Warum das Kohlekraftwerksprojekt von Dow in Stade weder umwelt

Transcription

Warum das Kohlekraftwerksprojekt von Dow in Stade weder umwelt
DUH-Hintergrund
Warum das Kohlekraftwerksprojekt von Dow in Stade
weder umwelt- noch klimaverträglich noch alternativlos ist
Der Chemiekonzern Dow plant auf seinem Werksgelände, im niedersächsischen Stade, ein Steinkohlekraftwerk mit einer elektrischen Leistung von 920 Megawatt, das zu einem Drittel der Eigenversorgung der Chemieproduktion des Konzerns mit Strom und Dampf dienen soll. In der öffentlichen
Kommunikation zur Rechtfertigung der Planung werden häufig Behauptungen aufgestellt, wonach
ein steinkohlebefeuertes Großkraftwerk alternativlos für die Stromerzeugung sei. Mit diesem Papier
werden einige Mythen rund um die Kohlekraft, die von Dow und Teilen der Lokalpolitik verbreitet
werden, kritisch beleuchtet und widerlegt.1
Dow-Behauptung: „40 Prozent weniger Treibhausgasemissionen“
Dow behauptet das geplante Steinkohlekraftwerk würde 40 % weniger Kohlendioxid (CO2) emittieren
als der durchschnittliche deutsche Kohlekraftwerksbestand. Damit vergleicht das Unternehmen Äpfel
mit Birnen.
Für die Betrachtung des mit dem Energiebedarf von Dow in Stade einhergehenden Treibhausgasausstoßes verbietet sich ein solcher Vergleich, weil zum einen mit der möglichen Inbetriebnahme eines
neuen Steinkohlemeilers nicht sichergestellt wird, dass im Gegenzug ein altes Kohlekraftwerk mit
mehr Emissionen abgeschaltet wird, mit dem sich die Treibhausgasemissionen saldieren ließen. Dow
besitzt am Standort ein altes Gaskraftwerk (190 MW elektrisch), das aktuell durch einen ebenfalls
erdgasbasierten Kraftwerksneubau (150 MW elektrisch) ersetzt wird.
Ein Emissionsvergleich am Standort Stade ist zum anderen anhand der aktuellen Strombezugssituation von Dow und der geplanten Eigenstromversorgung mit Steinkohle vorzunehmen. Von den 600
Megawatt elektrischer Leistung, die Dow nach eigenen Angaben ganzjährig benötigt, stammen heute
bis zu 190 MW aus dem (alten) Gaskraftwerk auf dem Werksgelände. Die restlichen 410 Megawatt
bezieht Dow über das öffentliche Stromnetz.
Der mit dem Stromverbrauch verbundene CO2-Ausstoß ist daher a) anhand der spezifischen CO2Emissionsfaktoren für den bundesdeutschen Energieträgermix sowie b) mittels des Emissionsfaktors für
alte Gaskraftwerke zu berechnen. Der CO2-Emissionsfaktor der durchschnittlichen Stromerzeugung in
Deutschland lag, nach Angaben des BDEW2, im Jahr 2011 bei 503 Gramm je Kilowattstunde Strom. Der
durchgängige Leistungsbedarf von 410 MW verursacht folglich einen jährlichen CO2-Ausstoß von 1,8
Mio. Tonnen. Nach Angaben des Umweltbundesamtes emittieren alte, Erdgas befeuerte Gas- und
Dampfturbinenkraftwerke, GuD, (zufällig) ebenfalls 503 g/kWh Strom. Eine ganzjährige Leistung von
1
Bei den Behauptungen wird meist auf die Dow-Broschüre „Integriertes Energiekonzept im Werk Stade“, Stand 01/2013 Bezug
genommen; http://www.dow.com/deutschland/assets/documents/presse/2013/19379_PSP_Energie_V17b.pdf
2
Bundesverband der Deutschen Energie- und Wasserwirtschaft: Energieträgermix Deutschland nach der Nettostromerzeugung der allgemeinen Stromversorgung, Stand 10/2012;
http://www.bdew.de/internet.nsf/id/1E7BD75876AE0D08C1257823003ED8C4/$file/12-1004%20Bundesmix%202011%20Stromkennzeichnung_Final.pdf
Seite - 2 - DUH-Hintergrund vom 25. Februar 2013
190 MW aus der GuD-Anlage zieht folglich 0,84 Mio. t CO2 nach sich. Der Jahresstromverbrauch von 5
Mrd. Kilowattstunden im Stader Werk verursacht folglich 2,6 Mio. Tonnen Kohlendioxid. Würde die
gleiche Leistung durch ein Steinkohlekraftwerk neuerster Bauart bereitgestellt, entstünden 3,8 Mio. t
CO2, also 1,2 Million Tonnen mehr Treibhausgase pro Jahr als heute durch den Betrieb bei Dow in Stade anfallen.3 Selbst unter der Annahme, dass in dem neuen Steinkohleblock ganzjährig die maximale
Wasserstoffmenge verstromt wird,4 hätte diese Kohleverstromung 0,6 Millionen Jahrestonnen mehr
Kohlendioxid zur Folge, und das über einen voraussichtlichen Betriebszeitraum von 40 Jahren.
