The paperboard Testing-Machine

Transcription

The paperboard Testing-Machine
+
+
The+++++
Paperboard Testing-Machine
+
Development Process
Thomas Weyrauch
Degree project in Solid Mechanics
Second level, 30.0 HEC
Stockholm, Sweden 2011
Abstract
The design of a paperboard testing machine, developed in order to analyse the mechanical behaviour
of paperboard during the combined of out-of-plane shear and compressive loading as in the deepdrawing process, is presented. The methodology to design a paperboard testing machine is discussed
and the most appropriate concepts are compared and evaluated. The design process is presented in
detail, and some pilot tests are performed to give an overview about the functionality of the
manufactured prototype.
Preface
Fibrous materials such as paper and board gain more and more usage in the manufacturing industry.
New applications by new technological developments such as in deep-drawing of paperboard allow
this sector to grow steadily. With this new field of application the requirements on the material are
also increasing during the manufacturing process. Therefore, knowledge of the properties and the
behaviour of the material under process-like conditions are relevant production factors. In order to get
this knowledge, a testing procedure should be developed, which is similar to the requirements in the
manufacturing process.
This report presented here was carried out between March 15th and September 15th of the year 2011 at
KTH (Kungliga Tekniska högskolan) in Stockholm, Sweden.
Stockholm, September 2011
Thomas Weyrauch
Student TU-Dresden/Germany
Supervising tutor:
Prof. Sören Östlund
Professor in Packaging Technology and Head of the Department of Solid
Mechanics
Kungliga Tekniska högskolan (KTH)
Stockholm, Sweden
Contents
1
Introduction ................................................................................................ 1-1
2
The general concept ................................................................................... 2-3
2.1
Requirement specification .................................................................................................... 2-3
2.2
Developed concepts .............................................................................................................. 2-4
2.2.1
First Concept ................................................................................................................ 2-4
2.2.2
Second concept ............................................................................................................. 2-6
2.2.3
The third concept .......................................................................................................... 2-6
2.3
3
Comparison of concepts - weighted scoring......................................................................... 2-8
The pressure unit ....................................................................................... 3-9
3.1
Requirement specification of the pressure unit .................................................................. 3-10
3.2
Assembly of the pressure unit ............................................................................................ 3-12
4
The tension unit ........................................................................................ 4-15
4.1
Requirement specification of the tension unit .................................................................... 4-15
4.2
The assembly of the tension unit ........................................................................................ 4-17
5
The structure and case unit ..................................................................... 5-20
5.1
Requirement specification of the structure and case unit ................................................... 5-20
5.2
The assembly of the structure unit...................................................................................... 5-20
5.3
Analysis of the threaded sleeve .......................................................................................... 5-21
5.4
Tolerance analysis .............................................................................................................. 5-24
5.5
Case .................................................................................................................................... 5-25
6
Heat transfer analysis .............................................................................. 6-26
6.1
Heat transfer analysis of the punch .................................................................................... 6-26
6.2
Heat transfer simulation of the anvil .................................................................................. 6-28
7
Final proposal ........................................................................................... 7-29
8
The control plan ....................................................................................... 8-31
9
Requirements for the measurement and evaluation system ................ 9-33
10
Pilot tests .............................................................................................. 10-35
10.1
Structure and description of the prototype ....................................................................... 10-35
10.2
Accomplishment of the experimental ............................................................................... 10-37
11
Conclusion ........................................................................................... 11-39
List of Figures ............................................................................................... 11-40
List of Tables ................................................................................................. 11-41
Appendix ....................................................................................................... 11-42
1 Introduction
Paperboard is one of the most used materials in the packaging industry. The market competition for
paper and board is continuously increasing, and the main competitor for paperboard packaging
materials is synthetic plastics. The ability to manufacture 3D shaped packaging components from
paperboard is of utmost importance for the success of renewable wood fibre based materials in this
competition.
Paper is a fibrous material that consists of self-binding cellulose fibres. Fibres from trees, grass and
other plants are used to manufacture paper. The most common fibres are from trees. During
manufacturing of paper and paperboard, a fibre suspension is sprayed from a nozzle onto a net, called
wire. Some water is drained on the rapidly traversing wire. Shear forces in the area where the jet hits
the wire and after the pressure section, results in that the fibres are more oriented in the paper machine
direction than in the cross machine direction. After dewatering on the wire more water is removed
from the paper web in the press section. In the last step the paper is dried in a heated dryer. The
direction of the fibres and also the drying process contributes to the anisotropy of the mechanical
properties of paper.1
Paper materials consist of three main directions: the machine direction (MD), the cross machine
direction (CD) and the trough thickness direction (ZD). They can approximately be used as the
principal directions of the paper material and therefore paper is often considered as an orthotropic
material.2
To get more information about the requirements on paperboard for the deep-drawing process or the
most efficient settings of the process parameters, it is necessary to analyse the mechanical behaviour
of paperboard in advance. In previous investigations, tensile tests, compressive tests and shear tests
were used to analyse the elastic-plastic out-of-plane behaviour of paperboard. Most of them are
conducted in ZD. The out-of-plane elastic-plastic behaviour of paperboard under combined normal
and shear loadings is reported by Stenberg.3 However, in such thesis, the influence of paperboard
during a process of combined out-of-plane shear and pressure under varied temperature has not been
addressed.
Therefore, a paperboard testing machine should be designed and manufactured by considering the
deep-drawing process and variable temperature control.
1
Das Papierbuch; J H Bos, Martin Staberoc;, ECA Pulp and Paper B.V.; Niederlande 1999
Paper, Structure and properties; J.A. Bristow, P. Kolseth; Marcel Dekker, Series/8, 1986
3
Niclas Stenberg; On the Out-of-Plane Mechanical Behaviour of Paper Materials, KTH Solid Mechanics,
Stockholm 2002
2
Thomas Weyrauch
Report PTM
A1
The aim of this work is to determine a method for recording the properties of paperboard during a
process of combined out-of-plane shear and pressure. This would enable a possible construction or
design of a paperboard testing-machine suitable for deep-drawing applications. By using the principle
of the draft, a prototype of a paperboard testing-machine it has been designed and tested. The first
results have been recorded and analysed.
The report is divided into three parts:

Gathering the possibilities and create concepts

Create a draft of a test machine/ show the process of development

Manufacture a prototype and run pilot tests
Thomas Weyrauch
Report PTM
A2
2 The general concept
2.1 Requirement specification
The most common way to start a new development project, like a paperboard testing machine, is to
create a list of requirements. This is a table that include the complete, systematic collection of all
requirements and should help to partition the project, to show possible problems and boundary
conditions and also important for defining the system boundaries. Table 2-1 includes the specification
requirements to create an overall concept for the development of a paperboard testing machine.
Table 2-1: Requirement specification of overall paperboard testing machine concept; F = fixed requirement; O = optional
requirement
Requirement specification of overall concept
changes
F/O
F
F
O
O
F
F
requirements
Structure system:
Massive; robust
High generation load
No specific provisions
The blank:
length - between 50 – 100 mm
breadth - between 10 – 50 mm
thickness - depending on the material used
Kinematics:
Translation
Forces
Normal compressive force: up to 100kN
Shear force (about 50kN; at a coefficient of friction µ=0,5)
F
O
O
Energy
Electrical power supply
Hydraulic system
Pneumatic system
F
Product material
The blank consists of paperboard with different compositions
F
F
Signals
Processing of measurements
displacement/pressure/force
temperature measurement
On/off
Operator station
F
F
Reliability
Emergency stop
Protective housing around
F
1.ed.: 24/03/11
paper:1
responsible
Ergonomics
Thomas Weyrauch
Report PTM
A3
F
F
Easy removal of each components
Easy to operate
Production
F
F
Production expenditure as low as possible
Use standard parts
F
Inspection
Technical Inspection Agency, ASME, DIN, ISO, CE
W
Servicing
Low-maintenance
2.2 Developed concepts
This chapter describes the identified concepts that are intended to solve the problem. Three concepts
were identified and characterized with respect to their advantages and disadvantages. A subsequent
scoring and an explanation show the most appropriate solution.
2.2.1 First Concept
The first concept is shown in Figure 2-1 should be able to mount in an existing tension/compression
testing machine with only one degree of freedom (in the vertical direction).
MD
Figure 2-1: First Concept
This concept envisages the use of a round test piece. Figure 2-2 shows the possible behaviour of the
blank during the test and the parameters that can be recorded.
Thomas Weyrauch
Report PTM
A4
results:
Deformation in ZD; MD; CD = f(T;p;v;m)
and their interact among each other
(e.g. using visual-xsel)
after duct
before
deform.
ZD;
MD;
CD
T;p;v;m
Figure 2-2: Behaviour of the first concept during a test
As shown in Figure 2-2, the concept is able to record the deformations in the ZD, MD and CD
directions combined vary temperature, but it depends on very high developed equipment. The problem
of this concept is that it is not possible to record the properties of paperboard during a process of
combined shear and pressure; it will only give the influence of pressure. According, an in-plane load
cannot be applied and thus the requirements in Table 2-1 are not fulfilled by this concept. Table 2-2
shows all the pros and cons of the first concept.
Table 2-2: Pros and Cons of the first concept
Pros
Cons

Record compression


Record elastic-plastic deformations in
Very large amount of specific sensors
could be result in an expensive machine
ZD, MD, CD

Complex system of sensors and software

Vary temperature of punch (T)

No shear

Vary pressure (p)

Vary rate of loading (v)

Vary moisture content of blank (m)
Thomas Weyrauch
Report PTM
A5
2.2.2 Second concept
The second concept that is shown in Figure 2-3 is based on a principle with two moving components,
a vertical movement in form of a compression realized by a defined weight or varying pressure, and a
horizontal movement in form of a tensile force.
A
F
Fp
Fµ punch
ZD
CD
defined weight or pressure
Fµ anvil
kg
Ft
MD
L
blank
blank
B
A
fixed heated punch
heated anvil
Ft
v
s : movement
v : velocity
s
shear stress
traktion
compression
Figure 2-3: Second concept
In this concept it is advisable to use a rectangular blank, so it is possible to cut the blank in relation to
the direction of the fibres. Thus, the influence of the MD and CD can be analyzed. Furthermore, the
concept is able to combine out-of-plane normal and shear loading, which is very important according
to the requirements. The Table 2-3 shows the pros and cons of the second concept.
Table 2-3: Pros and Cons of the second concept
Pros
Cons

Vary stress using different weights/ pressures


Record shear stress under compression
low or negligible influence of
in CD and MD (individually)
friction

Find a way to move the anvil with

Combined out-of-plane and in-plane loading

Vary temp. of punch/anvil (T)
sensors and the electronic against

Vary pressure (p); velocity (v), moisture
the shear force, Ft
Very stiff structure to protect the
content of blank (m)
2.2.3 The third concept
Thomas Weyrauch
Report PTM
A6
The third concept is shown in Figure 2-4 and it is inspired by the deep-drawing process, with focus on
the area around the bending corner. For instance, such concept consists of a fixed heated punch with
an interchangeable attachment and a linear unit with a heated anvil and the blank. In this case the
blank should be also rectangular.
fixed and heated
„punch“ with
interchangeable
attachment
bending, compression, shear
w,v,a
FR.2
FR.1
FN.1
R
blank
FN.2
w = movement
v = velocity
a = acceleration
linear unit
Figure 2-4: Third concept; FN.i = normal forces; FR.i = friction forces
The principle of the third concept is similar to that of the deep-drawing process. The linear unit which
holds the blank moves to the fixed punch, and thus the blank is subjected to bending, compression and
shear. Hence, the third concept could be a good testing method for analysis of the influence of
parameters, important for the deep-drawing process. Using varied geometries of punch and anvil, the
influence of the surface appearance or the radii of the punch and linear unit can be analysed.
Table 2-4 summarises the pros and cons of the third concept.
Table 2-4: Pros and Cons of the third concept
Pros






Cons
Interchangeable geometries
Possible to analyze bending,
compression and shear similar to the
deep-drawing process
Clearance between punch and anvil
Velocity (v)
Temperature (T)
Possible to investigate Coulomb friction
(µ=constant)
Thomas Weyrauch




Report PTM
Does not really describe the relationship
between pressure and shear stress in a
simple way
It might be difficult to install load cells,
Complex design
Probably complex calibration
A7
2.3 Comparison of concepts - weighted scoring
After an overview about the three concepts, it is important to know which of these concepts is the
most appropriate. A well-established procedure is the weighted scoring. The following main criteria
are provided with a "weight" number according to their importance. Then, the concepts are evaluated
in these criteria, to get a score. This score points are multiplied with the maximum achievable
“weight” number to a “total”. Finally, all “totals” are combined into a final result, see Table 2-5.
Scoring according to VDI 22254:
0 - unsatisfactory
1 - still acceptable
2 - sufficient
3 - good
4 - very good
Weight/significance:
1 - low
2 - important
3 - very import.
Table 2-5: Variants comparison – weighted scoring
Criteria
Weight
Modularity
Complexity
Usable results
Costs
Result
Score = Weight * Points
Concept 1
Score
Total
2
3
3
2
2
1
1
1
4
3
3
2
12
Concept 2
Score
Total
3
3
3
3
Concept 3
Score
Total
6
9
9
6
30
3
2
3
2
9
6
9
4
28
The possible solutions, which are included in the scoring, satisfy the main requirements according to
the list of requirements. Therefore, in Table 2-5 only important targets were formulated and evaluated.
Consequently, it was possible to create a ranking to determine the most suitable concept. In this case,
the second concept result the most useful, and it is subject of development in the next chapters.
Both concepts 2 and 3 provide useful results for the paperboard characteristics analysis, but there are
differences. Concept 3 is fast and simple to explore the behaviour of the paperboard during the deepdrawing process. Thus, it is possible to optimize the settings in relation to the used material. In the
same way the current acceptation of Coulomb friction, during the deep-drawing process, can be
reviewed and tested. In contrast to Concept 3, Concept 2 can be used to analyse the behaviour of the
yield stress at different various pressures. The knowledge about the stress-strain in out-of plane shear
at different pressure is not only applicable to the deep-drawing process, but it is also suitable for other
areas of paperboard converting and end-use, like folding, creasing and calandering.
For a better understanding of the testing machine, the following chapters are devoted into the main
components (main assemblies) of the testing machine, and they are individually designed. In Figure
4
Design engineering methodic - Engineering design at optimum cost, VDI 2225, Germany, 1998
Thomas Weyrauch
Report PTM
A8
2-5 it is shown the macro-structure of the testing machine and in Fel! Hittar inte referenskälla. the
preliminary operation flowchart.
actuation
unit
vertical
actuation
unit
inclusion and guidance unit
Pressure
unit
Fp
punch
incl. & guid. unit
w;v:a
punch
anvil
anvil
Ft
Tension
unit
l. unit
actuation
unit
horizontal
linear unit x-axis
base
structures system
case system
Figure 2-5: Macro-structure of testing machine
This structure enables the machine to record the stress-strain in out-of-plane shear at different
pressure. The punch moves downwards and loads the blank with the desired pressure. At that pressure,
the bottom unit begins to move and a shear stress is generated in the test piece. These sequences of
motion of the working units are illustrated in Figure 2-6.
Pressure force
F[kN]
t[s]
Tension force
F[kN]
t[s]
Figure 2-6: Preliminary operation flowchart
3 The pressure unit
Thomas Weyrauch
Report PTM
A9
3.1 Requirement specification of the pressure unit
The requirements of the pressure unit are listed in Table 3-1. Fixed and several optional requirements
are shown.
Table 3-1: Requirement specification of the pressure unit; F = fixed requirement; O = optional requirement
1.ed.:24/03/11
requirement specification of pressure unit
changes
F/O
F
F
F
F
O
O
F
F
F
F
F
F
O
O
F
F
F
F
F
O
O
O
F
F
O
Thomas Weyrauch
requirements
paper:1
responsible
Motion:
High precision; robust; slow drive
Linear; vertical drive
High force generating
No restoring force
Over-design to prevent overloading
Use a gear
Inclusion and guidance unit:
Guidance and bearing of the punch
Guidance must run absolutely linear with low backlash
Robust, stiff and resistant to deformation
Connected to the frame and perform the movement of the punch
Force transmission to frame
Centring function
Inclusion of pressure sensor and connection cable
Easy dismounting of each components, in particular pressure
sensor for calibration
Punch:
Massive and stiff
High evenness of contact surface
Specific surface roughness
Heated
Hardened stainless steel
Good heat distribution
Production:
The i. and g. unit produced as casted parts
The i. and g. unit produced as welded construction
The clearance between guidance and bearing should be as small
as possible.
Precision production of the punch through milling, grinding and
polishing
Electropolished
Report PTM
A10
The requirements listed in Table 3-1 were considered and several solutions were developed for the
individual main assemblies (cf. Table 3-2). From these options, three concepts that proved to be
suitable were developed. The best solution was determined by using a weighted scoring Table 3-3.
Table 3-2: The three concepts of the pressure unit
-
Concept 1
-
Concept 2
-
Concept 3
Table 3-3: The pressure unit concept scoring
Criteria
Weight
Concept 1
Points Score
Concept 2
Points Score
Concept 3
Points
Score
Continuous train movement
2
3
6
3
6
1
2
Realize a high pressure
3
3
9
3
9
2
6
Cost
2
1
2
2
4
3
6
Temperature distribution
2
2
4
3
6
1
2
Result
Score = Weight * Points
Thomas Weyrauch
21
Report PTM
25
16
A11
3.2 Assembly of the pressure unit
Concept 2 fulfills all the requirements after the scoring, and it was designed as an assembly shown in
Figure 3-1. This exploded view presents every part of the assembly. The movement and the required
compressive force will be realized by a hydraulic cylinder (1). The reasons for using a hydraulic
system are the special properties against the other
systems (cf. Table 3-2). Such as:

