LCO500 Laboratory controller

Transcription

LCO500 Laboratory controller
LCO500
Laboratory controller
Functional description ● Performance features
Functional description
The LCO500 laboratory controller automatically and decentrally balances the setpoints for laboratory room air control
(room supply air and exhaust air). The room air change rate
requirements of DIN 1946, Part 7 are taken into account
and are freely programmable. Negative room pressure (in
laboratories) or positive room pressure (in clean rooms)
may be set by a percentage relative to the room exhaust air
or with a fixed offset (e.g. 300 m3/h).
The negative room pressure is determined using the following formula:
Room supply air = exhaust
Negative room pressure
air * 0.9
= 10%
Room supply air = exhaust
air - 300
Offset = 300 m3/h
And the positive room pressure is calculated with the following formula:
Room supply air = exhaust
air * 1.1
Positive room pressure
= 10%
Room supply air = exhaust
air + 300
Offset= 300 m3/h
Where there is sufficient air intake and circulation (e.g.
around doors), the room supply/exhaust air ratio should
be established using a calculated percentage rather than
a fixed offset. The percentage ratio should be approx.
10...15% in order to compensate possible measuring inaccuracies of approx. 10% in the entire system (e.g. excessively low upstream and downstream flow routes).
In airtight rooms, i.e. where there is insufficient air intake
and circulation, a fixed offset must be added (positive room
pressure) or subtracted (negative room pressure).
Room balance in laboratories
Demand-related volume flows change very quickly (< 2 s) in
laboratories and must be compensated at a sufficiently high
control speed in the supply and exhaust air. A prescribed
negative or positive room pressure in the laboratory must
be maintained safely and conclusively at all times. Via the
analogue inputs, the SCHNEIDER LCO500 laboratory controller balances up to 10 connected consumer loads with the
individual exhaust air volume flow actual values and cumulates the total and the difference to a prefined value. These
values are used setpoints for the SCHNEIDER VAV-A variable volume flow controllers which regulate the required
volume flow for the room supply air (total) and the additional
room exhaust air (difference).
LON connection to the building services management (BSM)
The LCO500 laboratory controller has been specially designed for cost-efficient LON connection (optionally BACnet)
of the entire laboratory. All LCO500 inputs and outputs (digital and analogue) are available via standard network variable types (SNVT). Thus, a cost-efficient, room by room
connection to the multisupplier BSM can be implemented.
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
Each room only occupies one node of the LON network,
which considerably reduces the number of routers that are
required in a project.
By means of the LON control, the LCO500 laboratory controller fulfills the function of a DDC sub-station. Summated
balances (room supply/exhaust air) are available in the
BSM as standard network variable types (SNVT).
Performance features
10 analogue inputs (exhaust air actual values of the
fume hoods/consumer loads) are summated and
assigned to one or more analogue outputs (max. 8)
8 analogue outputs 0(2)...10V DC for freely
programmable groups. Any analogue inputs (1 to 10)
can be connected to any analogue outputs (1 to 8).
Setpoint balancing for room supply air and an
additional room exhaust air (difference in relation to
the freely programmable room air change rate)
Defined maintenance of the negative pressure
(laboratory) or the positive pressure (clean room)
Decentralized, automatic room balancing, relieving the
load on the building services management (BSM)
Calculation of the room diversity and free
programming of the functionality
8 digital inputs (optionally galvanically separated)
for switchable consumer loads (on/off), room
operating panel (suspension of night-time operation),
malfunction notifications, alarms, etc.
8 relay outputs with potential-free changeover contact
for daytime/nicht-time switching of the fume hoods,
light (on/off), heating control, room group malfunction
notification, etc.
Internal optional 24V DC/75 W switching power supply
for direct 230V AC power connection and for providing
the 24V DC supply voltage for a maximum of 8
connected VAV-A (variable volume flow controllers)
Mains voltage failure-safe storage of all system data in
the EEPROM
Router functionality for the laboratory with LON300
field bus module (optional), Transceiver FTT-10A
Removable plug and play LON300 or BACnet
(optional) network card, thus easily adaptable to the
central building services network.
Free access to all inputs and outputs (digital und
analogue) via the LON network, as well as readout
of the summated room balance and the Ain1...Ain10
analogue inputs
1
LCO500
Laboratory controller
Ordering code: Laboratory controller
Ordering code:
Laboratory controller with 10 analogue inputs
LCO500 - N - 5 - 0 - L
Type
Supply
Internal switching power supply
Primary: 230V AC, Sec.: 24V DC/75 W
External on-site transformer
Relay equipment
3 internal relays populated
5 internal relays populated
8 internal relays populated
0
L
BM
N
0
BI
M
3
5
8
0
K
Field bus module (LON, BACnet or Modbus)
without field bus module
LON, with room balancing (max. 16 Nodes)
BACnet, MS/TP, RS485, with room balancing
(max. 32 Nodes)
BACnet, TCP/IP, Ethernet, with room balancing
Modbus, RS485, with room balancing
(max. 32 Nodes)
Additional terminal rows for room functions from/to DDC
no additional terminal rows
Room group alarm of 10 fume hoods to the DDC and
daytime/night-time switching of 10 fume hoods (room by room)
from the DDC
Ordering example: Laboratory controller LCO500
Internal switching power supply for 230VAC power
connection, 5 relays, no additional terminal blocks
for room functions, with LON module
Make: SCHNEIDER
2
Type: LCO500-N-5-0-L
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
LCO500
Laboratory controller
Application example ● Laboratory controller with I/O connection to the BSM
Functional description
Room air control with laboratory controller and
I/O connection to the BSM
Room plan 1 shows the interconnection of 3 (maximum)
10 fume hoods (Ain1 to Ain10) with the LCO500 laboratory
controller. The laboratory controller can actuate up to eight
freely configurable volume flow controllers for room supply/
exhaust air (Aout1 to Aout8). The internal switching power
supply (optional) provides the supply voltage 24V DC for
a maximum of 8 volume flow controllers (VAV-A), which
simplifies planning and makes implementation more costefficient.