Situation
zukünftig
Situation
heute
Stromquelle
deutscher Energieträgermix
elektrische
Leistung
[Megawatt]
410 MW
Betriebsstunden
erzeugte
Jahresarbeit
[Megawattstunden]
8.760 h
spezifischer
CO2-Ausstoß
[kg/MWh]
3.592 MWh
503 kg *
x
190 MW
8.760 h
1.664 MWh
503 kg
SteinkohleKW (neu)
600 MW
8.760 h
5.256 MWh x
735 kg
SteinkohleKW (neu)
510 MW
8.760 h
4.468 MWh
735 kg
+ Wasserstoff (max.)
90 MW
8.760 h
788 MWh
SteinkohleKW (neu)
360 MW
8.760 h
3.154 MWh
+ Wasserstoff (max.)
90 MW
8.760 h
Gaskraftwerk (in Bau)
150 MW
8.760 h
x
0 kg
1.314 MWh
0 kg
=
3.863.160 t
1.219.392 t
=
3.283.686 t
639.918 t
2.317.896 t
=
Gaskraftwerk (in Bau+neu)
600 MW
8.760 h
5.256 MWh x
347 kg
510 MW
8.760 h
4.468 MWh
347 kg
90 MW
8.760 h
788 MWh
x
0 kg
130.086 t
455.958 t
347 kg
Gaskraftwerk (in Bau+neu)
0 t
837.193 t
735 kg
788 MWh x
CO2-Differenz
zu heutigem
Strombezug
[Tonnen]
1.806.575 t
=
Gaskraftwerk (alt)
+ Wasserstoff (max.)
CO2-Ausstoß
pro Jahr
[Tonnen]
=
1.823.832 t
-819.936 t
=
1.550.257 t
-1.093.511 t
*) CO2-Emissionen der durchschnittlichen Stromerzeugung in Deutschland (2011)
Tab. 1:
Vergleich der CO2-Emissionen des heutigen Strombedarfs mit Varianten künftiger Eigenstromversorgung in Stade.
Aus obiger Tabelle wird ersichtlich, dass die komplette Eigenstromversorgung über ein großes Gaskraftwerk eine jährliche Treibhausgasreduktion von 0,8 Mio. Tonnen gegenüber heute möglich machen würde. Unter Einbeziehung des maximalen Wasserstoffeinsatzes wären sogar eine Million Jahrestonnen weniger Klimabelastung möglich. Gegenüber der Variante Steinkohlekraftwerk verursacht
ein neues GuD-Kraftwerk sogar zwei Millionen Jahrestonnen weniger Klimagase bei der Eigenstromversorgung des Werksstandorts.
Dow beabsichtigt die nicht selbst benötigte Kapazität des Kraftwerks (installierte Bruttoleistung
920 MW) am Markt zu veräußern. In diesem Fall würde der Kohleblock mit insgesamt 4,8 Mio. Tonnen Kohlendioxid jährlich das Klima belasten.5
Neue Steinkohlekraftwerke erzeugen aufgrund technischer Entwicklungen weniger CO2 pro Kilowattstunde als Altanlagen. Laut Umweltbundesamt liegt der CO2-Emissionsfaktor alter Steinkohleblöcke
bei 939 Gramm je Kilowattstunde, die neueste Generation Steinkohlekraftwerke emittiert immerhin
noch 735 g/kWh. Die Technikentwicklung der letzten Jahrzehnte macht bei der Steinkohleverstromung folglich eine spezifische CO2-Reduktion bis 22 Prozent pro Kilowattstunde in Neuanlagen mög3
Bundesdeutscher Stromerzeugungsmix (2012): Braunkohle25,7 % Steinkohle 19,1 %, Erdgas 11,3 %, Erneuerbare Energien
22 %, Atomkraft 16 %.
4
Heizwert von Wasserstoff: 120 GJ/t. Maximal 6 Tonnen Wasserstoff, die dem Kraftwerk stündlich zugeführt werden wollen, entsprechen 6 x 120 GJ (1 GJ = 0,2777 MWh) 200 MWhth. Bei einem unterstellten elektrischen Wirkungsgrad von 45 %
lassen sich aus 200 MWh thermischer Energie bis zu 90 MWh elektrische Energie (Strom) erzeugen.
5
Berechnungsgrundlage: Eigenbedarf (inkl. Kraftwerksstrom) 600 MW; Netzeinspeisung 320 MW, bei durchschnittlich
3.790 Volllaststunden deutscher Steinkohleblöcke im Jahr 2011 (BDEW 2012).
Seite - 3 - DUH-Hintergrund vom 25. Februar 2013
lich. Der CO2-Ausstoß neuer Steinkohlemeiler liegt aber immer noch deutlich über dem alter Gaskraftwerke, deren Anlagentechnik zum Teil noch aus den 1970er Jahren stammt. Neue Erdgaskraftwerke emittieren nicht mal halb so viel CO2 wie neue Steinkohlekraftwerke.
Abb. 1: Spezifische CO2-Emissionen verschiedener fossiler Energieerzeugungsanlagen; Quelle: UBA.
