The Author
Burlington Technologies lays off
130 while financial woes mount
Aleris’ building sheet sector idled
Burlington
Technologies
Inc.,
Oakville/Ontario, which owns aluminium auto parts maker Alumetco,
has filed for protection under Canada’s Companies Creditors’ Arrangement Act (CCAA), resulting in the layoff of about 130 employees, according
to union officials.
CCAA is roughly equivalent to
Chapter 11 bankruptcy protection in
the United States. Under the terms of
the restructuring process, about 85
locked out workers at Alumetco in
Brantford/Ontario, were laid off. An
additional 45 jobs were cut from the
company’s operations in Burlington
Aleris Inc. is indefinitely idling all
remaining production at its rolling
mill in Richmond/Virginia due to
the downturn in the North American
building and construction industry. In
2008, the company idled production
for all third parties at the rolling mill
and said it would continue producing
for internal requirements only. The
Richmond facility, once part of Alsco
Metal Co., produced semi-fabricated
aluminium coil. It was purchased by
Aleris in 2005. Steven Demetriou,
Aleris Chairman and CEO, said earlier
in 2008 that the company would be
looking to save between USD60m and
90
USD72m in 2008/09, which could involve closing or idling nine plants and
laying off about 700 workers.
In the sheet sector, the company
has closed its mills in Bedford/Ohio,
Toronto and Cap-de-la-Madeleine,
Quebec. Aleris is idling a coil coating line in Roxboro/North Carolina,
laying off 45 employees and reducing
potential output by about 11,300 tpy.
Much of the aluminium coil output went for construction products,
a category hard hit by the economic
downturn. October’s housing starts
in the United States dropped 4.5%
from September and 38% from the
same month last year. The U.S. housing downturn has already cost 3 million jobs in construction and related
industries.
Aleris posted a third-quarter loss
of USD197.8m in contrast to net income of USD3.5 m in the year-earlier
quarter, on sales that rose 3.4% to
USD1.58bn from USD1.53bn. All of
Aleris’ facilities have been told to reN
duce expenses by 6% in 2009.
The author, Dipl.-Ing. R. P. Pawlek is
founder of TS+C, Technical Info Services
and Consulting, Sierre (Switzerland), a
new service for the primary aluminium
industry. He is also the publisher of the
standard works Alumina Refineries and
Producers of the World and Primary
Aluminium Smelters and Producers of
the World. These reference works are
continually updated and contain useful
technical and economic information
on all alumina refineries and primary
aluminium smelters of the world. They
are available as loose-leaf files and/or
CD-roms from the Aluminium-Verlag,
Marketing & Kommunikation GmbH in
Düsseldorf.
ALUMINIUM · 1-2/2009
Ltd, China, has placed an order with Siemag in Netphen, a company of the SMS group, Germany, for the
supply of a new coil conveying and storage system.
The new system is expected to go into production in
mid-2009.
Ping An is currently constructing a new aluminium flat-material production plant with a capacity of
240,000 tpy at its site in Xining (Qinghai province) in
western China. From the new hot strip mill, supplied
by SMS Demag, the coils are first of all transported to a
manually operated flat store with 300 storage locations
for cooling. They are then taken to one of the two cold
rolling mills by means of a special pallet conveying
system. Between the various production operations,
the coils are temporarily stored in the two-aisle highbay store with its 700 storage bays. On completion of
rolling, they are transported to the finishing lines via
the high-bay store. The entire flow of material from the
hot rolling mill to the processing lines is monitored by
the Siemag warehouse management system.
After supplying the world’s largest high-bay store
(4,300 storage bays) for coils to a German customer in
the early 1990s, Siemag now holds the record for supplying the high-bay store located at the highest altitude
in the world.
" ! 30//3021%/.%42%,
%85!(
68*&7
8&6*8&&7*&*
12*880#0
988888-50*
Abu Dhabi orders world’s
largest aluminium fluoride plant
Buss ChemTech AG, Pratteln/Switzerland, has been
awarded a contract to build the world’s largest aluminium fluoride plant in Abu Dhabi. The contract for
the plant complex was signed with Gulf Fluor L.L.C.
of Abu Dhabi in October 2008. The time from project
start to contract signature took over two years during
which market investigation and engineering studies
were carried out.
For this contract Buss ChemTech will execute engineering, purchase equipment and materials for the
plant and supervise the construction of the plant. The
commissioning of the plant and training of the client’s
staff will also be carried out by Buss ChemTech. Until
the end of 2009 a project team of twenty people will
work on the engineering. External engineering capacity will also be called on to expand the team where
required to execute the project.
The plant will produce 60,000 tpy of aluminium fluoride for the aluminium industry and additional 10,000
tpy of anhydrous hydrofluoric acid which is the raw
material for a series of downstream fluorine chemical
derivatives. The plant meets all the necessary emission
standards for environmental protection.
The by-product calcium sulphate (anhydrite) produced in the hydrogen fluoride reaction is neutralised
and will be prepared for use in the building industry
as raw material for floor screeding and making building blocks. The plant complex will be commissioned
in 2011.
©
78#88728
17*8+: ! "!#$ ! "!!
ALUMINIUM · 1-2/2009
%&'!()!
*&+++
'
*&
CO M PA N Y N E W S W O R L D W I D E
Heat treatment technology
Latest furnace projects of Seco/Warwick
Vimetco’s subsidiary Alro S.A. added
an additional production line to their
Slatina facility in Romania using a
Seco/Warwick age furnace system for
processing aluminium plates for the
aerospace industry. The furnace has
met the contract obligations regarding heating time, temperature uniformity
and energy consumption. The age system
reduces cycle time,
labour and energy
costs while improving
product quality using
the latest techniques
in airflow management and PC control
systems. Furnace design utilizes both-way
charging in order to
shorten the inner cycle operations. The
system is fully automated, equipped with
a material handling
system to load and unload product from the
furnace. The finished plate will meet
AMS 2770 and AMS 2750D specifications. The furnace has undergone
NADCAP certification.
Seco/Warwick delivered a holding
furnace to the Kety Group, which is
the most modern and fastest-growing
company of the Polish aluminium industry. The furnace has an eight tonne
capacity and is dedicated for holding
and casting of mainly hard alloys series 2xxx, 5xxx and 7xxx. The compact design furnace will be a part of a
casting line turn-key project realized
by Seco/Warwick. The control system
of the furnace allows for cooperation
with another equipment of the line.
The entire project is supposed to be
running in production in December
2008.
92
Furthermore, Seco/Warwick has delivered a wire annealing furnace to
Lamifil, located in Hemiksem, Belgium. The company produces wire
and cable from aluminium and copper and their alloys. Lamifil extended
its existing line of Seco/Warwick
furnaces delivered several years ago.
The new furnace works with the nitrogen protective atmosphere and is
designed for maximum temperature
of 650°C. The installed gas heating
system allows for minimum energy
Annealing furnaces
for Assan Aluminyum
The Seco/Warwick team has finished
the commissioning of four double
chamber furnaces for coil annealing.
The furnaces were delivered to Assan
Aluminyum Sanayi ve Ticaret A.S.,
Turkey, at 2007 and assigned for annealing various sizes of coils, equipped
with high convection ‘Vortex Jet Heating’. Assan Aluminyum endeavours to
be at the forefront of implementing and
Seco/Warwick
The Polish division of Seco/Warwick recently announced several
installations of heat treating equipment for European countries including Turkey.
Coil annealing furnaces at Assan Aluminyum
consumption. The furnace is fully incorporated with the existing control
system and auxiliary equipment.
Seco/Warwick has signed the
contract for delivery of a new ageing
reversible oven to Universal Alloy
Corp., Romania, to process extrusion
loads of aluminium. The oven will
meet AMS standards and is designed
to maximum 300°C operating temperature, equipped with reversing system
and has high temperature uniformity of load during soaking time. The
guaranteed uniformity during soaking
is ±2.5°C. Equipment will have light
panel construction. The project installation started in December 2008.
UAC is an international specialist in
the production of aerospace extrusions for the aircraft industry.
developing next generation technologies in the aluminium rolled products
industry. Recognizing the productivity
and quality gains offered by the Vortex
Jet Heating system compared to conventional technologies, Assan made
the choice for the patented innovative solution. The furnaces are part of
the company’s large-scale investment
programme for renovation and expansion of Standart Aluminium (Ex-Nasas) assets to a 100,000 tpy aluminium
complex for foil and specialty products. The heating system incorporates
recuperative burners for maximum
energy efficiency. The complete installation includes an automatic charging
machine for furnace loading, unloading, and load transportation between
furnaces and load tables.
N
ALUMINIUM · 1-2/2009
RESEARCH
Sodium penetration into carbon during
electrolysis with and without an aluminium pad
R. S. Balaba, T. Foosnæs, H. A. Øye; Trondheim
Penetration of sodium into cathode carbon with and without an
aluminium pad was studied in a
laboratory electrolysis cell. The
penetration was slowed down by
the aluminium pad independent of
the height. The experiments could
be described by Fick’s law with a
constant mass transfer coefficient
through the aluminium interfaces.
The data are useful for modeling
of penetration of sodium in industrial cells.
kd ·Ci
Cε = ⎯⎯⎯⎯⎯
kd + √D/π · t
(5)
where kd is the mass transfer coefficient of sodium through the aluminium pad and Ci is the constant concentration above the aluminium pad. The
concentration of sodium in the carbon
is then given by
C (η) = Cε(1 - erf (η)) =
kd · Ci
z
⎯⎯⎯⎯⎯⎯
(1 - erf (η)) η = ⎯⎯⎯
kd + √D/π · t
2 √Dt
(6)
Sodium penetrates into carbon during electrolysis either by reaction between aluminium and electrolyte or
by direct reduction:
3 NaF (electrolyte) + Al (l) =
3 Na (C) + AlF3 (electrolyte)
(1)
Na+ (electrolyte) + e- = Na (C)
(2)
This sodium penetration leads to
expansion of the carbon matrix [1].
Laboratory studies were carried out
to study this penetration with and
without an aluminium pad above the
carbon matrix. The data are useful
for modeling of sodium expansion in
technical cells.
Fick’s laws apply if the penetration
is diffusional. For diffusion without an
aluminium pad, the concentration at a
distance z in the carbon, is
z
C(η) = Ci (1 – erf (η)), η = ⎯⎯⎯
2 √ Dt
(3)
where Ci is the constant concentration
on the carbon surface, D the diffusion
constant and t time. It is assumed that
C(η) is zero for t = 0. For a constant
C(η), the right side of the equation is
also constant and
z2 ~ t
(4)
An aluminium pad will act as a barrier
reducing the penetration velocity into
carbon. The concentration on top of
the carbon, Cε, will increase with time
and is given by
ALUMINIUM · 1-2/2009
Experimental set-up
The electrolysis set-up is shown in
Fig. 1. Due to the poor wettability of
aluminium to the carbon cathode and
the alsint tube, a steel tube was used
around and above the carbon to prevent the flow of bath down the surface
of the carbon cathode when an aluminium pad was used.
The cathode was machined to the
right dimensions to fit snugly into the
graphite crucible and a tiny hole was
drilled into the bottom of the crucible
to allow escape of air below the cathode carbon sample during assembling.
The cathode carbon sample was
put into a graphite crucible (inner diameter 83 mm and outside diameter
92 mm) and the steel (if aluminium
pad) and the alsint tube were mounted. The premelted bath (300 g, cryolite ratio, CR = 2.21) was added and
the whole assembly placed inside the
furnace. A steel rod was used to support and connect the crucible to the
negative pole of a DC power supply
unit (Eurotherm 2408).
A graphite anode (30 mm in diameter and 100 mm in height) was connected to the upper lid of the furnace
by a steel rod and the furnace closed
to air tightness and the outer water
cooling system was turned on. Argon
gas was flushed through the ©
The electrolyte had a typical industrial composition with cryolite ratio
(mol NaF/mol AlF3) = 2.21, but with an
aluminium content of 7.7 wt% which
is higher than usual to avoid any anode effects. The electrolyte consisted
of 181.1 g Na3AlF6, 28.2 g AlF3, 14.2
g Al2O3 and 11.8 g CaF2. The mixture
was heat-treated at 1000 °C for 45
minutes for remelting and uniform
mixing to take place, and cooled and
crushed into a powder of maximum
grain size of 250 μm.
Samples from a commercially
available cathode anthracitic block
(30% graphite and 70% anthracite)
were cut and machined into cylindrical carbon cathode
samples of 86.6 mm
Graphite crucible, Ø 92.83 mm
in diameter and 72
mm in height for use
Carbon anode, 30 mm Ø x 100 mm
in electrolysis.
Two major types
Alsint tube
of experiments were
carried out: one for
Bath electrolyte
electrolysis without
aluminium pad for
Steel tube, 86.6 Ø, 85.6 Ø x 20 mm
240 minutes and
Aluminium pad, Ø 85.6 x 20 mm
120 minutes, and the
other,
electrolysis
with aluminium pad
Carbon cathode
for 240 minutes and
120 minutes, and this
study was divided
Graphite crucible
into subtypes (70, 45
and 20 mm height of
the aluminium pad). Fig. 1: Crucible set-up for experiments with an aluminium pad
93
RESEARCH
furnace prior to heating and a small
flow rate of argon (1.5 l/minute) was
maintained throughout the entire
electrolysis experiment to avoid air
oxidation of the carbon materials.
A heating rate of 300 °C/h was
used. After reaching the electrolysis
temperature (990 °C) a 30-minute interval passed to ensure that the electrolyte was completely molten. Then
the graphite anode was lowered until electrical contact was established
and further lowered 20 mm to attain
the desired depth. The electrolysis
programme was then switched on.
Throughout all the electrolysis experiments, a constant current of 21 A was
applied (current density = 0.75 A/cm2).
After electrolysis the anode was
raised above the melt and the power
supply unit and the electrolysis programme were switched off to allow
the furnace and its contents to cool
to room temperature under argon atmosphere.
Results and discussion
Fig. 2 shows that the penetration of
sodium can be explained by a diffusional model, Eqn. [4]. This feature
has also been observed earlier [2].
The graphite crucible was removed
from the furnace and cut to remove
the sample. The sample was then
cleaned and cut into cross sectional
slices of approx. 5 mm thickness using
a water-cooled diamond saw blade.
Each slice was ground into powder
using a mortar and pestle, and the resulting powder weighed. Hydrochlo-
ric acid (0.1M, 100 ml) was
added to the powder in a
tightly closed plastic bottle
and the resulting slurry magnetically stirred for 15 minutes. After 15 minutes, the
slurry was left to settle for one
minute and the solution was
decanted. It is important that
the HCl treatment does not
last too long as a slow dissolution of Al2O3 will take place
giving Al-O-F complexes that
are not backtitrated [3]. Portions of the decanted solution
(25 ml) were pipetted and
back-titrated to pH ≈ 7 with Fig. 3: Sodium distribution in the cathode carbon
0.1 M sodium hydroxide. The block with aluminium pad of different heights at
different electrolysis durations
change in pH during titration
was closely followed with a
pH meter. The difference in titration
Authors
values between the actual amount of
NaOH needed to neutralize pure HCl
M.Sc. Ronald S. Balaba did this work as
part of a master thesis at Department of
and the amount of NaOH consumed
Material Science and Engineering, Norweby the sample (due to excess HCl in
gian University of Science and Technology
the sample) was used to calculate the
and is now at Department of Chemistry,
sodium content of the slice.
Makerere University, Kampala, Uganda.
Fig. 3 shows the penetration of soDr.ing. Trygve Foosnæs is professor at
dium with aluminium pads of differDepartment of Material Science and Engineering, Norwegian University of Science
ent heights. The sodium penetration is
and Technology, Trondheim, Norway.
not dependent on the aluminium pad
Dr.techn. Kn.1.R.N.O.St.O Harald A. Øye is
height but only on time. The rate deterprofessor emeritus at Department of Matemining process for penetration of sorial Science and Engineering, Norwegian
dium above the carbon is hence transUniversity of Science and Technology,
fer of sodium through the surfaces.
Trondheim, Norway.
Fig. 4 gives all the experimental
data fitted to the diffusional model (Eqn. 3-6). A constant transfer coefficient,
kd, is found to be 6.8 · 10-8
m/sec. This value will be
useful for modelling of industrial situations.
References
Fig. 2: Plots of the square of sodium diffusion depth (cm2) versus time of electrolysis
(hours) for electrolyses without the aluminium pad
94
1. M. Sørlie and H. A. Øye, Cathodes in Aluminium Electrolysis.
2nd edition. Aluminium-Verlag,
Düsseldorf (1994) 408 pp.
2. C. Krohn, M. Sørlie and
H.A. Øye, Penetration of Sodium and Bath Constituents
into Cathode Carbon Materials
Used in Industrial Cells. Light
Metals 1982. Ed. J.E. Andersen,
111th AIME Annual Meeting,
Dallas 1982, 311-324.
3. J.G. Hop, Sodium expansion
and creep of carbon. Thesis
NTNU 2005: 44.
Fig. 4: Sodium distribution in the cathode carbon block
with and without aluminium pad at different electrolysis durations. without aluminium pad, 240 min., without aluminium pad, 120 min., with aluminium
pad, 240 min., with aluminium pad, 120 min
ALUMINIUM · 1-2/2009
RESEARCH
Strangpressen – Innovative Verfahren
für Leichtbau und Ressourcenschonung
N. B. Khalifa, D. Becker, D. Pietzka, A. Erman Tekkaya, Dortmund
Um der globalen Erderwärmung
entgegenzuwirken, besteht ein
vorrangiges Ziel aktueller und
zukünftiger Forschungsarbeiten
in der Reduktion von CO2-Emissionen sowohl im Bereich der Automobil- und Luftfahrtindustrie als
auch bei energie- und ressourcenintensiven Fertigungsprozessen
in der industriellen Herstellung
metallischer Produkte. Um den
Energieverbrauch von Verkehrsmitteln zu senken, sind der Einsatz und die Weiterentwicklung
von Leichtbaustrukturen und
leichteren innovativen Antrieben
unumgänglich. Bezüglich des
Energieverbrauches in den einzelnen Herstellungsstufen ist die
urformtechnische Bereitstellung
des Ausgangsmaterials wesentlich
energieintensiver als die Zerspanungs- und Umformprozesse.
Hierbei verursacht die Herstellung
von Primärlegierungen gegenüber
dem Wiedereinschmelzen von bereits verarbeiteten Legierungen zu
Sekundärmetallen den höchsten
Energieanteil. Insbesondere ist der
Energiebedarf zur Herstellung von
Primäraluminium um den Faktor
10 (Stahl 5,4 MJ; Aluminium 54
MJ [Joc04]) höher als beim Stahl.
Aus diesem Grund wird an einem
Ansatz geforscht, den Einschmelzprozess zu reduzieren oder gar zu
vermeiden.
Herstellung von höherfesten und
steifen Profilen, das Tordieren beim
Strangpressen zur Herstellung von
schraubenförmigen Profilen und abschließend das Strangpressen von
Spänen zur Herstellung von Profilen
aus kompaktierten Späneblöcken.
Die aktuellen Forschungsarbeiten
und Ergebnisse dieser Prozesse werden im Folgenden vorgestellt.
Runden beim Strangpressen
Nicht zuletzt die Verwendung von
Spaceframe-Strukturen in der Automobilindustrie als Strategie zur Erfüllung der Leichtbauanforderungen
erfordert Profile als Komponenten.
Der Großteil der verbauten Aluminiumprofile, der nicht nur im Transportsektor, sondern auch in der Bauarchitektur oder dem Maschinen- und
Anlagenbau seinen Einsatz findet, ist
gekrümmt. Aufgrund der konventionell eingesetzten Biegetechnologien zur Krümmungserzeugung sind
gerade Halbzeuge mit engen Fertigungstoleranzen erforderlich. Die
Toleranzschwankungen [DIN07] des
stranggepressten
Aluminiumhalbzeugs machen eine aufwändige Regelungstechnik für die Anwendung der
Biegetechnologien notwendig. Des
Weiteren erschweren Querschnittsdeformation, Rückfederung und verminderte Umformbarkeit gebogener
Profile die Erfüllung von Qualitätsanforderungen.