continuous velocity setting

optimal
creative
adaptation
to
space
requirements

linear movement

simple generation of high forces

high power density

high duration of life

high positioning accuracy
By considering the small distance of the vertical
movement due to the fluidness small of paperboard,
it is sufficient to use a short stroke cylinder. An
estimate of the required force was given in the
doctoral thesis of Stenberg 5 . The Assfalg B04.5
cylinder fulfills all these requirements. The data
sheet of this product is provided in the Appendix 1
(Data Sheets pressure unit). In order to measure the
force between the punch and the blank, it is
necessary to install a load cell (2). This is an
integrated tension and compression sensor from
Lorenz Messtechnik GmbH. It is designed for a
maximum force of 200 kN and has an accuracy of
Figure 3-1: The pressure unit
0.1 %. The sensor was over-designed, because the
ideal working range of the machine is not yet
known. Such sensor should be determined by
preliminary tests using a prototype. The load cell is
very sensitive to lateral forces, therefore it is
1
2
3
4
5
6
hydraulic cylinder
force sensor
traverse
clamping element
punch unit
plain bushes
necessary (as a transverse force is developed by the
horizontal "pulling" of the anvil) to design a protection against the lateral displacement. To solve this
5
Niclas Stenberg; On the Out-of-Plane Mechanical Behaviour of Paper Materials, KTH Solid Mech. 2002
Thomas Weyrauch
Report PTM
A12
problem, a traverse (3) was designed. This traverse includes the punch unit (5) and two plain bushes
(6) for the guiding rods. Using four clamping elements (datasheet is shown in the Appendix 1) the
stamp unit could be frictionally connected with the traverse. The punch unit is the main sub-assembly
of these components. Therefore it is necessary to describe it in more detail. The unit is shown in
Figure 3-2 and Figure 3-3, respectively.
adapter
crankpin
screw
punch
Figure 3-2: Punch unit
Figure 3-3: Explosion view of punch unit
The punch unit consists of the punch, the adapter and two screws for fixation each other. The two side
bevels of the punch were used to create a work surface. The resulting area is roughly equivalent to the
dimensions of the test piece. Furthermore, the component has two through bore-holes, and they are
used for the inclusion of heating elements. To justify the number of such holes and their arrangement,
a heat transfer analysis was carried out as described in Chapter 6. A crankpin was constructed for
centering and balancing the shear force.
All the component drawings as well as the assembly drawings with parts list are given in Appendix 6.
In order to prove, or at least to give an understanding for the choice of the dimensions, the deformation
of the at maximum load assembly was simulated using the finite element method to control the
displacements. While on one hand it is necessary to protect the sensor, on the other hand a large
displacement could falsify the results (torque arise) or cause the calibration to be complex.
Fp
Fp
Ft
Figures 3-4 and 3-5: Displacement of the pressure unit at maximum load during a typical test. The maximum displacement
was 52.6 µm.
Figures 3-4 and Figure 3-5 show the results of the simulation. The following assumptions were made
in the simulation. First of all it was necessary to know the magnitude of the forces expected during a
Thomas Weyrauch
Report PTM
A13
typical test. With a maximum pressure force (Fp) of 100 kN and a coefficient of friction of 0,5 (µ…
rough reference value, according to reference6), a maximum tensile force (Ft) of 50kN was calculated.
In Figures 3-4 and Figure 3-5 an ideal case was considered. This means the punch is pressing and
sliding on a planar plate, so no torque is incurred. In this setting the displacement was constant (with
max. 53µm) over the entire punch. In reality it will not happen due to the compressible paperboard
between the punch and the anvil. The result of the simulation without the planar plate boundary
condition (i.e. the punch is pressing and sliding on a planar plate) is shown in Figure 3-6.
Torque around the
x-axis
Figure 3-6: Displacement of the pressure unit without boundary conditions of the punch; the maximum displacement
yielded 89.7 µm¨
Now the displacement is not constant and the traverse is subjected to a torque. In both settings the
displacements are not very high, but given the use of test pieces with different thicknesses (mostly thin
paperboard between 0.3 and 2 mm); it is currently not known if this effect will influence the
measurements. To find out if this behavior is negligible, it is necessary to make some preliminary tests
using a prototype and record the displacement of
these components during the tests.
A stability simulation was executed as well, but this
requires no discussion as the material is very stiff
and no dangerous points were discovered. As
evidence the result is shown in Figure 3-7. The used
values and boundary conditions were the same as in
the simulation of the displacement. The maximum
stress, 320 MPa is a considerable lower than the
allowed yield stress of the material (AISI 01 with Figure 3-7: stability simulation of to pressure unit
Rc0.2 = 1350 MPa).
6
Paper and paperboard packaging technology, M. J. Kirwan, Blackwell, Oxford UK 2005
Thomas Weyrauch
Report PTM
A14
4 The tension unit
4.1 Requirement specification of the tension unit
The specification of requirements for the tension unit is listed in Table 4-1. It illustrates the fixed and
also several optional requirements.
Table 4-1: Requirement specification of the tension unit; F = fixed requirement; O = optional requirement
1.edition 24/03/11
Requirement specification of the tension unit
changes F/O
requirements
F
F
F
O
O
Motion:
High precision; slow drive
Linear; horizontal drive
Inclusion of the tension sensor
Using a gear
Over dimensioning to prevent overloading
F
F
F
F
F
Linear unit x-axis
Guidance and positioning of the anvil
Guidance must run absolutely linear with high accuracy
Robust and stiff
Connected to the base and performs the movement of the anvil
Generation of high force
O
F
F
F
F
F
F
O
O
O
O
F
paper:2
responsible
Easy removal of each components, in particular tension sensor for
calibration
Anvil:
Massive and stiff
High evenness of contact surface
Contact surface must be absolutely parallel to the surface of the
punch
Specific surface roughness
Heated
Hardened stainless steel
Good heat distribution
Production:
Linear unit as a purchased item
Linear unit as a own manufacture
Electro polished surface of the anvil
Precision production of the anvil, through milling, grinding,
polishing
Thomas Weyrauch
Report PTM
A15
Table 4-2: The concepts of the tension unit
-
Concept 1
-
Concept 2
-
Concept 3
Table 4-3: The variant scoring of the three tension unit concepts
Criteria
Constant train movement
Resistant to high pressures
Influence of friction
Temperature distribution
Weight
2
3
3
2
Result
Score = Weight * Points
Concept 1
Points Score
3
3
1
2
6
9
3
4
22
Concept 2
Points Score
3
3
3
3
6
9
9
6
30
Concept 3
Points Score
1
2
3
1
2
6
9
2
19
Just as in the previous chapter, using a variety of solutions, three concepts, see Table 4-3, were
conceived and compared with each other. The concept with the best result in the scoring, in this case
Concept 2, was most appropriate for implementation of the requirements. The design of this concept
will be described in the following sections.
Thomas Weyrauch
Report PTM
A16
4.2 The assembly of the tension unit
An assembly that was designed from Concept 2, as it fulfills all the requirements in the scoring, is
shown in Figure 4-1.
z
y
9
x
7
4
1
6
8
5
3
2
Figure 4-1: Tension unit assembly
1
2
3
4
5
anvil unit
roller bearing
shaft bracket
guide rod
joint head
6
7
8
9
pull rod
adapter pull rod
slotted nut with washer
force sensor
The anvil unit (1) is the main sub-assembly of these components together with the opposite part of the
punch unit. This unit consists of the anvil, the carriage, two plain bushes and two roller bearings (2).
The anvil is fixed with four screws and is exchangeable so it is easy to use anvils with different
surface roughness. It will therefore be possible to find out the influence of the surface roughness
during for example the deep-drawing process. The bottom profile of the anvil (the “two offsets”) is
used to unload the screws in relation to the tension force during the process. The carriage has the
adapted negative and is connected with the roller bearings (2) as well (cf. Appendix 6). These bearings
can absorb a maximum compressive force of 300 kN (one of them) and they possess a very low
tolerance (the datasheet is shown in the Appendix 2). Another reason for using roller bearings and not
journal bearings is illustrated in Figure 4-2 and Figure 4-3.
Fp
Fp
Ff,P
anvil
Linear roller
bearings
Ft
Ff
Figure 4-2: Friction forces on the anvil unit
Thomas Weyrauch
Figure 4-3: Force flow through the anvil unit
Report PTM
A17
The friction forces can be describe with the
equations:
Ff , p  paper Fp
(1)
Ff  roller Fp
(2)
Fp
– pressure <100 kN
Ff
– friction force between bearing and
bottom
Ff , p
paper
roller
– friction force between anvil and
paperboard
– friction coefficient of paper
typically 0.3-0.6
– friction coefficient of the roller
bearing, typically 0.0025
Using the values (paper = 0.5; Fp = 100 kN) and a blank with surface dimension 30x80 mm (p = F/A
= 100 kN/2400 mm2 = ~ 42 MPa) in the equations yield:
Ff , p  50 kN
Ff  0.25kN
Ff , p
Ff
Here, the friction force between the bearings and the bottom is much smaller than the friction force
between anvil and paperboard. Therefore it is possible to neglect the influence of the friction force
between the bearings and the bottom. For the use of a sliding bearing, the friction coefficient
(µ =
0.1) as well as the friction force between bearing and bottom surface is higher. In this case the
influence of the bearing is considerable and not negligible.
These bearings have no guidance and they are moving only on two hardened plates, which are inserted
into the basic plate as illustrated in Chapter 5. For this reason it was necessary to design a guidance to
align the assembly. The solution was to use a guide rod, which is able to prevent the
rotation/movement in the z-direction (the vertical direction) and in the x-direction (the vertical to the
guide rod). The location of the coordinates is shown in Figure 4-4.
Figure 4-4: Location of the coordinates
Thomas Weyrauch
Report PTM
A18
Hence, a precise guidance can be warranted. The disadvantage, or what should be respected, is the
knowledge of the tolerances of the used parts. It is absolutely necessary that the entire pressure will be
carried by the roller bearings; otherwise the system would be over-determined. Therefore it is
important to pay attention to this precision during mounting of the assembly. The guide rod is
supported by two shaft brackets (Schaeffler Group). All tolerances can be taken from the data sheets
and drawings in Appendices 2 and 6. A tolerance analysis can be found in Chapter 5. Also an
important fact to consider is the height of the deformation of the anvil unit during a test. To check this,
a simulation of the deformation was made using the maximum allowable forces.
Figure 4-5: Deformation of the anvil unit; in vertical
direction
Figure 4-6: Von-Mises effective stress in the anvil unit
at maximum load
In Figure 4-5 the deformation of the anvil unit at maximum load (100 kN) is shown. Assuming that
the roller bearings are not deformable a maximum deformation of 17 µm was found indicating that it
is insignificant since the tolerances of the parts are larger. The data for the roller bearings under load
are not stated by the manufacturer. If no information is to be found it is also necessary to analyse this
behaviour by preliminary tests. The simulation of the effective stress (von-Mises criterion) is shown in
Figure 4-6 and it can be concluded that the used material AISI 01 is stiff enough. The next
observation that can be made is that the flow of the stress is located around the centre hole. This
behaviour is desirable, because no stresses and strains are requested at the hole; otherwise this can
result in undesired deformations.
At each of the right and left sides of the balance is one pin which is used as a coupling for the traction
unit. The pin is associated with a joint head (5) and a pull rod (6). The pull rod adapter (7) connects
the two pull rods to one. In the middle of the adapter a load cell is fixed, which is associated with a
hydraulic cylinder. The sensor can record tensile as well as compressive forces; therefore it is possible
to move this unit in both directions. The used sensor is the same as the sensor in the Pressure Unit.
Thomas Weyrauch
Report PTM
A19
5 The structure and case unit
5.1 Requirement specification of the structure and case unit
The specification of requirements of the structure- and case system unit is listed in Table 5-1. Same as
in chapter 4 are shown the fixed and several optional requirements.
Table 5-1: Requirement specification of structure- and case system; F = fixed requirement; O = optional requirement
1.edition
24/03/11
Requirement specification of structure- and case system
changes
F/O
requirements
F
O
Structure system:
Massive; robust
High force generating
No or negligible deformation
including the bottom section and guidance of the transom panel
Top plate and basic plate have to be absolutely parallel
Overdimensioning
F
F
F
O
Case system
Casing of the system
Safety appliance