Das Umweltbundesamt kritisiert, dass trotz höherer Wirkungsgrade und geringerer CO2-Emissionen
die Effizienzgewinne bei neuen Kohlekraftwerken bei weitem nicht für eine Treibhausgasminderung
in der Größenordnung genüge, wie es der Klimaschutz erfordere. Stattdessen müssten die durchschnittlichen spezifischen CO2-Emissionen bis Mitte des Jahrhunderts unter einen Wert von 150
g/kWh sinken.6 Zum Vergleich: Das geplante Steinkohlekraftwerk von Dow, das im Jahr 2050 noch
Strom erzeugen dürfte, würde mehr als das Fünffache dessen emittieren, was die oberste deutsche
Umweltbehörde als Zielwert für 2050 beim CO2-Ausstoß für erforderlich hält.
Der Emissionsvergleich des Steinkohleblocks mit dem durchschnittlichen Kohlekraftwerksbestand –
wie es Dow macht - ist auch deshalb unredlich, weil dabei unterschiedliche Technologien mit unterschiedlicher Klimaintensität verglichen werden. Der heutige bundesdeutsche Kohlekraftwerksbestand7 besteht zur Hälfte aus Braunkohleblöcken, deren spezifische CO2-Emissionen 30 Prozent über
denen von Steinkohleblöcken liegen, und die nahezu doppelt so viele Jahresvolllaststunden erreichen
als Steinkohleanlagen. Die Emissionsmengen der Braunkohlebestandsanlagen übersteigen bei weitem die bestehender Steinkohleblöcke.8 Eine Bezugnahme auf den heutigen Braun- und Steinkohle
6
UBA „Klimaschutz und Versorgungssicherheit - Entwicklung einer nachhaltigen Stromversorgung“, September 2009;
http://www.umweltbundesamt.de/uba-info-medien/mysql_medien.php?anfrage=Kennummer&Suchwort=3850
7
Gemäß Kraftwerksdatenbank der Bundesnetzagentur sind in Deutschland Steinkohlekraftwerke mit einer Leistung von
20.500 MW und Braunkohlekraftwerke mit 19.750 MW am Netz; BNetzA Stand 02/2013;
http://www.bundesnetzagentur.de/cln_1911/DE/Sachgebiete/ElektrizitaetGas/Sonderthemen/Kraftwerksliste/VeroeffKraft
werksliste_Basepage.html
8
Im Jahr 2011 liefen Steinkohleblöcke im Jahresdurchschnitt 3.790 Stunden unter Volllast, während Braunkohleblöcke eine
Jahresauslastung von 6.850 Stunden erreichten; BDEW: Jahresvolllaststunden deutscher Kraftwerke 2011.
Seite - 4 - DUH-Hintergrund vom 25. Februar 2013
basierten Kraftwerkspark für den Emissionsvergleich mit einem neuen Steinkohlelock verbietet sich
bei einer seriösen Betrachtung der Klimawirksamkeit einzelner Kraftwerkstechniken.
Dow-Behauptung: „Brennstoffnutzungsgrad von bis zu 60 Prozent über das gesamte
Jahr … stellt einen Meilenstein in der Energieerzeugung dar“
Mit Aussagen wie „ca. 60 % Brennstoffnutzungsgrad (modernes Kohlekraftwerk 46 %)“ versucht Dow
die vermeintlich hohe Energieeffizienz des Kohleblocks herauszustellen. Dabei verschleiert Dow den
Unterschied zwischen elektrischem Wirkungsgrad und Gesamtwirkungsgrad, auch Brennstoffnutzungsgrad genannt. Der elektrische Wirkungsgrad, also das Verhältnis von elektrischer Energie zu eingesetzter Brennstoffenergie, liegt bei dem geplanten neuen Dow-Kraftwerk nur bei etwa 45 Prozent9 und
entspricht lediglich dem Durchschnitt neuer Steinkohleblöcke.10 Der Gesamtwirkungsgrad ist ein Maß
für die Strom- und Wärme-/Dampfausbeute der im Kraftwerk eingesetzten Brennstoffenergie.11 Den
von Dow prognostizierten Gesamtwirkungsgrad von bis zu 60 Prozent erreichen bzw. übertreffen
auch andere Steinkohleblöcke mit Kraft-Wärme-Kopplung (KWK) in Deutschland.
So plante etwa das Stadtwerkekonsortium Trianel im Chempark Krefeld-Uerdingen ein gleich großes
Steinkohlekraftwerk, das neben Strom auch 400 t/h Prozessdampf für den Industriepark liefern sollte. Der Gesamtwirkungsgrad des Kohleblocks wurde von Trianel ebenfalls mit 60 Prozent prognostiziert und der elektrische Wirkungsgrad sollte im Betriebsoptimum ebenfalls bei 46 Prozent liegen.12
Aufgrund der geänderten wirtschaftlichen und energiepolitischen Rahmenbedingungen stoppte Trianel im Juli 2011 das Kohleprojekt und plant nunmehr ein Gaskraftwerk, mit einem Gesamtwirkungsgrad bis 85 % und einem elektrischen Wirkungsgrad von 60 %.13 Kürzlich erhielt der Stadtwerkeverbund den immissionsschutzrechtlichen Vorbescheid für den Bau des Kraftwerks.14
In Mannheim baut der Energieversorger GKM seit 2010 einen Steinkohlemeiler gleichen Typs wie von
Dow beabsichtigt. Auch dieser Kraftwerksblock wird mit KWK realisiert und soll einen Brennstoffnutzungsgrad bis zu 70 Prozent erzielen. Der elektrische Wirkungsgrad liegt auch hier bei rund 46 %.15
Im Vergleich dazu erreichen moderne Gas- und Dampfturbinen-Kraftwerke (GuD) mit 60 Prozent
und mehr16 deutlich höhere elektrische Wirkungsgrade als Steinkohleblöcke.17 Und auch beim Ge-
9
Vgl. Begründung zum Vorhabenbezogenen Bebauungsplan "Industriekraftwerk Stade" der Hansestadt Stade, S. 44.