The analogue inputs Ain1 to Ain10 are summated and can
be combined in any number of groups on the analogue outputs Aout1 to Aout8, which means that any type of configuration is possible. For example, up to eight laboratories
each with a room supply air volume flow controller and
a maximum of 10 fume hoods can be automatically controlled. As shown in room plan 1, as well as the room supply
air an additional room exhaust air can be configured. Each
room exhaust air volume flow controller requires an analogue input (actual value room exhaust air).
Here the parallel connection to the building services management (BSM) and/or DDC is done via the input/output
interface (optocoupler and relay) and can easily be implemented with the optional additional terminal rows. The
group alarm is generated by serial connection of the individual alarm contacts and daytime/night-time switching of the
fume hoods is done parallelly via the input octocoupler of
each fume hood controller.
At least one cable IY(St)Y 2x2x0.8 is required for this functionality. If the optional room control device RBG100 is also
to be connected to enable room by room cancellation of
night-time operation, a further IY(St)Y 3x2x0,8 cable is necessary. This makes it possible to implement the functions
Light-day, Light-night and Button-cancel night-time operation. When requested to cancel night-time operation e.g.
for one night, the BSM/DDC switches to daytime operation,
which ensures safe working conditions (8 air changes) in
the laboratory at night.
The BSM/DDC must reserve both a digital input and a digital output for each function that is to be implemented.
Table 1 shows the relationship between the function and the
digital input/output of the controlling BSM/DDC.
Table 1:
Function
Room group alarm
Room by room daytime/
night-time switching
RBG100 Light-day
RBG100 Light-night
RBG100 Button-cancel
night-time operation
BSM/DDC
digital input/output
Input
Output
Output
Output
Input
Roomplan 1
LCO500 laboratory controller with FC500 fume hood controller and
volume flow controller for room supply/exhaust air (VAV-A), analogue and I/O connection to the BSM
Legende:
FC
FC
FC
Optional:
Raumbediengerät
RBG100
LED-Nachtbetrieb
Taste-Aufhebung Nachtbetrieb
ABZUG #1
ABZUG #2
ABZUG #3
= Laborabzugsregelung, vollvariabel,
Analogausgang 0(2)...10V DC
= Laborcontroller, 10 Analogeingänge
= Raumbediengerät zur Aufhebung des
Nachtbetriebs (optional)
VAV-A
= schneller variabler Volumenstromregler
mit Analogansteuerung 0...10V DC
Ain1 … Ain10 = 10 Analogeingänge 0...10V DC
LCO500
RBG100
Aout1 … Aout8 = 8 Analogausgänge 0...10V DC
24V DC
= 24V DC Versorgungsspannung für
Volumenstromregler VAV-A
Kabeltyp:
IY(St)Y 4x2x0,8
Kabeltyp: IY(St)Y 4x2x0,8
FC
RaumabluftVolumenstromregler
RaumzuluftVolumenstromregler
Ain1 Ain2 Ain3
Aout1
24V DC
dp M
Aout2
24V DC
Optional:
Zusatzklemmen
Tag/Nacht
Optional:
Zusatzklemmen
Sammelstörmeldung
Optional:
Schaltnetzteil
24V DC/75 W
Netzeinspeisung
230V AC +-10%
Ain10
Laborcontroller
LCO500
VAV-A
Kabeltyp: IY(St)Y 4x2x0,8
…
dp M
VAV-A
Kabeltyp:
IY(St)Y 4x2x0,8
Gebäudeleittechnik
1 Kabel:
IY(St)Y
2x2x0,8
DDC-Unterstation
oder direkte
Anbindung an GLT
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
3
LCO500
Laboratory controller
Application example ● Laboratory controller with LON connection to the BSM
Functional description
Room aircontrol with laboratory controller
and LON connection to the BSM
captured and passed on to the building services management (BSM) via the LON network.
Room plan 2 shows the interconnection of up to 9 fume
hoods (Ain1 to Ain9) with the LCO500 laboratory controller.
The laboratory controller can actuate up to eight freely configurable volume flow controllers for room supply/exhaust
air (Aout1 to Aout8). The internal switching power supply
(optional) provides the supply voltage 24V DC for a maximum of 8 volume flow controllers, which simplifies planning
and makes implementation more cost-efficient.