Seit fast 15 Jahren wird die Prozesserweiterung zum Strangpressen,
das sogenannte Runden beim Strangpressen, im Folgenden mit RubS abgekürzt, am IUL untersucht. Dieses
Verfahren soll eine Alternative für
die konventionellen Techniken bieten, insbesondere um mithilfe dieser
flexiblen Fertigung auch kleine Stückzahlen wirtschaftlich produzieren zu
können. Die zunächst grundlagenbasierten Untersuchungen eben gekrümmter Aluminiumprofile wurden
hinsichtlich der Genauigkeit und ©
ALUMINIUM · 1-2/2009
b)
Abbildungen: IUL
a)
Für die oben dargestellten Ansätze
zur Umweltschonung stellt die Erweiterung des Verfahrens Aluminiumstrangpressen eine sehr flexible und
innovative Möglichkeit dar, komplexe, steife und gleichzeitig leichte
Strukturen und Bauteilen herzustellen. Hierfür werden am Institut
für Umformtechnik und Leichtbau
(IUL) vier Strangpressverfahren untersucht und weiterentwickelt: Das
Runden beim Strangpressen zur Herstellung von 3D-gekrümmten Profilen, das Verbundstrangpressen zur
Abb. 1: Runden beim Strangpressen: a) Verfahrensprinzip und b) Fertigungszelle
und -genauigkeit
95
RESEARCH
Anwendung zum Status der industriellen Einsetzbarkeit erweitert [Are99,
BMB05]. Seit 2003 wird die Fertigung
von Aluminiumprofilen mit 3D-gekrümmter Linienführung in dem Sonderforschungsbereich Transregio 10
erforscht. Der Prozess RubS nutzt den
bereits durch den Strangpressprozess
plastifizierten Zustand des Werkstoffs
in der Matrize, um durch eine Spannungsüberlagerung mithilfe des seitlichen Auslenkens des Stranges einen
differenzierten Werkstofffluss zu generieren. Diese Geschwindigkeitsdifferenz an der Innen- bzw. Außenseite
des Profils im Presskanal bewirkt das
Krümmen des Profils, wie es im Abb. 1
skizziert ist [Kle95, Are99, Kla02].
Für die Auslenkbewegung wird
ein sogenanntes Führungswerkzeug
verwendet, durch das der Strang
läuft und über ein Linearachssystem
abgelenkt werden kann. Für konstant gekrümmte Profile verbleibt das
Führungswerkzeug auf einer Position.
Variabel gekrümmte Bauteile werden
mithilfe eines definierten Bewegungspfades synchron zur Profilaustrittsgeschwindigkeit hergestellt. Profilbögen
mit einem Winkel von 90° und mehr
können aufgrund der Kollision des Profils mit der Presse minimal mit konstant 500 mm Radius gefertigt werden.
Demgegenüber sind kleinere Radien
von beispielsweise 200 mm möglich,
wenn der Bogen nur 30° beträgt und
eine dementsprechende Profillinie
des Gesamtprofils vorliegt [Bec05].
Aufgrund der 3D-gekrümmten Bauteile lässt sich eine konstante Profilunterstützung im Auslaufbereich, wie
es in der konventionellen Prozesskette des Strangpressens üblich ist,
nicht einsetzen. Daher wurde für die
Kompensation der Schwerkraft, die
insbesondere am hinter dem Führungswerkzeug überstehenden Profil
angreift und zu Deformationen führt,
die Fertigungszelle mit einem 6-AchsRoboter erweitert. Für diese Stützaufgabe ist eine Strategie des anfänglichen Mitfahrens und weiteren Stützens in einem definierten, konstanten
Abstand zum Führungswerkzeug
eingesetzt worden. Durch Verwendung langer Stützabstände konnten
die Konturabweichungen gegenüber
einer manuellen Stützoperation um
50% reduziert werden. Bezüglich der
Wirkung von Einflussfaktoren wie der
Schwerkraft werden auch Finite-Element-Berechnungen durchgeführt, da
sich der Werkstofffluss in der Matrize
nicht während des realen Prozesses
analysieren lässt. Ziel dieser Untersuchungen ist es, Regeln abzuleiten, aus
denen Kompensationsvorgänge gefolgert werden können, um die in Abb. 1
dargestellte Fertigungsgenauigkeit der
Profile reproduzierbar zu erhöhen.
Aufgrund der hohen Temperaturen
beim Strangpressen ist die Festigkeit
und Steifigkeit des Aluminiumprofils
herabgesetzt, sodass es leicht zu Deformationen kommt, wenn keine adäquate Stützung vorhanden ist bzw. zu
hohe Beschleunigungen auf das Profil
einwirken. Deshalb und zur Einstellung höherer Werkstofffestigkeiten
wird eine Luftkühlung des Profils
direkt hinter der Matrize eingesetzt.
Zusätzlich werden zwei mitbewegte
Kühleinrichtungen zum einen am
Führungswerkzeug und zum anderen
am Stützroboter verwendet. Die 3Dgekrümmten Profile überstreichen
während der Fertigung mit dem RubS
einen weiten Bereich und können mit
dieser Vorrichtung währenddessen
mit Abkühlraten von circa 5 K/s heruntergekühlt werden.
Eine weitere Wertschöpfung hinsichtlich der Leichtbaueigenschaften,
bezogen auf das Profil, kann durch
die Kombination des RubS mit dem
Verbundstrangpressen, welches im
nächsten Abschnitt vorgestellt wird,
erzielt werden. Das Zuführen von
Drähten in das Profil beeinflusst die
Werkstoffgeschwindigkeit in der Matrize und somit auch den Prozess des
RubS, worauf sich die zukünftigen
Untersuchungen bezüglich dieser
Prozessintegration fokussieren.
Das RubS-Verfahren lässt sich
für Aluminiumlegierungen wie für
Magnesiumlegierungen bisher ohne
Einschränkungen anwenden.
Verbundstrangpressen
In vielen technischen Anwendungen
und besonders in der Verkehrstechnik
werden zunehmend Leichtbaustrukturen aus stranggepressten Aluminiumprofilen eingesetzt. Der Konstruktionswerkstoff Aluminium hat dabei
aufgrund seiner geringen Dichte und
seines sehr guten Umformvermögens
ein hohes Leichtbaupotenzial. Durch
eine geeignete metallurgische Zusammenstellung ist es möglich, Aluminiumlegierungen herzustellen, die genau auf den jeweiligen Belastungsfall
abgestimmt sind. Allerdings kann die
spezifische Steifigkeit nur unwesentlich durch die Legierungszusammensetzung beeinflusst werden, sodass
eine Erhöhung der Steifigkeit fast ausschließlich über eine Vergrößerung
der Profilquerschnittsfläche erreicht
werden kann. Eine Möglichkeit, die
Abb. 2: Verbundstrangpressen: Verfahrensprinzip und Versuchswerkzeug
96
ALUMINIUM · 1-2/2009
RESEARCH
Bauteilsteifigkeit und die -festigkeit
ohne Vergrößerung der Profilabmessungen zu erhöhen, liegt in der Verwendung von Verbundwerkstoffen
und Werkstoffverbunden.
In einer industriellen Anwendung
werden Verbundstromschienen für
Schweizer U- und S-Bahnen durch
Strangpressen hergestellt. In der
Schweißkammer verbindet sich der
Aluminiumblockwerkstoff mit metallischen Bändern, die als Verschleißschutz für den Stromabnehmer benötigt werden. Die Bänder werden
über die Werkzeugtragarme getrennt
vom Werkstofffluss zugeführt. Es
werden jeweils zwei spiegelbildlich
angeordnete Schienen gleichzeitig
in einem Profil gepresst. Die beiden
Bänder liegen dabei aneinander, sodass die Schienen an der Kontaktstelle getrennt werden können [Mül01,
Ame81]. Des Weiteren tritt dadurch
kein höherer Werkzeugverschleiß an
den Führungsflächen auf. Ein Einsatz
dieser Strangpresstechnologie für den
Leichtbau ist unbekannt.
Im Rahmen aktueller Forschungsarbeiten wird das Verfahren Verbundstrangpressen zur Herstellung
von endlos verstärkten Aluminiumprofilen erforscht. Bei der Verfahrensvariante werden metallische oder
nichtmetallische Verstärkungs- oder
Funktionselemente mittels modifizierter Kammerwerkzeuge, ähnlich
wie bei der Herstellung der Verbundstromschienen, während des Strangpressprozesses in den Grundwerkstoff
eingebettet (Abb. 2). Als Verstärkungselemente wurden bisher Drähte, Seile,
Litzen und Flachbänder in Profile des
Strukturbaus eingebettet. Im Gegensatz zum konventionellen Strangpressen faser- oder partikelverstärkter
Pressblöcke können beim Verbundstrangpressen herkömmliche und damit preisgünstigere Blöcke verwendet
werden, und die Verstärkung weist
unter Voraussetzung eines stabilen
Prozesses im Profil auch geringere
bzw. keine Diskontinuitäten auf.
Es stellte sich heraus, dass die
höchste Prozessstabilität mit runden
Volldrähten erreicht werden konnte.
Neben den Standard-Aluminiumknetlegierungen
EN AW-6060
und
EN AW-6082 konnten metallische
Drähte auch in hochfeste Legierungen
wie Aluminium-Lithium und in die
Magnesiumlegierung AZ31 eingebettet werden. In experimentellen
Untersuchungen konnte ein teilweise
signifikanter Einfluss der Werkzeugtemperatur sowie der Temperaturverteilung und der Pressgeschwindigkeit
auf die Lage der Verstärkungselemente in Abhängigkeit von der Bauteillänge ermittelt werden. Die Lage
der Verstärkungselemente ist z. B. bei
einer auf die Belastung der Struktur
angepassten Positionierung der Drähte oder bei einer späteren Bearbeitung
der Verbundprofile von hoher Relevanz. Durch eine sukzessive Steigerung der Profilkomplexität gelang es,
dünnwandige Hohlprofile mit hohem
Verstärkungsanteil prozesssicher herzustellen. Es wurden Richtlinien zur
Werkzeuggestaltung abgeleitet, mit
denen Verstärkungselemente spaltfrei
in die umgebende Matrix eingebettet
werden konnten. Des Weiteren stellte sich heraus, dass eine schrittweise
Reduktion des Umformgrades vor
der Elementzuführung aufgrund der
auftretenden Spannungen die Prozessstabilität verbesserte. Zur Erhöhung des Verstärkungsgrades wurden
auch metallische Flachbänder und
keramische Verbunddrähte in Aluminiumprofile eingebettet. Für die Einbettung von keramischen Verbunddrähten wurden Prozessfenster für
eine störungsfreie Zuführung in das
Strangpresswerkzeug ermittelt, weil
diese sehr spröde und steif sind. Eine
Erhöhung der Anzahl von Verstärkungselementen führt zu einer Hemmung des Aluminiumwerkstoffflusses
und steigenden Stempelkräften.
Aufgrund der komplexen Vorgänge und Wechselwirkungen zwischen
Werkstofffluss und Verstärkungselementen wird das Verfahren neben
den experimentellen Untersuchungen
auch mithilfe von FE-Simulationen
analysiert.
In einem Transferprojekt wird die
industrielle Eignung von verbundstranggepressten Stringern für den
Einsatz in Flugzeugdruckrümpfen geprüft. Ziel ist dabei die Verbesserung
der Restfestigkeit und eine Erhöhung
des Widerstandes gegen Rissausbreitung von Stringer-Blechbauteilen und
deren statische Festigkeit durch Verbundprofile.
Tordieren beim Strangpressen
Neben der Entwicklung von Leichtbaustrukturen gibt es eine ©
Bild 3: Internes Tordieren beim Strangpressen: Verfahrensprinzip und Versuchswerkzeug
ALUMINIUM · 1-2/2009
97
RESEARCH
a)
b)
Abb. 4: Exemplarischer Pressrest (links), Korngefüge (rechts)
weitere Möglichkeit, den Verbrauch
zu senken, und zwar die Entwicklung
und Optimierung von verbrauchsarmen Antrieben. Auch wenn der
Einsatz von Schraubenladern in den
vergangenen Jahren zunächst das Ziel
hatte, die Leistung der Motoren zu
erhöhen, wird heute mehr der Aspekt
der Kompaktheit, des Leichtbaus und
der Energieeffizienz dieser Antriebe
in den Vordergrund gestellt, um somit
auch einen Beitrag zur Ressourcenschonung zu leisten [Kau06, Kau07].
Diesen Vorteilen stehen jedoch die
hohen Fertigungskosten gegenüber. In
der Regel wird zunächst eine Vorform
gegossen, die anschließend durch Fräsen und Schleifen auf Endmaß gebracht
wird. Eine weitere Herstellungsmöglichkeit ist das komplette Zerspanen
aus dem Vollmaterial auf die Endgeometrie, was den Einsatz dieser Antriebstechniken in Großserien noch
stark einschränkt. Im Rahmen eines
von der DFG geförderten Kooperationsprojektes mit dem Fachgebiet für
Fluidtechnik der TU Dortmund werden umformtechnische Alternativverfahren mit weniger Materialausschuss
entwickelt und untersucht, um eine
wirtschaftliche Herstellung derartiger
komplexer Profile zu ermöglichen.
Zur umformenden Fertigung von
schraubenförmigen Bauteilen sind in
den letzten Jahren unterschiedliche
Umformverfahren entwickelt und untersucht worden. Bei der Firma Asea
bspw. wurden mit dem Verfahren des
hydrostatischen Strangpressens Stangen mit Schrägverzahnung aus Einsatzstahl gefertigt [Sch01]. Im Bereich
des Kaltfließpressens sind Untersuchungen zur Herstellung von schräg
verzahnten Zahnrädern durchgeführt
worden [Kepp02, Kon95]. Das zuletzt
genannte Verfahren zeichnet sich
durch die Anwendung von Pressmatrizen mit innerer Verdrehung aus. Im
Rahmen der aktuellen Forschungsarbeiten wird der Ansatz derartiger Matrizen für das Aluminiumstrangpressen überprüft und analysiert, auch
wenn sich der Werkstofffluss und die
Reibbedingungen vom Kaltfließpressen sehr stark unterscheiden. Hierfür wurde am IUL ein Konzept zur
Konstruktion und zur Fertigung einer
Strangpressmatrize, die hinsichtlich
des Steigungswinkels möglichst flexibel ist, entwickelt. Aus dieser Vorgabe
wurde eine Matrize konstruiert, die in
drei Elemente unterteilt wurde, womit unterschiedliche Steigungswinkel
verpresst werden können (Abb. 3).
Die Pressungen sind erfolgreich
durchgeführt worden. Es konnten
deutlich tordierte Profile mit sehr
guten Oberflächeneigenschaften her-
gestellt werden. Allerdings hat sich
der Querschnitt am Austritt deutlich
verändert. Die Zahnbreite hat sich
verringert und der Konturverlauf im
Fußkreisbereich ist wesentlich flacher
geworden. Darüber hinaus ist der am
Profil erzielte Steigungswinkel (ca.
21°/100 mm) viel kleiner als der in der
Matrize (Sollwinkel 90°/100 mm). Es
wurde eine zweite Matrize mit einem
Sollwinkel von 120° eingesetzt, mit
der ein Verdrehwinkel von ca. 32° am
Profil erreicht werden konnte. Aber
auch dabei hat sich die Querschnittsgeometrie stark verändert. Die FE-Simulation des Prozesses hat gezeigt,
dass der Werkstoff in der Matrize aufgrund der Steigung und der Reibung
in beiden Zahnflanken unterschiedlich schnell fließt. Dies führt zu einem
Gegenmoment auf den tordierten
Werkstofffluss, was den von der Matrize vorgegebenen Winkel am Profil
verkleinert als auch die Querschnittsgeometrie verändert. Eine Steigerung
des Steigungswinkels bei den Schraubenrotoren führt zu einer höheren Energie. Um den Steigungswinkel zu erhöhen, wird in den aktuell laufenden
Arbeiten mithilfe der FE-Simulation
die Matrizengeometrie, insbesondere
der Einlauf sowie auch die tribologischen Eigenschaften, grundlegend
analysiert und optimiert.
Abb. 5: Zugversuche aus Profilen aus einem stranggegossenen Pressblock und aus einem Pressblock aus Spänen
98
ALUMINIUM · 1-2/2009
RESEARCH
Strangpressen von Spänen
Neben der Entwicklung von Leichtbaustrukturen und -antrieben besteht
eine weitere Möglichkeit zur Energieeinsparung im Herstellungsprozess,
zum Beispiel durch die Reduzierung
oder sogar Vermeidung von Einschmelzprozessen von Spänen. Dieser
Ansatz wurde bereits in mehreren Arbeiten [Ste51, Sha77, Tak77, Gro96]
aufgegriffen. Dabei wird in [Sha77]
vorgeschlagen, die in der spanenden
Fertigung von Aluminiumbauteilen anfallenden Späne zu sammeln,
zu reinigen, zu kompaktieren und
anschließend zu verpressen. Diese
Vorgehensweise wird der konventionellen Verarbeitung durch Kompaktieren, Einschmelzen, Stranggießen
und Strangpressen gegenübergestellt
und so ein bedeutendes Potenzial zur
Verkürzung der Prozesskette gesehen.
Aus dieser Motivation abgeleitet, hat
ein vor Kurzem gestartetes Kooperationsprojekt mit dem Institut für Spanende Fertigung der TU Dortmund als
Hauptziel, die Untersuchung und Entwicklung von Fertigungsprozessen
um die beim Zerspanen anfallenden
Aluminiumspäne zu verdichten und
anschließend ohne schmelzmetallurgische Behandlung zu einem neuen
Werkstück zu verpressen. Ein übergeordnetes Ziel besteht hierbei in
der Erforschung der Möglichkeiten
und Prozessgrenzen zur Erzeugung
einer metallischen Bindung der Späne unter hohem Druck, hoher Temperatur und hohen Umformgraden.
Erste Untersuchungen zeigen die
Einsatzmöglichkeit von Aluminiumspänen der Legierung EN AW-6060
exemplarisch. Hierbei wurden zwei
unterschiedliche
Spangeometrien
durch einen Fräsprozess bzw. durch
einen Drehprozess erzeugt. Eine Differenzierung von unterschiedlichen
Spanformen sowie der jeweiligen
Zerspanungsverfahren war notwendig, da für die anschließende Weiterverwertung der Späne sich nicht alle
Spanformen als in gleicher Weise geeignet erwiesen. Während durch den
unterbrochenen Schnitt des Fräsprozesses sehr dünne, kurze Späne erzeugt werden können, resultieren aus
dem eingesetzten Drehprozess längliche, dickere Späne. Da die eingesetz-
ALUMINIUM · 1-2/2009
te Aluminiumlegierung ein
relativ duktiles Materialverhalten aufzeigt, sind hieraus
besondere Anforderungen
an die Zerspanprozesse
gegeben. Insbesondere bei
der Drehbearbeitung muss
daher ein kurzer Spanbruch
durch geeignete Einstellung
der Schnittparameter gewährleistet werden.
Die so erzeugten Späne
wurden zunächst in eine
Aluminiumummantelung
gefüllt und darin anschließend in einem mehrstufigen
Kompaktierungsprozess zu
einem Pressblock verdichtet. Hierbei fanden je nach
Spanform mehrere Verdichtungszyklen statt, um
die Dichte der Rohlinge von
anfangs 0,7 g/cm3 auf bis zu
2,7 g/cm3 zu erhöhen. Aufgrund der hohen möglichen
Volumenreduzierung durch
den Kompaktierungsvorgang wurden bis zu sieben
aufeinander folgende Verdichtungsschritte durchgeführt. Mit diesem Kompaktierungsverfahren konnte
bis zu einer Maximalkraft
von 60 kN jedoch nur eine
unzureichende Verbindung
insbesondere der Frässpäne
beobachtet werden. Da die
erzeugten Rohlinge hierdurch zum Teil nur eine
sehr geringe Stabilität aufwiesen (Frässpäne), mussten diese durch eine 3 mm
starke Umhüllung aus der
Legierung EN AW-6060
gestützt werden, um ein
vorzeitiges Auseinanderbrechen der Pressrohlinge
zu verhindern. Es konnte
gezeigt werden, dass insbesondere sehr lange Späne, wie sie häufig bei der
Zerspanung der duktilen
Aluminiumlegierung
EN
AW-6060 auftreten, sich
gut verdichten lassen und
einen hohen inneren Zusammenhalt bilden. Sehr
dünne, feine Späne, wie sie
bei dem untersuchten ©
a) Bild gerundetes Profil
b) Bild Verbundprofil
c) Bild verdrehtes Profil
Steigung 21° / 100 mm
d) Bild Profil, hergestellt aus Spänen
Abb. 6: Beispielbauteile, hergestellt durch die vorgestellten Strangpressverfahren
99
RESEARCH
Fräsverfahren erzeugt werden, eignen
sich nur bedingt zum Verdichten, da
die hieraus erzeugten Rohlinge aufgrund des geringen Zusammenhaltes
der einzelnen Späne direkt nach dem
Verpressen bereits zerfallen.
Die mithilfe des zuvor beschriebenen Verfahrens vorkompaktierten
Pressblöcke wurden in einer konventionellen 2,5-MN-Strangpresse
am IUL verpresst. Dazu sind sowohl
die aus Spänen erzeugten Blöcke als
auch die stranggegossenen Aluminiumblöcke vor dem Strangpressen
zunächst auf eine Temperatur von
500 °C vorzuwärmen. Diese vorgeheizten Blöcke wurden dann in der
Strangpresse bei einer Werkzeugtemperatur von 450 °C und einer
Stempelgeschwindigkeit von 1 mm/s
zu einem Vierkantprofil (5x20 mm)
verpresst. Abb. 4 zeigt einen exemplarisch präparierten Pressrest, der
den Werkstofffluss im Inneren der
verwendeten Matrize veranschaulicht (links). Ebenfalls dargestellt ist
das sich einstellende Korngefüge
für das aus Spänen stranggepresste
Profil (rechts). Deutlich sichtbar sind
die Verschweißungszonen und die
Körner. Verunreinigungen oder Poren z. B. durch Verschmutzung der
Spanoberfläche oder Lufteinschlüsse
waren nicht feststellbar.