Der elektrische (Netto)Wirkungsgrad errechnet sich dadurch, dass man die elektrische Nettoleistung von 840 MW (= 920
MW Bruttoleistung abzgl. Eigenstrombedarf des Kraftwerks) durch die Feuerungswärmeleistung bei Nennlast (1.850 MW)
dividiert. Als Ergebnis erhält man einen Wert von 45,4 %.
11
Siehe etwa Wikipedia Stichwort „Wirkungsgrad“; http://de.wikipedia.org/wiki/Wirkungsgrad
12
Vgl. Trianel Pressemitteilung zum immissionsschutzrechtlichen Erörterungstermin:
http://www.trianel.com/de/pressearchiv/details/article//naechster-schritt-zur-realisie-2.html
13
http://www.trianel-krefeld.de/de/kraftwerk/daten-und-fakten.html
14
http://www.rp-online.de/niederrhein-sued/krefeld/nachrichten/genehmigung-fuer-gas-und-dampfkraftwerk-inuerdingen-1.3204789
15
Technische Daten GKM Block 9: http://www.rp-online.de/niederrhein-sued/krefeld/nachrichten/genehmigung-fuer-gasund-dampfkraftwerk-in-uerdingen-1.3204789
16
Wie das E.on Kraftwerk „Irsching 4“ (561 MW), das 2011 in Betrieb ging und einen elektrischer Wirkungsgrad von 60,4 %
erreicht. Die Stadtwerke Düsseldorf bauen derzeit ein Gaskraftwerk (Standort Lausward) mit derselben Turbine wie in Irsching, die in Düsseldorf über 61 % Stromausbeute erzielen soll;
http://www.siemens.com/innovation/de/news/2012/inno_1221_2.htm.
17
Beispiele jüngerer GuD-Anlagen: KMW AG in Mainz (IB: 2001), 405 MW, elektr. Wirkungsgrad 58%; Trianel in Hamm (IB:
2007), 2x 425 MW, elektr. Wirkungsgrad 57,7%.
10
Seite - 5 - DUH-Hintergrund vom 25. Februar 2013
samtwirkungsgrad schneiden Gaskraftwerke mit KWK erheblich besser ab als neue Steinkohlekraftwerke, dabei werden regelmäßig 80 Prozent und mehr erzielt.18
Auch Mitbewerber von Dow setzen bei der Stromerzeugung auf Gaskraftwerke: Der Chemiekonzern
BASF erzeugt nach eigenen Angaben über 70 % seines Strombedarfs mit Gas- und Dampfturbinen als
Kraft-Wärme-Kopplungsanlagen, wodurch ein Gesamtwirkungsgrad von nahezu 90 Prozent erreicht
werde.19
Biomasseeinsatz in Kohlekraftwerken
Die Mitverbrennung von Biomasse im geplanten Kohlekraftwerk wäre ebenfalls kein „Meilenstein“.
In Deutschland forcieren unter anderem RWE und Vattenfall schon seit längerem den Einsatz von
holzartiger Biomasse in ihren Kohleblöcken.20 Die steigende Nachfrage nach Energie-Holz kann ebenso zu Konflikten mit dem Umwelt- und Naturschutz, sozialen und entwicklungspolitischen Zielen führen wie in anderen Bereichen der Bioenergienutzung. Diese Konflikte drohen hierzulande insbesondere deshalb, weil in Deutschland zusätzlich nutzbare Holz-Ressourcen zur Mitverbrennung nur in
sehr begrenztem Umfang zur Verfügung stehen und in jedem Fall mit anderen Nutzungen konkurrieren. Wer also in Deutschland auf den Biomasseeinsatz in großen Kohlekraftwerken setzt, setzt auf
Holz-Importe. Die Erzeugung und Nutzung von Energie-Holz darf, nach Überzeugung der DUH, daher
nur unter Einhaltung strenger Nachhaltigkeitskriterien erfolgen. Der Klimaschutzeffekt muss erheblich und unzweifelhaft sein. Importe aus Entwicklungs- und Schwellenländern müssen über diese
Vorbedingungen hinaus eine nachhaltige Entwicklungsperspektive für diese Lieferländer eröffnen.
Andernfalls gibt es keine Rechtfertigung dafür, warum diese dezentral anfallende Ressource nicht
auch dezentral genutzt werden sollte. Zudem widerspricht ein Weltmarkt für Energie-Holz zur Verbrennung in Kraftwerken dem Effizienzgebot. Danach sollte Holz, zumal wenn es sich nicht um Reststoffe oder Abfälle handelt, in Kaskadennutzung eingesetzt, also zunächst stofflich genutzt werden.