The analogue inputs Ain1 to Ain10 are summated and can
be combined in any number of groups on the analogue outputs Aout1 to Aout8, which means that any type of configuration is possible. For example, up to eight laboratories
each with a room supply air volume flow controller and
a maximum of 10 fume hoods can be automatically controlled. As shown in room plan 2, as well as the room supply
air an additional room exhaust air can be configured. Each
room exhaust air volume flow controller requires an analogue input (actual value room exhaust air).
LON network
Cost-efficient connection to the multisupplier building services management (BSM) is achieved via the LON network
through the optional field bus module LON300 (FTT-10A).
With the extension of the digital malfunction alarm inputs
(optional) all alarms of the individual fume hoods can be
Thus the LCO500 laboratory controller fulfills the function of
a DDC sub-station or a router.
The following data are available on the BSM as standard
network variable types (SNVT):
Readout of the exhaust air actual values of the fume
hoods Ain1...Ain10 and other consumer loads
Readout of the summated room balances
(room supply/exhaust air)
Setpoints for 8 analogue outputs
Readout of the 8 digital inputs
Setting of the 8 relay outputs
This makes it easy to implement special functions, such as
day/nighttime switching of the fume hood controllers, control and monitoring of the room control device, temperature
control and the control of heating and cooling valves.
Extended functions may also be implemented, e.g. remote
maintenance. Through switching between daytime/nighttime and retrieval and comparison of the individual exhaust
air actual values, this function can be checked in every
fume hood.
The LCO500 laboratory controller combines analogue technology with the advantages of LON bus technology and offers cost-efficient and safe room by room control and visualization via the BSM.
Room plan 2
LCO500 laboratory controller with FC500 fume hood controller and
volume flow controller room supply/exhaust air (VAV-A), analogue and LON connection to the BSM
Legende:
FC
FC
FC
FC
ABZUG
#3 bis #8
ABZUG #1
ABZUG #2
Optional:
Raumbediengerät
RBG100
LED-Nachtbetrieb
Taste-Aufhebung Nachtbetrieb
ABZUG #9
Kabeltyp: IY(St)Y 4x2x0,8
Kabeltyp: IY(St)Y 4x2x0,8
RaumabluftVolumenstromregler
RaumzuluftVolumenstromregler
Ain1 Ain2 Ain3 … Ain9 Ain10 Din10
K1
Din1 Din2 Din3 … Din9
T/N T/N T/N ... T/N
Laborcontroller
Aout1
Aout2
LCO500
24V DC
24V DC
dp M
dp M
= Laborabzugsregelung, vollvariabel, Analogausgang 0(2)...10V DC
LCO500
= Laborcontroller, 10 Analogeingänge
LON300
= LON-Modul, FTT-10A (optional)
RBG100
= Raumbediengerät zur Aufhebung des
Nachtbetriebs (optional)
VAV-A
= schneller variabler Volumenstromregler mit
Analogansteuerung 0...10V DC
Ain1 … Ain10 = 10 Analogeingänge 0...10V DC
Din1 … Din10 = 10 Digitaleingänge für Einzelmeldungen
T/N
= Tag/Nachtbetrieb Digestorien (raumweise)
verschaltet als parallele Tag/NachtAnsteuerung über Zusatzklemmenplatine
Din10
= Digitaleingang Taste AufhebungNachtbetrieb
K1
= Relaiskontakt zur Ansteuerung
LED-Tag/Nacht
Aout1 … Aout8 = 8 Analogausgänge 0...10V DC
24V DC
= 24V DC Versorgungsspannung für
Volumenstromregler VAV-A
Achtung!
Kabelspezifikationen des angeschlossenen
Netzwerks unbedingt beachten.
VAV-A
VAV-A
Kabeltyp: IY(St)Y 4x2x0,8
Optional:
Schaltnetzteil
24V DC/75 W
Optionales
Feldbusmodul:
LON, BACnet oder
Modbus
Kabeltyp: IY(St)Y 4x2x0,8
Raumsammelstörmeldung
Netzeinspeisung
230V AC +-10%
Umschaltung Tag/Nacht-Betrieb
(raumweise)
Gebäudeleittechnik
NETZWERK (LON, BACnet oder Modbus)
4
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
LCO500
Laboratory controller
Room air change rate ● Room air control diagram
Laboratories with multiple fume hoods and extraction units
have complex room supply and exhaust air control requirements.
This applies both to the increase in exhaust air volume flow
brought about by opening the fume hood sash and the reduction in exhaust air volume flow caused by closing the
sash or by external switching to reduced operation (nighttime reduction).
The room air change is defined in DIN 1946, Part 7 and can
be calculated with the following rule of thumb:
Minimum room air change
Room air change rate
25m³/h x m²
25m³ per hour exhaust air volume flow, multiplied by the
laboratory main floor space in m².
With this formula the prescribed 8 room air changes can be
achieved. During night-time operation the reduced figure of
4 room air changes is sufficient.
In addition to the room air change requirements specified by
DIN 1946, Part 7, air volume balance and maintenance of
protective pressure (negative pressure in laboratories and
positive pressure in clean rooms) as well as comfort criteria
such as temperature, humidity and air movement must be
taken into account.