Ein Vergleich der mechanischen
Eigenschaften durch Flachzugversuche der gepressten Profile aus
spanbasierten und gegossenen Pressblöcken zeigte, dass eine etwa vergleichbare Festigkeit und Duktilität
erzielt werden kann. Während die
Profile aus stranggegossenem Vormaterial geringfügig höhere Festigkeiten
bei einer ausgeprägteren Streuung
der Ergebnisse aufwiesen, ließ sich an
den Profilen, die aus Spänen erzeugt
wurden, eine leicht höhere Duktilität
feststellen. Prinzipiell lässt sich jedoch
festhalten, dass die Änderungen der
mechanischen Eigenschaften in den
ersten Untersuchungen so gering ausfallen, dass erwartet wird, durch Prozessoptimierung nahezu identische
Eigenschaften erzielen zu können.
Zusammenfassung und Ausblick
Die vorgestellten Ergebnisse zeigen,
dass die Umformtechnik, insbesonde-
100
re das Strangpressen, mithilfe der Prozesserweiterungen das Potenzial für
Fertigungstechnologien, ausgerichtet
auf die Bedürfnisse des Leichtbaus
und der Ressourcenschonung, bietet.
Die Weiterentwicklung und Optimierung der vorgestellten Prozesse zur
Steigerung des Einsatzspektrums,
der Produktivität und der Fertigungsgenauigkeit stehen im Vordergrund
zukünftiger Arbeiten. Beispielbauteile zu den vorgestellten Verfahren
sind in Abb. 6 dargestellt.
Danksagung
Diese Veröffentlichung basiert auf
Forschungsarbeiten des Sonderforschungsbereichs SFB/TR 10 sowie
weiterer Gemeinschaftsprojekte, die
von der Deutschen Forschungsgemeinschaft (DFG) gefördert werden.
Literatur
[Ame81]: Ames, A.: Verfahren und Vorrichtung zum Herstellen von Verbundprofilen beispielsweise Verbundstromschienen. Patentschrift DE 2432541,
Aluminiumwalzwerke Singen GmbH,
Veröffentlichungstag der Patenterteilung:
17.12.1981
[Are99]: Arendes, D.: Ferti-gung gerundeter Aluminiumprofile beim Strangpressen.
Dr.-Ing. Dissertation, Universität Dortmund, Shaker Verlag, Aachen, 1999
[Bec05]: Becker, D.; Klaus, A.; Kleiner, M.:
Three-dimensional Curved Profile Extrusion. Proceedings of the 8th International
Conference on Technology of Plasticity
(ICTP), Verona, 2005
[BMB05]: Gerundete Strangpressprofile aus Al- und Mg-Legierungen für
ultraleichte Tragwerke. Abschlussbericht des Forschungsverbundprojekts
BMBF02 PP 2410,
http://www.iul.unidortmund.de/pages/de/textonly/content
/projekte/foerderung/doc/Abschluss
bericht_Gerundete_Strangpressprofile.
pdf, 2005
[DIN07]: Norm DIN EN 12020: Aluminium und Aluminiumlegierungen Stranggepresste Präzisionsprofile aus Legierungen
EN AW-6060 und EN AW-6063, 2007
[Gro96]: Gronostajski, J., Marciniak, H.,
Matuszak, A.: 1996. Production of Composites on the base of AlCu4 Alloy Chips.
J. Mat. Proc. Tech. 60, 719-722
[Joc04]: Jochem, E.; et al.: Werkstoffeffizienz
– Einsparpotenziale bei Herstellung und
Verwendung energieintensiver Grundstoffe. BMBF-Projekt Förderkennzeichen
0327313A. Fraunhofer IRB Verlag, 2004
[Kau06]: Kauder K., Janicki M.: The Influ-
ence of Clearence Flows on the Working
Behaviour of Compressors. Schraubenmaschinen, VDI-Berichte No.1932, Düsseldorf, 2006.
[Kau07]: Kauder K., Brümmer A., Hauser
J.; Tekkaya A.E., Schikorra M., Ben Khalifa,
N.: Investigation of interaction between
forming processes and rotor geometries
of screw machines, International Conference on Compressors and Their Systems.
IMechE, London, 2007.
[Kep02]: Keppler-Ott, T.: Optimierung
des Querfließpressens schrägverzahnter
Stirnräder. Deutsche Dissertation, Universität Stuttgart, 2002.
[Kla02]:Klaus, A.: Verbesserung der Fertigungsgenauigkeit und der Prozesssicherheit des Rundens beim Strangpressen. Dr.Ing. Dissertation, Universität Dortmund,
Shaker Verlag Aachen, 2002
[Kle95]: Keiner, M.: Europäisches Patent,
EP 0 706 843 B1: Verfahren und Vorrichtung zur Herstellung von gekrümmten
Werkstücken. Europäisches Patent, EP 0
706 843 B1,. 1995
[Kon95]: Kondo k., Ohga K., Precision Cold
Die Forging of a Ring Gear by Divided Flow
Method. Int. Mach. Tools Manufact., Vol.
35, No. 8, 1995, pp. 1005-1013.
[Mül01]: Müller, K.: Strangpressen von
Halbzeugen aus metallischen Verbundwerkstoffen. In: Strangpressen/ Bauser, M.;
Sauer, G.; Siegert, K. (Hrsg.), 2. Aufl., Aluminium-Verlag, Düsseldorf, S.464-483, 2001
[Sch01]: Schreiter, G.: Hydrostatisches
Strangpressen. In: Strangpressen. Editors:
M. Bauser, G. Sauer, K. Siegert. 2nd Edition,
Aluminium-Verlag, Düsseldorf, 2001.
[Sha77]: Sharma, C., Nakagawa, T. 1977.
Recent Development in the Recycling of
machining swarfs by sintering and powder
forging. Annals of the CIRP. 25/1
[Ste51]: Stern, M: Direct Extrusion applied
to Lightmetal Scrap, The Iron Age, Band
28/6, 1951
[Tak77]: Takahashi, T.: Development of
scrap extrusion reformation and utilization process, Proc. 2. Intl Aluminium Extrusion Technol. Seminar, Band 1, 1977,
S. 123-128
Autoren
Dipl.-Ing. Nooman Ben Khalifa ist Leiter
der Abteilung Massivumformung am Institut für Umformtechnik und Leichtbau
(IUL) der TU Dortmund. Er ist im Gebiet
des Strangpressens tätig.
Dipl.-Wirt.-Ing. Dirk Becker ist Wissenschaftlicher Mitarbeiter am IUL der TU
Dortmund. Er beschäftigt sich mit dem
Runden beim Strangpressen.
Dipl.-Wirt.-Ing. Daniel Pietzka ist Wissenschaftlicher Mitarbeiter am IUL der TU
Dortmund. Er beschäftigt sich mit dem
Verbundstrangpressen.
Prof. Dr.-Ing. A. Erman Tekkaya ist Leiter
des IUL der TU Dortmund.
ALUMINIUM · 1-2/2009
EVENTS
CALL FOR PAPERS
Große Schweißtechnische Tagung:
Messe Forum 2009
14. bis 19. September 2009, Essen
Die Große Schweißtechnische Tagung (GTS) bietet den im Bereich des
Fügens, Trennens und Beschichtens
tätigen und interessierten Fachleuten
einen aktuellen Gesamtüberblick der
Branche. Der Informationsaustausch
mit Fachkollegen und die direkte
Diskussion mit den vortragenden
Experten stehen im Mittelpunkt der
Veranstaltung. Nationale und internationale Vorträge und Workshops
informieren umfassend und aktuell
über den Stand der Technik beim Fügen, Trennen und Beschichten. Für
die GTS 2009 werden Vorträge u. a.
zu den Themen Fahrzeug-, Schienenfahrzeug- und Schiffbau, Luft- und
Raumfahrzeugbau, Brückenbau, OffShore-Technik, Apparate- und Behälterbau sowie Rohrleitungsbau erbeten. Deadline für Vortragsangebote
ist der 1. Februar 2009.
Kontakt:
DVS Deutscher Verband für Schweißen und verwandte Verfahren e. V.
Tel: + 49 (0)211 1591 302
[email protected]
www.die-verbindungs-spezialisten.de
CALL FOR PAPERS
Magnesium
26 to 29 Oct 2009, Weimar, GER
It is the 8th international conference
on magnesium alloys and their applications, organised by DGM. Magnesium offers promising potential to
meet weight requirements; however,
the potential is still subject to further
R&D. The DGM magnesium conference
series has been designed to refer to research programmes and development
projects being run all over the world.
The organisers are calling for papers in
all magnesium related fields. Particular
emphasis is put on the implementation
of wrought alloys in the form of extrusion, sheet and forgings. Improved
processes like continuous casting as
well as strip and twin-roll casting could
enhance the use of wrought alloys. But
also for cast products there are ongoing efforts to improve the mechanical properties and to introduce more
economical processes. While high
pressure die casting is still the pre-
ALUMINIUM · 1-2/2009
dominant technology, the interest for
advanced casting processes using semi
solid technologies like thixomolding
and rheocasting has increased. Recent
solutions to prevent galvanic corrosion
in dissimilar joints make magnesium
interesting for an even wider use in
light weight construction. Deadline for
the submission of abstracts is 2 March
2009.
Contact:
DGM Deutsche Gesellschaft für
Materialkunde e.V.
Tel: +49 (0)69 75306 747
[email protected]
www.dgm.de/dgm/magnesium
BAU 2009
12. bis 17. Jan. 2009, München
Die BAU präsentiert Architektur, Materialien und Systeme für den Industrieund Objektbau, den Wohnungsbau
und den Innenausbau. Sie führt alle
zwei Jahre die Marktführer der Branche zu einer einmaligen Leistungsschau zusammen und ist damit das
wichtigste Ereignis der europäischen
Bauwirtschaft. Das Angebot ist nach
Baustoffen sowie nach Produkt- und
Themenbereichen gegliedert. Erwartet werden mehr als 2.000 Aussteller
aus 40 Ländern und mehr als 200.000
Fachbesucher aus 145 Ländern. Ein
umfassendes Rahmenprogramms rundet das Messeangebot ab.
Kontakt:
Messe München GmbH
Tel: +49 (0)89 949 113 08
[email protected]
www.bau-muenchen.de
9. KBU-Kolloquium zu Wirtschaft
und Umwelt – UGB: Auswirkungen
auf die Rohstoffwirtschaft
20 Jan. 2009, Aachen
Das neue Umweltgesetzbuch befindet
sich derzeit in der Endphase des Abstimmungsprozesses, ein belastbarer
Regierungsentwurf sollte in Kürze
vorliegen. Auf dieser Grundlage sollen
die Hauptgebiete des UGB dargestellt
werden, nämlich die integrierte Vorhabengenehmigung, das Wasserrecht
sowie das Naturschutzrecht. Im Vordergrund stehen dabei die konkreten
Auswirkungen auf die Praxis. Die Referenten stammen daher u. a. aus dem
federführenden Bundesministerium
für Umwelt, Naturschutz und Reaktor-
sicherheit sowie aus der Wirtschaft, um
exemplarisch die Konsequenzen auch
für einzelne Bereiche darzustellen
(namentlich Bergbau, Stahlindustrie).
Zugleich werden von erfahrenen Praktikern Lösungswege aufgezeigt.
Kontakt:
GDMB-Geschäftsstelle
Tel: +49 (0)5323 937 90
[email protected]
www.gdmb.de
Upakovka/Upak Italia
27 to 30 Jan 2009, Moscow, RU
The packaging sector is experiencing
double-digit growth in Russia on the
back of expansion in the sales markets
for consumer goods. The country’s
global packaging production capacity
represents about two percent, which
means that local suppliers are unable
to meet the high growth recorded in
domestic demand. Upakovka/Upak
Italia is Russia’s premier trade fair for
packaging technology. More than 350
exhibitors will gather to present their
innovations in the fields of packaging
machinery, confectionery machinery,
packaging, packaging aids and logistics.
An interesting ancillary programme
accompanies the exhibitors’ offerings:
for example, international associations
will give lectures on packaging subjects.
Contact:
Messe Düsseldorf GmbH
Tel: +49 (0)211 4560 01
[email protected]
www.messe-duesseldorf.de
Intl Bauxite & Alumina Seminar
11 to 13 Feb 2009, Montego Bay,
Jamaica
Metal Bulletin’s Bauxite & Alumina
Seminar regularly attracts some 300
executives from around the globe: from
mining companies to alumina refiners
and users, from both the metallurgical
and non-metallurgical sides of the business, as well as traders, financiers, shipping and technology companies. The
seminar programme will offer an expert line-up of speakers and the chance
for some informative debate on insight
into key industry issues: Ensuring access to good quality bauxite – how are
the mine projects progressing? What
other regions offer mining potential
and when? Where will China source its
much needed bauxite supplies? ©
101
V E R A N S TA LT U N G E N
Will raw materials and energy costs put
a break on Chinese alumina output?
Will higher production costs generally
delay some alumina projects around
the world? Can the industry maintain
relatively stable alumina prices over
the longer-term? What impacting is
consolidation in the aluminium industry having on the upstream segment?
How are supply and demand matching up in the non-metallurgical sector?
Contact:
Metal Bulletin Events
[email protected]
www.metalbulletin.com
feld Maschinenbau dürfte auch das
Rahmenprogramm für Interesse in der
Fachwelt sorgen. Den Schwerpunkt
der Zuliefermesse Z bilden Zulieferleistungen für den Fahrzeugbau sowie für
den Anlagen- und Maschinenbau. Inzwischen gilt die „Z“ als eine der wichtigsten eigenständigen Zuliefermessen
in Europa, an der sich etwa ein Drittel
ausländischer Unternehmen aus circa
20 Ländern beteiligen.
Kontakt:
Leipziger Messe GmbH
Tel: +49 (0)341 678 8090
k.bunke @leipziger-messe.de
www.leipziger-messe.de
TMS 2009
15 to 19 Feb 2009, San Franscisco, USA
4. Landshuter Leichtbau-Colloquium
With more than 3,150 abstract submissions, the TMS 2009 Annual Meeting &
Exhibition is shaping up to be the largest in the history of The Minerals, Metals & Materials Society. The conference
theme – ‘Linking Science and Technology for Global Solutions’ – describes
the mix of fundamental research and
industrial application of materials technologies presented at this conference.
More than 50 symposia and 2,500 presentations are planned in a number of
topical areas (including aluminium and
magnesium); workshops on the TMS
are: Alumina Refinery Fundamentals
and Practice, Aluminium Metal Treatment, Direct Chill and Twin Roll Casting of Magnesium, Furnace Systems,
Greenhouse Gas Emissions. In other
words: TMS 2009 offers something for
everyone working in the field of materials science and engineering.
Contact:
TMS Meeting Service
Tel: +1 724 776 9000
[email protected]
www.tms.org
26. bis 27. Febr. 2009, Landshut
intec + Zuliefermesse Z
24. bis 27. Febr. 2009, Leipzig
Mit der intec (Fachmesse für Fertigungstechnik und Maschinenbau) und
der Zuliefermesse Z (für Teile, Komponenten, Module und Technologien)
präsentiert sich der Messestandort
Leipzig im Doppelpack. In diesem Jahr
ist die intec die größte Veranstaltung
in Deutschland, auf der Werkzeugmaschinen und Fertigungstechnik ausgestellt werden. Mit zwei hochkarätig
besetzten Kongressen zum Themen-
102
Der Leichtbau-Cluster, das branchenübergreifende Kompetenznetzwerk
für Leichtbautechnologien, bietet mit
dem Colloquium ein Fachforum, auf
dem Leichtbaustrategien, -konzepte
und -lösungen präsentiert werden. Die
diesjährige Veranstaltung steht unter
dem Titel „Leichtbau – eine Schlüs-
seltechnologie für Materialeffizienz,
Energieeffizienz und Klimaschutz“.
Im Fokus stehen neben der Automobil- und Nutzfahrzeugindustrie die europäische Luftfahrtbranche sowie die
Automatisierungs- und Antriebstechnik. Neben den Vorträgen findet eine
begleitende Fachausstellung statt. Hier
werden Dienstleistungen, Leichtbaulösungen und -produkte präsentiert.
Kontakt:
Hochschule Landshut
Leichtbau-Cluster
Marc Bicker, MBA
Tel: +49 (0)871 506-134
[email protected]
www.leichtbau-cluster.de
10th OEA Intl Aluminium Recycling
Congress
2 to 3 March 2009, Berlin, GER
The Congress will show economic,
technical and political developments
in the field of aluminium recycling in
Europe and the rest of the world. Two
days with top class presentations on
the following topics are expecting the
Fortbildung
Einkauf von Aluminium, 19. bis 20. Januar 2009, München
ManagementCircle, Tel: +49 (0)6196 4722 653, [email protected],
www.managementcircle.de
Korrosionsschutz: Ursachen verstehen – Maßnahmen erfolgreich umsetzen,
22. bis 23. Januar 2009, Frankfurt a. M.
IIR Deutschland, Tel: +49 (0)211 9686 3673, [email protected],
www.iir.de
Vom Ingenieur zum Vertriebsingenieur, 26. bis 28. Januar 2009, Stuttgart
VDI Wissensforum, Tel: +49 (0)211 6214 201, [email protected],
www.vdi-wissensforum.de
Schmierung in der Instandhaltung, 28. Januar 2009, Altdorf bei Nürnberg
Technische Akademie Wuppertal, Tel: +49 (0)202 7495 0,
[email protected], www.taw.de
Vertrieb in Russland, 29. bis 30. Januar 2009, Köln
ManagementCircle, Tel: +49 (0)6196 4722 632,
[email protected], www.managementcircle.de
Nadcap – Vorgehensmethodik zur Erlangung der Zertifizierung,
11. Februar 2009, Hamburg
TÜV Nord Akademie, Tel: +49 (0)40 8557 2000,
[email protected], www.tuevnordakademie.de
Maschinen- und Fahrzeugbauteile betriebssicher und zuverlässig
konstruieren, 19. bis 20. Februar 2009, Wuppertal
Technische Akademie Wuppertal, Tel: +49 (0)202 7495 0,
[email protected], www.taw.de
ALUMINIUM · 1-2/2009
EVENTS
visitor: scrap supply and scrap processing technologies, melting technologies,
environmental protection and compatibility, aluminium recycling in emerging markets, applications for recycled
aluminium, aircraft end-of-life solutions. As usual, the Congress forms an
excellent platform to meet experts of the
international aluminium recycling industry and to form new contacts. There
will be a simultaneous translation of the
speeches in English and German.
Contact:
Organisation of European Aluminium
Refiners and Remelters
Tel: +49 (0)211 451 933
[email protected]
www.oea-alurecycling.org
10. Umformtechnisches Kolloquium
Darmstadt
17. bis 18. März 2009, Seeheim-Jugenheim
Zum 10. Mal veranstalten das Institut
für Fertigungsforschung e. V. (IfF) und
das Institut für Produktionstechnik
und Umformmaschinen (PtU) der TU
Darmstadt dieses Kolloquium. Motivation ist dieses Jahr, aktuelle Entwicklungen im Bereich der Umformtechnik als Triebfeder und Garant für
die Erschließung neuer Marktsegmente und als Sicherung der Wettbewerbsfähigkeit vorzustellen. Gerade
in Zeiten sehr volatiler Beschaffungsmärkte und einer von Unsicherheiten
geprägten Absatzlage ermöglichen
innovative Prozesse flexiblere Ferti-
gungsabläufe für eine schnellere Anpassung an die Marktgeschehnisse.
Der Fokus des UKD 2009 liegt daher
auf den Berührungspunkten der drei
Handlungsfelder Produktionsstrategien, (Servo-)Pressen und Innovative
Prozesse; die Veranstaltung bietet
Experten aus Industrie und Wissenschaft ein Forum, Ansätze und Möglichkeiten dieser Themenbereiche zu
diskutieren.
Kontakt:
PtU der TU Darmstadt
Tel: +49 (0)6151 16 3056
Fax: +49 (0)6151 16 3021
[email protected]
www.ptu.tu-darmstadt.de
Hannover Messe 2009 showcases the latest industry trends
20 to 24 April 2009, Hannover, Germany
The trade fair ‘Hannover Messe’
has its sights set firmly on the
future. The ideas and solutions on
show create a unique platform for
innovation. It is already clear that
the entire exhibition grounds will
be fully booked.
The Hannover Messe portfolio comprises thirteen flagship fairs: Interkama+, Factory Automation, Industrial
Building Automation, Digital Factory,
Subcontracting, Energy, Power Plant
Technology, Micro Technology and
Research & Technology. In 2009 these
annual events will be augmented by
Motion, Drive & Automation, Surface
Technology and ComVac, which are
staged at two-yearly intervals. The
wind power industry has responded
very favourably to the creation of
‘Wind’, which will also take place
every two years. ‘Wind’ is symptomatic of the concept of cross-industry networking that defines Hannover
Messe.
Energy and climate protection
will be the dominant issues in 2009.