Selbst wenn Energie-Holz anfangs aus vergleichsweise unproblematischen Weltregionen (wie Nordamerika) importiert wird, kann dies früher oder später zu Handelsbeziehungen auch in Entwicklungsund Schwellenländern führen, in denen schon heute große Waldflächen wegen der Umwandlung in
landwirtschaftliche Flächen oder der energetischen Übernutzung verloren gehen.
Im Hinblick auf die von Dow betonte „wettbewerbsfähige Energie“ ist eine Studie der Deutsche Energie-Agentur (dena) erwähnenswert, wonach die Wirtschaftlichkeit der Mitverbrennung holzartiger
Biomasse in Steinkohlekraftwerken unter den aktuellen Rahmenbedingungen nicht wirtschaftlich
sei. Die Autoren der Studien sehen deshalb einen Förderbedarf von 3,6 Cent/kWh, um der BiomasseMitverbrennung in Kohleblöcken zum Durchbruch zu verhelfen.21
18
Beispiele für Gesamtwirkungsgrade neuer Gaskraftwerke: Stadtwerke Braunschweig (87,6%): http://www.bsenergy.de/fileadmin/redakteure/unternehmen/pdf/011_GuD-Anlage_Hintergrundinfo.pdf; Stadtwerke Saarbrücken (85 %):
http://www.vvs-konzern.de/de/press/69791; Vattenfall HH-Wedel (geplant; 88 %):
http://www.vattenfall.de/de/file/120726_Folder_Energiekonzept_HH_10_Seiten.pdf_21861921.pdf; Vattenfall Berlin-Lichterfelde
(geplant; 85,1%): http://www.stiftung-naturschutz.de/fileadmin/img/pdf/Kleine_Anfragen/ka16-14384.pdf
19
BASF-Gruppe, Energieversorgung 2011: http://www.basf.com/group/corporate/de/sustainability/environment/efficientprocesses
20
http://www.vattenfall.de/de/biomasse.htm; Verivox (13.09.2011) „RWE setzt auf Biomasse statt Kohle“;
http://www.verivox.de/nachrichten/rwe-setzt-auf-biomasse-statt-kohle-79074.aspx?zanpid=1740750833362220032
21
dena, „Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken“, 08/2011;
http://www.dena.de/fileadmin/user_upload/Presse/Meldungen/2011/Dokumente/Endbericht_Biomassenutzung_in_Kohle
kraftwerken_final_01.pdf
Seite - 6 - DUH-Hintergrund vom 25. Februar 2013
Dow-Behauptung: „Die weitere Entwicklung der Strompreise ist unsicher“
Die Industriestrompreise in Deutschland liegen im internationalen Vergleich traditionell im oberen
Bereich. Diese Tatsache hat die deutsche Industrie bisher nicht daran gehindert, Deutschland regelmäßig zum Exportweltmeister zu machen. Insbesondere in der Eurokrise beweist die hiesige Industrie, dass sie international nicht nur mithalten kann, sondern die EU-Märkte geradezu dominiert, was
inzwischen im europäischen Ausland regelmäßig den Vorwurf provoziert, Deutschland profitiere vom
wirtschaftlichen Niedergang seiner europäischen Partner.
Die Strompreise für energieintensive Industriebetriebe in Deutschland stiegen in den letzten Jahren
sehr moderat. Nach Angaben des Bundeswirtschaftsministeriums beträgt der Preisanstieg seit 1995
lediglich 1,45 ct/kWh, das entspricht 16 % über 18 Jahre. In den vergangenen fünf Jahren stieg der
Industriestrompreis lediglich um 3,7 Prozent, in den letzten beiden Jahren stagnierte er sogar.22
Internationaler Preisvergleich
Elektrizität für Industrie
Energiedaten
Tabelle 29 a
letzte Änderung: 02.11.2012
€-Cent/kWh - ohne Mehrwertsteuer
1995
5,34
Belgien
Bulgarien
Tschechische Rep.