High-speed volume flow controllers
High-speed variable exhaust air control (< 2 s) via fume
hoods requires high-speed variable room supply air control
(< 3 s).
The high-speed control times mean that the defined negative room pressure can be maintained under all operating
conditions.
When a specific minimum level of room air change must
be maintained, which cannot be fully achieved by the extraction units (fume hoods and other consumer loads),
an additional volume flow controller for the room exhaust
air is necessary. Via the LCO500 laboratory controller the
additional room exhaust air controller always controls the
difference between the technically induced exhaust air of
the extraction units and the required minimum exhaust air
volume flow.
Room supply air is compensated based on the room exhaust air. Negative room pressure is achieved by supplying
only approx. 90% (programmable) of the room exhaust air
as supply air to the laboratory.
Diagram 1 shows the addition of the total room exhaust air
and compensation of the total room supply air as well as
the increase in exhaust air on fume hoods and switchable
consumer loads e.g. through opening of the sash and the
resulting reduction in the additional room exhaust air (difference to the minimum room air change). The minimum
room air change is thus always maintained at a constant
level and is only increased when the exhaust air requirement of the fume hoods and switchable consumer loads
increases further.
During night-time operation a fixed reduced value is regulated, independent of the sash position of the fume hoods.
Diagram 1:
V [m3/h]
Tagbetrieb
Nachtbetrieb
Gesamtraumabluft
Gesamtraumzuluft
Zusätzliche Raumabluft
Laborabzüge und
schaltbare Verbraucher
Bodenabsaugung
Frontschieber
t [s]
ZU
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
ÖFFNEN
AUF
5
LCO500
Laboratory controller
Application example ● Room air control with laboratory controllers
Functional description
Room iar control with laboratory controller
Room plan 3 shows the interconnection of 10 fume hoods
(Ain1 to Ain10) with the LCO500 laboratory controller. The
laboratory controller can actuate up to eight freely configurable volume flow controllers for room supply air (Aout1 to
Aout8). The internal switching power supply (optional) provides the supply voltage 24V DC for a maximum of 8 volume flow controllers, which simplifies planning and makes
implementation more cost-efficient.
LON network
The analogue inputs Ain1 to Ain10 are summated and can
be combined in any number of groups on the analogue outputs Aout1 to Aout8, which means that any type of configuration is possible. For example, up to eight laboratories
each with a room supply air volume flow controller and a
maximum of 10 fume hoods can be automatically controlled.
The volume flow control of the room supply air as well as of
the exhaust air can be configured. Each room air exhaust
volume controller requires an analogue input (actual value
room exhaust air).
The following data are available on the BSM as standard
network variable types (SNVT):
As shown in Room plan 3, up to eight laboratories each with
a room supply air volume flow controller and a maximum of
10 fume hoods can be automatically controlled.
This makes it easy to implement special functions, such as
day/nighttime switching of the fume hood controllers, control and monitoring of the room control device, temperature
control and the control of heating and cooling valves.
With the extension of the digital malfunction alarm inputs
(optional) all alarms of the individual fume hoods can be
captured and passed on to the building services management (BSM) via the LON network.
ABZUG #10
Tag / Nacht
Sin1
Sin2
Sin3
Sin4
Sin5
Sin6
Sin7
Sin8
Sin9
Sin10
Analogausgänge 1-8
Ain1
Ain2
Ain3
Ain4
Ain5
Ain6
Ain7
Ain8
Ain9
Ain10
0...10V DC
Aout1
Kabeltyp: IY(St)Y 4x2x0,8
24V DC
Aout2
VAV-A #2
24V DC
VAV-A #3
Aout3
24V DC
VAV-A #4
Aout4
24V DC
VAV-A #5
Aout5
24V DC
VAV-A #6
Aout6
24V DC
Aout7
VAV-A #7
24V DC
0...10V DC
Aout8
24V DC
Digitaleingänge 1-8
#2
#3
#4
#5
#6
#7
#8
#9
Analogeingänge 1-10
FC
Kabeltyp: IY(St)Y 4x2x0,8
0...10V DC
Digitale Sammelstörmeldeeingänge 1-10 (optional)
Laborcontroller
LCO500
ABZUG #1
Thus the LCO500 laboratory controller fulfills the function of
a DDC sub-station or a router.
Readout of the exhaust air actual values of the fume
hoods Ain1...Ain10 and other consumer loads
Readout of the summated room balances
(room supply/exhaust air)
Setpoints for 8 analogue outputs
Readout of the 8 digital inputs
Setting of the 8 relay outputs
Extended functions may also be implemented, e.g. remote
maintenance. Through switching between daytime/nighttime and retrieval and comparison of the individual exhaust
air actual values, this function can be checked in every
fume hood.
The LCO500 laboratory controller combines analogue technology with the advantages of LON bus technology and offers cost-efficient and safe room by room control and visualization via the BSM.
Room plan 3:
Room air control
FC
Cost-efficient connection to the multisupplier BSM can be
achieved via the LON network through the optional field bus
module LON300 (FTT-10A).