Renewables and conventional energy
sources receive equal coverage. Energy and energy efficiency will be recurrent subjects in all sections of Hannover Messe while mobility is commanding ever-greater attention. At Motion,
ALUMINIUM · 1-2/2009
Drive & Automation carmakers and
component suppliers will join forces
to present the latest electric transmission systems at a special presentation
entitled ‘E-Motive’. The trade shows
‘Energy’ and ‘Industrial Automation’
will likewise feature a number of different presentations focussing on energy-efficient mobility – for example,
‘Clean Moves Expo’, ‘Hydrogen + Fuel
Cells’, the presentation by the German
Renewable Energy Association (BEE)
and ‘Mobile Robots and Autonomous
Systems’. “From the viewpoint of the
mechanical engineering industry –
Germany‘s number-one driving force
in the field of environmental technology and energy efficiency – Hannover
Messe provides a decisive platform
for communication with customers”,
emphasizes Hartmut Rauen, who sits
on the Executive Board of the German
Engineering Federation (VDMA).
It is not just the sheer number of
exhibitors, industry organisations and
nations that make Hannover Messe the
top event for the international business community. It is the professional
calibre of the visitors and exhibitors
that are the defining feature of the fair.
“Hannover Messe is the world‘s largest industrial technology show. Leading personalities from science and
industry come together in Hannover
in order to present the technologies
that will bolster Germany‘s role as one
of the leading industrialised nations”,
says Willi Fuchs, Director of the Association of German Engineers (VDI).
Around 2,000 congresses, discussion forums, seminars and workshops
will be taking place during Hannover
Messe 2009. The ‘World Energy Dialogue’ will attract a high degree of
international attention. Chaired by
the climate protection expert Klaus
Töpfer, this high-profile congress will
centre on sustainable future energy
supplies.
The Republic of Korea has been
chosen as the Partner Country at
Hannover Messe 2009. The organisers have opted for the programmatic
motto ‘The Beat of Innovation’ for
this event. Germany is Korea‘s most
important trading partner within the
EU. Worth a total of 100,000 euros, the
‘Hermes Award’ singles out products
and processes that break new ground
in terms of technical excellence and
economic benefit.
Contact:
Deutsche Messe AG
Tel: +49 (0)511 89 0
[email protected]
www.hannovermesse.de
103
PAT E N T E
Patentblatt November 2008
Produkte aus Al-Mg-Legierung für geschweißte Strukturen. Alcan Rhenalu,
Courbevoie, FR. (C22C 21/06, EP 1 488
018, EP-AT: 19. 03.2003)
Al-Cu-Dünnfilmsputterprozess mit hohem Durchsatz auf einem schmalen
Kontakt-Via. International Business
Machines Corp., Armonk, N.Y., US; Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa, JP; Qimonda AG, 81739 München,
DE. (H01L 21/285, PS 699 37 317, EP
0954015, EP-AT: 21.04.1999)
Verwendung einer Al-Mn-Legierung
für hochwarmfeste Erzeugnisse. Technische Universität Clausthal, 38678
Clausthal-Zellerfeld, DE. (C22C 21/06,
OS 10 2007 023 323, AT: 16.05.2007)
Feinkristalline
Al2O3-Keramik. CeramTec AG, 73207 Plochingen, DE.
(C04B 35/111, OS 10 2005 059 099, AT:
08.12.2005)
Hydroxylapatitbeschichtung von Al2O3Keramik. CeramTec AG, 73207 Plochingen, DE. (C04B 41/90, OS 100 64 355, AT:
21.12.2000)
Aluminium-Silizium-Gusslegierung
und Verfahren zu ihrer Herstellung.
Technische Universität Clausthal, 38678
Clausthal-Zellerfeld, DE. (C22C 21/02,
EPA 1978120, EP-AT: 31.03.2008)
Eloxiertes Aluminium und darauf beruhende Legierungen. Duracouche International Ltd., Tortola, VG. (C25D 11/08,
EPA 1980651, EP-AT: 02.05.2008)
Aluminium-Gusslegierung. Bayerische
Motorenwerke
Aktiengesellschaft,
80809 München, DE. (C22C 21/02, EPA
1972696, EP-AT: 16.02.2008)
Verfahren zur Herstellung einer Aluminiumlegierung. Bayerische Motorenwerke Aktiengesellschaft, 80809 München, DE. (C22C 1/02, EPA 1972695,
EP-AT: 16.02.2008)
Aluminium-Siliziumcarbid-Zusammensetzung und diese nutzendes Wärmestrahlungsteil. Denkikagaku Kogyo
Kabushiki Kaisha, Tokyo 103-8338, JP.
(H01L 23/373, EPA 1973157, EP-AT:
13.11.2006)
Verfahren zum Verbinden von Bauteilen aus hochfestem Aluminiummaterial
und nach diesem Verfahren montierter
Wärmeübertrager. Visteon Global
Technologies Inc., Van Buren, Mich., US.
(B23K 1/20, OS 10 2007 022 632, AT:
11.05.2007)
In ein Aluminium-Gussteil einzugießender Graugussrohling und entsprechendes Gussverfahren. Audi AG,
85057 Ingolstadt, DE. (F02F 1/00, PS 198
36 706, AT: 13.08.1998)
Aluminium-Strangpressprofil als Latentwärmespeicher. Reitz, Arnold, Dipl.Ing., 63628 Bad Soden-Salmünster, DE.
(F28F 21/08, GM 20 2005 020 584, AT:
03.08.2005)
Wärmegedämmte geschweißte Aluminium-Dachkonstruktion. Möhle, Detlef,
32339 Espelkamp, DE. (E04B 7/00, GM
20 2007 011 283, AT: 13.08.2007)
Aluminium-Magnesium-Legierung mit
verbesserter Beständigkeit gegen
Abblättern. Aleris Aluminum Koblenz
GmbH, 56070 Koblenz, DE. (C22C 21/06,
EP 1 177 323, EP-AT: 04.05.2000)
Mullit-Aluminium-Titanat-Dieselabgasfilter. Corning Inc., Corning, N.Y., US.
(B01D 39/20, PS 603 18 062, EP 1525042,
EP-AT: 07.07.2003)
Aluminiumlegierung in einer Form
oder einem Reifen und Reifenform.
Bridgestone Corporation, Tokyo 1048340, JP. (C22C 21/08, EPA 1972697,
EP-AT: 11.03.2008)
Warmfeste Aluminiumlegierung. Aluminium Rheinfelden GmbH, 79618
Rheinfelden, DE. (C22C 21/08, PS 50
2006 000 145, EP 1757709, EP-AT:
28.02.2006)
Türträger aus einer Aluminiumlegierung. Kabushiki Kaisha Kobe Seiko Sho,
Kobe, Hyogo, JP. (B60J 5/04, PS 699 25
667, EP 0950553, EP-AT: 26.03.1999)
Aluminiumlegierungen zum Gießen,
Aluminiumlegierungsgussstücke und
Verfahren zur Herstellung von Aluminiumlegierungsgussstücken. Kabushiki
Kaisha Toyota Chuo Kenkyusho, AichiGunAichi 480-1192, JP. (C22C 21/02,
EPA 1975262, EP-AT: 27.03.2008)
Mehrschichtiges Gleitteil einer auf
Aluminium basierten Legierung. Daido Metal Co. Ltd., Nagoya, Aichi, JP.
(F16C 33/12, PS 10 2004 025 557, AT:
25.05.2004)
Verfahren zur Punktwiderstandsschweißung von Aluminiumlegierungen. Alcan Technology & Management,
8212 Neuhausen am Rheinfall, CH.
(B23K 11/11, EPA 1973686, EP-AT:
04.01.2007)
Gegossenes Bauteil aus Leichtmetall.
Audi AG, 85057 Ingolstadt, DE. (F16B
37/12, PS 198 47 478, AT: 15.10.1998)
Wetterschutzschiene. Aleris Aluminium
Vogt GmbH, 88267 Vogt, DE. (E06B 1/34,
PS 196 11 170, AT: 21.03.1996
104
Aluminiumlegierungen für das Hochtemperatur- und Hochgeschwindigkeitsformen,
Herstellungsverfahren
dafür und Verfahren zur Herstellung
von Aluminiumlegierungsformen. Furukawa-Sky Aluminium Corporation,
Tokyo 101-8970, JP; Nippon Steel Engineering Corporation, Tokyo 100-8071,
JP. (C22C 21/06, EPA 1975263, EP-AT:
11.01.2007)
Verfahren zur Herstellung von Aluminiumlegierungen ohne Schmelzen.
General Electric Co., Schenectady, N.Y.,
US. (B22F 9/18, EP 1 488 874, EP-AT:
11.06.2004)
Verfahren und Anlage zum Gießen von
Leichtmetall-Zylinderkurbelgehäusen
in Sandformen. Honsel GmbH & Co KG,
59872 Meschede, DE. (B22C 9/10, PS 10
2005 051 561, AT: 26.10.2005)
Verfahren zum Gießen von Bauteilen
aus Leichtmetall nach dem Kippgießprinzip. Rautenbach-Guß Wernigerode
GmbH, 38855 Wernigerode, DE. (B22D
23/00, PS 50 2005 001 740, EP 1742752,
EP-AT: 30.03.2005)
Profilelement zum Befestigen einer
Stoßstange an Längsträgern eines
Fahrzeuges. Alcan Technology & Management AG, Neuhausen am Rheinfall,
CH. (B60R 19/34, PS 10 2006 040 178,
AT: 25.04.2006)
Vorrichtung und Verfahren zum Messen von Metalleinschlüssen. Alcan
International Ltd., Montreal, Quebec,
CA. (G01N 33/20, EP 1 620 720, EP-AT:
22.04.2004)
Konstruktionselement für die Luftfahrt
mit Variation der anwendungstechnischen Eigenschaften. Alcan Rhenalu, Courbevoie, FR. (C22F 1/053, PS
60 2005 006 764, EP 1727921, EP-AT:
21.03.2005)
Hochgeschwindigkeitsmetallpulverspritzbefestigung. Alcoa Inc., Pittsburgh, PA 15212-5858, US. (B23K 28/00,
EPA 1973689, EP-AT: 09.01.2007)
Aufpralldämpfer für Leitplankenpfosten. Alcoa Extrusion Navarra, S.L., Irurzun, Navarra, ES. (E01F 15/04, EP 1 382
747, EP-AT: 23.06.2003)
Kühlvorrichtung und Verfahren zu deren Herstellung sowie Vorrichtung zur
Durchführung des Verfahrens. Corus
Aluminium Profiltechnik GmbH, 88267
Vogt, DE. (H01L 23/367, PS 100 56 387,
AT: 14.11.2000)
Fassaden- und/oder Lichtdachkonstruktion. Hydro Aluminium AS, 0240
Oslo, NO. (E06B 3/54, EPA 1972748, EPAT: 11.03.2008)
ALUMINIUM · 1-2/2009
PAT E N T E
Verfahren zum Biegen eines bahnförmigen Stehfalzprofilbleches und Einrichtung zur Durchführung des Verfahrens. Corus Bausysteme GmbH, 56070
Koblenz, DE. (B21D 7/08, PS 50 2004 005
438, EP 1631399, EP-AT: 07.05.2004)
Kolben für eine Verbrennungskraftmaschine, Verfahren zu seiner Herstellung sowie Ringträger hierfür. Mahle
International GmbH, 70376 Stuttgart, DE.
(B22D 15/02, OS 10 2007 020 384, AT:
30.04.2007)
Verfahren zur Herstellung einer gelöteten Baugruppe. Aleris Aluminium
Koblenz GmbH, 56070 Koblenz, DE;
Aleris Aluminium Canada LP, Cap-dela-Madeleine, QC G8T 7W9, CA. (B23K
1/00, EPA 1971457, EP-AT: 04.01.2007)
Energie absorbierende Konstruktion
und damit versehenes Fahrzeug. Reynolds Aluminium Holland B.V., Harderwijk, NL. (F16F 7/12, OS 101 45 446, AT:
14.09.2001)
Wärmegedämmtes Verbundprofil, insbesondere für Fenster, Türen, Fassaden und dergleichen. Norsk Hydro A/S,
0257 Oslo 2, NO. (E06B 3/263, EPA
1980701, EP-AT: 23.05.2001)
Beschlag zur Verriegelung von Fenstern
oder Türen. Hydro Aluminium AS, 0240
Oslo, NO. (E05C 9/00, EPA 1975353, EPAT: 11.03.2008)
Tür, Fenster oder ähnliche Inhaltsmittel zur seitlichen Führung des freien
Randes einer zentralen Dichtungsverbindung. Norsk Hydro ASA, 0240 Oslo,
NO. (E06B 7/22, EPA 1972749, EP-AT:
22.02.2008)
Verfahren zum Herstellen von Gussteilen und Insert für Gussteile. Hydro Aluminium Alucast GmbH, 66763 Dillingen,
DE; Federal-Mogul Friedberg GmbH,
86316 Friedberg, DE. (C23C 4/08, OS 11
2005 002 391, WO-AT: 28.09.2005)
Rahmenkonstruktion für Fenster und/
oder Türen. Hermann Gutmann Werke
AG, 91781 Weißenburg, DE. (E06B 3/30,
EPA 1980702, EP-AT: 28.09.2007)
Thermisch getrennte Regenschutzschiene oder Bodenschwelle. Hermann
Gutmann Werke GmbH, 91781 Weißenburg, DE. (E06B 3/30, PS 101 24 876,
AT: 22.05.2001)
Fassade oder Dach mit mehreren Entwässerungsebenen. Hermann Gutmann
Werke AG, 91781 Weißenburg, DE. (E04B
2/96, PS 103 19 001, AT: 25.04.2003)
Kolben für einen Verbrennungsmotor
und Verfahren zu seiner Herstellung.
Mahle International GmbH, 70376 Stuttgart, DE. (F02F 3/16, EPA 1977102, EPAT: 15.12.2006)
Verfahren zur Herstellung von Aluminiumnitridkristall, Aluminiumnitridkristallsubstrat und Halbleiterbauelement. Sumitomo Electric Industries,
Ltd., Osaka-shi, Osaka 541-0041, JP.
(C30B 29/38, EPA 1972702, EP-AT:
10.01.2007)
Verfahren zur Herstellung von Aluminiumhydroxidpulver. Sumitomo Chemical Co., Ltd., Tokio/Tokyo, JP. (C01F
7/02, EP 1 132 342, EP-AT: 30.05.2000)
In der Novemberausgabe der ALUMINIUM haben wir versehentlich ein
metallübergreifendes Patentblatt „September 2008“ abgedruckt. Hier die
Patentaufstellung für den Werkstoff
Aluminium.
Patentblatt September 2008
Spezialvorrichtung zum Aufspritzen der Aluminiumlegierung für alle
Metallteile am Kfz zur Rostvermeidung. Simmat, Rainer, 33790 Halle, DE.
(C23C 24/04, OS 10 2007 010 608, AT:
06.02.2007)
Aluminium-Gusslegierung. Bayerische
Motoren Werke AG, 80809 München,
DE. (C22C 21/04, OS 10 2007 012 423 u.
OS 10 2007 012 530, AT: 15.03.2007)
Verfahren zur Herstellung einer Aluminiumlegierung. Bayerische Motoren Werke AG, 80809 München, DE.
(C22C 21/04, OS 10 2007 012 424, AT:
15.03.2007)
Anordnung zum Kontaktieren eines
Aluminium enthaltenden elektrischen
Leiters. Nexans, Paris, FR. (H01R 4/48 u.
H01R 4/50, OS 10 2007 012 530 u. OS
10 2007 011 096, AT: 15.03.2007 u. AT:
07.03.2007)
Teilpigmentierung einer Deckschicht
zur Vermeidung von Interferenzen bei
Aluminiumbauteilen oder Aluminium
aufweisenden Bauteilen. Süddeutsche
Aluminium Manufaktur GmbH, 89558
Böhmenkirch, DE. (C23C 22/84, OS 10
2008 011 298, AT: 27.02.2008)
Al-Cu-Mg-Legierung, die für Raumfahrtanwendungen geeignet ist. Aleris Aluminium Koblenz GmbH, 56070 Koblenz,
DE. (C22C 21/16, EPA 1945825, EP-AT:
24.10.2006)
Aluminium-Strangpressprofil
als
Power& Free-Schiene. Reitz, Arnold, Dipl.-Ing., 63628 Bad Soden-Salmünster, DE. (F16S 3/00, GM 20 2005
009 808, AT: 22.06.2005)
Aluminium-Gusslegierungen. KSM Castings GmbH, 31137 Hildesheim, DE.
(C22C 21/02, WO 2007 025528, WO-AT:
30.08.2006)
Aluminium-Lärmschutzwand-System
für Verkehrswege mit neuartiger
Schalldämmung für bestimmte Frequenzen. Lublow, Felix, 59199 Bönen,
DE; Wernal Profil Technik GmbH, 59457
Werl, DE. (E01F 8/00, GM 20 2006 001
472, AT: 30.01.2006)
Verfahren zum MIG-Schweißen von AlLegierungen mit Ar/He/O2-Schutzgas.
L‘Air Liquide Société Anonyme pour
l‘Etude et l‘Exploitation des Procédés
Georges Claude, Paris, Cedex, FR. (B23K
9/16, PS 601 31 325, EP 1166940, EP-AT:
11.06.2001)
Kolben für eine Brennkraftmaschine. Mahle International GmbH, 70376
Stuttgart, DE; Mahle Technology, Inc.,
Farmington, MI 48335, US. (C23C 30/00,
EPA 1971707, EP-AT: 20.12.2006)
Verfahren unter Verwendung von ausgewählten Kohlen zur Reaktion mit
Al2O- und Al-Dämpfen bei der carbothermischen Produktion von Aluminium. Alcoa Inc., Pittsburgh, Pa., US; Elkem
AS, Oslo, NO; Carnegie Mellon University, Pittsburgh, Pa., US. (C22B 21/02, PS
60 2004 010 173, EP 1689895, EP-AT:
02.12.2004)
Zweiteiliger Kolben für einen Verbrennungsmotor. Mahle International
GmbH, 70376 Stuttgart, DE. (F02F 3/00,
EP 1 859 155, EP-AT: 28.11.2005)
Al-Legierung für lithographische Platte. Novelis,Inc., Toronto, Ontario, CA.
(C22C 21/00, EP 1 425 430, EP-AT:
11.09.2002)
ALUMINIUM · 1-2/2009
Texturgehärtetes Alpha-Aluminiumbeschichtetes Werkzeug. Seco Tools AB
(publ), 737 82 Fagersta, SE. (C23C 14/40,
EPA 1953258, EP-AT: 29.01.2008)
Eintauchsensor, Messanordnung und
Messverfahren zur Überwachung von
Aluminium-Elektrolysezellen. Heraeus
Electro-Nite International N.V., Houthalen, BE. (G01N 27/41, EP 1 037 042, EPAT: 02.02.2000)
Verfahren und Anlage zur Herstellung
von presswarmen Bolzen aus Aluminium-Knetlegierungen. Rackwitz Industrieanlagen GmbH, 04519 Rackwitz,
DE. (C22F 1/00, EP 1 600 521, EP-AT:
19.05.2005)
Verfahren zum Sintern von Aluminium- und Aluminiumlegierungsteilen.
The Ex One Co., Irwin, Pa., US. (C22C
1/04, PS 603 17 582, EP 1694875, EPAT: 01.12.2003)
©
105
PAT E N T E
Formgepresstes Backblech aus Aluminium. Comital Cofresco S.p.A., Volpiano,
Torino, IT. (A47J 37/01, PS 60 2006 000
084, EP 1692988, EP-AT: 20.01.2006)
Aluminium-Magnesium-Legierung mit
verbesserter Beständigkeit gegen
Abblättern. Corus Aluminium Walzprodukte GmbH, 56070 Koblenz, DE. (C22C
21/06, PS 600 02 061, EP 1177323, EPAT: 04.05.2000)
Design einer Zelle zur elektrolytischen
Gewinnung von Aluminium mit beweglichen
Isolierabdeckungsteilen.
Moltech Invent S.A., Luxemburg/Luxembourg, LU. (C25C 3/08, PS 603 15 974, EP
1509640, EP-AT: 03.06.2003)
Verfahren zum Schmelzen von Aluminium unter Verwendung der Analyse
der Ofenabgase. L‘Air Liquide, S.A.
pour l‘Etude et l‘Exploitation des Procédés Georges Claude, Paris, FR. (C22B
21/00, PS 602 22 173, EP 1456425, EPAT: 07.11.2002)
Verfahren zum Herstellen eines LNGSpeichertanks oder dergleichen und unter Verwendung des Verfahrens hergestellter Aluminium-LNG-Speichertank.