Delimitation of the surroundings e.g. dust and dirt
Easy removal of each components
F
F
F
O
O
F
F
paper:1
responsible
Production:
Structure system can product as welded construction
Structure system consists of components which are bolted together
Structure system consists of steel with a high stiffness
Case system consists of bent sheet metal or some parts of Plexiglas
5.2 The assembly of the structure unit
The structural unit was designed according to the requirements. In order to construct the structure it
was not necessary to find out the best solution using a scoring procedure. Here, one reasonable and
realizable solution is sufficient. According to the requirement, the top plate should be as parallel to the
basic plate as possible. A welded structure therefore appears to be quite unfavourable. Through the
effect of heat, during the welding process, the material will be deformed and the construction must be
processed again in hindsight. This can be very complicated and particularly costly. Therefore it was
Thomas Weyrauch
Report PTM
A20
decided to design a structural unit that consists of two parallel plates and pillars. The result is shown in
Figure 5-1.
5
2
3
4
8
7
6
1
2
3
4
5
6
7
8
base plate
top plate
column support
guide rod
threaded sleeve
spacer piece
hardened plates
support pieces for
the pull rod adapter
1
Figure 5-1: The assembly of the structural unit
The structural unit consists of two plates, the base plate (1) and the top plate (2). The base plate
supports the anvil-unit and the top plate is holding the pressure unit. Both plates are connected to each
other via columns (3), but also the guide rods (4) have a supporting task. The only difference is the
polished surface, because of the function to guide the traverse. All the columns and guide rods are
fixed with two threaded sleeves (5), one for the bottom and one for the top. Due to the high forces, that
are created during testing a calculation of the stiffness of the sleeves was necessary in order to find out
if the dimensions were sufficiently large. The detailed calculation is described in Section 5.3.
The two components spacer piece (6) and hardened plate (7) are very important for the tension unit.
They must be manufactured with high precision and exact tolerances since they are also important to
guide the unit precisely. A detailed tolerance analysis is given in Section 5.4.
The component (8) is the support piece for the pull rod adapter. The pull rod adapter has a base where
it can slide on the top (cf. Appendix 6). It is possible to coat the surface with a plastic layer to reduce
friction.
The stiffness and deformation of the structural unit was also simulated. The unit was definitely stiff
enough and the displacements are quite small. A detailed overview of the results of the simulations is
given in Appendix 3.
5.3 Analysis of the threaded sleeve
Thomas Weyrauch
Report PTM
A21
First of all it was useful to describe the structure of the assembly shown in Figure 5-2. The assembly
consists of a threaded pipe with M60 inside and an outer diameter of 90 mm. Two opposite side are
milled to a distance of 80 mm, which corresponds to a wrench dimension. In the upper part of the
component there is a thin cut until the middle of the component and a hole for an M5 screw. Hence,
the screw can be fixed against undesirable torque and cannot be loosen. The only unknown dimension
is the length (or the height) of the threaded sleeve. This will be found out with the following
calculation.
Figure 5-2: Threaded sleeve
Thread: M60x1.5
Calculation of the thread reach and
Allowable shear stress of the bolt and screw nut
(3)
– factor of shear stress
In this case
(4)
Because of the same material C45E
it follows that
. From this
- tensile strength
For C45E
1. Material factor of bolt and screw nut
(5)
because
(6)
This yields:
Thomas Weyrauch
Report PTM
A22
2. Diameter of shearing-off
DIN ISO 13
( )
(7)
- pitch
- thread angle
This yields:
3. Force at the breaking limit
(8)
- stress area
[
]
4. Thread reach
(9)
- thread reach
- shear stress at 100kN
( Fmax - Oversized)
It was selected:
- surface of the sheared
cylinder
Safety factor:
(10)
(11)
Based on this calculation it was possible to determine the dimensions of the nut. Because of the large
safety factor (S) and the assumed force per nut (which was over-dimensioned using 100 kN), it was
not necessary to make further calculations. Hence, errors can be excluded from the outset.
Nevertheless, the nuts should be tightened during maintenance to prevent creep. The drawing of this
component can be found in Appendix 6.
Thomas Weyrauch
Report PTM
A23
5.4 Tolerance analysis
In the tolerance analysis it was important to consider whether the guide rod has a support function.
First of all it is interesting to determine the tolerance range of the centerline (guide rod). In Figure 5-3
the tolerance chain of every component that belongs to it is shown. All these values were collected
from Appendices 2, 3 and 6 (datasheets and drawings) and were presented here in simplified form.
The red dimensioning (upper, right corner) indicates the region in which the centerline varies. This
tolerance range results from the possible maximum and minimum variations of the dimensions.
Figure 5-3: Tolerance chain
According to these tolerances and using the tolerances of the plain brushes and the guide rod, it is still
a clearance fit that is large enough to absorb deformations of up to 9 µm (cf. Figure 5-4), so it is
possible to use higher pressures than 100 kN.
Figure 5-4: Tolerance between guide rod and slide bushes
Subject to compliance with all the tolerances at manufacturing and the subsequent accurate mounting,
the guide rod will not have a supporting function. If there are some deviations with respect to the
mounting, the faulty components have to rework.
Thomas Weyrauch
Report PTM
A24
5.5 Case
The case-unit has the task to create a boundary between the machine and the environment, to have a
closed system. It is intended primarily to protect the operator. This testing machine compresses a
blank with high hydraulic power using two working units. It is of utmost importance that nobody is
able to touch them or to come into contact with other dangerous components during the movements of
these units. A case around the testing machine was proposed. Figure 5-5 shows the result.
1
3
1 Al-profile
2 door
3 inclosure
2
Figure 5-5: Case
The structure of this unit consists of aluminum profiles. Two doors were created for positioning and
removing of the blank. It is recommendable to use some sensors to check if the doors are closed
during testing. These sensors should be included in the control system. In this way it is impossible to
run a test with open doors. Plexiglas® is useful for optical view of the test and protects the heated
units against unwanted air flows. Therefore, it would be possible to have a constant surface
temperature. In the back part of the case the side parts are enclosure (enclosure of iron), but it is also
possible to use Plexiglas® or another kind of material. When designing one should pay attention to a
simple removal of the plates in the case of maintenance or repair. It is also important, that there is
enough space to include cables and sensors.
The design of this unit is only a suggestion and no drawings are available. The final design should be
created when all details of the testing machine are known.
Thomas Weyrauch
Report PTM
A25
6 Heat transfer analysis
The testing machine contains two parts that can be heated. They are the punch in the pressure unit and
the anvil in the tension unit. In this chapter a heat transfer simulation of the punch and the anvil to find
out the numbers of heating elements, the necessary requirements and the best arrangement is
described. For every simulation a power of 10 W/cm2 was used. The heat simulation was performed
with the Thermal Analysis module of Pro Engineer Wildfire 57.
6.1 Heat transfer analysis of the punch
First of all the punch was simulated with one heating element. This element has the same size as than
the length of the hole, a diameter of 6.5 mm and is made of stainless steel (with the material number:
1.4541 from the company Hotset®). As boundary conditions a heat transmission coefficient (α) of 20
W/(m2K) was used. This equates to a transmission from steel to inactive air (no air movement) that is
similar to a normal room. Figure 6-1 shows the result of the simulation.
Figure 6-1: Heat transfer of the punch with one heat patron and without an isolation layer
The highest temperature is on the work surface, but the allocation of the heat is not constant over the
whole surface. There is a variation, ΔT, of up to 20 K and one of the requirements for this function is a
constant allocation over the surface, otherwise it can falsify the results. The next step in order to solve
this problem is to use two heating elements. But there is also another problem which is very important
to consider. This refers to the temperature at the end of the adapter (the blue area in Figure 6-1),
because it is between 99-110 ˚C and this is too high. At the end, the adapter is connected to the
pressure sensor and this sensor is not resistant against such high temperature. The maximum
7
Pro Engineer Wildfire 5, Parametric Technology Corporation (PTC), 2011
Thomas Weyrauch
Report PTM
A26
temperature that is allowed is 75˚C. To solve these problems it was necessary to change some
construction details and to find a way to minimize the heat transfer to the end of the adapter.
First of all, a second borehole was added. Both boreholes were positioned, so that the distance to the
middle of the punch and the distance to the boundary of the work surface were the same, and the
boreholes were symmetrically positioned. Figure 6-2 show the results of the new heat transfer
simulation. Now a constant heat allocation over the whole work surface was obtained, in this example
a temperature of 140˚C. Simulations with less power have led to similar results.
Airflow cooling
Figure 6-2: Heat transfer of the punch using two heat patrons, an isolation layer and an airflow cooling
To minimize the heat transmission to the adapter, an isolation layer may be helpful, but it is
impossible to use any kind of layer. There are several requirements on the isolation layer; first of all
the layer should have a low heat transfer coefficient (and a good heat resistance as well) so that heat
transfer will be prevented. The next point is the stiffness. According to the high pressures of the test,
the isolation layer must be very stiff, so that no deformation can arise and the test result, for example
the measurement of the deformation of the test piece, should not be affected. Polyamide 6.6 (PA 6.6)
satisfied all requirements and therefore an isolation layer of PA 6.6 with a thickness of 2 mm was
integrated into the assembly. The first simulation with the new parameters shows a sharp fall of the
temperature, but it was still close to the limit of the sensor. In this case cooling using airflow was
simulated for the rear part of the adapter. A heat transmission coefficient of 120 W/(m2K) was use as a
boundary condition, that is a strong flow moving orthogonal to the surface. The result is shown in
Figure 6-2. The temperature in the end decreased to 44-50˚C. For example, a ventilation system with
a flow rate of around 195 m3/h can be used.
Thomas Weyrauch
Report PTM
A27
6.2 Heat transfer simulation of the anvil
This analysis is similar to the simulation of the punch unit. Using two heating elements is also
necessary to realize a constant heat allocation on the work surface. In Figure 6-3 the result of the anvil
unit simulation is shown. The work surface has a constant temperature over the whole area. An
isolation layer was integrated as well. In this case this layer is not mandatory; as the bearings are not
sensitive to high temperatures, but when comparing Figure 6-3 and Figure 6-4, some differences can
be find which advocate the application of an isolator. In Figure 6-4 a better allocation of the
temperature on the surface than in Figure 6-3 can be seen.
Figure 6-3: Heat transfer simulation of the anvil unit without
an isolation layer
Figure 6-4: Heat transfer simulation of the anvil unit using
an isolation layer
This is due to the isolation layer that blocks the heat distribution and accumulates the heat in the anvil
to the center.
This chapter has discussed the simulation of heat transfer in the punch and anvil units, respectively,
using heating elements. According to these simulations, it was possible to find the best adjustments
and numbers of heating elements that are necessary to get a constant heat allocation on the work
surface. The advantages and necessities of using an isolation layer were also advised. The next step is
to manufacture the components, to mount them and after that to operate in a real test. In order to find
the real behaviour of the heating process, it is absolutely necessary to record some calibration curves,
which show the correlation between the settings of the heating elements and the temperature on the
work surface. The recommendation is to record more than five curves. In this way you can find out the
accuracy of the system using a statistical method. The equipment for the heating system consist of:
a) controllable power supply to regulate the heating elements,
b) some thermocouples with amplifier and a reader for the process monitoring ,
c) and one or two calibrated temperature gauges for the calibration, for example with an
Almemo® or an IR camera