K1 bis K8
Din1
Din2
Din3
Din4
Din5
Din6
Din7
Din8
RaumzuluftVolumenstromregler
VAV-A #8
Raumbediengerät
RBG100
(optional)
LED-Nachtbetrieb
Kabeltyp: IY(St)Y 4x2x0,8
Optionales Feldbusmodul:
LON,
BACnet
oder Modbus
RaumzuluftVolumenstromregler
VAV-A #1
Taste-Aufhebung
Nachtbetrieb
Legende:
FC
LCO500
LON300
RBG100
= Laborabzugsregelung, vollvariabel
= Laborcontroller, 10 Analogeingänge
= LON-Modul, FTT-10A (optional)
= Raumbediengerät zur Aufhebung des
Nachtbetriebs (optional)
VAV-A
= schneller variabler Volumenstromregler
mit Analogansteuerung 0...10V DC
Ain1 … Ain10 = 10 Analogeingänge 0...10V DC
Sin1 … Sin10 = 10 Störmeldeeingänge (optional),
verschaltet als Sammelstörmeldung
über Zusatzklemmenplatine
K1 … K8
= 8 Relaisausgänge für
Tag/Nachtumschaltung Digestorien
(z.B. über Relaiskontakt K1)
Ansteuerung LED-Tag/Nacht
(z.B. über Relaiskontakt K2)
Din1
= Digitaleingang Taste AufhebungNachtbetrieb
Aout1 … Aout8 = 8 Analogausgänge 0(2)...10V DC
24V DC
= 24V DC Versorgungsspannung für
Volumenstromregler VAV-A
Achtung!
Kabelspezifikationen des angeschlossenen Netzwerks unbedingt
beachten.
NETZWERK (LON, BACnet oder Modbus)
Optional:
Schaltnetzteil
24V DC/75 W
Kabeltyp: NYM 3x1,52
Netzeinspeisung
230V AC +-10%
6
Gebäudeleittechnik
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
LCO500
Laboratory controller
Application example ● Cascading laboratory controllers
Functional description
Cascading laboratory controllers
Room plan 4 shows the interconnection of 19 fume hoods
(Ain1 to Ain9) with the LCO500#1 laboratory controller and
(Ain1 to Ain10) with the LCO500#2 laboratory controller.
The LCO500#2 Aout1 analogue output is connected to the
LCO500#1 Ain10 analogue input. The internal switching power supply (optional) provides the supply voltage 24V DC
for a maximum of 8 volume flow controllers, which simplifies
planning and makes implementation more cost-efficient.
Through appropriate programming the following configurations, among others, are possible:
19 fume hood controllers on 1 to 15 volume flow controllers
(room supply/exhaust air). By cascading further laboratory
controllers the number of analogue inputs can be increased by 9 and the number of analogue outputs by seven for
each additional LCO500 laboratory controller.
Any number of groupings are possible.
Ain1
Ain2
Ain3
Ain4
Ain5
Ain6
Ain7
Ain8
Ain9
Ain10
Sin1
Sin2
Sin3
Sin4
Sin5
Sin6
Sin7
Sin8
Sin9
Sin10
ABZUG #9
Analogausgänge 1-8
FC
#2
#3
#4
#5
#6
#7
#8
0...10V DC
Aout1
Kabeltyp: IY(St)Y 4x2x0,8
24V DC
Aout2
VAV-A #2
24V DC
VAV-A #3
Aout3
24V DC
VAV-A #4
Aout4
24V DC
VAV-A #5
Aout5
24V DC
VAV-A #6
Aout6
24V DC
Aout7
VAV-A #7
24V DC
0...10V DC
Aout8
RaumzuluftVolumenstromregler
VAV-A #1
RaumzuluftVolumenstromregler
VAV-A #8
24V DC
Digitaleingänge 1-8
ABZUG #1
Kabeltyp: IY(St)Y 4x2x0,8
0...10V DC
Analogeingänge 1-10
FC
Digitale Sammelstörmeldeeingänge 1-10 (optional)
Laborcontroller
LCO500 #1
Din1
Din2
Din3
Din4
Din5
Din6
Din7
Din8
Raumbediengerät
RBG100
(optional)
K1 bis K8
Tag / Nacht
Kabeltyp: IY(St)Y 4x2x0,8
Optionales Feldbusmodul:
LON,
BACnet
oder Modbus
Legende:
FC
LCO500
LON300
RBG100
VAV-A #9
= Laborabzugsregelung, vollvariabel
= Laborcontroller, 10 Analogeingänge
= LON-Modul, FTT-10A (optional)
= Raumbediengerät zur Aufhebung des
Nachtbetriebs (optional)
VAV-A
= schneller variabler Volumenstromregler
mit Analogansteuerung 0...10V DC
Ain1 … Ain10 = 10 Analogeingänge 0...10V DC
Sin1 … Sin10 = 10 Störmeldeeingänge (optional),
verschaltet als Sammelstörmeldung
über Zusatzklemmenplatine
K1 … K8
= 8 Relaisausgänge für
Tag/Nachtumschaltung Digestorien
(z.B. über Relaiskontakt K1)
Ansteuerung LED-Tag/Nacht
(z.B. über Relaiskontakt K2)
Din1
= Digitaleingang Taste AufhebungNachtbetrieb
Aout1 … Aout8 = 8 Analogausgänge 0(2)...10V DC
24V DC
= 24V DC Versorgungsspannung für
Volumenstromregler VAV-A
Aout8 #2
= Analogansteuerung für Heizventil
Aout7 #2
= Analogansteuerung für Kühlventil
VAV-A #10
Achtung!