Dänemark
8,95
Deutschland
Estland
5,00
Irland
4,51
Griechenland
6,25
Spanien
Frankreich
5,62
Italien
Zypern
Lettland
Litauen
5,06
Luxemburg
3,16
Ungarn
Malta
Niederlande
6,87
Österreich
Polen
6,10
Portugal
Rumänien
Slowenien
Slowakei
3,79
Finnland
Schweden
Vereinigtes Königreich4,74
2,72
Norwegen
1996
5,26
1997
5,09
1998
5,04
1999
4,85
2000
4,98
2001
5,13
2002
5,17
2003
5,19
3,95
2004
5,44
3,71
3,96
2005
6,02
3,91
4,84
2006
7,60
4,12
6,02
2007
7,31
4,30
6,73
3,53
3,76
3,68
7,79
3,38
6,37
4,95
5,04
8,59
3,51
7,61
5,07
6,10
9,56
3,55
8,98
5,25
6,60
10,03
3,63
10,28
5,60
6,58
8,05
7,44
7,40
6,87
5,85
5,46
5,20
5,12
4,56
6,35
5,66
4,53
5,88
5,35
4,51
5,50
5,34
4,58
5,54
5,34
4,45
5,64
5,34
4,57
5,05
6,35
4,60
4,84
6,65
3,14
6,21
4,83
4,94
5,96
6,52
6,61
6,13
6,95
7,43
7,87
8,30
8,15
8,94
10,64
11,11
3,59
4,48
4,56
5,05
3,29
5,03
3,43
5,02
3,99
5,50
4,24
4,84
4,64
4,45
5,00
5,43
5,42
7,48
5,74
6,82
4,86
5,64
7,59
6,25
7,48
5,16
6,24
6,21
6,80
7,95
5,38
6,59
7,42
4,60
4,32
5,60
4,83
4,72
5,74
7,34
4,98
4,53
5,52
8,12
5,03
5,09
3,59
5,00
4,63
4,81
4,83
4,89
4,54
7,08
7,15
6,80
5,17
6,35
4,37
4,15
5,76
5,53
5,22
4,72
3,95
4,70
4,43
3,24
4,77
2,98
3,63
3,54
4,89
3,02
3,48
3,13
4,91
2,45
3,20
2,78
4,95
2,25
3,11
2,99
5,23
2,20
4,19
4,41
4,57
4,75
4,85
5,05
4,83
5,19
3,93
6,29
4,30
5,27
4,86
3,12
2,82
5,38
2,55
3,38
2,63
4,88
2,94
4,73
4,97
3,98
3,63
4,70
4,64
4,49
4,06
2008
8,12
4,63
8,30
8,87
9,00
4,18
11,71
6,89
7,47
6,13
11,97
13,79
6,03
6,65
9,38
9,52
8,50
8,95
7,50
6,88
6,91
6,50
9,62
5,49
5,88
9,15
5,81
2009
9,18
5,29
8,93
7,93
9,22
4,64
9,23
7,34
8,29
6,72
11,09
11,13
7,95
6,82
6,54
10,92
10,45
9,45
9,98
7,78
6,89
6,44
6,93
10,99
5,49
5,44
9,33
5,81
2010
8,02
5,27
9,19
8,63
9,18
6,26
7,81
7,73
7,62
6,48
11,07
13,95
8,20
8,75
6,73
8,49
15,00
8,29
9,43
7,99
6,80
6,31
7,38
9,76
6,07
6,97
8,14
7,61
2011
8,71
5,13
10,07
8,50
10,47
6,81
8,13
7,88
8,01
6,73
12,31
16,57
9,44
10,08
6,18
10,02
15,00
7,51
9,15
7,79
7,65
6,34
7,61
10,56
6,26
6,67
8,52
7,44
2012
8,03
5,64
9,44
8,49
10,40
7,07
9,28
9,06
8,76
7,25
12,39
20,31
9,48
11,65
6,44
11,09
15,00
8,72
7,74
9,36
6,75
7,75
10,93
5,84
6,27
10,00
6,07
50 000 000 kWh; maximale Abnahme: 10 000 kW; jährliche Inanspruchnahme: 5 000 Stunden
ab 2008 Verbrauch: 20.000 MWh < 70.000 MWh
Quelle: EUROSTAT
(auf Jahresbasis errechnete Mittelwerte)
Tab. 2: Industriestrompreisvergleich auf Basis von Jahreswerten; Quelle: BMWi.
Für die besonders energieintensiven Unternehmen sank zwischen dem 1. Halbjahr 2011 und dem 1.
Halbjahr 2012 der Industriestrompreis um mehr als 8 Prozent, dank des durch die Erneuerbaren
22
BMWi, Energiedaten – Nationale und internationale Entwicklung, Stand 11/2012;
http://www.bmwi.de/DE/Themen/Energie/energiedaten.html
Seite - 7 - DUH-Hintergrund vom 25. Februar 2013
Energien ausgelösten Merit-Order-Effekts23 und der weitgehenden Befreiung dieser Betriebe von der
EEG-Umlage. Gleichzeitig stiegen die Strompreise vergleichbarer Industriebetriebe in Italien, Großbritannien, Spanien und Frankreich teilweise dramatisch.
Abb. 2: Im Vergleich mit unseren europäischen Nachbarstaaten sind zuletzt die Strombezugskosten für die besonders
energieintensive deutsche Industrie mit am stärksten gesunken; Daten: EUROSTAT, Graphik: DUH.
Der Großhandelspreis an der Börse fällt mit den wachsenden Solar- und Windstrommengen, die mangels Brennstoffkosten zu Grenzkosten nahe Null anbieten (grüner Balken). Dadurch verschiebt sich die
Einsatzreihenfolge (Merit-Order) der Kraftwerke immer weiter nach rechts. Kraftwerke mit spezifisch
höheren variablen Kosten (Brennstoff und CO2) werden dadurch aus dem Markt gedrängt. Zugleich
sinken auch die Margen der Kraftwerke, die einen Zuschlag erhalten.