Thomas Weyrauch
Report PTM
A28
7 Final proposal
Previously, the assemblies and their components were explained and characterized in relation to their
function. In this chapter all previously mentioned components are summarized and their co-action
explained. First of all, the interaction between the pressure and the tension unit will be shown (see
Figure 7-1). All the important relations and dimensions are shown in this figure. Thus we obtain a
first overview of the size of the system.
F[kN]
Pressure force
z,v,a
max. 100kN
t[s]
Tension force
F[kN]
t[s]
x,v,a
Figure 7-1: Coaction of the punch and anvil unit
Figure 7-1 shows the operation flowchart as well. In this diagram you can see the motions of the
assemblies in one pass. It starts with the heat up the system (the punch and the anvil) and after the
achievement of the desired temperature it follows the down movement of the punch unit until it
touches the working surface of the anvil. Thereafter the sample is put under pressure until the desired
force is attained. Following this, the movement of the tension unit begins. After completion of this
phase, both units will be unloaded and moved back to their original positions. The diagram shown is
only for illustration of the motions and it equates not curves from the real tests. It can be assumed that
the curve starts with a sharp increase and after reaching the flow stress it will decrease again.
Preliminary tests and measurements are indispensable to record the real behavior. Furthermore, the
best settings and parameters for the test can be found out. A control plan with a path-time diagram is
shown and explained in Chapter 8.
The complete structure of the paperboard testing machine is found in the following figures. Figure
7-2 shows the design and the adjustment of the three assemblies; the pressure unit, the tension unit and
Thomas Weyrauch
Report PTM
A29
the structural unit. The drawing of the assembly with all dimensions and list of parts is provided in
Appendix 6. The picture below was rendered to give a more realistic view.
Figure 7-2: Paperboard Testing Machine without the case
In Figure 7-3 the complete testing machine with the case is shown. The case unit is absolutely
necessary to comply with security regulations.
Figure 7-3: Paperboard Testing Machine with the case
A proposal for the design of the base frame was not given in this work because the place of location is
yet unknown.
Thomas Weyrauch
Report PTM
A30
8
The control plan
The control plan, see Figure 8-1, includes every step in one turn. It should help in getting an overview
of the test experiment.
start
punch temperature is achieved
anvil temperature is achieved
fresh blank is available
positioning of blank
referencing system
Z=Z0
X=X0
start-up punch
reach the blank
realize resistance
realize resistance
Fp=F2
pressing process
pressure force reaches
adjust to
Fp=F3
Residence time is achieved
Start movement tension cylinder
XXmax
constant velocity
V(x)=Vset=const
adjust to
V(x)=Vset
load relieving/return punch
load relieving/return anvil
Removal of the piece
end
Figure 8-1: Control plan
Thomas Weyrauch
Report PTM
A31
Z [mm]
1
Z4
Z23
Z12
2
3
4
5
6
7
ΔZ=Z23-Z12
X [mm]
t[s]
Xmax
X0
t[s]
Figure 8-2: Operation flowchart as a matter of principle path-time function for the motion axes of punch and anvil
The operation flow consists of the following steps:
1
Move punch until touching the blank, the anvil unit is restricted from moving
2
At this region load until an adjusted force, so that the blank will be subjected to a prescribed
compressive force; it is necessary and useful, to find out the point where the deformation will
start; ∆z should be as small as possible
3
Deformation of the blank until the desired pressure is reached
4
Residence time of temperature and high pressure; time for deformation of the test piece
5
Movement of the tension cylinder to xmax with a constant velocity; punch is holding the
pressure
6
Unloading and return of the punch to the reference point; the anvil stays in place
7
Return of the anvil to the reference point
Thomas Weyrauch
Report PTM
A32
9 Requirements for the measurement and evaluation
system
The measurable characteristic variables in the test during one load cycle for each axis of movement are
the force, the displacement and the acceleration as well as the temperature of heated components. The
measured value acquisition during the test is shown in Figure 9-1.
heating-up
measurement
Tpunch; Tanvil
movement tension
cylinder
measurement
xcyl, vcyl(t); Ft(t)
start-up punch
deformation
measurement
measurement
zpunch; vpunch; Fz2
zdef(t); Fz(t); vdef(t);
tresidence
return/
interpretation
measurement
z(z0); x(x0),
ANALYSIS sample
Figure 9-1: Measured variables inside the process
The variables necessary for regulating the actuators, such as cylinder force and displacement must be
recorded by pressure sensors in the hydraulic system or by displacement transducers. The accuracy of
the displacement transducers should be at least 1 micron. The tensile force is a frictional force and
Thomas Weyrauch
Report PTM
A33
depends on the roughness of the surfaces and the punch force. It provides information about the
behavior of the sample during the process by changing various process parameters. Thus, it is possible
to find the stress-strain in out-of-plan shear at different pressure. The friction coefficients should be
determined using appropriate external test equipment. The acceleration force of the punch can be
determined by the application of an acceleration sensor and knowledge of the punch-weight.
The evaluation of the measured displacement, pressure and acceleration takes place via a measuring
board in a PC. The signals from the transducers can be used to determine the velocity.
The temperature of the working members, punch and anvil, during the process are produced by the
heating elements, which can be controlled by integrated thermocouples. Additionally, it is necessary to
measure the temperature of the working surfaces. The reasons for this are the distance from the
heating elements to the work surfaces and losses in the heat transfer. Therefore calibration is essential.
Using the measurement and evaluation system, the entire process can be controlled and all parameters
measured. Hence, it should be possible to analyse the behaviour and the properties of the used
paperboard blank.
Thomas Weyrauch
Report PTM
A34
10 Pilot tests
According to the proposal in the first part of this report, a prototype was designed. The main
components, such as the punch and the anvil, were manufactured and mounted with other components
into an existing tension/compression testing machine. This chapter shows some pre-adjustments in
assembling of the prototype, accomplishment of preliminary experiments and a conclusion with
possible foresight.
10.1 Structure and description of the prototype
Figure 10-1 shows a model of the prototype as well as the functionality. The core of the prototype
consists of the punch (1) and anvil unit (2). In order to reduce the heat transfer to the load cell (12) an
isolation layer of cork is used. Preliminary heating tests have revealed that the isolation layer is not
enough to reduce the temperature to a minimum. In consideration to protect the load cell and to hold
the temperature constant so that the test results are unaffected, a cooling system (11) was installed.
The cooling system was based on the principle of flowing water. All these components, in the order
described in Figure 10-1, were attached on a beam (13) in the compression testing machine that
provided the required pressure.
1
2
3
4
5
6
7
8
9
10
11
12
13
punch unit
anvil unit
support plate
carriage
guidance rail
vertical adapter
load cell horizontal
actuator horizontal
thrust piece
block piece
cooling system
load cell vertical
beam
Figure 10-1: Prototype model
The anvil unit (2) is mounted on a support plate (3) which includes the actuator (8) for the horizontal
movement. Using a carriage (4) with a guidance rail (5) the system is able to move horizontally. The
thrust piece (9) that is fixed with the actuator (8) is pressed during the movement of the actuator (8)
against the punch unit (1) using a vertical adapter (6) that is installed on the support plate (3). The
Thomas Weyrauch
Report PTM
A35
movement can be transmitted to the carriage (4). During testing the thrust piece is guided and
supported by a block piece (10). Recording of the forces are realized via a load cell (7) between
actuator (8) and vertical adapter (6).
Since the anvil also is heated, a cooling system was created to stop the heat transfer. The cooling
system consists of a Ø10 mm borehole that is located under the anvil and is used as a canal for flowing
water.
The finished prototype is shown in Figure 10-2. Due to validation and calibration of the individual
sensors, the prototype could be used.
Figure 10-2: Finished prototype mounted in the tension/compression testing machine
Thomas Weyrauch
Report PTM
A36
10.2 Accomplishment of the experimental
The prototype has been tested by considering 5 different blanks with fibres in the machine direction
(MD) and 5 blank with fibres in the cross machine direction (CD). Since the flow rate does not have a
control system, it has been fixed empirically based on the results of some preliminary tests, where a
suitable constant velocity was used. Then, every blank was tested separately at the same speed,
by using different compressive loads, and the transversal load was measured by varying the
movement. All the tested pieces had a thickness of 0.63 mm and a surface area of 2400 mm². Finally,
due to the limitation of the testing machine, the considered movement range was between 0.0 and 1.5
mm.
The results of the pilot tests are shown in Figure 10-3 for the blanks with fibres in the machine
direction, and in Figure 10-4 for the blanks with fibres in the cross machine direction.
24
8MPa_MD
17MPa_MD
20
25MPa_MD
transverse load/ kN
33MPa_MD
42MPa_MD
16
12
8
4
0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6
movement/ mm
Figure 10-3: Results of the preliminary tests by using 5 blanks with fibres in the machine direction (MD)
As expected, higher compressive loads result to higher transverse loads. The peak present in all the
figures could be interpreted either as the point where the transverse load is high enough to overcome
static friction or the transition point from elastic to elastic-plastic material behaviour. After this peak,
the transverse load increases continuously but with smaller variations. It is interesting to see how the
measured transversal load is similar in both MD and CD as shown in detail in Figure 10-5 and Figure
10-6. All the results are given in Appendix 4.
Thomas Weyrauch
Report PTM
A37
28
8MPa_CD
17MPa_CD
24
transverse load/ kN
25MPa_CD
20
33MPa_CD
42MPa_CD
16
12
8
4
0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6
movement/ mm
Figure 10-4: Results of the preliminary tests using 5 blanks with fibres in the cross machine direction (CD)
transverse load/ kN
21
33MPa_MD
18
33MPa_CD
15
12
9
6
3
0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6
movement/ mm
Figure 10-5: Comparison between MD and CD using a compressive load of 33 MPa
27
42MPa_MD
transverse load/ kN
24
42MPa_CD
21
18
15
12
9
6
3
0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6
movement/ mm
Figure 10-6: Comparison between MD and CD using a compressive load of 42 MPa
Thomas Weyrauch
Report PTM
A38
11 Conclusion
In this report, a methodology to design a paperboard testing machine has been discussed. Such a
methodology is capable to record the properties of paperboard during combined out-of-plane shear and
pressure loading. The methodology consists of three phases: the development of a concept, the design
and the assembling of a prototype. For each component of the testing machine, typically three
concepts were described and a comparison between them was provided. The choice of the concept to
be designed and assembled was based on an average scoring. Finally, some pilot tests were performed
to validate the effectiveness of the chosen concept.
Since the discussed methodology has been validated only for some specific case, it is premature to
provide a generalization of the concept. However, the provided results still give reasonable insight into
the principles of the paperboard testing machine, and the obtained results meet the theoretical
expectations.
Thomas Weyrauch
Report PTM
A39
List of Figures
Figure 2-1: First Concept ..................................................................................................................... 2-4
Figure 2-2: Behaviour of the first concept during a test ....................................................................... 2-5
Figure 2-3: Second concept .................................................................................................................. 2-6
Figure 2-4: Third concept; FN.i = normal forces; FR.i = friction forces ................................................. 2-7
Figure 2-5: Macro-structure of testing machine ................................................................................... 2-9
Figure 2-6: Preliminary operation flowchart ........................................................................................ 2-9
Figure 3-1: The pressure unit ............................................................................................................. 3-12
Figure 3-2: Punch unit ........................................................................................................................ 3-13