Kabeltyp: NYM 3x1,52
Netzeinspeisung
230V AC +-10%
Kabeltyp: IY(St)Y 4x2x0,8
Laborcontroller
LCO500 #2
Sin1
Sin2
Sin3
Sin4
Sin5
Sin6
Sin7
Sin8
Sin9
Sin10
Tag / Nacht
Analogausgänge 1-8
0...10V DC
Aout2
24V DC
Aout3
24V DC
Aout4
24V DC
Aout5
24V DC
Aout6
24V DC
Aout7
24V DC
0...10V DC
Aout8
24V DC
Digitaleingänge 1-8
ABZUG #19
Ain1
Ain2
Ain3
Ain4
Ain5
Ain6
Ain7
Ain8
Ain9
Ain10
Analogeingänge 1-10
FC
#11
#12
#13
#14
#15
#16
#17
#18
Digitale Sammelstörmeldeeingänge 1-10 (optional)
ABZUG #10
Aout1
Kabeltyp: IY(St)Y 4x2x0,8
0...10V DC
Taste-Aufhebung
Nachtbetrieb
NETZWERK (LON, BACnet oder Modbus)
Optional:
Schaltnetzteil
24V DC/75 W
FC
Gebäudeleittechnik
LED-Nachtbetrieb
The LON connection
guarantees the costefficient functionality of
a DDC sub-station or
a router. The possibility to directly control the
analogue outputs and
the relay outputs and to
directly read out the digital inputs makes it easy
to implement special
functions, such as day/
nighttime switching of the
fume hood controllers,
control and monitoring of
the room control device,
temperature control and
the control of heating and
cooling valves.
Din1
Din2
Din3
Din4
Din5
Din6
Din7
Din8
VAV-A #11
VAV-A #12
Kabelspezifikationen des angeschlossenen Netzwerks unbedingt
beachten.
VAV-A #13
Kühlen
Heizen
Raumbediengerät
RBG100
(optional)
K1 bis K8
LED-Nachtbetrieb
Kabeltyp: IY(St)Y 4x2x0,8
Optionales Feldbusmodul:
LON,
BACnet
oder Modbus
Room plan 4
Cascading
laboratory controllers
Taste-Aufhebung
Nachtbetrieb
NETZWERK (LON, BACnet oder Modbus)
Optional:
Schaltnetzteil
24V DC/75 W
Kabeltyp: NYM 3x1,52
Netzeinspeisung
230V AC +-10%
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
7
X10
DIn3
DIn2
DIn1
1.1
1.2
2.1
2.2
3.1
3.2
4.1
4.2
DIn4
DIn4
- PE
DIn3
JP2
JP3
DIn5, DIn6, DIn7, DIn8
Brücken gesteckt.
Keine galvanische
Trennung.
JP2 und JP3
X101
DIn1
+
66 68 70 72
65 67 69 71
IOM500
JP2
JP3
DIn5, DIn6, DIn7, DIn8
Brücken nicht gesteckt.
Galvanische Trennung.
JP2 und JP3
Max. 8 x 6 W = 48 W
24V DC (+) und (-) für
Spannungsversorgung
Volumenstromregler 1...8
X101 bis X108
LCO Connector
X14
+
+ +
+
24V 24V 24V 24V
DC DC DC DC
29 31 33 35 37 39 41 43 45 47 49 51 53 55
DIn5
DIn6
DIn7
DIn8
66 68 70 72
65 67 69 71
1 2
74 76 78 80
73 75 77 79
JP4
Power Connector
82 84 86 88 90 92 94 96 98100
81 83 85 87 89 91 93 95 97 99
0(2)…+10V DC
< 1 mA
Spannungsbereich
Stromaufnahme
AIn1 GND1 bis AIn10 GND1 sind intern
verbunden!
AIn1 + bis AIn10 +
Eingänge
Analogeingänge galvanisch getrennt!
Analogeingänge für Abluftistwerte von
Laborabzugsregelungen und sonstigen
Verbrauchern (0 … 10V DC/1mA)
Analogeingänge AIn1…AIn10
GND
+24V DC
IN: 230V AC
OUT: 24V DC/
75 W
1, 2 Brücken gesteckt.
Abschlusswiderstand R
für RS485.