23
Das BMU gibt den Entlastungeffekt der Erneuerbaren Energien für 2009 mit 0,6 ct/kWh an, der „insbesondere den besonders nachfragestarken Stromkunden zugute“ gekommen sei; http://www.bmu.de/fileadmin/bmuimport/files/pdfs/allgemein/application/pdf/hg_ausgleichsregelung_2011_bf.pdf
Seite - 8 - DUH-Hintergrund vom 25. Februar 2013
Abb. 3: Schematisch Darstellung des Merit-Order-Effekts der Erneuerbaren Energien bei der Börsenpreisbildung am
Spotmarkt. Preisbildung P1 ohne Erneuerbare, P2 mit Vermarktung von EE-Strommengen; Graphik: DUH.
Diese Tendenz findet sich auch in den Preisentwicklungen am Terminmarkt der Strombörse wider.
Es ist daher zu erwarten, dass der Kosten dämpfende Effekt der Erneuerbaren Energien (Merit-OrderEffekt) zu weiteren Strompreisentlastungen für die energieintensive Industrie führen wird, die insbesondere von der staatliche Abgabenquote beim Strom (EEG-Umlage24, Netznutzungsentgelt25,
Stromsteuer, KWK- und Offshore-Umlage) entlastet bis komplett befreit wird.
24
Bei einem durchgängigen Strombedarf von 410 MW dürfte das Dow Werk in Stade in 2012 mit rund 125 Mio. € von der
EEG-Umlage entlastet worden sein. 2013 dürfte die Kostenersparnis auf über 180 Mio. € steigen; Kosten die von den nicht
privilegierten Stromverbrauchern (Privathaushalte, Gewerbetreibende und Mittelstand) getragen werden müssen.
25
Nach einem Bericht des ZDF Magazins „Frontal 21“ (vom 21.11.2012) wurde Dow Deutschland im Jahr 2011 mit 11,9
Mio. € von den Netznutzungsgebühren entlastet. Auch diese Kosten sind von Privathaushalten und anderen nicht Privilegierten übernommen werden; http://frontal21.zdf.de/ZDF/zdfportal/web/ZDF.de/Frontal21/2942216/25328992/76b518/Ungerechte-Strompreise.html
Seite - 9 - DUH-Hintergrund vom 25. Februar 2013
70
EEX PHELIX Futures (Baseload 2014 - 2016)
Handelszeitraum: 01/2010 - 01/2013
65
EEX Future BASE 2014
EEX Future BASE 2015
EEX Future BASE 2016
Preis in €/MWh
60
55
50
AKW-Laufzeitverlängerung
Atomkraftmoratorium
45
40
04.01.2010
21.01.2010
09.02.2010
26.02.2010
17.03.2010
07.04.2010
26.04.2010
14.05.2010
03.06.2010
22.06.2010
09.07.2010
28.07.2010
16.08.2010
02.09.2010
21.09.2010
08.10.2010
27.10.2010
15.11.2010
02.12.2010
21.12.2010
11.01.2011
28.01.2011
16.02.2011
07.03.2011
24.03.2011
12.04.2011
03.05.2011
20.05.2011
09.06.2011
29.06.2011
18.07.2011
04.08.2011
23.08.2011
09.09.2011
28.09.2011
18.10.2011
04.11.2011
23.11.2011
12.12.2011
30.12.2011
18.01.2012
06.02.2012
23.02.2012
13.03.2012
30.03.2012
20.04.2012
10.05.2012
31.05.2012
19.06.2012
06.07.2012
25.07.2012
13.08.2012
30.08.2012
18.09.2012
08.10.2012
25.10.2012
13.11.2012
30.11.2012
19.12.2012
14.01.2013
31.01.2013
19.02.2013
35
Abb. 4: Die Börsenpreise für Grundlaststrom der Lieferjahre 2014 bis 2016 sind seit 2010 um mehr als ein Viertel gesunken,
wovon insbesondere die energieintensive Industrie profitiert; Daten: EEX, Graphik: DUH.
Dow-Behauptung: „Wettbewerbsfähige Energie braucht Kohle“
Der Ansicht von Dow, dass die am Standort benötigte Energie nur mit im eigenen Kraftwerk eingesetzter Steinkohle zu wettbewerbsfähigen Preisen möglich sei, ist entgegenzuhalten, dass die Strompreise auch ohne Energiewende und die Einspeisung von immer mehr Ökostrom mit an Sicherheit
grenzender Wahrscheinlichkeit stark steigen würden. Denn bei aller denkbaren Volatilität von einem
Jahr zum anderen: In der Mittel- und Langfristperspektive kennen die Preise für die wichtigsten fossilen Energieträger Kohle und Erdgas nur eine Richtung, nämlich nach oben. Das zeigt eindrücklich ein
Rückblick auf die vergangenen 15 Jahre seit der Liberalisierung des deutschen Strommarktes.