Aker Yards Oy, Turku, FI. (B65D 90/02,
EP 1 723 053, EP-AT: 01.03.2005)
Aus Aluminium extrudierte, mehrere
Hohlräume aufweisende flache Röhre mit hervorragenden Hartlöteigenschaften zur Verwendung in Kfz-Wärmetauschern und Herstellungsverfahren dafür. Denso Corp., Kariya, Aichi, JP;
Sumitomo Light Metal Industries, Ltd.,
Tokio/Tokyo, JP. (B23K 1/00, PS 199 07
294, AT: 23.02.1999)
Aus einer Aluminiumlegierung hergestelltes Schwellerstrangpressprofil
eines Kraftfahrzeugs. Audi AG, 85057
Ingolstadt, DE. (B62D 25/02, PS 10 2004
002 297, AT: 16.01.2004)
Aluminiumlegierung und deren Verwendung für ein Gussbauteil, insbesondere eines Kraftwagens. BDW
Technologies GmbH & Co. KG, 85570
Markt Schwaben, DE. C22C 21/02, OS
10 2006 032 699, AT: 14.07.2006)
Gleitlager mit einer Zwischenschicht,
insbesondere Bindungsschicht, aus
einer Legierung auf Aluminiumbasis. Miba Gleitlager AG, Laakirchen,
AT. (C22C 21/00, PS 199 81 425, AT:
27.07.1999)
Profilschiene zum Positionieren eines
Befestigungselements und Verfahren
zum Herstellen einer Mehrfachverglasungseinheit. Alcoa Aluminium
Deutschland, Inc., 58642 Iserlohn, DE.
(E06B 3/66, EPA 1956174, EP-AT:
07.02.2007)
106
Verfahren zur Herstellung eines Dosendeckels mit Deckelring und Verschlussmembran. Alcan Technology & Management Ltd., 8212 Neuhausen am Rheinfall,
CH. (B65D 17/50, EPA 1945522, EP-AT:
11.10.2006)
Stoßstange mit Halterungen. Alcan
Technology & Management AG, Neuhausen am Rheinfall, CH. (B60R 19/24, OS 10
2007 011 385, AT: 07.03.2007)
Verpackungseinrichtung für Stapel von
Flachteilen. Alcan Technology & Management AG, Neuhausen am Rheinfall, CH.
(B65D 35/50, PS 50 2004 004 613, EP
1473234, EP-AT: 30.04.2004)
Verfahren zur Kontrolle eines Tiefdruckverfahrens. Alcan Technology &
Management AG, Neuhausen am Rheinfall, CH. (B41F 33/00, PS 502 10 682, EP
1279502, EP-AT: 12.04.2002)
Modifikationsflächen von Werkstücken und Formwerkzeug. Alcan Technology & Management Ltd., Neuhausen
am Rheinfall, CH. (B21D 13/02, EP 1 796
860, EP-AT: 08.09.2005)
Vorrichtung und Verfahren für Hochdruckstrangguss mit Schmelzaluminium. Alcoa Inc., Alcoa Center, PA 15069001, US. (B21C 33/02, EPA 1954419,
EP-AT: 13.10.2006)
Verfahren und Vorrichtung zum elektromagnetischen Einschließen von
Metallschmelze in Horizontalgießanlagen. Alcoa Inc., Pittsburgh, PA 152125858, US. (B22D 11/06, EPA 1951458,
EP-AT: 25.10.2006)
Flaschenverschluss. Alcoa Deutschland
GmbH, 67547 Worms, DE. (B65D 41/04,
EP 1 625 078, EP-AT: 05.05.2004)
In-Line-Salzraffination von schmelzflüssigen Aluminiumlegierungen. Alcan International Ltd., MontrealQuebec
H3A 3G2, CA. (C22B 9/10, EP 1 948 835,
EP-AT: 25.10.2006)
Längliches Halteelement für Bauplatten. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04D 3/363, PS 60 2004 008
585, EP 1599647, EP-AT: 20.02.2004)
Elektrolysezelle mit Wärmetauscher.
Aluminium Pechiney, 38340 Voreppe,
FR. (C25C 3/08, EPA 1948849, EP-AT:
06.11.2006)
Wetterschutzschiene. Aleris Aluminium
Vogt GmbH, 88267 Vogt, DE. (E06B 1/34,
PS 196 11 170, AT: 21.03.1996)
Verfahren und Vorrichtung zum Reduzieren der Schopfverluste während des Walzens von Brammen oder
Strängen. Alcoa Inc., Pittsburgh, Pa.,
US. (B22D 11/08, EP 1 289 688, EP-AT:
14.05.2001)
Herstellungsverfahren einer Baugruppe durch Hartlöten von aus unterschiedlichen Metallen bestehenden
Elementen. Aleris Aluminium Koblenz
GmbH, 56070 Koblenz, DE. (B23K 1/19,
PS 601 30 238, EP 1337374, EP-AT:
02.11.2001)
Flussmittelfreies Löten. Hydro Aluminium Deutschland GmbH, 51149 Köln,
DE. (B23K 1/00, EPA 1951467, EP-AT:
13.11.2006)
Dauergießform und Gießformeinsatz.
Hydro Aluminium Mandl & Berger
GmbH, 4030 Linz, AT. (B22C 9/06, EPA
1948374, EP-AT: 07.08.2006)
Rahmen einer Schiebetür oder eines
Schiebefensters, der einen verdeckten
hohen Querriegel, Typ Monoblock,
umfasst. Norsk Hydro ASA, 0240 Oslo,
NO. (E06B 3/46, EPA 1956173, EP-AT:
30.01.2008)
Schließrahmen einer Schiebetür oder
eines Schiebefensters, der einen verdeckten Pfosten umfasst. Norsk Hydro
ASA, 0240 Oslo, NO; Bezault SAS, 49160
Longue, FR. (E06B 3/263, EPA 1953327,
EP-AT: 30.01.2008)
Flügelrahmen einer Schiebetür oder
eines Schiebefensters, der einen verdeckten Pfosten umfasst. Norsk Hydro
ASA, 0240 Oslo, NO. (E06B 3/263, EPA
1953326, EP-AT: 30.01.2008)
Hochfester Aluminiumlegierungsguss
und Verfahren zu dessen Herstellung.
Nippon Light Metal Co. Ltd., Tokio/
Tokyo, JP; Denso Corp., Kariya, Aichi,
JP. (C22F 1/043, PS 103 39 705, AT:
28.08.2003)
ALUMINIUM veröffentlicht unter
dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff
Aluminium betreffende Patente. Die
ausführlichen Patentblätter und auch
weiterführende Informationen dazu
stehen der Redaktion nicht zur Verfügung. Interessenten können diese
beziehen oder einsehen bei der
Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo),
Julius-Ebeling-Str. 6,
D-06112 Halle an der Saale,
Tel. 0345/29398-0
Fax 0345/29398-40,
www.mipo.de
Die Gesellschaft bietet darüber hinaus
weitere „Patent“-Dienstleistungen an.
ALUMINIUM · 1-2/2009
LITERATURE SERVICE
Verbundfolie für Füllgutbehälter. Hydro Aluminium Deutschland GmbH,
51149 Köln, DE. (B32B 15/08, OS 10 2007
010 113, AT: 28.02.2007)
Verfahren zum Herstellen eines dekorativen Zierteils. Erbslöh AG, 42553
Velbert, DE. (B29C 45/14, PS 10 2005 032
421, AT: 12.07.2005)
Wärmetauscher und Verfahren zur
Herstellung eines Wärmetauschers
sowie stranggepresstes Verbundprofil zur Verwendung in einem solchen
Verfahren. Erbslöh Aluminium GmbH,
42553 Velbert, DE. (F28F 1/02, PS 102
43 726, AT: 20.09.2002)
Kühlgerät, insbesondere für Wohnmobile, Camping- und Freizeitfahrzeuge.
VAW Metawell GmbH, 86633 Neuburg,
DE; Volkswagen AG, 38440 Wolfsburg,
DE. (F25B 39/04, OS 101 37 261, AT:
31.07.2001)
Hohlkammerprofil aus Metall, insbesondere für Wärmetauscher. Erbslöh Aluminium GmbH, 42553 Velbert,
DE. (F28F 1/02, GM 202 09 005, AT:
11.06.2002)
Aluminiumpulverlegierungs-Verbundmaterial für die Absorption von Neutronen, sein Herstellungsprozess und
Korb aus diesem Material. Nippon Light
Metal, Co., Ltd., Shinagawa-ku, Tokyo
140-8628, JP; Nikkeikin Aluminium Core
Lotuseffekt auf Aluminiumblechen
Blech Rohre Profile 11/2008, S.10-13
Aluminiumbleche, die zwar schmutzig werden, es aber nicht
bleiben – der Lotuseffekt macht es möglich. Der nach dem
Blatt der Lotusblume benannte Effekt beschreibt die selbstreinigenden Eigenschaften von Oberflächen durch die Verwendung von Wasser. Er beruht dabei auf zwei Voraussetzungen:
einer geeigneten Mikrostruktur der Oberfläche und einer ausreichend hydrophoben (wasserabstoßenden) Eigenschaft der
Oberfläche. In einem Projekt am Lehrstuhl für Fördertechnik
und Konstruktionslehre an der Montanuniversität Leoben wurde eine Oberflächenstruktur auf Aluminiumblechen erzeugt,
die die Selbstreinigung durch Wasser bewirkt. 10 Abb.
Oberflächen
ALUMINIUM 1/2 (2009)
P. Shafiee, M. Skillingberg
Registration of Aluminum Hardeners
with The Aluminum Association
Light Metal Age, August 2008, pp. 28-29
With the publication of the first international edition of the registration record for aluminium hardeners, it is an opportune
time to take a look at the source of these designations and the
process of registering aluminium hardeners with The Aluminum
Association. The registration record is the result of harmonization efforts with the international aluminium community and
signing of an accord to use a single designation system to communicate about aluminium hardeners, which will be discussed
later. This is the third in a series of international accords and
international registration records administered by the Association. This article will discuss the American National Standard
Designation System for Aluminum Hardeners, ANSI H35.3, the
related registration record, the international agreement on the
use of this system, and the process of registering hardener alloys
with the Association. 2 images, 2 tables, 4 sources.
ALUMINIUM 1/2 (2009)
Aluminium-Industrie, Verbände
J. C. Benedyk
The Evolution of the Smart Container:
Achieving Isothermal Control in Extrusion
Light Metal Age, August 2008, pp. 28-29
For many years, one of the major goals of the aluminium extrusion industry has been the achievement of isothermal extrusion,
a quest that has inspired a variety of solutions, usually involving
ALUMINIUM · 1-2/2009
Technology Company, Ltd. (C22C 32/00,
EPA 1956107, EP-AT: 31.01.2007)
Verfahren zur Herstellung von Al-MnBändern oder -Blechen. VAW aluminium AG, 53117 Bonn, DE. (C22F 1/04, EP
1 247 873, EP-AT: 28.03.2002)
Rahmenkonstruktion für Fenster und/
oder Türen. Hermann Gutmann Werke
AG, 91781 Weißenburg, DE. (E06B 3/30,
GM 20 2007 005 388, AT: 12.04.2007)
Kolben für einen Verbrennungsmotor.
Honda Motor Co., Ltd., Tokyo, JP. (F02F
3/00, PS 60 2004 008 184, EP 1528245,
EP-AT: 29.10.2004)
taper heating or quenching of billet with several attempts made
to control temperature in the container. The decades long development that has resulted in the market introduction of the smart
container by Marx GmbH & Co. KG of Iserlohn, Germany – now
partnered with Lake Park Tool & Machine, Inc. of Youngstown,
OH, U.S. – offers extruders an optimal and robust solution to
not only achieve isothermal extrusion, with all the attendant
quality benefits, but also increase press productivity and gain
longer container and tool life. At ET ‘08, the CEO of the Marx
Company, Wolfgang Eckenbach, one of the principal developers
of the smart container, presented a paper on the subject entitled,
“Process Controlled Containers – Smart Containers”, which has
received wide attention, especially in view of the recent announcement of a Lake Park/Marx partnership. In this article, a
summary is presented of the development of the smart container
along with details of its use in extrusion plants in Europe, Asia,
and the U.S. 10 images.
ALUMINIUM 1/2 (2009)
Strangpressen
H. Clemens, W. Wallgrom, S. Kremmer, V. Güther, A. Otto,
A. Bartels
Design of Novel β-Solidifying TiAl Alloys with Adjustable
β/B2-Phase Fraction and Excellent Hot-Workability
Advanced Engineering Materials 2008, 10, No. 8, pp. 707-713
Thermodynamic modelling based on the CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) method
were used to define a β-solidifying TiAl based alloy which exhibits an adjustable ß-phase volume fraction at temperatures
where hot-deformation processes, such as extrusion, forging,
rolling are conducted. The selected β-solidifying alloy Ti-43Al-4
Nb-1 Mo-0.1 B, a so-called TNM alloy, shows a homogeneous
and fine-grained microstructure in the as-cast state and no occurrence of a casting texture. This novel β-solidifying γ-TiAl
based alloy with adjustable β/B2-phase fraction shows a wide
forging window, providing the foundation for a robust industrial
forging process. Due to a high volume fraction of the β-phase
at hot-working temperature the alloy can be forged under near
conventional conditions. The technical feasibility of manufacturing a turbine blade component in a three-step forging process has been demonstrated. With subsequent heat-treatments a
defined and significant reduction of the β-phase is achieved, as
predicted by thermodynamic calculations, allowing the adjustment of optimized microstructures gaining balanced mechanical properties. 5 images, 48 sources.
ALUMINIUM 1/2 (2009)
Metallkunde
©
107
LITERATURSERVICE
A. Arnon, E. Aghion
Stress Corrosion
Cracking of Nano/Sub-micron E906 Magnesium Alloy
Advanced Engineering Materials 2008, 10, No. 8, pp. 742-745
While nanostructured alloys are considered to have an average grain size of less than 100 nm, consolidated magnesium
alloys with nano/sub-micron structure refers to alloys having
a combined microstructure of nano grains (up to 100 nm) and
sub-micron grains (up to 300 nm). The consolidated nano/submicron alloys can be obtained in the form of rods and plates
and hence can be potentially considered as structural material for engineering applications. The main advantage of these
structural materials is their significantly higher specific strength
compared to conventional alloys with similar chemical composition. The attractive strength of these alloys makes them
an interesting candidate for the transportation and electronic
industries that require lighter structural material to address
the growing ecological demands. Nevertheless, the main disadvantage of magnesium relates to its corrosion resistance and in
particular its stress corrosion cracking (SCC) Performance. According to Winzer et al. the SCC of magnesium under mechanical loading conditions causes slow, sub-critical crack growth.
When the critical crack size is reached, the combination of the
crack plus the applied load causes sudden, catastrophic rapid
fracture. The aim of the present study was to evaluate the stress
corrosion behaviour of a type E906 magnesium alloy with nano/
sub-micron structure under simulated service conditions. For
reference consideration, parallel evaluation was carried out on
a conventionally extruded AZ31 magnesium alloy with similar
chemical composition. 9 images, 12 sources.
ALUMINIUM 1/2 (2009)
Magnesiumlegierungen
R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert
Progress and Challenge
for Magnesium Alloys as Biomaterials
Advanced Engineering Materials 2008, 10, No. 8
Advanced Biomaterials 1/08, S. B3-B14
Magnesium alloys are very biocompatiable and show promise
for use in orthopaedic implant. Significant progress of research
on bioabsorbable magnesium stents and orthopaedic bones has
been achieved in recent years. The issues on degradation, hydrogen evolution, and corrosion fatigue and erosion corrosion
of magnesium alloys and various influencing factors in simulated body fluid (SBF) are discussed. The research progress
on magnesium and its alloys as biomaterials and miscellaneous approaches to enhancement in corrosion resistance is reviewed. Finally the challenges and strategy for their application
as orthopaedic biomaterials are also proposed. 2 images, 89
sources.
ALUMINIUM 1/2 (2009)
Magnesiumlegierungen
Chr. Brinkmann
Drückwalzen. Umformverfahren bietet
hohes technisches und wirtschaftliches Potenzial
MM Das IndustrieMagazin 41/2008, S. 62-64
Das Kaltumformverfahren Drückwalzen wird schon viele Jahre
für Produkte der Luft- und Raumfahrt angewendet, beispiels-
weise für rohrförmige oder konische Bauteile. Diese Anwendungen beschränkten sich dabei weitgehend auf Bauteile mit
Innenoberflächen ohne Struktur. Winkelmann MSR Technology
fertigt heute auch Bauteile mit Innenstruktur für Fahrzeuge. Das
Drückwalzen hat sich als umformendes Fertigungsverfahren in
zahlreichen Industriebereichen, wie etwa in der Automobilund Zulieferindustrie, der Hydraulik- und Pneumatikindustrie
(Zylinder) sowie auch im Bereich Pumpenkomponenten (dünnwandige Töpfe) fest etabliert. Darüber hinaus sind weitere breite
Anwendungsfelder denkbar, deren Erschließung allerdings die
Kenntnis des Verfahrens und seiner Möglichkeiten bei den Konstrukteuren der Entwicklungsabteilungen voraussetzt. 4 Abb.
ALUMINIUM 1/2 (2009)
Verarbeitung, erste Stufe
R. D. Bitsche, Z. Khalil, U. Noster, F. G. Rammerstorfer
Simulation von Stahl-Leichtmetall-Verbundguss-Strukturen.
Herstellung und mechanisches Verhalten
Druckguss 7/2008, S. 283-288
Im modernen Leichtbau werden entsprechend dem Ziel „Der
richtige Werkstoff am richtigen Ort“ vermehrt Materialmischbauweisen eingesetzt. Dabei ergibt sich das Problem der Verbindung von Bauteilen aus unterschiedlichen Werkstoffen. Beim
Verbundguss wird ein Gussteil bereits durch den Gießprozess mit einem oder mehreren anderen Bauteilen verbunden.
Klassische Fügeschritte wie Schweißen, Kleben oder Nieten
können entfallen. Das Verfahren eignet sich für verschiedene Werkstoffkombinationen. Im vorliegenden Artikel liegt
das Hauptaugenmerk auf der Kombination von Aluminium
als Gusswerkstoff mit Stahl. Die Verbindung kann beim Verbundguss grundsätzlich durch Kraft-, Form- und Stoffschluss
zustande kommen. Beim Kraftschluss sorgen Eigenspannungen
in Kombination mit Reibung für die Verbindung. Speziell beim
Verbundguss von Werkstoffen mit stark unterschiedlichen Wärmeausdehnungskoeffizienten (z. B. Stahl-Aluminium) können
hohe Eigenspannungen und damit eine starke kraftschlüssige
Verbindung erreicht werden. Spannungsrelaxationen können
die Verbindungsfestigkeit im Laufe der Lebensdauer des Bauteils jedoch vermindern. 11 Abb., 12 Qu.
ALUMINIUM 1/2 (2009)
Werkstoff, Gusslegierung
Themen-Special Druckguss
W. Kättlitz
Foseco GmbH: Schmelzebehandlung
von Aluminium-Druckgusslegierungen
Druckguss 7/2008, S. 298-301
Bei allen Gießverfahren, so auch beim Druckguss, hängt die
Qualität der Gusskomponenten direkt und in erheblichem
Maße von der Qualität der zu vergießenden Schmelze ab. Aluminiumlegierungen haben die unangenehme Eigenschaft, in
flüssigem Zustand mit Feuchtigkeit jeglicher Herkunft zu reagieren und daraus zum einen Wasserstoff zu lösen und zum anderen zu oxidieren und feste Oxide zu bilden. Oxideinschlüsse
sowie gelöster Wasserstoff sind daher die am häufigsten vorkommenden Verunreinigungen in der Schmelze, welche die
Gussqualität erheblich beeinflussen und zu Ausschuss führen
können. 7 Abb., 2 Tab.
ALUMINIUM 1/2 (2009)
Druckguss
Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA)
der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek.
Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek
wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen
Interessenten offen.
Ansprechpartner ist Dr. Karsten Hein, E-Mail: [email protected]
108
ALUMINIUM · 1-2/2009
LITERATURE SERVICE
grain orientation depends on the composition of the alloys and
on the working process. 6 tables, 8 sources.
G. Trenda, A. Kraly
SAG Aluminium Lend: Eisenarme Legierungen
für den Einsatz im Premium-Druckguss
Druckguss 7/2008, S. 302-308
Die Wahl der richtigen Druckgusslegierung stellt die Konstrukteure oft aufgrund mangelnder Kenntnis des Verfahrens und
der spezifischen Eigenheiten, die durch die Komplexität des
Gesamtprozesses begründet sind, vor Probleme. Die SAG Aluminium Lend GmbH ist als Unternehmen der Division SAG
Materials in einen Konzern eingebunden, der sowohl die Legierung herstellt als auch verarbeitet und damit über umfassendes
Know-how verfügt. Als Partner der Druckgießer und Gussanwender werden in Lend anwendungsspezifische Werkstoffe
entwickelt. In diesem Beitrag werden den Gussanwendern und
Druckgießern Hilfestellungen zur Werkstoffwahl, Anwendung
und Schmelzetechnologie gegeben. 6 Abb., 2 Tab.
Druckguss
ALUMINIUM 1/2 (2009)
D. Dragulin, S. Nissle
Temperaturschwankungen bei der Wärmebehandlung.
Druckguss 7/2008, S. 280-282
Die Analyse hat das Ziel, die Determinierung des Einflusses der
Temperaturschwankungen im Bereich +/-5 °C während einer
T5 Wärmebehandlung für ein Druckgussteil aus AlSi9Cu3(Fe)
darzustellen. Diese Legierung ist quantitativ gesehen die wichtigste für Power-train-HPDC-Anwendungen. AlSi9Cu3 (Fe)
hat eine sehr gute Gießbarkeit und wegen eines hohen Feund Mn-Gehaltes eine sehr niedrige Klebeneigung. Dieser hohe
Fe-Gehalt ist auch ein starkes wirtschaftliches Argument in der
Bevorzugung der Wahl dieser Legierung. Die Anwesenheit von
Cu und Mg und deren intermetallischen Phasen macht aus sie
zu einer Legierung, die gut geeignet für eine T5-Wärmebehandlung ist. Der Cu-Gehalt lag bei 3,4% und der Mg-Gehalt bei
0,47%. 3 Abb., 3 Tab.