JP4
N L
NETZTEIL
GND1
GND1
GND1
GND1
GND1
GND1
GND1
GND1
GND1
GND1
Kabellänge maximal < 1000m
PE
K2
Relais 2
+
+
+
+
X1
X110
F2
K3
Relais 3
- PE
- PE
- PE
- PE
T1,25 A
250V
Relais 4
K4
X4
X5
X6
X7
IOM500
12
11
10
9
8
7
6
5
4
3
2
1
Run
K5
Relais 5
X8
LON
26 27
JP2
JP3
66 68 70 72
65 67 69 71
JP1
1 2 3 4 5
1 2
X21
X20
X10
82 84 86 88 90 92 94 96 98100
81 83 85 87 89 91 93 95 97 99
74 76 78 80
73 75 77 79
JP4
JP5
29 31 33 35 37 39 41 43 45 47 49 51 53 55
28 30 32 34 36 38 40 42 44 46 48 50 52 54
X9
LCO Connector
JP6
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
K1
X108
X106
X104
X102
X109
- PE
PE
- PE
- PE
2 3
+
+
+
+
Relais 1
1
X107
X105
X103
X101
NO
DIn2
DIn5
DIn6
DIn7
DIn8
DIn5
DIn6
DIn7
DIn8
NC
EIN
Relais 1 EIN/AUS
N L
COM
AUS
NO
Relaiskontakt
Max.: 3A / 230VAC
NC
EIN
JP1
COM
AUS
Relais 2 EIN/AUS
NO
Relaiskontakt
Max.: 3A / 230VAC
NC
EIN
Relais 3 EIN/AUS
DIn1, DIn2, DIn3, DIn4
Brücken nicht gesteckt
Galvanische Trennung.
Externe bauseitige
Spannung 24VDC/50mA.
COM
AUS
Relaiskontakt
Max.: 3A / 230VAC
NO
EIN
Relais 4 EIN/AUS
NC
X14
LON A/B, FTT-10A
28 30 32 34 36 38 40 42 44 46 48 50 52 54
X14
Digitaleingänge 5 … 8
RS485-A
Power Connector
COM
AUS
Relaiskontakt
Max.: 3A / 230VAC
DIn1
LON A-IN mit A-OUT und B-IN
mit B-OUT intern gebrückt!
NO
DIn5
DIn6
DIn7
DIn8
DIn5
DIn6
DIn7
DIn8
+
+
+
+
DIn5 DIn6 DIn7 DIn8 DIn2
Digitaleingänge 1 … 4
RS485-B
JP1
JP7
K8
Relais 8
X11
X12
X13
56 57 58 59 60 61 62 63 64
K7
K6
X 12
Relais 7
JP8
Relais 6
1 2 3 4 5
X16
NETZEINSPEISUNG
230V AC
Analogausgänge
AOut1...AOut4
NC
EIN
Relais 5 EIN/AUS
X15
DIn4
1.1
1.2
2.1
2.2
3.1
3.2
4.1
4.2
DIn3
GND
GND
GND
GND
Optokoppler-Eingänge. Keine
galvanische Trennung. Gezeichnet mit
GND intern und +24V DC intern. Kabellänge max. < 5m. Galvanische Trennung
mit entsprechender Konfiguration von
JP1 (siehe Klemmenbild links oben).
+
+
+
+
DIn5 DIn6 DIn7 DIn8 -
Optokoppler-Eingänge.
Keine galvanische Trennung.
Gezeichnet mit GND intern und
+24V DC intern. Kabellänge
max. < 5m. Galvanische Trennung
mit entsprechender Konfiguration
von JP2 und JP3 (siehe Klemmenbild rechts).
COM
AUS
Relaiskontakt
Max.: 3A / 230VAC
AIn8
AOut5 +
AOut6 +
AOut7 +
AOut8 +
0(2)...10V DC/10mA
galvanisch getrennt!
NO
0
8
7
*
2
5
1
4
,
9
6
3
F1 F2 F3
Servicemodul
Kabeltyp für Spannungsversorgung
Volumenstromregler 24V DC/24V AC:
mindestens NYM 3 x 1,52
Kabeltyp für Analoge Ein-/Ausgänge:
mindestens IY(St)Y 2x2x0,8 Lg. Leitungen für AIn
und GND1 sowie Aout und GND müssen jeweils
paarig miteinander verdrillt sein.
Kabeltyp für LON-Netzwerk, LON A/B:
mindestens IY(St)Y 2x2x0,8 Lg bei maximaler
Netzwerkausdehnung < 320m.
Leitungen für LON A/B müssen paarig miteinander
verdrillt sein.
Kabeltyp für die Einspeisung 24V DC/24V AC:
mindestens NYM 3 x 1,52
Kabelspezifikation:
Laptop
RS 232
SCHNEIDER-Elektronik GmbH
Industriestraße 4
61449 Steinbach - Germany
Tel.: 0049 (0) 6171/884 79-0
www.schneider-elektronik.de
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
Stand: 03. Dez. 2008
Rev.: 1.1
Labor-Controller
komplett
LCO500
KLEMMENANSCHLUSSPLAN
EIN
AIn8
RS485-B
1 2
Relais 6 EIN/AUS
NC
AIn8
LON A-IN
LON A-OUT
LON B-IN
LON B-OUT
+24V DC/DIn1 DIn1 +
+24V DC/DIn2 DIn2 +
+24V DC/DIn3 Din3 +
+24V DC/Din4 Din4 +
GND2
AOut1
GND2
AOut2
GND2
AOut3
GND2
AOut4
GND
+24V DC/100mA
GND
A-In 0...10V DC
RS485-A
+24V DC, max. 100mA
DIn5
DIn6
DIn7
DIn8
Digitaleingänge 5 … 8
COM
AUS
NO
Relaiskontakt
Max.: 3A / 230VAC
NC
EIN
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
Analogeingang
+
+
+
+
DIn5 +
DIn6 +
DIn7 +
DIn8 +
DIn5 DIn6 DIn7 DIn8 -
Optokoppler-Eingänge
Galvanische Trennung.