Unter den heutigen Rahmenbedingungen ist auch die Steinkohleverstromung in neuen Kraftwerken
nicht rentabel, wie von Seiten der Kraftwerksbetreiber inzwischen eingestanden wird. Kürzlich erst
räumte das Stadtwerkebündnis Trianel (das im nordrhein-westfälischen Lünen seit 2008 ein Steinkohlekraftwerk, 750 MW, baut) ein, mit der Inbetriebnahme eine längere finanzielle Durststecke
verkraften zu müssen. Im Handelsblatt wird Trianel-Chef Becker zitiert: „Die Verluste werden in den
ersten Jahren höher ausfallen als ursprünglich erwartet.“26
Als Folge der in den letzten Jahren stark gestiegenen Strommengen aus Wind und Sonne sind die
Großhandelspreise drastisch gesunken, weshalb neue Steinkohleblöcke ihre Milliardeninvestitionen
über den Kilowattstundenverkauf derzeit am Markt nicht erlösen. Die Preise liegen immer öfter unter
den Gestehungskosten des Steinkohlestroms. In der Folge gehen Kraftwerksbetreiber immer häufiger
26
Handelsblatt vom 05.02.2013; http://www.handelsblatt.com/unternehmen/industrie/trianel-ein-kohlekraftwerk-machtwenig-freude/7739116.html
Seite - 10 - DUH-Hintergrund vom 25. Februar 2013
dazu über, ihre langfristigen Stromlieferverträge durch den kurzfristigen Börsenhandel zu optimieren,
statt in eigenen Kraftwerken Strom zu produzieren.
Abb. 5: Die Preise für fossile Energieträger, deren Verstromung heute noch einen Anteil von knapp 60 Prozent zum deutschen
Strommix beiträgt, sind seit 1998 stark gestiegen, wobei der Anstieg für Import(stein)kohle heraussticht; Daten: DESTATIS,
Graphik: DUH.
Die momentane Preisspreizung zwischen der Stromerzeugung aus Steinkohle und der aus Erdgas
begründet sich ganz wesentlichen in dem wirtschaftskrisenbedingten Überangebot an Emissionshandelszertifikaten, in dessen Folge der Zertifikatspreis für Kohlendioxid von knapp 30 Euro (2008) auf
vier bis fünf Euro je Tonne CO2 (Stand März 2013) gefallen ist. Als Reaktion auf den Preisverfall hat
die Europäische Kommission einen Entwurf für die kurzfristige Reduzierung des Überangebots an
Zertifikaten vorgelegt (sog. backloading). Danach sollen 900 Millionen Zertifikate vorübergehend vom
Markt zurückgehalten werden, um den Zertifikatspreis zu stabilisieren. Der Umweltausschuss des
Europäischen Parlaments hat der Maßnahme kürzlich zugestimmt. Auch die Erhöhung des EUKlimaschutzziels von 20 auf 30 Prozent bis 2020 wird angesichts der prekären Lage des Emissionshandelssystems immer häufiger gefordert
Zudem werden die Stimmen derer lauter, die mangels Anreizen des Emissionshandelssystems, in
klimafreundliche Techniken zu investieren, zusätzlich nationale Grenzwerte für CO2-Emissionen bei
der Stromerzeugung fordern.27 Großbritannien hat diesbezüglich bereits reagiert und für neue fossile
Kraftwerke einen CO2-Grenzwert von 450 g/kWh verabschiedet, ein Wert der lediglich durch Gaskraftwerke erreichbar wird.28
27
Vgl. etwa die Forderungen von Prof. Klaus Töpfer im Handelsblatt vom 12. Dezember 2012, S. 15.
Energy Bill, Part 1, Chapter Eight (Emissions performance standard), Nr. 38
http://www.publications.parliament.uk/pa/bills/cbill/2012-2013/0100/cbill_2012-20130100_en_5.htm
28
Seite - 11 - DUH-Hintergrund vom 25. Februar 2013
Sollte in den nächsten Jahren der Preis für Verschmutzungsrechte wieder deutlich anstiegen, wäre
dies ein weiteres Argument gegen eine vermeintlich preisgünstige, doch extrem CO2-intensive Kohleverstromung.
Fazit:
Dow versucht offenkundig die Klimaschädlichkeit sowie die Effizienz des geplanten Kohlekraftwerks
schönzurechnen. Dabei würden die CO2-Emissonen des Stader Werks durch ein Steinkohlekraftwerk
erheblich ansteigen. Im Gegensatz dazu ließe sich der heutige Treibhausgasausstoß durch die Stromund Dampfversorgung mittels eines erweiterten Gaskraftwerks massiv reduzieren.
Die aktuellen Entwicklungen an der Strombörse, lassen weiterhin sinkende Großhandelspreise erwarten. Davon profitiert insbesondere die energieintensive Industrie, die einen Großteil der staatlichen
Abgabenquote beim Strom nicht oder nur in geringen Teilen zu tragen hat.
Die Wettbewerbsfähigkeit der Kohleverstromung ist im Verhältnis zur Börsenpreissituation zu betrachten und danach verliert die Wirtschaftlichkeit von Steinkohlekraftwerken stetig an Boden. Nicht
umsonst wurden in Deutschland sämtliche Steinkohleprojekte, die noch nicht in Bau sind, inzwischen
eingestellt.
Mit seinem unbeirrten Festhalten an dem Kohleprojekt ist Dow deutschlandweit der Letzte, der noch in
die schmutzigste Form der Stromerzeugung neu investieren will und sich damit der Umgestaltung unseres Energiesystems, ohne die Großrisiken Klimawandel und Nuklearkatastrophen, entgegenstellt.
Für Rückfragen:
Jürgen Quentin
Deutsche Umwelthilfe e. V. (DUH)
Hackescher Markt 4, 10178 Berlin
Tel.: 030 2400867-95
E-Mail: [email protected]

Documents pareils