Figure 3-3: Explosion view of punch unit .......................................................................................... 3-13
Figures 3-4 and 3-5: Displacement of the pressure unit at maximum load during a typical test. The
maximum displacement yielded 52.6 µm. ..................................................................... 3-13
Figure 3-6: Displacement of the pressure unit without boundary conditions of the punch; the
maximum displacement yielded 89.7 µm¨ ..................................................................... 3-14
Figure 3-7: stability simulation of to pressure unit ............................................................................ 3-14
Figure 4-1: Tension unit assembly ..................................................................................................... 4-17
Figure 4-2: Friction forces on the anvil unit ....................................................................................... 4-17
Figure 4-3: Force flow through the anvil unit .................................................................................... 4-17
Figure 4-4: Location of the coordinates ............................................................................................. 4-18
Figure 4-5: Deformation of the anvil unit; in vertical direction ...................................................... 4-19
Figure 4-6: Von-Mises effective stress in the anvil unit at maximum load ..................................... 4-19
Figure 5-1: The assembly of the structural unit.................................................................................. 5-21
Figure 5-2: Threaded sleeve ............................................................................................................... 5-22
Figure 5-3: Tolerance chain ............................................................................................................... 5-24
Figure 5-4: Tolerance between guide rod and slide bushes................................................................ 5-24
Figure 5-5: Case ................................................................................................................................. 5-25
Figure 6-1: Heat transfer of the punch with one heat patron and without an isolation layer ............. 6-26
Figure 6-2: Heat transfer of the punch using two heat patrons, an isolation layer and an airflow
cooling ........................................................................................................................... 6-27
Figure 6-3: Heat transfer simulation of the anvil unit without an isolation layer............................... 6-28
Figure 6-4: Heat transfer simulation of the anvil unit using an isolation layer .................................. 6-28
Figure 7-1: Coaction of the punch and anvil unit ............................................................................... 7-29
Figure 7-2: Paperboard Testing Machine without the case ................................................................ 7-30
Figure 7-3: Paperboard Testing Machine with the case ..................................................................... 7-30
Figure 8-1: Control plan ..................................................................................................................... 8-31
Figure 8-2: Operation flowchart as a matter of principle path-time function for the motion axes of
punch and anvil .............................................................................................................. 8-32
Figure 9-1: Measured variables inside the process............................................................................. 9-33
Figure 10-1: Prototype model........................................................................................................... 10-35
Figure 10-2: Finished prototype ....................................................................................................... 10-36
Figure 10-3: Results of the preliminary tests by using 5 blanks with fibres in machine direction (MD)
..................................................................................................................................... 10-37
Figure 10-4: Results of the preliminary tests by using 5 blanks with fibres in cross direction (CD) ... 1038
Figure 10-5: Comparison between MD and CD using compressive load of 33 MPa ...................... 10-38
Figure 10-6: Comparison between MD and CD using compressive load of 42 MPa ...................... 10-38
Thomas Weyrauch
Report PTM
A40
List of Tables
Table 2-1: Requirement specification of overall paperboard testing machine concept; F = fixed
requirement; O = optional requirement .............................................................................. 2-3
Table 2-2: Pros and Cons of the first concept ...................................................................................... 2-5
Table 2-3: Pros and Cons of the second concept .................................................................................. 2-6
Table 2-4: Pros and Cons of the third concept ..................................................................................... 2-7
Table 2-5: Variants comparison – weighted scoring ............................................................................ 2-8
Table 3-1: Requirement specification of the pressure unit; F = fixed requirement; O = optional
requirement....................................................................................................................... 3-10
Table 3-2: The three concepts of the pressure unit............................................................................. 3-11
Table 3-3: The pressure unit concept scoring..................................................................................... 3-11
Table 4-1: Requirement specification of the tension unit; F = fixed requirement; O = optional
requirement....................................................................................................................... 4-15
Table 4-2: The concepts of the tension unit ....................................................................................... 4-16
Table 4-3: The variant scoring of the three tension unit concepts...................................................... 4-16
Table 5-1: Requirement specification of structure- and case system; F = fixed requirement; O =
optional requirement......................................................................................................... 5-20
Thomas Weyrauch
Report PTM
A41
Appendix
Appendix 1: The pressure unit
Appendix 2: The tension unit
Appendix 3: The case and structure unit
Appendix 4: Pilot tests
Appendix 5: Datasheets materials
Appendix 6: Drawings
Thomas Weyrauch
Report PTM
A42
Appendix
Appendix 1: The pressure unit
Thomas Weyrauch
Report PTM
A1
!
"
# $%
" #
& '& & () " *+
+ ,
-%"! &
&"
.
"
'&
/0 " 1
0%%
0
"
0 $ -%"! "
(
2
! 3&
3 4)" !5
0
1
0%%
& " 6%&
2788
"8%
"8"8$8"!8&98&9:2 %" *0%
;<= => ?@ @ @ =A &
#
#%
*%
+7 ;8@
20%
&%
+
/7 ,&%
7 .A
>
%)0
@
B
> C
B
@ B%
> *%
+7 ;8
"D
?
@ @= E0%
" &%
" " F
"&
+,
%
"&
0 4
0
2011-08-16 12:16
1
2011-08-16 12:16
2
JENS S. Spännelement - Serie CN 31
Exempel:
För axeldiameter d = 50 mm
Spännelement CN 31 50 x 57
- Låga moment
- Små radiella mått
- Ekonomiskt
- Ej självcentrerande
Dimensioner
Överförbart
Vridmoment Axialkraft
M
Fa
Nm
N
Yttryck
Axel
Nav
Ps
Ph
2
N/mm
N/mm2
Nödvändig
SkruvSpännkraft
N
AVSTÅND R mm
ANTAL SPÄNNELEMENT
1
2
3
4
MÅTT
DISTANSRING
Di1
Dy1
mm
mm
Vikt
dxD
mm
L
mm
L1
10x13
12x15
13x16
14x18
15x19
3,7
3,7
3,7
5,3
5,3
4,5
4,5
4,5
6,3
6,3
8
12
14
22
27
1600
2000
2150
3300
3600
100
100
100
100
100
80
80
80
80
80
14600
16100
16300
26200
27100
2
2
2
3
3
2
2
2
4
4
3
3
3
5
5
3
3
3
6
6
10,1
12,1
13,1
14,1
15,1
12,9
14,9
15,9
17,9
18,9
0,002
0,002
0,002
0,005
0,005
16x20
17x21
18x22
19x24
20x25
5,3
5,3
5,3
5,3
5,3
6,3
6,3
6,3
6,3
6,3
30
35
38
43
47
3700
4100
4200
4500
4700
100
100
100
100
100
82
85
84
80
80
27400
28150
28650
33150
33500
3
3
3
3
4
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
17,1
17,1
18,1
19,2
20,2
20,9
20,9
21,9
23,8
24,8
0,006
0,006
0,008
0,008
0,010
22x26
24x28
25x30
28x32
30x35
5,3
5,3
5,3
5,3
5,3
6,3
6,3
6,3
6,3
6,3
58
70
75
90
105
5300
5800
6000
6600
7000
100
100
100
100
100
85
88
83
90
90
34500
35150
27200
38100
41200
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
22,2
24,2
25,2
28,2
30,2
25,8
27,8
29,8
31,8
34,8
0,010
0,010
0,010
0,010
0,010
32x36
35x40
38x44
40x45
42x48
5,3
6
6
6,6
6,6
6,3
7
7
8
8
120
165
195
240
260
7600
9400
10000
12000
12400
100
100
100
100
100
90
90
90
90
90
42910
53250
57250
68350
71350
4
4
4
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
7
7
32,2
35,2
38,2
40,2
42,2
35,8
39,8
43,8
44,8
47,8
0,015
0,020
0,020
0,025
0,040
45x52
48x55
50x57
55x62
60x68
8,6
8,6
8,6
8,6
10,4
10
10
10
10
12
360
450
480
580
850
16000
18800
19000
21000
28500
100
100
100
100
100
90
90
90
90
90
107500
110500
111500
119500
155700
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
7
7
7
7
7
45,2
48,2
50,2
55,2
60,2
51,8
54,8
56,8
61,8
67,8
0,043
0,045
0,050
0,060
0,074
65x73
70x79
75x84
80x91
85x96
10,4
12,2
12,2
15
15
12
14
14
17
17
970
1350
1540
2210
2410
30000
38500
41000
55000
56500
100
100
100
100
100
90
90
90
90
90
163800
204000
221000
291500
306500
4
4
4
4
4
5
5
5
6
6
6
6
6
7
7
7
7
7
8
8
65,2
70,2
75,2
80,3
85,3
72,8
78,8
83,7
90,7
95,7
0,080
0,110
0,120
0,190
0,200
90x101
95x106
100x114
110x124
120x134
15
15
18,7
18,7
18,7
17
17
21
21
21
2750
3070
4200
5200
6100
61000
64500
84500
94000
101000
100
100
100
100
100
90
90
90
88
89
321500
331600
447000
487500
512500
4
4
4
5
5
6
6
6
6
6
7
7
7
7
7
8
8
8
9
9
90,3
95,3
100,3
110,3
120,3
100,7
105,7
113,7
123,7
133,7
0,220
0,230
0,380
0,410
0,450
Kg
Seriemontage av spännelement
Monteras flera spännelement av serie CN31 efter
varandra, ökar det överförda vridmomentet vid
oförändrat yttryck. Om man sätter katalogvärdet
M=100% för ett spännelement,så ökar detta
värdet vid:
R
2 spännelement till 150%
3 spännelement till 185%
4 spännelement till 200% av tabellvärdet
Fler än 4 spännelement i serie är inte motiverat
eftersom det öveförbara vridmomentet inte ökar.
Tryckfläns
Enkelt förband
Fig. 1 Ändaxelmontage
Fig. 2 Navmontage
11
JENS S. Spännelement Serie CN 31
SKRUVBERÄKNING
Ftot = Total åtdragningskraft (N)
Ftot = Förspänningskraften (Fv) multiplicerad
med antalet skruvar
Förspänningskraften (Fv) fastställs för varje
enskild skruv enligt vidstående tabell efter
kvalitetsklass och gänga.
Exempel
Ett förband skall överföra max 40 Nm.
Axeln är ø 25mm. I tabellen på sidan 11
finner vid d x D 25 x 30 med ett överförbart
vridmoment M=75Nm. Den nödvändiga skruvspännkraften är 27 200N. Ur skruvtabellen till
höger väljer vi ex vis 3 st skruvar M6 kvalitetsklass 12,9 med åtdragningsmoment Ms=17Nm och
förspänningskraft Fv 15010 N.
Ftot = Fv x antalet skruvar. Ftot = 15010 x 3.
Ftot= 45030 N. Spännkraften blir alltså
större än 27 200N.
FLÄNSBERÄKNING
Flänsen överför skruvarnas spännkraft till
spännelement/ elementen. Flänstjockleken (t) överslagsberäknas.
MATERIAL OCH SKRUVKVALITET I
JENS S. SPÄNNELEMENT
Levereras med skruvkvalitet 12,9 som standard. Här nedan anges de viktigaste
uppgifterna om skruvkvalitet och storlekar
Gänga
ÅTDRAGNINGSMOMENT
STANDARDGÄNGA (Metrisk)
Kvalitet 8,8
Kvalitet 10,9
Kvalitet 12,9
Sträckgräns 640 Nmm2 Sträckgräns 900 Nmm2 Sträckgräns 1080 Nmm2
Ms
Fv
Ms
Fv
Ms
Fv
M5
6
6280
8,8
8980
9,8
M6
10
9320
14
12460
17
10640
15010
M8
26
16380
34
22910
41
27470
M 10
49
25950
69
36300
83
43510
M 12
85
37870
188
53320
145
63370
M 14
134
51500
189
72839
230
86940
M 16
206
71760
294
101440
355
121150
M 18
294
86670
402
121890
485
145090
M 20
402
112320
574
158240
690
190120
Ms = Åtdragningsmomentet Nm vid μ = 0,12
Fv = Skruvens förspänningskfraft N
Anmärkning:
I tvivelaktiga fall rekommenderar vi att välja närmast högre
skruvkvalitet.
Åtdragningsmomentet kan då höjas med 10%.
TOLERANSER FÖR AXELDIAMETER
a) Skruvmontage i axeln: (se fig 1 sid 11)
t = skruvdiametern x 1,3 (mm)
t = 6 x 1,3 = 7,8 mm
Välj t = 8 mm
b) Skruvmontage i navet: (se fig 2 sid 8)
t = skruvdiametern x 1,8(mm)
t = 6 x 1,8 = 10,8 mm
välj t = 11 mm.
d mm
Axel
Hål
till 38
över 38
h6
h8
H7
H8
MONTERING
Jens S Spännelement monteras enligt följande:
* Gör rent axel och nav - olja in dem lätt. Använd ej smörjmedel som
innehåller Molybdendisulfid.
* Sätt samman spännelement, axel och nav och rikta upp förbandet.
* Skruvarna dras korsvis till erforderligt åtdragningmoment (Ms) uppnås.
SPÄNNSKRUVARNAS HÅLCIRKELDIAMETER
(Dhc)
a) Skruvmontage i axeln
Dhc = Di - skruvdiametern - 10 (mm)
Di = spännelementets innerdiameter (mm)
Dhc = 25 - 6 - 10 = 9 mm
b) Skruvmontage i nav
Dhc = Dy + skruvdiametern + 10 (mm)
Dy = spännelementets ytterdiameter (mm)
Dhc = 30 + 6 + 10 = 46 mm
För serie CN 31 gäller dessutom följande:
* Kontrollera att avståndet mellan tryckfläns och nav är lika runt om.
Tryckflänsen får inte ligga an mot navet.
* När axelhålet har ett fristick, måste där placeras en distandsring.
DEMONTERING
Serie CN 55, 210, 911, 912, 913 och CN 914
Skruvarna gängas ur några varv. Genom lätta slag på skruvhuvudet lossar den
bakre tryckringen. Den främre tryckringen lossas genom att använda avdragarhålen som är placerade under de blanka skruvarna.
Serie CN 25 och CN25C
Lossa muttern några varv. Lösgör spännelementet med lätta slag mot muttern
12
JENS S.
TRANSMISSIONER AB
Koppargatan 9, Box 903, 601 19 NORRKÖPING Tel: 011-19 80 00, Fax 011-19 80 54
www.jens-s.se
VÄST
Energigatan 10B
S-434 37 KUNGSBACKA
Tel: 0300-178 10
Fax: 0300-178 12
SYD
Brännerigatan 5
S-263 37 HÖGANÄS