Externe bauseitige Spannung
24VDC/50mA.
Kabellänge maximal < 1000m
X15
Analogausgänge
AOut5...AOut8
COM
AIn1 +
AIn2 +
AIn3 +
AIn4 +
AIn5 +
AIn6 +
AIn7 +
AIn8 +
AIn9 +
AIn10 +
SERIELLES INTERFACE
RS485
GND1
GND1
GND1
GND1
GND1
GND1
GND1
GND1
AOut5 +
AOut5
AOut6 +
AOut6
AOut7 +
AOut7
AOut8 +
AOut8
0(2)...10V DC/10mA
galvanisch getrennt!
X16
AIn1 GND1
AIn2 GND1
AIn3 GND1
AIn4 GND1
AIn5 GND1
AIn6 GND1
AIn7 GND1
AIn8 GND1
AIn9 GND1
AIn10 GND1
AIn1 +
AIn2 +
AIn3 +
AIn4 +
AIn5 +
AIn6 +
AIn7 +
AIn8 +
AIn9 +
AIn10 +
COM
AUS
Relaiskontakt
Max.: 3A / 230VAC
Relais 7 EIN/AUS
NO
EIN
NC
AUS
8
Relaiskontakt
Max.: 3A / 230VAC
FC500
Relais 8 EIN/AUS
Terminal diagram: LCO500
laboratory controller
LCO500
Laboratory controller
Terminal diagram
LCO500
Laboratory controller
Technical data
General
Nominal voltage
Internal power supply
Nominal voltage external
on-site supply
Max. charging rate
Max. power input
Operating temperature
Humidity
Case
Protection type
Material
Colour
Dimensions (LxWxH)
Weight
Terminals
Digital outputs
Number
Contact type
Max. switching voltage
Max. continuous current
230V AC/50/60Hz/+-15%
24V DC/75 W
24V AC/50/60Hz/+-15%/
80VA (external protection
from overload)
4 A at 24V AC
30 VA at 230V AC
0 OC to +55 OC
max. 80 % relative, noncondensing
IP 20
sheet steel
grey-white, RAL 9002
(330 x 230 x 100) mm
approx. 2.5 kg
screw terminal 1.5 mm2
8 relays (maximum)
changeover contact
250V AC
3A
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com
Digital inputs (galvanically separated)
Number
8 optocouplers
Max. input voltage
24V DC +-15%
Max. continuous current 10mA (per input)
Analogue inputs
Exhaust air actual values of the fume hoods and
switchable consumer loads
Number
10
Voltage/current
0(2)...10VDC, 1mA
Extension
Possible through cascading
Analogue outputs
Setpoints for volume flow controllers room supply/
exhaust air
Number
8
Voltage/current
0(2)...10VDC, 5mA
Extension LON300 field bus module (option)
Transceivers
FTT-10A, free topology
Network variable
Standard network variable
type (SNVT) in accordance
with LonMark specification
9
LCO500
Laboratory controller
Dimensions ● Dimensional diagrams ● Tender specification
Case LCO500: Top view
Case LCO500: Side view
494
100
228
212
228
484
Zugentlastung
für Kabel
Subject to change without notice • All rights reserved © SCHNEIDER
Tender specification LCO500
LCO500 laboratory controller for balancing room supply
air (total) and room exhaust air volume flows (difference to
maintenance of the room air change rate) in laboratories.
Balancing of 10 connected consumer loads. Eight analogue
outputs, 8 relay outputs and 8 digital inputs, optically decoupled. Can be extended by cascading 9 analogue inputs and
7 analogue outputs for each additional LCO500 laboratory
controller.
All inputs and outputs are freely programmable and can be
adapted to existing room volume flow controllers and/or frequency inverters.
Laboratory controller with integrated microprocessor and 2
independent watchdog switches. All system data are saved
in the mains voltage failure-safe EEPROM. Separate terminal board for fast, simple cable connection. Suitable for all
fume hood constructions.
Direct 230V AC power connection for the internal switching
power supply to provide the 24V DC/75 W supply voltage
for a maximum of 8 room air volume flow controllers. Programming via RS232 interface with laptop or service module or optionally via the LON network.
Optional extensions:
Retrofittable terminal rows for room functions from/to DDC.
Redundant monitoring of room pressure.
Monitoring of the exceedance of a programmable maximum
room air volume flow with optical and/or acoustic alarm
(transparent signalling of the diversity factor.
LON connection via retrofittable LON module LON300, with
FTT-10A, free topology, standard network variables (SNVT)
with router functionality.
SCHNEIDER Elektronik GmbH
Phone: +49 (0) 6171 / 88 479 - 0
Industriestraße 4
Fax:
+49 (0) 6171 / 88 479 - 99
61449 Steinbach • Germany
e-mail:
[email protected]
10
Technical documentation LCO500 • Date: 11/2009 • www.schneider-elektronik.com