ALUMINIUM 1/2 (2009)
Warmbehandlung
Farbunterschiede auf eloxierten Aluminiumoberflächen
Aluminium Praxis 11/2008, S. 8-9
Die Untersuchung dekorativer Mängel an eloxierten Aluminiumoberflächen mittels Mikrostrukturcharakterisierung sowie
der Farbmetrik war Bestandteil eines Forschungsprojektes im
Forschungsinstitut für Edelmetalle und Metallchemie in Schwäbisch Gmünd (FEM). Im Projekt wurden Farbmessungen und
mikrostrukturelle Untersuchungen korreliert. Dabei wurden
vor allem die qualitative Phasenanalyse und die Texturanalyse
mittels Röntgendiffraktometrie sowie die Einzeltexturanalyse
durch EBSD(Electron backscatter diffraction)-Untersuchungen
im Rasterelektronenmikroskop durchgeführt. Zusätzlich wurden die Korngrößen und Gefügezusammensetzungen festgestellt. Dabei zeigt sich unter anderem: Optische Ungleichmäßigkeiten sind auf Unterschiede in der Qualität der Eloxalschicht
und im Grad der Aufrauung der Al-Oberfläche zurückzuführen
und können mit Hilfe von Farb- und Glanzmessungen ermittelt
werden. Der Artikel gibt Hinweise für die Praxis.
ALUMINIUM 1/2 (2009)
Oberflächenbehandlung
D. Chen
Preferred Grain Orientation of Aluminium
and Aluminium Alloys after Cryogenic Treatment
METALL 11/2008, p. 744-747
Cryogenic treatment processes were adopted to treat pure aluminium and aluminium alloys. The experimental results show
that the cryogenic treatment can result in grain turning in a
certain degree and preferred grain orientation. The preferred
ALUMINIUM · 1-2/2009
Metallkunde
ALUMINIUM 1/2 (2009)
R. Z. Valiev, I. P. Semenova, V. V. Latysh, H. Rack, T. C. Lowe,
J. Petruzelka, L. Dluhos, D. Hrusak, J. Sochova
Nanostructured Titanium for Biomedical Applications
Advanced Engineering Materials 2008, 10, No. 8 /Advanced
Biomaterials 1/08, pp. B15-B17
Metallic materials, e.g. stainless steel, titanium and its alloys as
well as tantalum, are widely used for medical implants in trauma
surgery, orthopaedic and oral medicine. Successful incorporation of these materials for design, fabrication and application of
medical devices require that they meet several critical criteria.
Paramount is their biocompatibility as expressed by their relative reactivity with human tissues. Another is their ability to
provide sufficient mechanical strength, especially under cyclic
loading conditions to ensure the durability of the medical devices made there from. Finally the material should be machinable
and formable thereby enabling device fabrication at an affordable cost. This paper shows that nanostructured commercial
purity titanium produced by severe plastic deformation opens
new avenues and concepts for medical implants, providing
benefits in all areas of medical device technology. 4 images, 2
tables, 14 sources.
ALUMINIUM 1/2 (2009)
Andere Werkstoffe
R. Klos, P. Kohlmann
Poor melt quality causes casting defect
Casting Plant & Technology, 4/2008, pp 20-23
Casting defects, such as oxide inclusions, gas porosity and
macroshinkage are often due to poor melt quality. During melting, nine basic mistakes should be avoided otherwise defects
of the finished component will be unavoidable even before
pouring actually starts. Mistakes made during melting and melt
transfer in the aluminium foundry reduce the quality of the melt
and, hence, of the castings. Sources of error on the ‘hot side’
are excessively slow melting, addition of cold metal, contact of
the flame with thin-walled returns, high melting temperature,
unsuitable furnace coating, poor furnace maintenance, reaction
of the crucible, wrong treatment of the melt and turbulences
during melt transfer. 9 images.
ALUMINIUM 1/2 (2009)
Formguss, Schmelzen
H. Pries, Z. Liluashvili, K. Dilger
Research on the optimisation of aluminium die life
Casting Plant & Technology, 4/2008, pp 46-52
Increasing pressure of competition is forcing the manufacturers
of aluminium die-cast products to improve process robustness
and realise a high standard of quality. A basis prerequisite for
achieving high production quality is a faultless die condition.
Even minor deteriorations, such as cracks, notches or deformation of the die, lead to unacceptable surface quality and
dimensional variations of the produced parts. The aim of the
research project discussed in this article is to prolong the life
of aluminium dies by selectively optimising individual process
factors and to qualify them in practical tests. The aproaches
that are pursued include: 1) the selection of the die material,
comparing the alloy groups of Cr-Mo-V hot-work tool steels and
Fe-Co-Ni alloys, 2) the selective introduction of residual compressive stresses by shot peening the cavities, 3) an in-process
heat treatment to minimise near-surface hardness increases in
highly stressed die regions. 9 images, 7 sources.
ALUMINIUM 1/2 (2009)
Formguss
109
NEUE BÜCHER
Entgrattechnik
Entwicklungsstand und Problemlösungen
Mit spanenden und umformenden
Fertigungsverfahren wird tagtäglich
in der Produktion und Planung umgegangen. Sie sind deshalb weitgehend
bekannt. Geringer dagegen ist der
Kenntnisstand bei den Entgratverfahren. Hier können immer wieder Informationsdefizite festgestellt werden.
Einige Gründe dafür sind, dass nicht
bei jedem Erzeugnis Entgratprobleme
auftreten oder dass die Beschäftigung
mit dem Thema „Entgraten“ nur sporadisch erfolgt. Oft geschieht dies erst
dann, wenn Grate zu einem Problem
werden: zum Beispiel, wenn sie mit
den vorhandenen betrieblichen Einrichtungen nicht zufriedenstellend
entfernt werden können oder wenn
der Aufwand dafür zu hohe Kosten
verursacht.
Das Thema „Entgraten“ und der
Einsatz von maschinellen Entgratverfahren werden auch in der Zukunft
weiter an Bedeutung gewinnen. Verschiedene Entwicklungstendenzen
belegen dies:
• Die Lohnkosten bewegen sich
hierzulande auf einem hohen Niveau,
verglichen mit dem wachsenden internationalen Wettbewerb.
• Das manuelle Entgraten ist ein
monotoner, häufig mit Gesundheitsrisiken verbundener Arbeitsgang.
• Die Entwicklung der Produkte zu
immer höheren Leistungen bei geringerem Gewicht erfordert festere
und damit schwerer zerspanbare
Werkstoffe sowie geometrisch kompliziertere Konstruktionen. Hieraus
resultieren eine stärkere Gratbildung
und ein erhöhter Entgrataufwand.
• Die Entwicklung neuer Schneidstoffe zu höheren Leistungen und
Standzeiten bewirkt ebenfalls eine
verstärkte Gratbildung, wenn nicht
im Sinne der Gratminimierung verfahren wird.
Diesen Aspekten will die verbesserte dritte Auflage dieses Themenbandes Rechnung tragen. Es werden
der aktuelle Stand der Entgrattechnik in der Metall verarbeitenden
Industrie dargestellt und Hinweise
vermittelt, welche Entgratverfahren
geeignet sind und welche Gratdaten
110
als Entscheidungskriterien herangezogen bzw. wie sie beeinflusst werden können. So ist der Einfluss auf die
Gratausbildung durch die Auswahl
der Fertigungsparameter und der Fertigungsfolge mitentscheidend für den
nachträglichen Entgrataufwand bzw.
für das anzuwendende Entgratverfahren. Es werden die Entgratverfahren
vorgestellt und ihre Anwendungsbereiche und Einsatzgrenzen aufgezeigt.
Abgerundet wird das Thema durch
die Darstellung weniger bekannter
Entgratverfahren wie Druckfließläppen, magnetabrasive Feinstbearbeitung und Hochdruckwasserstrahlen.
Die beschriebenen Entgratverfahren
repräsentieren annähernd vollständig
den Stand der realisierten maschinellen Problemlösungen in der Metall
verarbeitenden Industrie.
Das Buch richtet sich an Fertigungsplaner und -meister, Betriebsleiter, Arbeitsvorbereiter, Qualitätskontrolleure und Konstrukteure.
Aus dem Inhalt
Entgraten, ein undefinierter Begriff
mit undefiniertem Arbeitsinhalt? •
Grundlagen zur Lösung von Entgratproblemen • Grundlagen der Gleitschleiftechnik • Elektrochemisches
und chemisches Badentgraten von
Metalloberflächen • Elektrochemi-
sches Formentgraten (ECM) • Thermische Entgratmethode (TEM) •
Sonderverfahren der Entgrattechnik
• Mechanisches Entgraten • Bürsten:
Forschungsergebnisse • Bürsten in
der Praxis • Fräsen, Schleifen, Feilen
und sonstige Verfahren, Gratmessverfahren • Maschinenbauarten. Problemlösungen • Entgraten mit Industrieroboter
Alfred P. Thilow und 6 Mitautoren, 3.
verb. Aufl. 2008, expert Verlag, 215 S.,
178 Abb., 11 Tab., 49,00 €‚ 81,00 CHF,
(Kontakt & Studium, Bd. 392), ISBN
978-3-8169-2831-7.
Neue internationale Norm für Schweißschutzgase
Die Normung von Schweißschutzgasen
erfolgt weltweit einheitlich nach der internationalen Norm DIN EN ISO 14175. Bisher
wurden Schweißschutzgase nach der
europäisch gültigen DIN EN 439 genormt.
Gasespezialist Messer gibt mit Vergleichstabellen im Internet Orientierung über
die Zuordnung der Produkte aus dem
Schweißschutzgaseprogramm (siehe
www.messergroup.com) und informiert
so umfassend über die neuen Kennzeichnungen. Neben der Einteilung der
Gase und Gasgemische in Hauptgruppen
sowie deren Bezeichnungen wurden auch
die Mischgenauigkeit und die zulässige
Feuchte geändert. Bei den Hauptgruppen betrifft die Änderung lediglich die
Formier- und Spezialgase. Die Gruppen
wurden in N und Z umbenannt. Zusätzlich
ist die Gruppe Sauerstoff O dazu gekommen. Die maximal zulässigen Feuchtigkeitsgehalte der Gasegruppen O und C wurden angepasst, denn bereits seit Jahren
übertreffen die in der Praxis verwendeten
Reinheiten bei weitem die Norm.
Weitere Infos:
Messer Group GmbH
Tel: +49 6196 7760 361
[email protected]
ALUMINIUM · 1-2/2009
International Journal for Industry, Research and Application
How do your products and services come to appear every month in the
list of supply sources, on the internet – www.Alu-web.de – and in the
annual list of supply sources published by ALUMINIUM ?
�
�
�
Please mark the main group relevant to you
❑
Smelting technology
❑
Rolling technology
❑
Extrusion
❑
Foundry
Indicate the sub-group and/or key word
(if necessary, ask us for the list of key words)
_______________________
_______________________
_______________________
_______________________
_______________________
_______________________
Enter your text, not forgetting your on-line address:
Line 1: ............................................................................................................................................
Line 2: ............................................................................................................................................
Line 3: ............................................................................................................................................
Line 4: ............................................................................................................................................
Line 5: ............................................................................................................................................
Line 6: ............................................................................................................................................
(Maximum 35 characters per line, including spaces.
Price per line for each issue EUR 5,50 + VAT – minimum order 10 issues = 1 year.
Logos are calculated according to the lines they occupy: 1 line = 2 mm).
_______________________________________________________________
Place/Date
Company stamp / Signature
�
… and send this form to us by fax or post:
Fax number
+49-511/7304-157
For information
Tel.: -142
Giesel Verlag GmbH, ALUMINIUM
Rehkamp 3, D-30916 Isernhagen
We will gladly send you a quotation!
LIEFERVERZEICHNIS
1
Smelting technology
Hüttentechnik
1.1 Raw materials
1.2 Storage facilities for smelting
1.3 Anode production
1.4 Anode rodding
1.4.1 Anode baking
1.4.2 Anode clearing
1.4.3 Fixing of new anodes to the anodes bars
1.5 Casthouse (foundry)
1.6 Casting machines
1.7 Current supply
1.8 Electrolysis cell (pot)
1.9 Potroom
1.10 Laboratory
1.11 Emptying the cathode shell
1.12 Cathode repair shop
1.13 Second-hand plant
1.14 Aluminium alloys
1.15 Storage and transport
1.1 Rohstoffe
1.2 Lagermöglichkeiten in der Hütte
1.3 Anodenherstellung
1.4 Anodenschlägerei
1.4.1 Anodenbrennen
1.4.2 Anodenschlägerei
1.4.3 Befestigen von neuen Anoden an der -stange
1.5 Gießerei
1.6 Gießmaschinen
1.7 Stromversorgung
1.8 Elektrolyseofen
1.9 Elektrolysehalle
1.10 Labor
1.11 Ofenwannenentleeren
1.12 Kathodenreparaturwerkstatt
1.13 Gebrauchtanlagen
1.14 Aluminiumlegierungen
1.15 Lager und Transport
Mixing Technology for
Anode pastes
1.1 Raw Materials/Rohstoffe
Raw Materials / Rohstoffe
ALUMINA AND PET COKE SHIPUNLOADERS
Contact: Andreas Haeuser, [email protected]
Mischtechnologie für Anodenmassen
1.3 Anode production
TRIMET ALUMINIUM AG
Niederlassung Düsseldorf
Heinrichstr. 155
D-40239 Düsseldorf
Tel.: +49 (0) 211 / 96180-0
Fax: +49 (0) 211 / 96180-60
Internet: www.trimet.de
Anodenherstellung
see Storage facilities for smelting 1.2
1.2 Storage facilities for
smelting
Lagermöglichkeiten i.d. Hütte
FLSmidth MÖLLER GmbH
Haderslebener Straße 7
D-25421 Pinneberg
Telefon: 04101 788-0
Telefax: 04101 788-115
E-Mail: [email protected]
Internet: www.flsmidthmoeller.com
Kontakt: Herr Dipl.-Ing. Timo Letz
Auto firing systems
Phone:
Fax:
E-Mail:
Internet:
+41 61 825 66 00
+41 61 825 68 58
[email protected]
www.busscorp.com
Open top and closed
type baking furnaces
Offene und geschlossene Ringöfen
Automatische Feuerungssysteme
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: [email protected]
Internet: www.riedhammer.de
Exhaust gas treatment
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: [email protected]
Internet: www.riedhammer.de
1.4 Anode rodding
Anodenanschlägerei
Abgasbehandlung
Outotec GmbH
Albin-Köbis-Str. 8, D-51147 Köln
Phone: +49 (0) 2203 / 9921-0
E-mail: [email protected]
www.outotec.com
Conveying systems bulk materials
Förderanlagen für Schüttgüter
(Hüttenaluminiumherstellung)
FLSmidth MÖLLER GmbH
Internet: www.flsmidthmoeller.com
see Storage facilities for smelting 1.2
Unloading/Loading equipment
Entlade-/Beladeeinrichtungen
FLSmidth MÖLLER GmbH
www.flsmidthmoeller.com
see Storage facilities for smelting 1.2
112
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
Hydraulic presses for prebaked
anodes / Hydraulische Pressen zur
Herstellung von Anoden
see Storage facilities for smelting 1.2
Removal of bath residues from
the surface of spent anodes
Entfernen der Badreste von der Oberfläche der verbrauchten Anoden
LAEIS GmbH
Am Scheerleck 7, L-6868 Wecker, Luxembourg
Phone: +352 27612 0
Fax: +352 27612 109
E-Mail: [email protected]
Internet: www.laeis-gmbh.com
Contact: Dr. Alfred Kaiser
GLAMA Maschinenbau GmbH
Hornstraße 19
D-45964 Gladbeck
Telefon 02043 / 9738-0
Telefax 02043 / 9738-50
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
Transport of finished anode
elements to the pot room
Transport der fertigen Anodenelemente in Elektrolysehalle
Hovestr. 10 . D-48431 Rheine
Telefon + 49 (0) 59 7158-0
Fax
+ 49 (0) 59 7158-209
E-Mail [email protected]
Internet www.windhoff.de
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
Konstantinstraße 1a
D 41238 Mönchengladbach
Telefon +49 (02166) 987990
Telefax +49 (02166) 987996
E-Mail: [email protected]
Internet: www.inotherm-gmbh.de
OTTO JUNKER GmbH
see Extrusion 2
Anode charging
Anodenchargieren
SERMAS INDUSTRIE
E-Mail: [email protected]
see Casting Machines 1.6
Anode storage
Anodenlager
SERMAS INDUSTRIE
E-Mail: [email protected]
see Casting Machines 1.6
1.4.2 Anode clearing
Anodenschlägerei
Separation of spent anodes
from the anode bars
Trennen von den Anodenstangen
SERMAS INDUSTRIE
E-Mail: [email protected]
see Casting Machines 1.6
1.4.3 Fixing of new anodes
to the anodes bars
Befestigen von neuen
Anoden a. d. Anodenstange
Fixing the nipples to the
anodes by casting in
Befestigen der Nippel mit der
Anode durch Eingießen
SERMAS INDUSTRIE
E-Mail: [email protected]
see Casting Machines 1.6
1.5 Casthouse (foundry)
Gießerei
ALUMINIUM · 1-2/2009
E-Mail: [email protected]
see Casting machines 1.6
Furnace charging with
molten metal
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
see Equipment and accessories 3.1
Melting/holding/casting furnaces
SIGNODE® SYSTEM GMBH
Schmelz-/Halte- und Gießöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Stopinc AG
Bösch 83 a
CH-6331 Hünenberg
Tel. +41/41-785 75 00
Fax +41/41-785 75 01
E-Mail: [email protected]
Internet: www.stopinc.ch
Clay / Tonerde
TRIMET ALUMINIUM AG
Niederlassung Düsseldorf
Heinrichstr. 155
D-40239 Düsseldorf
Tel.: +49 (0) 211 / 96180-0
Fax: +49 (0) 211 / 96180-60
Internet: www.trimet.de
Degassing, filtration and
grain refinement
Entgasung, Filtern, Kornfeinung
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
Gautschi
Engineering GmbH
see Casting equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: [email protected]
Internet: www.hertwich.com
Abkrätzen der Schmelze
Ofenbeschickung mit Flüssigmetall
1.4.1 Anode baking
Anodenbrennen
Dross skimming of the melt
Dross skimming of liquid metal
Abkrätzen des Flüssigmetalls
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
E-Mail: [email protected]
Internet: www.sistemteknik.com
Metal treatment in the
holding furnace
Metallbehandlung in Halteöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
Transfer to the casting furnace
Überführung in Gießofen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
Gautschi
Engineering GmbH
see Casting equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
113
LIEFERVERZEICHNIS
Transport of liquid metal
to the casthouse
Transport v. Flüssigmetall in Gießereien
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Scales / Waagen
Gautschi
Engineering GmbH
see Casting equipment 3.1
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Treatment of casthouse
off gases
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Sawing / Sägen
Behandlung der Gießereiabgase
Gautschi
Engineering GmbH
see Casting equipment 3.1
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
see Extrusion 2
Pig casting machines (sow casters)
Masselgießmaschine (Sowcaster)
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Storage facilities for smelting 1.2
Rolling and extrusion ingot
and T-bars
Formatgießerei (Walzbarren oder
Pressbolzen oder T-Barren)
Gautschi
Engineering GmbH
see Casting equipment 3.1
1.8 Electrolysis cell (pot)
Elektrolyseofen
Calcium silicate boards
Calciumsilikatplatten
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
[email protected], www.promat.de
Pot feeding systems
1.6 Casting machines
Gießmaschinen
Wagstaff, Inc.
3910 N. Flora Rd.
Spokane, WA 99216 USA
+1 509 922 1404 phone
+1 509 924 0241 fax
E-Mail: [email protected]
Internet: www.wagstaff.com
Gautschi
Engineering GmbH
see Casting equipment 3.1
Beschickungseinrichtungen
für Elektrolysezellen
FLSmidth MÖLLER GmbH
www.flsmidthmoeller.com
see Storage facilities for smelting 1.2
1.9 Potroom
Elektrolysehalle
343 Chemin du Stade
38210 Saint Quentin sur Isère
Tel. +33 (0) 476 074 242
Fax +33 (0) 476 936 776
E-Mail: [email protected]
Internet: www.sermas.com
T.T. Tomorrow Technology S.p.A.