Tel: 042-13 81 70
Fax: 042-13 83 70
Stora Varvsgatan 1
211 19 MALMÖ
Tel: 040- 93 95 70
Fax: 040- 93 95 72
ÖST
NORR
Kanalvägen 1 A
S-194 61 UPPLANDS VÄSBY
Tel: 08-754 93 00
Fax: 08-754 93 50
Regementsvägen 10
S-852 38 SUNDSVALL
Tel: 060-56 68 07
Fax: 060-12 30 10
KÖPENHAMN
OSLO
HELSINGFORS
Brogrenen 5
DK-2635 ISHÖJ
Tel: +45 4373 8333
Fax: +45 4373 1911
Enebakkveien 117
N-0680 OSLO
Tel: +47 23 06 04 00
Fax: +47 23 06 04 01
PI 95 (Puolarmetsänkuja 6D)
FIN-02271 ESPOO
Tel +358 9 867 6730
Fax +358 9 867 6731
always one step ahead
Heizelemente für die
Verpackungsindustrie
Packende
Verbindungen!
always one step ahead
Seit der Gründung 1973 entwickelt und fertigt hotset Heizelemente
und befindet sich seitdem auf einem kontinuierlichen Expansionskurs.
Konsequent orientiert an den Bedürfnissen der Kunden löst hotset
Heizaufgaben für industrielle Anwendungen.
Mit Produktionsstätten in Lüdenscheid und auf Malta bietet hotset ein
hohes Maß an Fertigungs-Know-how und für die Zukunft weiteres
Entwicklungspotenzial.
Angefangen bei einem breiten Lagerprogramm über StandardHeizelemente bis hin zur kundenindividuellen Sonderkonstruktion:
Mit hotrod Heizpatronen, hotspring Wendelrohrpatronen und
®
®
weiteren innovativen Produkten wie z. B. hotflex oder hotslot
®
®
sowie der Qualität des Kundenservice bietet hotset die passende
Beheizungslösung oder schafft sie kundenindividuell!
hotset stellt immer wieder seine Innovationskraft unter Beweis –
wie in diesem Prospekt – um Heizelemente anzubieten, die qualitativ
hochwertig, technisch ausgereift und für die unterschiedlichsten
industriellen Anwendungen geeignet sind.
In Deutschland und über 30 Ländern weltweit ist hotset für
seine Kunden – getreu dem Slogan „always one step ahead“ –
immer einen Schritt voraus.
Motivierte und qualifizierte Mitarbeiter sorgen dafür, dass hotset
auch weiterhin für Kundennähe, Innovationen, Kompetenz und
Zuverlässigkeit steht.
Sie werden es sehen und erleben – versprochen!
2
always one step ahead
Inhalt
Anwendungsbeispiele
Gerade in der Verpackungsindustrie wird das Tempe-
2
hotset
3
Anwendungsbeispiele für den Einsatz
von hotset-Heizelementen
in der Verpackungsindustrie
raturfenster zur thermischen Bearbeitung von Werkstoffen immer enger. Komplexe Verpackungsmaterialien erfordern eine gleichmäßige Temperaturführung
auf einem exakten Temperaturniveau, damit eine
5
hotrod Heizpatronen
(Typ HHP)
gleich bleibend hohe Produktqualität gewährleistet
6
hotrod Heizpatronen
(Typ LHT)
hotset bietet zahlreiche Heizelemente, die speziell auf
7
hotrod Heizpatronen
(Typ LHT) biegbar
8
hotrod (Typ HHP)
Ex-Schutz
9
®
ist.
®
®
®
hotspring
Wendelrohrpatronen (Typ WRP)
®
die Anforderungen der Verpackungsindustrie abgestimmt sind. Zum Beispiel hotrod Heizpatronen (Typ
®
HHP) mit individueller Leistungsverteilung und integriertem Thermoelement zur Beheizung von Schweißbalken, oder formbare Konturenheizungen, bei denen
durch einen speziellen Innenaufbau die unbeheizten
Endzonen extrem kurz gehalten sind.
Fast ausschließlich handelt es sich bei den im Ver-
10
hotflex
Flexibler Rohrheizkörper
12
hotcontrol
Temperaturregelgeräte
satzbereich in ihren Parametern stark variieren.
13
hotcontrol
Thermoelemente und Widerstandsfühler
Sie sich bitte an die hotset-Fachberater, die sich un-
®
®
®
packungsbereich eingesetzten Heizelementen um
anwendungsspezifische Lösungen, die je nach Ein-
Bezüglich Ihres konkreten Anwendungsfalles wenden
ter anderem auf die Lösung von Heizaufgaben in der
Verpackungsindustrie spezialisiert haben.
3
always one step ahead
für den Einsatz von hotset-Heizelementen
in der Verpackungsindustrie
Temp.
Lg
hotrod® (Typ HHP)
Beheizung von Siegelköpfen
hotrod® (Typ HHP)
Beheizung von Schweißbalken
hotrod® (Typ HHP)
Leistungsverteilung
Temp.
Lg
hotrod® (Typ HHP)
Beheizung von Schneidmessern
hotspring® (Typ WRP)
Beheizung von Siegelköpfen
hotrod® (Typ HHP)
Leistungsverteilung
Kartonagen, Papier- oder Blister-Verpackungen
werden verklebt. Für das Erwärmen und Auftragen der Klebstoffe werden Heizelemente
verwendet. Beim Schneiden, Stanzen oder Verschweißen von Kunststofftüten (Gummibärchen,
Chips, Bonbons, ...) finden Heizelemente in
Schneidmessern oder Schweißlinealen ebenfalls
ihre Anwendung.
Darüber hinaus können Heizelemente auch bei
der Lebensmittelverarbeitung überall dort zum
Einsatz kommen, wo die entsprechende Temperatur benötigt wird.
4
4
always one step ahead
Qualität, die es in sich hat!
hotrod Heizpatronen
(Typ HHP)
®
Technische Daten
●
●
●
Anwendungsspezifische Leistungsverteilungen, integrierte Thermoelemente, zahlreiche Anschlussausführungen und ein umfangreiches
●
Zubehör ermöglichen die individuelle Anpassung der hotrod
●
®
Heizpatronen auf nahezu jeden Einsatzbereich.
●
In Zusammenarbeit mit den Kunden entwickelt hotset innovative
●
Produkte.
●
●
●
●
●
●
●
Bestellangaben
●
hotrod (Typ HHP)
®
Anwendung: ..........................................
+ Artikel-Nr. (falls bekannt): ..................
+ Ø: ......................................................
+ Länge: ...............................................
+ Leistung: ...........................................
+ Spannung: .........................................
+ Anschlusslänge: ................................
+ Anschlussausführung: .......................
+ Thermoelement: ................................
+ Messpunkt: .......................................
+ Stückzahl: .........................................
Profil Ø [mm] (für Lager-hotrod®):
6,5; 8,0; 10,0; 12,5; 16,0; 20,0
Profil Ø ["]: 1/4; 3/8; 1/2; 5/8;
weitere auf Anfrage
max. Gesamtlänge:
Ø ≥ 6,0 mm (geschliffen) 1500 mm
Ø ≥ 6,0 mm (ungeschliffen) 3000 mm
Mantelmaterial: Edelstahl
Heizelement-Manteltemperatur: max. 750 °C
Heizleiterwerkstoff: NiCr 8020
Hochspannungsfestigkeit
(kalt im gestreckten Zustand)
bei Nennspannung ≤ 24 V: 500 V-AC
bei Nennspannung > 24 V: 1500 V-AC
Isolationswiderstand (kalt):
≥ 5 MΩ bei 500 V-DC
max. Ableitstrom (kalt):
≤ 0,5 mA bei 253 V-AC
Längentoleranz: ± 1,5 %, min. ± 1 mm
Leistungstoleranz (kalt): ± 10 %
Durchmessertoleranz:
metrisch -0,02/-0,06 mm
zöllisch ± 0,02 mm/± 0,8 mils
max. Anschlussspannung:
480 V, bei Lager-hotrod® 230 V (Standard)
Thermoelement:
Fe-CuNi (Typ J, Standard), optional
Fe-CuNi (Typ L) bis 300 °C Arbeitstemperatur, NiCr-Ni (Typ K) bis 750 °C
Arbeitstemperatur, potentialfrei,
Messpunkte: am Boden oder mittig
Anschlussausführung:
z. B. 1000 mm von innen herausgeführte
glasseiden isolierte Ni-Leitungen
starre Drähte
1000 mm PTFE-isolierte Ni-Leitung
(mehrdrähtig) außen angeschlagen
1000 mm silikonisolierte Ni-Leitung (mehrdrähtig) außen angeschlagen
1000 mm glasseiden isolierte Ni-Leitung
(mehrdrähtig) außen angeschlagen
1000 mm von innen herausgeführte PTFEisolierte Ni-Leitung (mehrdrähtig), PTFEStopfen, Leistungsverteilung, feuchtigkeitsgeschützte Ausführung
Andere Abmessungen und Produktvarianten
auf Anfrage.
Irrtum und technische Änderungen vorbehalten.
Lagerabmessungen für hotrod® entnehmen Sie
bitte dem Prospekt Lagerprogramm.
Bitte beachten Sie die Einbau- und Lagerungshinweise.
Bezüglich einer UL/CSA-Zertifizierung
sprechen Sie bitte mit unseren Fachberatern.
5
always one step ahead
hotrod
(Typ LHT)
®
Technische Daten
●
●
●
●
●
Spiralpatronen
Verdichtete oder nichtverdichtete Spiralheizelemente
kommen überall dort zum Einsatz, wo aufgrund der
●
●
●
anwendungstechnischen Voraussetzungen eine
Oberflächenbelastung von 10 W/cm2 ausreicht.
In diesen Fällen ermöglichen die Spiralheizelemente
durch ihren einfachen Aufbau eine kostengünstige
Beheizung bei hoher Lebensdauer des Heizelements.
●
Im Bereich der Sicherheitskleinspannung ist bei
Spiralheizpatronen die Stromrückführung über den
●
Heizelementemantel möglich, so dass mit einem
Anschluss gearbeitet werden kann. Darüber hinaus
●
können die Anschlüsse bei Spiralheizelementen an
●
beiden Seiten angebracht werden.
●
Typische Einsatzbereiche für Spiralheizelemente sind
●
die Beheizung von Siegelwerkzeugen in der
Verpackungsindustrie, das Schneiden von Kunst-
●
Profil Ø [mm]: 6,5; 8,0; 10,0; 12,5; 16,0; 20,0,
mit beidseitigem Anschluss bzw. Rückführung
über Heizelementmantel (andere auf Anfrage)
Lager Ø [mm]: 10,0; 12,5; 16,0; 20,0
max. Gesamtlänge: 3000 mm
Mantelmaterial: Edelstahl
Heizelement-Manteltemperatur:
max. 750 °C
max. Manteloberflächenbelastung:
10 W/cm2
Heizleiterwerkstoff: NiCr 8020
Hochspannungsfestigkeit
(kalt im gestreckten Zustand)
bei Nennspannung ≤ 24 V: 500 V-AC
bei Nennspannung > 24 V: 1500 V-AC
(nicht bei Rückführung über
Heizelementmantel)
Isolationswiderstand (kalt):
≥ 5 MΩ bei 500 V-DC
max. Ableitstrom (kalt):
≤ 0,5 mA bei 253 V-AC
Längentoleranz: ± 1,5 %
Leistungstoleranz (kalt): ± 10 %
Durchmessertoleranz: ± 0,1 mm
max. Anschlussspannung: 480 V
Anschlussausführung: 250 mm von innen
herausgeführte glasseiden isolierte Ni-Leitung
stofffolien oder Textilien insbesondere mit der
Messerpatrone oder die Beheizung von medizinischen
Bestellangaben
Apparaten oder Analysegeräten.
6
hotrod (Typ LHT)
®
Anwendung: ..........................................
+ Artikel-Nr. (falls bekannt): ..................
+ Ø: ......................................................
+ Länge: ...............................................
+ Leistung: ...........................................
+ Spannung: .........................................
+ Anschlusslänge: ................................
+ Anschlussausführung: .......................
+ Stückzahl: .........................................
hotrod Messerpatrone Ø 5 mm
Mantelmaterial: Incoloy
®
Andere Abmessungen und Produktvarianten
auf Anfrage.
Irrtum und technische Änderungen vorbehalten.
Bitte beachten Sie die Einbau- und
Lagerungshinweise.
Appendix
Appendix 2: The tension unit
Thomas Weyrauch
Report PTM
A2
! "#$ !% %% % & % ' () $ *#+ +
#,-% .$/% %% % $#% 0, $ & %% 1%'$ 2
% $ ' " .$/% % $
('3/% 4 #4 5)$
/6 # 2
%
% ' $ %# %#
%%3788,,,$8%%$8$8"8
$%/8 98 9:3 $ * ;<= => =? %
5
@ 0
5
<> *+7 ;8A>
B>
>@ B
> *+7 ;8A>
B
>A< B=
>? ($% %'%+-#
0>
A 0
>=A@ <
> (
!2C =>>=
! 1% #% ' /"% A $ , D3#"% %% /6
5 $ E%#/% $ 5/%/% %F
D!2% F
(
!2C =>>=
! 1% #% ' /"% A $ , D3#"% %% /6
5 $ E%#/% $ 5/%/% %F
D!2% F
G,
%
>< A@ /# (
$%# # ' *
33 !2C <@! # $ +,
' # % 33 ")A , / $
"# %
B
2011-06-09 15:33
@ C
1
B
@ C
!2C <@5(
*
33
1$ $ 33 $ $ %+%A $ $
H -# I %#
2011-06-09 15:33
2
2011-06-09 15:33
3
!"
# $# # %& '
( () * +",- # #
.* $#- /0 10")" 0 0 ! +", )
%2, 3#
3- 4&) ,5 )0
10")") # 6"
#
2788***--8"--88!8),8#98#9-:2 " '0" ;<= => ? @ =A #-
4
)) '"(7 @BC>
.
)) '"(7 @BC>
D
BBB )) )ED F G D
# <BB )) 4#0
!" <BB )) # D )E 0#*
0 40
- C D
D)E #C *
())
( 0 "# ())
( ( # '
*
)&
0"-
4>
>> ))
<< ))
H<
B ))
HI
II ))
)E
HI
>I ))
)
H
II ))
)E
H
>I ))
)
6>
%
1J =>@>-=
/ 0 ,"! ## C #" * K"2
! 0 ,540 , 4,"," L
K 1@M ?BL
2011-06-09 15:31
> ))
1
2011-06-09 15:31
2
! " #$%&#'
( )*(
+ ), + - . /* & " 0 1,
!2 3
4 -2 (. 5(,", ( 3 (. ) 1,
! "
/.6
! 7
72 8
*" !9 3 "( 5(,"," . :,
6;<<
22<,22<<)<"!<<2=6 , &(, >? ?@ AB B C B ?D 2
"" &,; E@
>BB < >@B
+
"" &,; >B < >A
"" &,; @A
C
#"6(, #
,
0
,; 4D
,; D
5
", #
4D 0
; +@@
(
"
B "" &,; ><CD
E
AB F " & E
AB F & " 3,"
8
*
" @B "" 6
&, 8
( 8(2
2011-06-09 15:28
1
2011-06-09 15:28
2
! "# $% %& '( )* +
,' * -! .-& - + -! ) &
"!/ 0
0* 1#& + &-
.-&& ! 2
/344'''**4
**44
4&4545*6/ $- 78 89 :; <; = ;< 8> *
&& $%3 ,<
,
8 &&
9< &&
?
< &&
1@
@ && $%3 74=A9
9
>B &&
;
"9B
,;
@ && $%3 74=A9
,
@>AB &&
,@
99A> &&
,B
&&
C
<; && $%3 74=A9@
C9
B@ &&
C?
:; &&
2@
"9;
-! -
.+D >B;=<*<
+
A ' E/ - *
9
9:A@ &&
:
; &&
9 && F -! +-
$@
: &&
< &&
&
2011-08-16 10:47
A<@ " 1
2011-08-16 10:47
2
1 -107
D
5~12
5%
20~49
15%
€ Stückpreis
13~19
10%
100 150
50
200
300
400
500
600
3∙4∙5
18,87
18,87
25,20
27,72
32,26
35,36
40,25
51,63
63,87
90,58
-
11,31
11,81
16,64
17,07
17,43
18,29
22,04
24,48
29,16
34,71
44,64
31,90
35,00
38,38
44,93
51,12
64,30
79,56
113,04
-
19,80
20,31
20,81
21,82
26,57
29,74
35,43
42,48
55,01
-
41,98
48,32
56,74
64,73
76,90
95,19
135,36
-
24,99
25,42
31,11
39,96
41,76
49,90
64,88
-
800 1000 1200
-
C
0.4
max. 1.0
max. 0.5
G
80,93
96,20
118,95
169,35
-
49,97
52,20
62,36
81,08
-
∙
1500
PSSFJ
EPSSFU
PSFJ
EPSFU
Ausführung
6.3
0.4 0.4
Teilenummer
Ausführung
D
6
8
10
12
13
15
(D-Toleranz f8)
16
PSFG
18
PSSFG
20
25
30
35
40
50
3
4
5
6
8
10
12
13
15 ∙ 16
18 ∙ 20
25
30
35
40
50
3
4
5
6
8 ∙ 10
12 ∙ 13
15 ∙ 16
18 ∙ 20
25
30
35
40
50
D
Teilenummer
2-C
Ohne Oberflächenbehandlung
max. 0.2
Min. L L51 L101 L151 L201 L301 L401 L501 L601 L801 L1001 L1201
~
1,59 2,38 3,17 3,96 5,98 7,20
6
1,23 1,80 2,45 3,03 4,61 5,55 6,84 8,14
8
1,23 1,88 2,45 3,10 4,76 5,62 7,13 8,50
10 1,30 1,95 2,60 3,24 4,90 5,91 7,35 8,79
12 1,44 2,09 2,81 3,53 5,26 6,27 7,92 9,44
13 1,44 2,24 2,96 3,60 5,48 6,48 8,14 9,72
SFJ 15 ∙ 16 1,52 2,31 2,96 3,75 5,62 6,77 8,36 10,01
ESFU 18 ∙ 20 1,59 2,38 3,17 3,96 5,98 7,20 8,93 10,73
25 1,95 2,96 4,04 4,97 7,49 9,08 11,38 13,54
30 2,24 3,46 4,54 5,69 8,57 10,23 12,82 15,41
35 2,74 4,25 5,55 6,99 10,52 12,60 15,77 18,94
40 3,32 5,12 6,84 8,50 12,75 15,34 19,16 23,04
50
- 6,84 9,08 11,38 17,00 20,31 25,42 30,60
3
2,09 3,24 4,25 5,33 8,00 9,65
4 ∙ 5 2,09 3,10 4,18 5,19 6,84 7,71
6
2,38 3,60 4,83 6,05 7,92 8,79 11,38 14,12
8
2,38 3,60 4,83 6,05 7,92 8,79 11,38 14,12
10 2,38 3,60 4,83 6,05 7,92 8,79 11,38 14,12
12 ∙ 13 3,03 4,47 6,05 7,49 9,87 10,95 14,33 17,72
SSFJ 15 ∙ 16 3,75 5,62 7,49 9,44 12,89 14,76 17,14 19,37
ESSFU 18 ∙ 20 4,25 6,20 8,36 10,44 14,19 16,06 18,65 21,24
25 4,61 7,06 9,44 11,74 16,42 19,01 22,04 25,06
30 5,26 8,07 10,73 13,40 18,72 21,60 24,99 28,30
35 5,98 9,15 12,17 15,27 21,32 24,77 31,11 37,44
40 8,57 13,18 17,50 21,89 28,01 30,75 38,60 46,37
50
- 17,57 23,48 29,31 38,60 43,13 54,08 64,95
EBei Toleranz D h5 wird dem obigen Preis 2,00 EUR hinzugerechnet.
Ausführung
~
~
Teilenummer
Stückz.
1~4
Mengenrabatte € Stückpreis
~
-
G
-0.025
-0.064
-0.007 0
-0.020 -0.009
-0.009 0
-0.025 -0.011
€ Stückpreis
max. 1.0
max. 0.5
C
-0.020
-0.053
-0.017 -0.008
-0.010
-0.028
-0.013
-0.035
-
-0.016
-0.043
G0
-0.006
0.4
0.4
-0.005 0
-0.014 -0.006
-0.004 0
-0.012 -0.005
L
1mm-Schritte
20~ 600
20~ 800
20~ 800
20~1000
25~1000
25~1000
30~1200
30~1200
30~1200
35~1200
35~1500
35~1500
50~1500
65~1500
8
10
12
13
6.3
15
16
18
20
25
30
35
40
50
6
4
5
3
f8
Min. L L51 L101 L151 L201 L301 L401 L501 L601 L801 L1001 L1201
EAngefragte Mindestmenge für Wellen der Präzisionskategorie größer als 30mm Außen-Ø mit LTBCBeschichtung ist 50.
L
1mm-Schritte
10~ 400
10~ 400
10~ 400
20~ 600
20~ 800
20~ 800
20~1000
25~1000
25~1000
30~1200
30~1200
30~1200
35~1200
35~1500
35~1500
50~1500
65~1500
QMengenrabatt (EAbgerundet auf einen Cent.) S.87
~
Preis
(D Toleranz h5)
SFU
SSFU
PSFU
PSSFU
D
3
4
5
6
8
10
12
13
15
16
18
20
25
30
35
40
50
~
(D≤30, L≤500)
SFJ
SSFJ
PSFJ
PSSFJ
RSFJ
(D Toleranz g6)
Teilenummer
Ausführung
L
1.1191
1.4301
0.4
1.3505
PSFG
PSSFG
1,59
1,52
1,52
1,52
1,59
1,66
1,73
1,80
1,88
2,02
2,38
2,74
3,24
3,89
3,32
3,17
3,17
3,03
3,53
4,40
5,55
6,20
6,70
7,64
8,36
12,03
-
50
~
-
1.4125
-
-
2,38
2,16
2,16
2,31
2,31
2,38
2,67
2,67
2,74
2,96
3,75
4,25
4,97
6,05
8,00
4,97
4,68
4,68
4,61
5,26
6,63
8,28
9,22
10,23
11,81
12,89
18,51
24,92
3,17
2,96
2,96
3,03
3,17
3,24
3,53
3,60
3,68
3,89
4,97
5,62
6,63
8,00
10,66
6,70
6,20
6,20
6,20
6,99
8,79
11,09
12,24
13,76
15,77
17,21
24,77
33,20
100 150
~
EEigenschaften von LTBC W S.118
EFür Rundheit und Geradheit D P.103
~
hartverchromt
Oberflächenhärte: HV750~
Beschichtungsdicke min. 5μm
LTBC
hartverchromt
Oberflächenhärte: HV750~
Beschichtungsdicke min. 10μm.
~
1.3505
3,96
3,60
3,60
3,82
3,89
4,04
4,40
4,47
4,61
4,90
6,20
7,06
8,21
10,01
13,25
8,36
7,85
7,85
7,64
8,79
11,02
13,83
15,34
17,21
19,66
21,53
30,89
41,48
200
~
-
~
-
5,98
5,48
5,69
5,62
5,84
6,12
6,56
6,77
6,92
7,35
9,36
10,66
12,32
14,98
19,88
12,53
11,74
10,66
10,16
11,52
14,48
19,01
20,81
24,05
27,51
30,24
39,68
54,72
300
~
-
~
induktionsgehärtet
Effektive Einhärtetiefe
DS.104
1.3505
58HRC~
1.4125
56HRC~
7,13
6,56
7,06
6,77
6,99
7,35
7,85
8,07
8,28
8,79
11,24
12,68
14,69
18,00
23,84
14,98
14,04
12,03
11,38
12,89
16,06
21,75
23,69
27,72
31,76
35,14
43,49
61,20
400
~
1.3505
1.4125
11,96
16,85
21,03
25,06
27,44
32,33
36,65
44,07
54,65
76,61
-
8,50
8,79
9,08
9,72
10,08
10,30
11,09
13,97
15,92
18,44
22,47
29,88
-
500
~
-
~
D-Toleranz
g6
h5
-0.002 0
-0.008 -0.004
12,53
20,74
26,00
28,52
31,18
36,87
41,62
53,00
65,74
92,02
-
10,16
10,59
10,80
11,67
12,03
12,39
13,32
16,71
19,08
22,18
26,93
35,93
-
600
~
SFU
SSFU
PSFU
PSSFU
~
D
D
27,65
37,08
40,68
47,38
51,84
59,12
73,23
90,58
128,38
-
13,97
14,55
20,52
21,10
21,60
22,68
27,29
30,32
34,20
40,61
52,42
-
46,88
51,41
56,38
65,88
75,03
91,08
112,76
160,20
-
24,41
25,06
25,78
27,00
32,84
36,80
41,69
49,90
64,52
-
61,71
71,00
83,24
95,04
108,94
134,93
191,88
-
30,96
31,47
38,60
49,47
52,35
58,54
76,18
-
118,88
136,23
168,63
239,91
-
61,85
65,52
73,16
95,12
-
800 1000 1200 1500
~
SFJ
SSFJ
PSFJ
PSSFJ
RSFJ
~
S
Oberflächenbehandlung
WSC
A
A
WFC
FC
ℓ1 X
E
W
Lieferzeit
8,28
7,71
7,78
7,85
8,86
9,00
9,94
9,94
10,88
13,18
14,84
17,86
13,61
15,63
17,50
20,60
21,68
25,28
27,00
30,96
31,25
42,05
48,60
W
5
7
8
10
11
13
14
16
17
22
27
30
36
41
Arbeitstage
Arbeitstage
13
Arbeitstage
- RSFJ
WFC
L
75
4,00
Stellschrauben-Planflächen an zwei Positionen hinzufügen
Bestellnummer WFC10-A8-E20
WFC, A und E in 1mm-Schritten wählbar
E WFC≤3xD
D
H
E Wenn 1.5xD<FC, 2WFC≤L/2
3~ 5
0.5
E A (E) = 0 oder A (E) ≥ 2
6~18
1
Kann
nicht
auf
der
gleichen
Ebene
bearbeitet
werden.
20~40
2
X
3
Kann nicht zusammen mit FC eingesetzt werden. 50
8,00
4,00
2,00
20
15
10
8
ℓ1
4,00
Aufpreis
6
8
10
12
13
15 ∙ 16
18 ∙ 20
25
30
35
40
50
6
8
10
12
13
15 ∙ 16
18 ∙ 20
25
30
35
40
50
1,44
1,52
1,52
1,66
1,66
1,73
1,88
2,31
2,67
3,24
3,96
5,26
3,39
3,39
3,39
4,25
4,25
5,26
5,84
6,56
7,49
8,50
12,24
16,49
100
4,76
4,90
5,04
5,48
5,55
5,76
6,20
7,85
8,86
10,80
13,18
17,50
8,86
9,08
9,08
11,38
11,38
15,27
16,64
19,66
22,40
25,64
31,83
44,72
2,38
2,45
2,52
2,67
2,81
2,96
3,10
3,82
4,40
5,48
6,63
8,79
5,55
5,55
5,55
6,99
6,99
8,79
9,72
10,88
12,53
14,19
20,45
27,36
7,13
7,35
7,56
8,14
8,43
8,57
9,22
11,67
13,25
16,28
19,80
26,28
14,33
14,62
14,62
18,36
18,36
20,16
21,96
26,00
29,38
38,81
48,10
67,32
1000
1500
1200
L801 L1001 L1201
CAD-Daten
G
WVC
VC
b1
h
Y
h
Verfügbar nur für D = 12, 16, 20, 25 oder 30.
Anwendungshinweise
Eine Keilnut wird hinzugefügt.
Bestellnr.
KC10-G10
Zwei Keilnuten.
Bestellnr. WVC180-F8
Anwendungshinweise Nur verfügbar
für D = 6 und darüber
XKann nicht mit VC verwendet werden
WVC
KC
Fügt an einer Position eine V-Nut hinzu
Bestellnr.
VC8
Anwendungshinweise Nur verfügbar
für D = 6 und darüber
XKann nicht mit WVC verwendet werden
2x90° Planflächen für Stellschraube
Bestellnr. WRC10-Y10
Anwendungshinweise Geeignet
für D=10 ~ 30
XNicht in Verbindung C
XNicht verfügbar auf derselben Ebene.
Position
Bestellnr. RC10
Anwendungshinweise Geeignet für
D=10 ~ 30
XKann nicht mit WRC verwendet werden
90 Grad hinzufügen Stellschrauben-Planfläche an einer
Anwendungshinweise
XNicht anwendbar für RSFJ,
PSFG und PSSFG sind nicht anwendbar.
Änderung auf Außen-Ø h5 Toleranz
Bestellnr. DKC
Spez.
VC
WRC
RC
DKC
Opt.-Nr.
Straight Shaft
Beispiel
ESiehe Übersicht zu den Optionen, falls sie angegeben sind.D S.105
EBei mehr als einer Option ist ein Abstand von mindestens 2mm
zwischen den bearbeiteten Bereichen erforderlich.D S.106
EOptionen können die Härte vermindern.D S.104
F
b1
RC
b1
Optionen
5,00
4,00
2,00
10,00
5,00
-
Optionen-DetailsD S.105
Aufpreis
9,80
10,16
14,33 17,07
14,62 17,50
15,05 17,86 21,53
15,77 18,80 21,89
19,01 22,97 26,79
21,10 25,64 34,42 43,06
25,06 30,60 36,00 45,00
29,88 36,65 42,99 53,72
38,52 47,38 55,88 69,84
19,59
19,59
26,14 33,05
26,14 33,05
28,80 36,29 43,49
33,41 39,82 50,12
36,65 46,52 58,76
41,76 53,00 67,11 83,96
53,50 66,60 79,71 99,72
66,32 82,52 98,72 123,41
93,89 117,22 140,33 175,54
800
L601
200
600
400
~
€ Stückpreis
L401
L201
Min. L L101
~
DKC Optionen wurden im Juni 2010 eingestellt.
(RSFJ muss am 13. Tag
Bitte neue Teilenummern angeben; SFU, SSFU, PSFU und PSSFU auf der
nach Bestellung versendet linken Seite, um Bestellungen aufzugeben.
werden)
KC
WRC
10 Arbeitstage
PSSFG
PSFG
FC
8,00 EUR/
Express A
Einheit
EExpressgebühr von 21,60 EUR für 3 oder mehr identische Artikel.
5
D
6
8
10
12
13
15
16
18
20
25
30
35
40
50
Schlüssel-Planflächen an zwei Positionen hinzufügen
Bestellnummer WSC12-X8
Anwendungshinweise Nur verfügbar für
D = 6 und darüber. WSC/X in 1mm-Schritten auswählen.
E WSC+X+ℓ1x2<L
E WSC (X)=0 oder WSC (X)≥1
E Kann nicht auf der gleichen Ebene
bearbeitet werden. Nicht in Verbindung mit SC verwenden.
Fügt einen Satz Schlüsselflächen hinzu.
Bestellnummer SC5
Anwendungshinweise Nur verfügbar
für D = 6 und darüber
SC=1mm-Schritte
E SC+ℓ1≤L E SC=0 oder SC≥1
X Kann nicht mit WSC verwendet werden
Entfettungs-Service DS.83
8
Spez.
13,11
12,32
13,25
15,20
17,28
18,36
21,17
22,90
25,85
29,24
36,44
41,40
Toleranzänderungen Maß L (Präzisionsausführung)
Bestellnummer LKC
Bei Verwendung von LKC können die L-Maße in
0.1mm-Schritten gewählt werden.
E L<200
CL±0.03
200≤L<500CL±0.05
L≥500
CL±0.1
LKC
11,88
10,52
11,52
13,40
14,55
15,63
17,50
19,16
21,24
23,76
29,09
37,37
D
Teilenummer
Ausführung
Stellschrauben-Planfläche an einer Position hinzufügen
Bestellnummer FC10-A8
FC und A wählbar in 1mm-Schritten.
D
H
3~ 5
0.5
E FC≤3xD
6~18
1
E Wenn 1.5xD<FC, FC≤L/2
20~40
2
E A=0 oder A ≥ 2
3
XKann nicht mit WFC verwendet werden 50
WSC
SC
LKC
Opt.-Nr.
9,87
8,93
9,87
10,01
12,03
12,10
13,90
13,90
20,88
19,80
23,62
26,57
(LKC/SC...etc.)
9,08
8,36
8,36
9,36
11,31
10,59
11,45
12,24
13,32
17,57
19,30
23,98
Teilenummer - L - 250 SFJ30
7,49
7,13
7,13
7,20
7,35
7,35
8,28
8,28
8,36
10,23
10,44
12,39
50
500
100
~
400
~
300
L101
~
200
L151
~
150
L201
~
Bestell- Teilenummer SFJ20
beispiel
WFC
ℓ1
ℓ1
LKC
Optionen
W
RSFJ
SC
3∙4∙5
6
8
10
12
13
15
16
18
20
25
30
Optionen
D
Ausführung
L401
L301
~
L51
~
€ Stückpreis
~
Min. L
~
Teilenummer
DKC
H
Härte
~
h
h
Ausführung
M
D Toleranz g6 D Toleranz h5 D-Toleranz f8 Werkstoff
~
~
EWellenlänge kann in 1mm-Schritten ausgewählt werden.
~
~
-Gerade Ausführung-
h
h
~
Weitere Details siehe Optionen-Übersicht
D S.105
Wellen
h
~
1 -108
Appendix
Appendix 3: The case and structure unit
Thomas Weyrauch
Report PTM
A3
Appendix
Thomas Weyrauch
Report PTM
A4
Appendix
Appendix 4: Pilot tests
Thomas Weyrauch
Report PTM
A5
)
)
)
*
*
*
+
+
+
)
)
)
*
*
*
+
+
+
)
)
)
)
)
)
)
)
)
)
)
)
!"
#!"$%! &
##"%#$'(
$('"$
'$!' !"!&$
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
*12
/
13
$.($"$!'/
transverse load/ kN
"!
$#!(*12
)
*
+
movement/ mm
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
)12
/
13
$.($"$!'/
*
"!
$#!()1213
)
*
+
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
12
/
13
$.($"$!'/
*
"!
$#!(1213
)
*
+
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
*
12
13
$.($"$!'/
"!
$#!(1213
)
*
+
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
12
/
13
$.($"$!'/
"!
$#!(13
)
*
+
!
"
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
*12
/
13
$.($"$!'/
"!
$#!(*123
)
*
+
#
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
)12
/
13
$.($"$!'/
*
"!
$#!()123
)
*
+
##
$
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
12
/
13
$.($"$!'/
*
"!
$#!(123
*
)
*
+
#%
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
*
12
13
$.($"$!'/
"!
$#!(123
)
*
+
#&
without heat
"!'' #!,! &!$#&'#!(
$-! &.#'/
0*0
"!
$#!(/
12
/
13
$.($"$!'/
"!
$#!(123
)
*
+
'()
*12413
)12413
12413
12413
*
12413
) * + '*()
*
*1243
)1243
1243
1243
*
1243
) * + 1353$'6
! *12
*12413
*1243
)
*
+
1353$'6
! )12
*
)12413
)1243
)
*
+
1353$'6
! 12
*
12413
*
1243
)
*
+
1353$'6
! 12
12413
1243
)
*
+
1353$'6
! 12
12413
1243
)
*
+
Appendix
Appendix 5: Datasheets materials
Thomas Weyrauch
Report PTM
A6
Auer Kunststofftechnik
GmbH & Co. KG
Werkstoffdatenblatt
Polyamid 66 HI
Chemische Bezeichnung:
DIN-Kurzzeichen:
Farbe, Zusätze:
PA 6.6 HI
Polyamid 66
PA 66
braun, Hitzestabilisator
Hauptmerkmale
sehr fest
steif
gute Gleit-/Reibeigenschaften
stabilisiert gegen Wärmealterung
hohe Zähigkeit
beständig gegen viele Öle, Fette und Kraftstoffe
gut zerspanbar
verschleißfest
gut elektrisch isolierend
gut schweiß- und klebbar
Anwendungen
Maschinenbau
Automobilindustrie
Transport- und Fördertechnik
Elektrotechnik
Feinwerktechnik
Haushaltsgeräte
Textilverarbeitung
Beispiele
div. Maschinenteile, Zahnräder, Gleitlager, Gleitleisten, Buchsen, Nockenscheiben,
Seilrollen, Laufrollen, Führungselemente, Steckverbindungen
Mühlbachstraße 1, 74078 Heilbronn
Telefon 07131/59438-0 Telefax 07131/59438-20
www.auer-kunststofftechnik.de E-Mail: [email protected]
Auer Kunststofftechnik
GmbH & Co. KG
Werkstoffdatenblatt
Polyamid 66 HI (PA 6.6 HI)
Eigenschaften
Mechanisch
trocken /
feucht
Streckspannung
80 / 60
MPa
DIN EN ISO 527
Streckdehnung
4
%
DIN EN ISO 527
Reißfestigkeit
Norm
MPa
Reißdehnung
50 / 150
%
DIN 53 455
Zug-E-Modul
2700 / 1600
MPa
DIN EN ISO 527
Biege-E-Modul
MPa
Härte
170 / 100
Schlagzähigkeit 23º C
n.b.
Zeitstandfestigkeit
DIN 53 456 (Kugeldruckhärte)
kJ/m²
DIN EN ISO 179 (Charpy)
MPa
nach 1000 h bei stat. Belastung
Zeitdehnspannung
6
MPa
für 1% Dehnung nach 1000 h
Gleitreibungskoeffizient
p = 0,05 N/mm²v=0,6 m/s
gegen Stahl gehärtet und geschliffen
Gleitreibungsverschleiß
µm/km
p = 0,05 N/mm²v=0,6 m/s
gegen Stahl gehärtet und geschliffen
trocken /
feucht
Thermisch
Kristallitschmelzpunkt
Norm
°C
Glasübergangstemperatur
72 / 5
°C
DIN 53 765
Formbeständigkeitstemperatur
100
°C
ISO-R 75 Verfahren A (DIN 53 461)
200
°C
ISO-R 75 Verfahren B (DIN 53 461)
kurzzeitig
180
°C
dauernd
115
°C
Wärmeleitzahl (23º C)
0,23
W/(K·m)
Spez. Wärmekapazität (23º C)
1,7
J/g.K
lin. therm. Längenausd.koeff. (23-55º C)
8
10 1/K
HDT, Verfahren A
Formbeständigkeitstemperatur
HDT, Verfahren B
Maximale Anwendungstemperatur
-5
DIN 53 752
Mühlbachstraße 1, 74078 Heilbronn
Telefon 07131/59438-0 Telefax 07131/59438-20
www.auer-kunststofftechnik.de E-Mail: [email protected]
Auer Kunststofftechnik
GmbH & Co. KG
Werkstoffdatenblatt
Polyamid 66 HI (PA 6.6 HI)
Elektrisch
trocken /
feucht
Norm
Dielektrizitätszahl (106 Hz)
3,2-5
DIN 53 483, IEC-250
Dielekt. Verlustfaktor (106 Hz)
0,025-0,2
DIN 53 483, IEC-250
Spezifischer Durchgangswiderstand
10^12
Oberflächenwiderstand
10^10
Durchschlagsfestigkeit
100 / 80
Kriechstromfestigkeit
KB>600
KC>600
*cm
DIN IEC 60093
DIN IEC 60093
kV/mm
DIN 53 481, IEC-243, VDE 0303 Teil 2
DIN 53 480, VDE 0303 Teil 1
Sonstige
trocken /
feucht
Dichte
1,14
g/cm
Feuchtigkeitsaufnahme
2,8
%
DIN EN ISO 62
Wasseraufnahme bis zur Sättigung
8,5
%
DIN EN ISO 62
Brennbarkeit nach UL- Standard 94
HB
Norm
3
DIN 53 479
im NK bis zur Sättigung
(1) Geprüft an gepressten Platten
(2) Geprüft an Halbzeug
(3) Literatur Wert
Unsere Informationen und Angaben entsprechen dem heutigen Stand unserer Kenntnisse und sollen über unsere Produkte und deren
Anwendungsmöglichkeiten informieren. Sie haben somit nicht die Bedeutung, die chemische Beständigkeit, die Beschaffenheit der Produkte und
die Handelsfähigkeit rechtlich verbindlich zuzusichern oder zu garantieren. Unsere Produkte sind nicht für eine Verwendung in medizinischen oder
zahnmedizinischen Implantaten bestimmt. Etwa bestehende gewerbliche Schutzrechte sind zu berücksichtigen. Sofern nicht anders vermerkt,
wurden die Werte an spritzgegossenen Prüfkörpern in "spritzfrischem" Zustand ermittelt. Technische Änderungen vorbehalten.
Mühlbachstraße 1, 74078 Heilbronn
Telefon 07131/59438-0 Telefax 07131/59438-20
www.auer-kunststofftechnik.de E-Mail: [email protected]