Via dell’Artigianato 18
Due Carrare, Padova 35020, Italy
Telefon +39 049 912 8800
Telefax +39 049 912 8888
E-Mail: [email protected]
Contact: Giovanni Magarotto
Heat treatment of extrusion
ingot (homogenisation)
Anode changing machine
Formatebehandlung (homogenisieren)
Gautschi
Engineering GmbH
see Casting equipment 3.1
Anodenwechselmaschine
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Tapping vehicles
Schöpffahrzeuge
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Crustbreakers / Krustenbrecher
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Horizontal continuous casting
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
IUT Industriell Ugnsteknik AB
see Extrusion 2
Dry absorption units for
electrolysis exhaust gases
Trockenabsorptionsanlage für
Elektrolyseofenabgase
Horizontales Stranggießen
Gautschi
Engineering GmbH
see Casting equipment 3.1
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
see Billet Heating Furnaces 1.5
Vertical semi-continuous DC
casting / Vertikales Stranggießen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
114
Gautschi
Engineering GmbH
see Casting equipment 3.1
HF Measurementtechnology
HF Messtechnik
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: [email protected]
Internet: www.opsis.se
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
Anode transport equipment
Anoden Transporteinrichtungen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
1.15 Storage and transport
Lager und Transport
1.11 Emptying the cathode shell
Ofenwannenentleeren
Cathode bar casting units
Kathodenbarreneingießanlage
HUBTEX Maschinenbau GmbH & Co. KG
Werner-von-Siemens-Str. 8
D-36041 Fulda
Tel. +49 (0) 661 / 83 82-0
Fax +49 (0) 661 / 83 82-120
E-Mail: [email protected]
Internet: www.hubtex.com
E-Mail: [email protected]
see Casting machines 1.6
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
www.alu-web.de
2 Extrusion
Strangpressen
2.1 Extrusion billet preparation
2.1.1 Extrusion billet production
2.2 Extrusion equipment
2.3 Section handling
2.4 Heat treatment
2.5 Measurement and control equipment
2.6 Die preparation and care
2.7 Second-hand extrusion plant
2.8 Consultancy, expert opinion
2.9 Surface finishing of sections
2.10 Machining of sections
2.11 Equipment and accessories
2.12 Services
2.1 Pressbolzenbereitstellung
2.1.1 Pressbolzenherstellung
2.2 Strangpresseinrichtungen
2.3 Profilhandling
2.4 Wärmebehandlung
2.5 Mess- und Regeleinrichtungen
2.6 Werkzeugbereitstellung und -pflege
2.7 Gebrauchte Strangpressanlagen
2.8 Beratung, Gutachten
2.9 Oberflächenveredlung von Profilen
2.10 Profilbearbeitung
2.11 Ausrüstungen und Hilfsmittel
2.12 Dienstleistungen
2.1 Extrusion billet
preparation
www.otto-junker-group.com
OTTO JUNKER GmbH
Jägerhausstr. 22
D – 52152 Simmerath
Phone +49 2473 601 0
Fax
+49 2473 601 600
E-Mail [email protected]
Contact Mr. Teichert / Heat Treatmant Plants
Dr. Menzler / Extrusion Plants
Mr. Donsbach / Foundry Plants
OTTO JUNKER (UK) LTD.
Kingsbury Road, Curdworth
UK - SUTTON COLDFIELD B76 9EE
Phone +44 1675 470551
Fax
+44 1675 470645
E-Mail [email protected]
Contact Mr. Hall
Pressbolzenbereitstellung
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Billet heating furnaces
Öfen zur Bolzenerwärmung
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
E-Mail: [email protected]
Internet: www.sistemteknik.com
Billet heating units
Anlagen zur Bolzenerwärmung
OTTO JUNKER GmbH
see Extrusion 2
IUT INDUSTRIELL UGNSTEKNIK AB
Industrivägen 2
SE - 438 92 Härryda
Phone +46 301 508000
Fax
+46 301 30479
E-Mail [email protected]
Contact Mr. Berge
ALUMINIUM · 1-2/2009
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: [email protected]
Internet: www.ias-gmbh.de
Billet transport and
storage equipment
Bolzen Transport- und
Lagereinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
115
LIEFERVERZEICHNIS
Hot shears / Warmscheren
Temperature measurement
Puller equipment
Ausziehvorrichtungen/Puller
Temperaturmessung
OTTO JUNKER GmbH
see Extrusion 2
OTTO JUNKER GmbH
see Extrusion 2
2.1.1 Extrusion billet
production
Pressbolzenherstellung
Billet transport and storage
equipment
Bolzen-Transport- u. Lagereinricht.
SERMAS INDUSTRIE
E-Mail: [email protected]
See Casting Machines 1.6
2.2 Extrusion equipment
SMS Meer GmbH
see Extrusion equipment 2.2
Heating and control
equipment for intelligent
billet containers
Heizungs- und Kontrollausrüstung
für intelligente Blockaufnehmer
Section cooling
Strangpresseinrichtungen
Oilgear Towler GmbH
Im Gotthelf 8
D 65795 Hattersheim
Tel. +49 (0) 6145 3770
Fax +49 (0) 6145 30770
E-Mail: [email protected]
Internet: www.oilgear.de
SMS Meer GmbH
see Extrusion equipment 2.2
Profilkühlung
OTTO JUNKER GmbH
see Extrusion 2
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
2.3 Section handling
SMS Meer GmbH
see Extrusion equipment 2.2
Profilhandling
SIGNODE® SYSTEM GMBH
SMS Meer GmbH
Schloemann Extrusion
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: [email protected]
Internet: www.sms-meer.com
Containers / Rezipienten
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Press control systems
Pressensteuersysteme
Oilgear Towler GmbH
Packaging equipment
Verpackungseinrichtungen
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
see Extrusion Equipment 2.2
SMS Meer GmbH
see Extrusion equipment 2.2
116
OTTO JUNKER GmbH
see Extrusion 2
Homogenisieröfen
see Extrusion 2
Extrusion / Strangpressen
OTTO JUNKER GmbH
see Extrusion 2
Profilsägen
Homogenising furnaces
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
SMS Meer GmbH
see Extrusion equipment 2.2
Section saws
Vollert Anlagenbau
GmbH + Co. KG
Stadtseestraße 12
D-74189 Weinsberg
Tel.
+49 (0) 7134 / 52-220
Fax
+49 (0) 7134 / 52-222
E-Mail [email protected]
Internet www.vollert.de
SMS Meer GmbH
see Extrusion equipment 2.2
Section store equipment
Profil-Lagereinrichtungen
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
KASTO Maschinenbau GmbH & Co. KG
Industriestr. 14, D-77855 Achern
Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300
[email protected] / www.kasto.de
Hersteller von Band- und Kreissägemaschinen
sowie Langgut- und Blechlagersystemen
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
Transport equipment for
extruded sections
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Section transport equipment
Profiltransporteinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
Transporteinrichtungen
für Profilabschnitte
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
OTTO JUNKER GmbH
see Extrusion 2
see Billet Heating Furnaces 2.1
Custom designed heat
processing equipment
Kundenspezifische
Wärmebehandlungsanlagen
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
Homogenising furnaces
Homogenisieröfen
SMS Meer GmbH
see Extrusion equipment 2.2
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
2.4 Heat treatment
Wärmebehandlung
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: [email protected]
Internet: www.unifour.nl
Sales Contact: Paul Overmans
Stackers / Destackers
Stapler / Entstapler
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
BSN Thermprozesstechnik GmbH
Kammerbruchstraße 64
D-52152 Simmerath
Tel. 02473-9277-0 · Fax: 02473-9277-111
[email protected] · www.bsn-therm.de
Ofenanlagen zum Wärmebehandeln von Aluminiumlegierungen, Buntmetallen und Stählen
Annealing furnaces
Glühöfen
SMS Meer GmbH
see Extrusion equipment 2.2
see Equipment and accessories 3.1
Extrusion
Stretching equipment
Reckeinrichtungen
2.5 Measurement and
control equipment
Strangpressen
OTTO JUNKER GmbH
see Extrusion 2
Mess- und Regeleinrichtungen
Extrusion plant control systems
OTTO JUNKER GmbH
see Extrusion 2
see Billet Heating Furnaces 2.1
Heat treatment furnaces
Presswerkssteuerungen
Wärmebehandlungsöfen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
SMS Meer GmbH
see Extrusion equipment 2.2
ALUMINIUM · 1-2/2009
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
117
LIEFERVERZEICHNIS
2.6 Die preparation and care
Werkzeugbereitstellung
und -pflege
Die heating furnaces
2.10 Machining of sections
Profilbearbeitung
Processing of Profiles
Profilbearbeitung
Ageing furnace for extrusions
Auslagerungsöfen für
Strangpressprofile
IUT Industriell Ugnsteknik AB
see Extrusion 2
Werkzeuganwärmöfen
IUT Industriell Ugnsteknik AB
see Extrusion 2
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Tensai (International) AG
Extal Division
Steinengraben 40
CH-4051 Basel
Telefon +41 (0) 61 284 98 10
Telefax +41 (0) 61 284 98 20
E-Mail: [email protected]
see Billet Heating Furnaces 2.1
2.11 Equipment and
accessories
Ausrüstungen und
Hilfsmittel
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: [email protected]
Internet: www.unifour.nl
Sales Contact: Paul Overmans
Inductiv heating equipment
Induktiv beheizte
Erwärmungseinrichtungen
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: [email protected]
Internet: www.ias-gmbh.de
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: [email protected]
Internet: www.unifour.nl
Sales Contact: Paul Overmans
2.12 Services
Dienstleistungen
Haarmann Holding GmbH
see Die preparation and care 2.6
Extrusion dies
Strangpresswerkzeuge
Haarmann Holding GmbH
Karmeliterstraße 6
D-52064 Aachen
Telefon: 02 41 / 9 18 - 500
Telefax: 02 41 / 9 18 - 5010
E-Mail: [email protected]
Internet: www.haarmann-gruppe.de
Hardening technology
Härtetechnik
Haarmann Holding GmbH
see Die preparation and care 2.6
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
2.7 Second-hand
extrusion plant
Gebr. Strangpressanlagen
Qualiteam International/ExtruPreX
Champs Elyséesweg 17, NL-6213 AA Maastricht
Tel. +31-43-3 25 67 77
Internet: www.extruprex.com
118
E-Mail:
[email protected]
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Rolling mill technology
Walzwerktechnik
Casting equipment
Rolling bar machining
Rolling bar furnaces
Hot rolling equipment
Strip casting units and accessories
Cold rolling equipment
Thin strip / foil rolling plant
Auxiliary equipment
Adjustment devices
Process technology / Automation technology
Coolant / lubricant preparation
Air extraction systems
Fire extinguishing units
Storage and dispatch
Second-hand rolling equipment
Coil storage systems
Strip Processing Lines
3.0 Rolling mill technology
Walzwerktechnik
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-4902
Internet: www.sms-demag.com
E-Mail: [email protected]
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Gießanlagen
Walzbarrenbearbeitung
Walzbarrenvorbereitung
Warmwalzanlagen
Bandgießanlagen und Zubehör
Kaltwalzanlagen
Feinband-/Folienwalzwerke
Nebeneinrichtungen
Adjustageeinrichtungen
Prozesstechnik / Automatisierungstechnik
Kühl-/Schmiermittel-Aufbereitung
Abluftsysteme
Feuerlöschanlagen
Lagerung und Versand
Gebrauchtanlagen
Coil storage systems
Bandprozesslinien
Melting and holding furnaces
Schmelz- und Warmhalteöfen
Gautschi
Engineering GmbH
Geschäftsbereich Aluminium
Konstanzer Straße 37
Postfach 170
CH 8274 Tägerwilen
Telefon +41/71/6666666
Telefax +41/71/6666688
E-Mail: [email protected]
Kontakt: Stefan Blum, Tel. +41/71/6666621
LOI Thermprocess GmbH
Am Lichtbogen 29
D-45141 Essen
Germany
Telefon +49 (0) 201 / 18 91-1
Telefax +49 (0) 201 / 18 91-321
E-Mail: [email protected]
Internet: www.loi-italimpianti.com
Gießanlagen
Walzbarrenbearbeitung
Band saws / Bandsägen
SMS Meer GmbH
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: [email protected]
Internet: www.sms-meer.com
Slab milling machines
Barrenfräsmaschinen
Metal filters / Metallfilter
Gautschi
Engineering GmbH
see Casting equipment 3.1
Filling level indicators
and controls
Füllstandsanzeiger und -regler
3.1 Casting equipment
3.2 Rolling bar machining
Gautschi
Engineering GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
SMS Meer GmbH
see Rolling bar machining 3.2
3.3 Rolling bar furnaces
Walzbarrenvorbereitung
BSN Thermprozesstechnik GmbH
see Heat Treatment 2.4
Homogenising furnaces
see Extrusion 2
Homogenisieröfen
Wagstaff, Inc.
Do you need more
information?
see Casting machines 1.6
Melt purification units
Schmelzereinigungsanlagen
E-Mail:
[email protected]
ALUMINIUM · 1-2/2009
Gautschi
Engineering GmbH
see Casting equipment 3.1
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
119
LIEFERVERZEICHNIS
Gautschi
Engineering GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
3.4 Hot rolling equipment
Spools / Haspel
Warmwalzanlagen
see Cold rolling units / complete plants 3.6
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Hot rolling units /
complete plants
Warmwalzanlagen/Komplettanlagen
Annealing furnaces
Glühöfen
EBNER Industrieofenbau Ges.m.b.H.
Ruflinger Str. 111, A-4060 Leonding
Tel. +43 / 732 / 68 68
Fax +43 / 732 / 68 68-1000
Internet: www.ebner.cc
E-Mail: [email protected]
Gautschi
Engineering GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
see Equipment and accessories 3.1
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
Coil transport systems
Bundtransportsysteme
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
schwartz GmbH
see Heat treatment 2.4
Drive systems / Antriebe
Bar heating furnaces
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.5 Strip casting units
and accessories
Bandgießanlagen und
Zubehör
Cores & shells for continuous
casting lines
Cores & shells for continuous
casting lines
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
Barrenanwärmanlagen
Revamps, equipments & spare parts
for continuous casting lines
EBNER Industrieofenbau Ges.m.b.H.
see Annealing furnaces 3.3
Gautschi
Engineering GmbH
see Casting equipment 3.1
Revamps, equipments & spare parts
for continuous casting lines
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Rolling mill modernisation
Walzwerksmodernisierung
OTTO JUNKER GmbH
see Extrusion 2
Roller tracks
Twin-roll continuous casting
lines (complete lines)
Rollengänge
Gautschi
Engineering GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Do you need more information?
E-Mail: [email protected]
120
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
Twin-roll continuous casting lines
(complete lines)
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
3.6 Cold rolling equipment
Kaltwalzanlagen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
BSN Thermprozesstechnik GmbH
see Heat Treatment 2.4
Coil transport systems
Bundtransportsysteme
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Heating furnaces / Anwärmöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Cold rolling units /
complete plants
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
Kaltwalzanlagen/Komplettanlagen
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: [email protected], Internet: www.vits.com
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Process optimisation systems
Prozessoptimierungssysteme
Coil annealing furnaces
Bundglühöfen
Drive systems / Antriebe
Gautschi
Engineering GmbH
see Casting equipment 3.1
Gautschi
Engineering GmbH
see Casting equipment 3.1
Process simulation
Prozesssimulation
OTTO JUNKER GmbH
see Extrusion 2
see Equipment and accessories 3.1
www.vits.com
see Cold rolling equipment 3.6
ALUMINIUM · 1-2/2009
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Gautschi
Engineering GmbH
see Casting equipment 3.1
Hier könnte Ihr
BezugsquellenEintrag
stehen.
Rufen Sie an:
Tel. 0511 / 73 04-148
Beate Schaefer
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Revamps, equipments & spare parts
Revamps, equipments & spare parts
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
121
LIEFERVERZEICHNIS
Roll exchange equipment
Walzenwechseleinrichtungen
Trimming equipment
Besäumeinrichtungen
see Cold rolling units / complete plants 3.6
Heating furnaces
Anwärmöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
OTTO JUNKER GmbH
see Extrusion 2
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.7 Thin strip /
foil rolling plant
Feinband-/Folienwalzwerke
see Cold rolling units / complete plants 3.6
Rolling mill modernization
Walzwerkmodernisierung
see Cold rolling units / complete plants 3.6
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SIGNODE® SYSTEM GMBH
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Slitting lines-CTL
Längs- und Querteilanlagen
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Coil annealing furnaces
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: [email protected], Internet: www.vits.com
Thin strip / foil rolling mills /
complete plant
Feinband- / Folienwalzwerke /
Komplettanlagen
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Bundglühöfen
see Cold rolling units / complete plants 3.6
Gautschi
Engineering GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
Strip shears
see Extrusion 2
Bandscheren
Revamps, equipments & spare parts
Revamps, equipments & spare parts
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
see Cold rolling units / complete plants 3.6
see Equipment and accessories 3.1
Rolling mill modernization
schwartz GmbH
see Cold colling equipment 3.6
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
122
www.vits.com
see Thin strip / foil rolling plant 3.7
Walzwerkmodernisierung
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
3.9 Adjustment devices
Adjustageeinrichtungen
Process control technology
Prozessleittechnik
Strip flatness measurement
and control equipment
Bandplanheitsmess- und
-regeleinrichtungen
Sheet and plate stretchers
Blech- und Plattenstrecker
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
SMS Meer GmbH
see Rolling bar machining 3.2
Unitechnik Cieplik & Poppek AG
D-51674 Wiehl, www.unitechnik.com
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: [email protected]
Internet: www.abb.com/pressductor
Cable sheathing presses
Kabelummantelungspressen
Wagstaff, Inc.
see Casting machines 1.6
Strip thickness measurement
and control equipment
SMS Meer GmbH
see Rolling bar machining 3.2
Banddickenmess- und
-regeleinrichtungen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Cable undulating machines
Kabelwellmaschinen
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: [email protected]
Internet: www.abb.com/pressductor
SMS Meer GmbH
see Rolling bar machining 3.2
Transverse cutting units
Querteilanlagen
SERMAS INDUSTRIE
E-Mail: [email protected]
See Casting Machines 1.6
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.11 Coolant / lubricant
preparation
Kühl-/SchmiermittelAufbereitung
Rolling oil recovery and
treatment units
Walzöl-Wiederaufbereitungsanlagen
3.10 Process technology /
Automation technology
Prozesstechnik /
Automatisierungstechnik
4Production AG
Produktionsoptimierende Lösungen
Adenauerstraße 20, D-52146 Würselen
Tel.: +49 (0) 2405 / 4135-0
[email protected], www.4production.de
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
ALUMINIUM · 1-2/2009
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Hier könnte Ihr
BezugsquellenEintrag
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Filter for rolling oils and
emulsions
Filter für Walzöle und Emulsionen
stehen.
Rufen Sie an:
Tel. 0511 / 73 04-148
Beate Schaefer
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
123
LIEFERVERZEICHNIS
Rolling oil rectification units
Filtering plants and systems
Walzölrektifikationsanlagen
Filteranlagen und Systeme
3.17 Strip Processing Lines
Bandprozesslinien
Colour Coating Lines
Bandlackierlinien
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: [email protected]
Internet: www.danthermfiltration.com
www.bwg-online.com
see Strip Processing Lines 3.17
Lithographic Sheet Lines
Lithografielinien
see Cold rolling units / complete plants 3.6
3.14 Storage and dispatch
Lagerung und Versand
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.12 Air extraction systems
Abluft-Systeme
www.bwg-online.com
see Strip Processing Lines 3.17
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
3.16 Coil storage systems
Bundlagersysteme
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Streckrichtanlagen
www.bwg-online.com
see Strip Processing Lines 3.17
Exhaust air purification
systems (active)
Abluft-Reinigungssysteme (aktiv)
Stretch Levelling Lines
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Strip Annealing Lines
Bandglühlinien
www.bwg-online.com
see Strip Processing Lines 3.17
Strip Processing Lines
Bandprozesslinien
BWG Bergwerk- und WalzwerkMaschinenbau GmbH
Mercatorstraße 74 – 78
D-47051 Duisburg
Tel.: +49 (0) 203-9929-0
Fax: +49 (0) 203-9929-400
E-Mail: [email protected]
Internet: www.bwg-online.com
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail: [email protected]
124
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
Foundry
Gießerei
Work protection and ergonomics
Heat-resistant technology
Conveyor and storage technology
Mould and core production
Mould accessories and accessory materials
Foundry equipment
Casting machines and equipment
Handling technology
Construction and design
Measurement technology and materials testing
Metallic charge materials
Finshing of raw castings
Melt operations
Melt preparation
Melt treatment devices
Control and regulation technology
Environment protection and disposal
Dross recovery
Gussteile
4.2 Heat-resistent technology
Feuerfesttechnik
Refractories
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
Arbeitsschutz und Ergonomie
Feuerfesttechnik
Förder- und Lagertechnik
Form- und Kernherstellung
Formzubehör, Hilfsmittel
Gießereianlagen
Gießmaschinen und Gießeinrichtungen
Handhabungstechnik
Konstruktion und Design
Messtechnik und Materialprüfung
Metallische Einsatzstoffe
Rohgussnachbehandlung
Schmelzbetrieb
Schmelzvorbereitung
Schmelzebehandlungseinrichtungen
Steuerungs- und Regelungstechnik
Umweltschutz und Entsorgung
Schlackenrückgewinnung
Cast parts
4.6 Foundry equipment
Gießereianlagen
Casting machines
Gießmaschinen
4.7 Casting machines
and equipment
Gießereimaschinen
und Gießeinrichtungen
Feuerfeststoffe
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
[email protected], www.promat.de
OTTO JUNKER GmbH
see Extrusion 2
see Equipment and accessories 3.1
Molten Metall Level Control
4.3 Conveyor and storage
technology
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Förder- und Lagertechnik
Ostra Hamnen 7
SE-430 91 Hono / Schweden
Tel.: +46 31 764 5520, Fax: +46 31 764 5529
E-Mail: [email protected]
Internet: www.precimeter.com
Sales contact: Jan Strömbeck
Solution annealing furnaces/plant
Lösungsglühöfen/anlagen
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
4.5 Mold accessories and
accessory materials
ERNST REINHARDT GMBH
Postfach 1880, D-78008 VS-Villingen
Tel. 07721/8441-0, Fax 8441-44
E-Mail: [email protected]
Internet: www.Ernst-Reinhardt.com
Wärmebehandlungsöfen
Mould parting agents
Kokillentrennmittel
see Foundry equipment 4.6
Flussmittel
Solvay Fluor GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
Telefon +49 (0) 511 / 857-0
Telefax +49 (0) 511 / 857-2146
Internet: www.solvay-fluor.de
ALUMINIUM · 1-2/2009
see Casting machines 1.6
Heat treatment furnaces
Formzubehör, Hilfmittel
Fluxes
Wagstaff, Inc.
see Billet Heating Furnaces 2.1
Schröder KG
Schmierstofftechnik
Postfach 1170
D-57251
Freudenberg
Tel. 02734/7071
Fax 02734/20784
www.schroeder-schmierstoffe.de
125
LIEFERVERZEICHNIS
Melting furnaces
4.8 Handling technology
Schmelzöfen
Handhabungstechnik
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Manipulators
Manipulatoren
SERMAS INDUSTRIE
E-Mail: [email protected]
See Casting Machines 1.6
4.9 Construction and
Design
Konstruktion und Design
THERMCON OVENS BV
see Extrusion 2
ALERIS Recycling (German Works) GmbH
Aluminiumstraße 3
D-41515 Grevenbroich
Telefon +49 (0) 2181/16 45 0
Telefax +49 (0) 2181/16 45 100
E-Mail: [email protected]
Internet: www.aleris-recycling.com
Pre alloys / Vorlegierungen
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: [email protected]
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
Gautschi
Engineering GmbH
see Casting equipment 3.1
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: [email protected]
Internet: www.metallhandelsgesellschaft.de
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Recycling / Recycling
4.11 Metallic charge
materials
Metallische Einsatzstoffe
Scholz AG
Am Bahnhof
D-73457 Essingen
Tel. +49 (0) 7365-84-0
Fax +49 (0) 7365-1481
E-Mail: [email protected]
Internet: www.scholz-ag.de
Aluminium alloys
Aluminiumlegierungen
TRIMET ALUMINIUM AG
Niederlassung Gelsenkirchen
Am Stadthafen 51-65
D-45681 Gelsenkirchen
Tel.: +49 (0) 209 / 94089-0
Fax: +49 (0) 209 / 94089-60
Internet: www.trimet.de
see Equipment and accessories 3.1
MARX GmbH & Co. KG
Lilienthalstr. 6-18
D-58638 Iserhohn
Tel.: +49 (0) 2371 / 2105-0, Fax: -11
E-Mail: [email protected]
Internet: www.marx-gmbh.de
TRIMET ALUMINIUM AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
Holding furnaces
Warmhalteöfen
4.13 Melt operations
Schmelzbetrieb
METALLHÜTTENWERKE BRUCH GMBH
Postfach 10 06 29
D-44006 Dortmund
Telefon +49 (0) 231 / 8 59 81-121
Telefax +49 (0) 231 / 8 59 81-124
E-Mail: [email protected]
Internet: www.bruch.de
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: [email protected]
Internet: www.metallhandelsgesellschaft.de
126
OTTO JUNKER GmbH
see Extrusion 2
Heat treatment furnaces
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: [email protected]
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
Wärmebehandlungsanlagen
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Billet Heating Furnaces 2.1
see Equipment and accessories 3.1
ALUMINIUM ·1-2/2009
LIEFERVERZEICHNIS
Heat treatment furnaces
Wärmebehandlungsanlagen
4.16 Control and
regulation technology
Flue gas cleaning
Rauchgasreinigung
Steuerungs- und
Regelungstechnik
Gautschi
Engineering GmbH
see Casting equipment 3.1
HCL measurements
HCL Messungen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: [email protected]
Internet: www.opsis.se
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: [email protected]
Internet: www.danthermfiltration.com
4.18 Dross recovery
Schlackenrückgewinnung
OTTO JUNKER UK
see Extrusion 2
see Equipment and accessories 3.1
4.17 Environment protection
and disposal
Umweltschutz und
Entsorgung
4.19 Cast parts / Gussteile
4.14 Melt preparation
Schmelzvorbereitung
Dust removal / Entstaubung
OTTO JUNKER GmbH
see Extrusion 2
Degassing, filtration
Entgasung, Filtration
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: http://www.drache-gmbh.de
Gautschi
Engineering GmbH
see Casting equipment 3.1
NEOTECHNIK GmbH
Entstaubungsanlagen
Postfach 110261, D-33662 Bielefeld
Tel. 05205/7503-0, Fax 05205/7503-77
[email protected], www.neotechnik.com
TRIMET ALUMINIUM AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
Do you need more information?
E-Mail: [email protected]
Melt treatment agents
Schmelzebehandlungsmittel
Gautschi
Engineering GmbH
see Casting equipment 3.1
4.15 Melt treatment devices
Schmelzbehandlungseinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
Metaullics Systems Europe B.V.
Ebweg 14
NL-2991 LT Barendrecht
Tel. +31-180/590890
Fax +31-180/551040
E-Mail: [email protected]
Internet: www.metaullics.com
ALUMINIUM · 1-2/2009
5
Materials and Recycling
Werkstoffe und Recycling
Alu-web.de
der ALUMINIUMBranchentreff.
Haben Sie schon Ihren
Basiseintrag bestellt?
Nein, dann sofort anrufen:
0511/73 04-142
Stefan Schwichtenberg
Granulated aluminium
Aluminiumgranulate
ECKA Granulate Austria GmbH
Bürmooser Landesstraße 19
A-5113 St. Georgen/Salzburg
Telefon +43 6272 2919-12
Telefax +43 6272 8439
Kontakt: Ditmar Klein
E-Mail: [email protected]
127
LIEFERVERZEICHNIS
6
Machining and Application
Bearbeitung und Anwendung
Machining of aluminium
Joining / Fügen
Aluminiumbearbeitung
AG & Co. KGaA
Haarmann Holding GmbH Henkel
siehe Prozesse für die Oberflächentechnik 6.1
see Die preparation and care 2.6
6.1 Surface treatment
processes
Prozesse für die
Oberflächenbehandlung
Pretreatment before coating
Vorbehandlung vor der Beschichtung
siehe Prozesse für die Oberflächentechnik 6.1
Thermische Beschichtung
Adhesive bonding / Verkleben
Ausrüstung für Schmiedeund Fließpresstechnik
Hydraulic Presses
Hydraulische Pressen
LASCO Umformtechnik GmbH
Hahnweg 139, D-96450 Coburg
Tel. +49 (0) 9561 642-0
Fax +49 (0) 9561 642-333
E-Mail: [email protected]
Internet: www.lasco.com
Henkel AG & Co. KGaA
Thermal coating
Henkel AG & Co. KGaA
D-40191 Düsseldorf
Tel. +49 (0) 211 / 797-30 00
Fax +49 (0) 211 / 798-23 23
Internet: www.henkel-technologies.com
6.3 Equipment for forging
and impact extrusion
Berolina Metallspritztechnik
Wesnigk GmbH
Pappelhain 30
D-15378 Hennickendorf
Tel.: +49 (0) 33434 / 46060
Fax: +49 (0) 33434 / 46701
E-Mail: [email protected]
Internet: www.metallspritztechnik.de
Henkel AG & Co. KGaA
siehe Prozesse für die Oberflächentechnik 6.1
8
Literature
Literatur
Technikcal literature
Fachliteratur
Taschenbuch des Metallhandels
Fundamentals of Extrusion Technology
Giesel Verlag GmbH
Verlag für Fachmedien
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
Internet: www.alu-bookshop.de.
6.2 Semi products
Anodising / Anodisation
Henkel AG & Co. KGaA
Halbzeuge
Wires / Drähte
Technical journals
Fachzeitschriften
siehe Prozesse für die Oberflächentechnik 6.1
Cleaning / Reinigung
Henkel AG & Co. KGaA
siehe Prozesse für die Oberflächentechnik 6.1
DRAHTWERK ELISENTAL
W. Erdmann GmbH & Co.
Werdohler Str. 40, D-58809 Neuenrade
Postfach 12 60, D-58804 Neuenrade
Tel. +49(0)2392/697-0, Fax 49(0)2392/62044
E-Mail: [email protected]
Internet: www.elisental.de
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail:
[email protected]
128
Giesel Verlag GmbH
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
ALUMINIUM ·1-2/2009
IMPRESSUM / IMPRINT
International
ALUMINIUM
Journal
85. Jahrgang 1.1.2009
Redaktion / Editorial office
Dipl.-Vw. Volker Karow
Chefredakteur, Editor in Chief
Franz-Meyers-Str. 16, 53340 Meckenheim
Tel: +49(0)2225 8359 643
Fax: +49(0)2225 18458
E-Mail: [email protected]
Dipl.-Ing. Rudolf P. Pawlek
Fax: +41 274 555 926
Hüttenindustrie und Recycling
Dipl.-Ing. Bernhard Rieth
Walzwerkstechnik und Bandverarbeitung
Verlag / Publishing house
Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp
3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:
0511/7304-157. E-mail: [email protected]
Internet: www.alu-web.de.
Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/
bank account Commerzbank AG, BLZ/
routing code: 25040066, Kto.-Nr./account
no. 1500222
Geschäftsleitung / General Manager
Georg Dörner
Tel: 05 11/73 04-166
E-Mail: [email protected]
Objektleitung / General Manager
Material Publications
Stefan Schwichtenberg
Tel: 05 11/ 73 04-142
E-Mail: [email protected]
Anzeigendisposition / Advertising
layout
Beate Schaefer
Tel: 05 11/ 73 04-148
E-Mail: [email protected]
Vertriebsleitung / General Manager
Distribution Department
Jutta Illhardt
Tel: 05 11/ 73 04-126
E-Mail: [email protected]
Abonnenten-Service / Reader service
Kirsten Voß
Tel: 05 11/ 73 04-122
E-Mail: [email protected]
Herstellung & Druck / Printing house
BWH GmbH, Beckstr. 10
D-30457 Hannover
Jahresbezugspreis
EUR 285,- (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR
289,- inkl. Versandkosten. Übersee US$
375,- inkl. Normalpost; Luftpost zuzügl.
US$ 82,-.
Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende
der Bezugszeit.
Subscription rates
EUR 285.00 p.a. (domestic incl. V.A.T.) plus
postage. Europe EUR 289.00 incl. surface
mail. Outside Europe US$ 375.00 incl. surface mail, air mail plus US$ 82.00.
ALUMINIUM · 1-2/2009
ALUMINIUM is published monthly (10
issues a year). Cancellations six weeks
prior to the end of a year.
Anzeigenpreise / Advertisement rates
Preisliste Nr. 49 vom 1.1.2009.
Price list No. 49 from 1.1.2009.
Die Zeitschrift und alle in ihr enthaltenen
Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Das gilt
insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt
keine Gewähr für die Richtigkeit der in
diesem Heft mitgeteilten Informationen
und haftet nicht für abgeleitete Folgen.
Haftung bei Leistungsminderung durch
höhere Gewalt oder andere vom Verlag
nicht verschuldete Umstände (z. B. Streik)
ist ausgeschlossen.
This journal and all contributions contained therein are protected by copyright.
Any utilization outside the strict limits of
copyright legislation without the express
consent of the publisher ist prohibited
and actionable at law. This applies in
particular to reproduction, translations,
microfilming and storage or processing in
electronic systems. The publisher offers
no guarantee that the information in this
volume is accurate and accepts no liability
for consequences deriving therefrom. No
liability whatsoever is accepted for perfomance lag caused by force majeure or by
circumstances beyond the publisher’s control (e.g. industrial action).
ISSN: 0002-6689
© Giesel Verlag GmbH
Verlagsrepräsentanz / Representatives
Nielsen-Gebiet 1 (Schleswig-Holstein,
Hamburg, Bremen, Niedersachsen außer
Raum Osnabrück):
Giesel Verlag GmbH
Rehkamp 3, 30916 Isernhagen
Tel: 05 11/73 04-145,
Fax: 05 11/73 04-157
E-Mail: [email protected]
www.giesel-verlag.de
Nielsen-Gebiet 2 (Nordrhein-Westfalen,
Raum Osnabrück):
Medienbüro Jürgen Wickenhöfer
Minkelsches Feld 39, 46499 Hamminkeln
Tel: 0 28 52 / 9 4180
Fax: 0 28 52 / 9 4181
E-Mail: [email protected]
www.jwmedien.de
Nielsen-Gebiet 3a (Hessen, Saarland,
Rheinland-Pfalz):
multilexa GmbH, publisher services
Linsenhofer Straße 51, 98529 Suhl
Tel: 03681/4550478
Fax: 03681/45503042
E-Mail: [email protected]
www.multilexa.de
Nielsen-Gebiet 3 b (Baden-Württemberg):
G. Fahr, Verlags- und Pressebüro e. K.
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 27/30 84
Fax: 07127/2 14 78
E-Mail: [email protected]
Nielsen-Gebiet 4 (Bayern):
G. Fahr, Verlags- und Pressebüro e.K.
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 8362/5054990
Fax: 08362/5054992
E-Mail: [email protected]
Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg,
Sachsen-Anhalt Sachsen, Thüringen):
multilexa GmbH, publisher services
Linsenhofer Straße 51, 98529 Suhl
Tel: 03681/4550478
Fax: 03681/45503042
E-Mail: [email protected]
www.multilexa.de
Scandinavia, Denmark,
Netherlands, Belgium, Luxembourg
multilexa GmbH, publisher services
Linsenhofer Straße 51, 98529 Suhl,
Germany
Tel: +49 (0)3681/4550478
Fax: +49 (0)3681/45503042
E-Mail: [email protected]
www.multilexa.de
Switzerland
JORDI PUBLIPRESS
Postfach 154 · CH-3427 Utzenstorf
Tel. +41 (0)32 666 30 90,
Fax +41 (0)32 666 30 99
E-Mail: [email protected]
www.jordipublipress.ch
Austria
Verlagsbüro Katrin Forstner
Wiengasse 6/7/3, A-1140 Wien
Tel: +43(0)1 9235352
Fax: +43(0)1 9 797189
E-Mail: [email protected]
Italy
MEDIAPOINT & COMMUNICATIONS
SRL
Corte Lambruschini – Corso Buenos
Aires, 8
Vo piano – Interno 7, I-16129 Genova
Tel: +39(0)10 5 70 49 48,
Fax: +39(0)10 5 53 00 88
E-Mail: [email protected]
www.mediapointsrl.it
USA, Canada, Africa, U.A.E. etc.
Giesel publishing house
Rehkamp 3, 30916 Isernhagen, Germany
Tel: +49 (0)5 11/73 04-145,
Fax: +49 (0)5 11/73 04-157
E-Mail: [email protected]
www.giesel-verlag.de
United Kingdom
Giesel publishing house
Rehkamp 3, 30916 Isernhagen, Germany
Tel: +49 (0)5 11/73 04-145,
Fax: +49 (0)5 11/73 04-157
E-Mail: [email protected]
www.giesel-verlag.de
France
DEF & Communication
Axelle Chrismann
48 boulevard Jean Jaurès
F-92110 Clichy
Tel: +33 (0)1 47 30 71 80,
Fax: +33 (0)1 47 30 01 89
E-Mail: [email protected]
Der ALUMINIUM-Branchentreff des
Giesel Verlags: www.alu-web.de
129
VORSCHAU / PREVIEW
IM NÄCHSTEN HEFT
IN THE NEXT ISSUE
Special: Recycling und Schmelztechnologien
Special: Recycling and melting technologies
Das Special thematisiert aktuelle Branchen- und
Marktentwicklungen sowie Technologietrends.
Beiträge unter anderem:
• Interview mit Günter Kirchner, Generalsekretär
der OEA über markt- und branchenaktuelle
Fragen
• Flugzeugrecycling
• Neue Schmelzofentechniken
The Special deals with latest industry and market
developments as well as technology trends.
Subjects covered include:
• Interview with Günter Kirchner, General Secretary
of OEA, on latest market and industry issues
• Aircraft recycling
• New melt furnace technologies
Economics
Wirtschaft
• Die Sekundäraluminiumindustrie 2008/09 – ein
Branchenrückblick
• Secondary aluminium activities
during 2008/09 – an industry review
Other topics
Weitere Themen
• Latest international news from the industry
• Aktuelles aus der Branche; Kurzberichte
Erscheinungstermin: 06. März 2009
Anzeigenschluss:
17. Februar 2009
Redaktionsschluss: 09. Februar 2009
Date of publication:
Advertisement deadline:
Editorial deadline:
06 March 2009
17 February 2009
09 February 2009
Abonnement-Bestellung
Subscription-Order
Ja, wir möchten die Zeitschrift ALUMINIUM ab sofort
zum Jahresbezugspreis von EUR 285,- inkl. Mehrwertsteuer (Ausland EUR 289,-) und Versandkosten abonnieren.
Das Magazin erscheint zehn Mal pro Jahr.
Das Abonnement kann mit einer sechswöchigen Frist
zum Bezugsjahresende gekündigt werden.
Yes, we want to subscribe to ALUMINIUM. The rate is
EUR 289.00 per year incl. postage. Outside Europe
US$ 375.00 incl. surface mail, air mail plus US$ 82.00
The magazine is published ten times a year.
Cancellations six weeks prior to the end of a
subscription year.
Name / name
Firma / company
Anschrift / address
Umsatzsteuer-Ident.-Nr. / VAT Reg.-No.
Datum / date
Unterschrift/Signature
Fax: +49 (0) 511 73 04 157
130
ALUMINIUM · 1-2/2009
Verlassen Sie sich darauf:
Geballte
Metall-Kompetenz
Taschenbuch
des Metallhandels
11., völlig überarbeitete Auflage in 2 Bänden:
Band 1:
Metalle und
Handelsbedingungen
•
•
•
•
Der Rohstoff Metall
Die Metallbörsen
Handelsbedingungen / Normen
Anschriften, Organisationen,
Verbände
• Metall-Wörterbuch: Deutsch –
Englisch – Französisch
• Warenverzeichnis für den
Außenhandel
• Statistiken
Band 2:
Rechtliche
Rahmenbedingungen
• Im Fokus stehen für den Metallhandel wichtige Gesetze und Verordnungen
Verlassen Sie sich auf Experten:
Der Herausgeber Ralf Schmitz ist seit 1995 für die Branche tätig und Geschäftsführer
des Verbandes Deutscher Metallhändler e.V. (VDM).
Die Autoren sind anerkannte und namhafte Experten in Theorie und Praxis:
Hans-Leo Bock, Klaus Bunzel, Catrin Kammer, Ferdinand Dietz, Uwe Görisch,
Stefan Kopp-Assenmacher, Nikolai Malanowski, Heinz Mohr, Norbert Müller,
Torsten Paßvoß, Markus Pauly, Ralf Schmitz, Nadine Zocher
Jetzt in der 11. völlig überarbeiteten Auflage!
Band 1: 976 Seiten, zahlreiche Tabellen, gebunden mit Hardcover
Band 2: 685 Seiten, gebunden als Taschenbuch (Paperback);
zusammen eingeschweißt
Format 21,5 x 15 cm
ISBN 987-3-87852-017-7
Komplett
149,00 €
Bestellungen unter www.metall-web.de/shop_metallkompetenz
Giesel Verlag GmbH
Postfach 120 158
30907 Isernhagen · Germany
Tel. +49 511 7304-122
Fax +49 511 7304-157
www.giesel.de · [email protected]
.
AnzTBM BWH
Committed
to the future.
Technology partner for the aluminum industry.
Whatever it is that you want to produce – as your
technology partner in plant construction, we strive
to make even the impossible possible. This reflects
our commitment to the markets of the future.
A constantly evolving spectrum of new product ideas
requires innovation and adaptation in plant design
and construction. Only a partner with expertise
covering the entire aluminum production process
can deliver real solutions here. Having recognized
the importance of mechatronic know-how early on,
we are always ready to implement the latest developments in aluminum production and processing.
As part of our X-Pact technology and automation
packages, all functional and operating simulations
are thoroughly tested. Especially in plant revamp and
conversion projects, this results in highly improved
ramp-up times.
The evolution of aluminum – SMS Demag.
MEETING your EXPECTATIONS
SMS DEMAG AG
Eduard-Schloemann-Strasse 4
40237 Düsseldorf, Germany
Phone: +49 (0) 211 881-0
Fax:
+49 (0) 211 881-4902
E-mail: [email protected]
Internet: www.sms-demag.com

Documents pareils