F A K TA
OM
VERKTYGSSTÅL
ARNE
Kallarbetsstål
Där verktyg tillverkas
Där verktyg används
ARNE
Uppgifterna i denna trycksak bygger på vårt nuvarande kunnande och
är avsedda att ge allmän information om våra produkter och deras
användningsområden. De får således inte anses utgöra någon garanti
för att de beskrivna produkterna har vissa egenskaper eller är lämpliga för speciella ändamål.
2
ARNE
Egenskaper
Allmänt
ARNE är ett oljehärdande mangan-, krom- och
volframlegerat verktygsstål av universaltyp med
stor användbarhet för kallarbetsändamål. Dess viktigaste egenskaper är:
• God skärbarhet
• God måttbeständighet vid härdning
• En bra kombination av hög ythårdhet och seghet efter härdning och anlöpning.
Tillsammans ger dessa egenskaper ett stål som
lämpar sig för tillverkning av verktyg med god livslängd och tillverkningsekonomi.
ARNE levereras i olika utföranden, däribland varmvalsat, förbearbetat, finbearbetat och precisionsslipat. Det kan också erhållas i form av hålad stång.
Riktanalys %
Standard
C
0,95
Mn
1,1
Cr
0,6
W
0,6
V
0,1
FYSIKALISKA DATA
Härdat och anlöpt till hårdhet 62 HRC.
Data vid rumstemperatur och förhöjd temperatur.
Temperatur
20°C
200°C
400°C
Densitet
kg/m3
7 800
7 750
7 700
190 000
19 500
185 000
19 000
170 000
17 500
Elasticitetsmodul
N/mm2
kp/mm2
Längdutvidgningskoefficient
per °C from 20°C
–
Värmeledningsförmåga
W/m °C
32
33
33
34
34
Specifikt värme
J/kg C
460
–
–
11,7 x 10-6 11,4 x 10-6
(SS 2140), AISI O1, W.-Nr. 1.2510
Leveranstillstånd
Mjukglödgat till ca. 190 HB
Färgmärkning
Gul
TRYCKHÅLLFASTHET
Ungefärliga värden.
Användningsområden
Verktyg för
Klippning
Stansning, hålning,
snoppning, klippning,
skäggning
Materialtjocklek
upp till 3 mm
3–6 mm
6–10 mm
Stukgräns
Rc0,2, N/mm2
62 HRC
60 HRC
55 HRC
50 HRC
2200
2150
1800
1350
HRC
60–62
56–60
54–56
Kortslagssaxar för kallklippning
Skäggningsverktyg för
smidda ämnen
Hårdhet
54–60
varmt
kallt
58–60
56–58
Formning
Bockning, dragpressning, kantvalsning,
trycksvarvning och sträckpressning
56–62
Små präglingsverktyg
56–60
Mätverktyg
Svarvdubbar
Styrhylsor, utstötarpinnar
Små kugghjul, kolvar, munstycken, kammar
Maskinkomponenter utsatta för slitage
58–62
Skäggnings- och kantformningsverktyg i verktygsstål
ARNE för behållare av 0,91 mm tjock rostfri stålplåt, i
dimension 254 x 152 x 203 mm.
3
ARNE
Värmebehandling
ANLÖPNING
MJUKGLÖDGNING
Skydda stålet mot ytavkolning och genomvärm till
780°C. Därefter svalning i ugn med 15°C per
timme till 650°C och sedan fritt i luft.
AVSPÄNNINGSGLÖDGNING
Välj anlöpningstemperatur enligt diagrammet för
att erhålla avsedd hårdhet. Anlöp två gånger med
mellanliggande kylning till rumstemperatur.
Lägsta anlöpningstemperatur 180°C. Hålltid vid
anlöpningstemperatur min 2 timmar.
Anlöpningsdiagram
Efter grovbearbetning bör verktyget genomvärmas
till 650°C. Hålltid 2 timmar. Långsam svalning i
ugn till 500°C, därefter fritt i luft.
Hårdhet, RC
Restaustenit %
66
64
HÄRDNING
62
Förvärmningstemperatur: 600–700°C
Austenitiseringstemperatur: 790–850°C
Austenitiseringstemperatur
60
820°C
58
Temperatur
°C
Hålltid*
minuter
Hårdhet före
anlöpning
56
800
825
850
30
20
15
ca. 65 HRC
ca. 65 HRC
ca. 63 HRC
52
54
790°C
50
48
* Med hålltid avses tid vid austenitiseringstemperatur
sedan arbetsstycket är helt genomvärmt.
14
Restaustenit
850°C
46
12
44
Skydda detaljen mot avkolning och oxidation under
värmning för härdning.
10
8
42
40
38
6
4
36
2
100
SLÄCKNINGSMEDEL
• Olja
• Etappbad, 180–225°C, därefter kylning i luft.
Notera: Anlöp så snart arbetsstycket nått en temperatur av 50–70°C.
8
66
6
64
4
62
2
60
40
30
760 780
20
10
800
820 840
860
Austenitiseringstemperatur
4
500
600
700°C
Verktyg vid austenitiseringstemperatur nedsänkes
i etapphärdningsbadet under tid enligt tabellen och
kyles därefter i luft till en temperatur av 50–70°C.
Anlöp omedelbart som vid oljehärdning.
Hålltid 1tim.
Restaustenit
400
ETAPPHÄRDNING
Restaustenit %
Hålltid
20 minuter
300
Anlöpningstemperatur
Hårdheten som funktion av austenitiseringstemperaturen.
Kornstorlek Hårdhet
ASTM HRC
10
Kornstorlek
200
880 °C
Austenitiseringstemperatur
°C
Temperatur
på etappbad
°C
825
825
825
850
225
200
180
225
Ythårdhet före
Hålltid i
anlöpning
etappbad, (erhållen vid
minuter etapphärdning)
max. 5
max. 10
max. 20
max. 10
64±2 HRC
63±2 HRC
62±2 HRC
62±2 HRC
ARNE
DJUPKYLNING OCH ÅLDRING
DIMENSIONSÄNDRINGAR
VID HÄRDNING
Provplatta 100 x 100 x 25 mm
Oljehärdning
från 830°C
min.
max.
Bredd
%
+0,03
+0,10
Etapphärdning
från 830°C
min.
max.
+0,04
+0,12
Längd
%
+0,04
+0,10
Tjocklek
%
–
+0,02
+0,06
+0,12
–
+0,02
DIMENSIONSFÖRÄNDRINGAR
VID ANLÖPNING
Detaljer som kräver maximal måttstabilitet bör
djupkylas och/eller åldras för att volymändringar
inte skall uppstå med tiden. Detta gäller exempelvis mätverktyg och vissa konstruktionsdetaljer.
Djupkylning
Omedelbart efter släckningen bör arbetsstycket
djupkylas till mellan –70 och –80°C, hålltid 3–4 timmar, med efterföljande anlöpning eller åldring.
Djupkylning ökar hårdheten med –3 HRC.
På grund av sprickrisken bör komplicerad utformning undvikas.
Åldring
Anlöpning efter släckning ersättes med åldring vid
110–l40°C. Hålltid 25–100 timmar.
Dimensionsförändring %
+0,1
0
–0,1
–0,2
100
200
300
400°C
Anlöpningstemperatur
Notera: Dimensionsförändringarna vid härdning
och anlöpning skall adderas. Rekommenderad
arbetsmån 0,25%.
Stansverktyg av finbearbetat verktygsstål ARNE.
5
ARNE
Skärdatarekommendationer
BORRNING
Snabbstålsborr
Nedanstående skärdata är att betrakta som riktvärden, vilka måste anpassas till rådande lokala
förutsättningar.
SVARVNING
Borrdiameter
Ø mm
Skärhastighet (vc)
m/min.
Matning (f)
mm/varv
–5
5–10
10–15
15–20
16*
16*
16*
16*
0,08–0,20
0,20–0,30
0,30–0,35
0,35–0,40
* För belagd snabbstålsborr vc = 22 m/min.
Svarvning med
hårdmetall
Skärdataparameter
Grovsvarvning
Finsvarvning
Svarvning
med
snabbstål
Finsvarvning
Skärhastighet
(vc) m/min.
140–170
170–220
20
Matning (f)
mm/varv
0,3–0,6
–0,3
–0,3
Skärdjup (ap)
mm
2–6
HårdmetalIbeteckning
ISO
–2
–2
P20–P30
P10
Skärdataparameter
Typav
avborr
borr
Typ
Solid hårdmetallborr
Lödd hårdmetallborr1)
Skärhastighet (vc)
m/min.
120–160
60
55
Matning (f)
mm/varv
0,05–0,252)
0,10–0,252)
0,15–0,252)
Belagd
hårdmetall
Belagd
hårdmetall
eller cermet
2)
Fräsning med
hårdmetall
GrovFinfräsning
fräsning
Borr med invändiga kylkanaler och lödda hårdmetallskär.
Beroende på borrdiameter.
SLIPNING
Fräsning med
snabbstål
Finfräsning
Nedan ges en mycket allmän slipskiverekommendation. För mera detaljerade sliprekommendationer hänvisas till broschyren ”Slipning av verktygsstål”.
Slipskiverekommendation
Mjukglödgat
Härdat
tillstånd
tillstånd
Skärhastighet
(vc) m/min.
160–200
200–240
25
Typ av
slipoperation
Matning (fz)
mm/tand
0,2–0,4
0,1–0,2
0,1
Planslipning
rak skiva
–2
Planslipning
segment
A 24 G V
A 36 G V
Rundslipning
A 46 L V
A 60 J V
Innerslipning
A 46 J V
A 60 I V
Profilslipning
A 100 L V
A 120 J V
Skärdjup (ap)
mm
HårdmetalIbeteckning
ISO
2–5
–2
P20–P40
P10–P20
Belagd
hårdmetall
Belagd
hårdmetall
eller cermet
—
Pinnfräsning
Typ av fräs
Skärdataparameter
Solid
hårdmetall
Hårdmetallvändskär
Snabbstål
50
120–170
251)
Matning (fz)
mm/tand
0,03–0,22)
0,08–0,22)
0,05–0,352)
HårdmetalIbeteckning
ISO
K20, P40
P20–P30
—
Skärhastighet
(vc) m/min.
6
Korthålsborr
—
Plan- och hörnfräsning
2)
Skärdataparameter
1)
FRÄSNING
1)
Hårdmetallborr
För belagd snabbstålsfräs vc = 35 m/min.
Beroende på radiellt skärdjup och fräsdiameter.
A 46 H V
A 46 G V
ARNE
Svetsning
Gnistbearbetning
Svetsning av verktygsstål kan genomföras med
gott resultat om hänsyn tas till förhöjd arbetstemperatur, fogberedning, elektrodval och stränguppbyggnad. Verktyg, som skall poleras eller fotoetsas, måste svetsas med artegna elektroder.
Om gnistbearbetning utföres på verktyg i härdat
och anlöpt tillstånd, bör en extra anlöpning ske vid
en temperatur som ligger ca 25°C under föregående anlöpningstemperatur.
Svetsmetod
Arbetstemperatur
Tillsatsmaterial
Hårdhet efter
svetsning
Metallbågsvetsning
MMA
200–250°C
AWS E312
ESAB OK
84.52
UTP 67S
Castolin 2
Castolin N 102
300 HB
53–54 HRC
55–58 HRC
54–60 HRC
54–60 HRC
AWS ER312
UTPA 67S
UTPA 73G2
Castotig 5
300 HB
55–58 HRC
53–56 HRC
60–64 HRC
Gasvolframsvetsning
TIG
200–250°C
Ytterligare
information
Kontakta närmaste Uddeholmskontor för ytterligare information om val, värmebehandling, användningsändamål, leveransformer och utföranden
av Uddeholms verktygsstål samt broschyren ”Stål
för klipp- och pressverktyg”.
Jämförelsetabell
för Uddeholms kallarbetsstål
MATERIALEGENSKAPER OCH MOTSTÅND MOT SKADEMEKANISMER
Uddeholm
Hårdhet
MaskinbearbetMåttbebarhet Slipbarhet ständighet
Abrasiv
nötning
Adhesiv
nötning
Urflisning/
Brott
Plastisk
deformation
ARNE
CALMAX
RIGOR
SVERKER 21
SVERKER 3
VANADIS 4
VANADIS 10
VANADIS 23
7
Appendix
Appendix 6: Drawings
Thomas Weyrauch
Report PTM
A7
3
4/5
1
*
*
.*5
'
(
,
3
*2
4 .
.*
54 $7%&"
*2
4 * 5*
*50
.5
*2
405
/
.
4/
4
/ ,5.
9
05.
()
*
54
5*
!"#
$
%""&
2
5
+*
9
05.
=
%% &%9"
05
;;5;00
$7%&"
>5
./
<
,5.
82% &%9"
05
;;5;11
9
0
'(
)-
)
+( ()
*/01, ,
$7"#8"
% 05
/
:0
4 :0
4 *
3,3
*
*6
*5
*2
*
'
.*
(
,
4
* 24[
4
<
.
*
9
05.
=
/
>5.
()
82% &%9"
5.
9
05.
4 /
*
>5
+*
!"#
$
%""&
2
,5.
%% &%9"
*
88"#?
./
4 1
'(
)-
)
+( ()
*/01, 9
0
,
$7"#8"
% /
4 *
S 5 4 1 /
* 24[
3
>5.
41
4
45
4 4 .4 4 *5.
'
.*
9
*
**
(
,
2
12.
Q 5* 3
2 .
06
.
<
4 1 /
=
N 54 ()
*
!#"
$
%""&
2
+*
%% &%9"
1
/*
#8@"#&"
./
42 ;51* 24[
82% &%9"
15.
N 5 '(
)-
)
+( ()
*/01, 9
0.
S 5 * 24[
.
9
0.
16
$7"#8"
% 1
/
0
,
1
9
0.
'
.*
<
/
/
()
*
!"#
$
%""&
2
9
*
0*.
78 %:
"7" "
./
4 *5.
'(
)-
)
+( ()
9
*
9
*
=
*/01, 150
2
4
9
*
(
,
2 .
06
,
4 ..5/ ,5.
4 4 /
0
41
1
/
;
4
.
*
;
*04
'
.*
88"#
78 %:
"7" "
"28:$
&#"E
"28:$
&#"E
F"7" "
4
0
/
1
;
.
'(
)-
)
+( ()
()
4
*
*
B8%C
0*
?#"&&#"
%
A
.
*2.4
(
;*
1
2
.
,
11
(
;*
*
2
4
,11
+*
+*
8"7"#
',*
$#"9
8"#%87("8%
7&
./
78%
!&"&
D1
.
*/01, #8@"#&"
*
%7"
$#"
&"&$#
($ "
!"#
"
!"#
(
,
1
*
*;
04
/5
*2
405
/
*5
0;5
/5
.
42
4 .
54
5*
'
.*
(
,
$7%&"
<
54
5*
>5
;5
=
$7%&"
5
.5 ,5
0
>5
()
,5.
>5
%% &%9"
05
*
*.
8@%7
!"#
$
%""&
2
877
% "&%$"
#8%%
8#"
*
G*#*
./
,5
*;5
82% &%9"
05
'(
)-
)
+( ()
*/01, 9
0
,
$7"#8"
% 05
/
,5.
/
445
*
*
*46
5
4
04
.
.
0*
/5
;
5 ,5
.5 >5
*
.
*
/5
*
.
,5
*;5
.
>5
;5
,
445
0
5
'
.*
9
0
,5.
24[
4
()
*
*;
A
*
8##%8:"
./
12
0
2
*
* H5
44 /
'(
)-
)
+( ()
*/01, $7"
8"#
!"7$E
>5
(
,
1
0
5 >5.
4 H5
>5.
5
4 H5
'
.*
0;5
(
,
* 24[
.
.
24[
()
50
.
9
0
9
05.
=
>5
*4
4
!"#
$
%""&
*2
<
,5.
%7"
./
'(
)-
)
+( ()
*/01, .*
*
4 ..
5
9
05.
,5*
4 .
4 24[
*1
/
4 .
'
.*
(
,
>5*
5 24[
,
.25
2*
24[
()
9
0
9
05.
=
!"#
$
%""&
*2
<
*4
I$%
"8
./
'(
)-
)
+( ()
*/01, 4
.
*
**5
.
5 24[
4
0
9
05.
(
;,
5125.
24[
04
,
3*51
*
'
.*
*
(
,
4 4
. 25
<
. :0
9
05.
=
9
05.
()
%% &%9"
.45;;
24[
,5.
*4
77?#$
4
!"#
$
%""&
*2
04
,
3*51
82% &%9"
.45;/
./
*
'(
)-
)
+( ()
*/01, 9
0
/
$7"#8"
% .
:0
. 25
24[
9
05.
42 24[
4 . /
0
'
.*
* 24[
4 2.
;
24[
(
,
*
;
* 24[
,
9
05.
<
*
'(
)-
)
+( ()
()
!"#
$
%""&
2
,5.
%% &%9"
.
*4
88"#
?77?#$
9
05.
=
82% &%9"
.5*
./
9
0
$7"#8"
% .
/
*/01, 4 . /
./51
4
.
.
*
.
;
0
0.0
4
0
/
/
1
'
.*
1
(
,
*
*
I$%
"8
77
#$
88"#
77
#$
$#"
&"&$#
%7"
&8,#%:
D.
E8&"#
D.
&7$"
.
78%
!&"&
D4
)"77"!$K
"28:$
&#"E
"28:$
&#"E
0
/
1
;
*
.J
4
0
()
.
'(
)-
)
+( ()
A
(
;*
,
0
2
,
,
11
(
/;14
,
*
2
4
,
11
8"7
"#
8"7
"#
(
;1
(
*
(
4/
4
',*
$#"9
4
F7"
#
+*
8"#%87
1
4
*
*
*
*
*
*
*
*
*
B8%C
.
?"&%$
%
./
:%E8C
D4
4
*/01, #$77"#
!"8#%:
.
8##%8:"
%7"
8@%7
($ "
!"#
*
"
!"#
1* Z5
.;
3
4
3
3
00
.*
/
.21
<L*4=
41/
0
1
4
*
3
3
3
1.
*
.
0
40
..;
'
.*
<
(
,
9
*
N N ()
*1
>5
9
0.
A
+*
/4
!8&%?78"
./
/
'(
)-
)
+( ()
=
*/01, 9
0.
150
;
L*2.
3L2.
>5.
.0
./*
>5.
4*1
4;4
44
44
"
!%:
$7"&
E%77
!"
88#"
%
"
"2
&"
8
$"&M
8"#
$E
,
4.;
./
1
;6
V 0
06
02
*
,$7"
#$:
1
4
4 /*
02
02.
'
.*
%77"
&#8"&
9
*
(
,
42 * 24[
4
$7"&
Q 4 5* 2 3
"
!%:
$7"&
E%77
!"
88#"
%
"
"2
&"
8
$"&M
8"#
$E
4 1
/
()
A
/1
$?78"
./
N '(
)-
)
+( ()
*/01, ,
.
4 6
V 44
4
1
02
400
/
. Z
1
'
.*
(
,
**
()
%% &%9"
00
0
$7"&
9
05.
A
/1
!8&%?$?78"?8& ./
877
% "&%$"
8 "#&
L
*24[
'(
)-
)
+( ()
*/01, 82% &%9"
005.
%2
!$
78"&
$:""#
"
#%77
,
$7"#8"
% 00
/
@6
@*
@6
$0(
=&'%
!$.$#$%!
&<
?!,! '$,$##.($'& <
;&!#(,(!&$'&$"<
9$('"##%
(:
&
"$ $" "!6&'
.6!'(!
!#$&(
$#/&'#
>>
&6$(!(8&'6'6
7$!'2!
!# !&
!("$!'
A
"++
$
,,,
BC$(DE?'(&.!&!#&!,'$'(,$'6
"$#!(! &
$'($$(#
!"$'6
2!$.#!#$!'/ !#&
$##
'(6$(!(
&,!
#
BC$' !&"/ .!#
###$.,'
.$'6&&!#$'6.!$'6
' "&.!&!#""!($'6!
&(,$'6
!#$( $0$'6&
#'!&$ $'6%.
!$.#52!$.#!#$!'/ ##,#($'6
!$'!'(&"!'""!'
1"&$'$'6& - #!6&
=#$6'''(
!$$!'$'6""!($'6!
&.#%(,$'6
82% &%9"
05;;
04
,
34*5
2
4[ .
2
4[
$7"#8"
% 00
:0
4 00 :0
0 2
5
9
05.
/
0
50
%% &%9"
05;/
'
.*
(
,
S 5 ,3
C 5 ,3
4 H5
/
4 1
()
<
*
=
A
4
9
05.
2
4[
42
04
,
34*5
9
05.
*
$7 &$#
./
9
*
.
2
4[
/
0
'(
)-
)
+( ()
*/01, ,5.
50
3
*
0 2
5
4 00 :0
2
4[ .
2
4[
:#$
9
4
0
$7"#8"
% 00
:0
82% &%9"
05;;
04
,
34*5
4 00 :0
0 2
5
/
50
%% &%9"
05;/
'
.*
(
,
S 5 ,3
C 5 ,3
:#$
9
4
4 H5
/
4 1
()
<
*
A
4
:#$
9
4
=
2
4[
.
*2
:#$
9
4
04
,
34*5
:%"
#$
./
9
*
.
2
4[
/
0
'(
)-
)
+( ()
*/01, ,5.
50
3
*
0 2
5
4 00 :0
1
'
.*
(
,
()
4
!"#
$
%""&
*
0 25
./5
*
#"8"
&7""@"
./
*/01, '(
)-
)
+( ()
* 24[
5
5
* 24[
*
4
.
,
;
"&"&K8
(
;*
,
2
1
,
* 11
*
*
'
.*
B8%C
(
,
4
8"#%87
#"8"
&7""@"
02
%7"
"
!"#
()
!"#
$
%""&
*2
*
#"8"
&7""@"?8& ./
'(
)-
)
+( ()
*/01, 4 ;
.
1
(#8E%:
$#
%:
$7"
8"#
:%"E8C
00
44
'
.*
(
,
1
.
#8&"
()
*1
./
!"#
$
%""&
*2
*
/4
8#""?78"?:%?8:
'(
)-
)
+( ()
*/01, 1
*
'
.*
(
,
./
*2
4 05
*2
4 ()
*.N
!"#
$
%""&
*2
/;
&7%%:
%""
./
'(
)-
)
+( ()
*/01, .
,
/
1*
'
.*
(
,
4
()
/
!"#
$
%""&
*2
%77"
&#8"&
9
*
/;
&8"#
%""
*51 Z
./
'(
)-
)
+( ()
*/01, .4
N ,
4 *5
4 5
4
1
4 1
3
3
/
,
;
0
/
/
1
*
;
1
/
4
V 0
3,3
;
'
.*
(
,
.
()
1
11
11
A
F7
"#
4
4
1
4
8"#%87
/
4
0
*
*
*
4
4
*
B8%C
?8&"
./
'(
)-
)
+( ()
*/01, 020
4/0*
8#""
:%E8C
/
#"8"
&7""@"
0J
12
4/0*
$7 &$#
J
;J
%%:
"C"
!$7&
4
&8"#
%""
:%"
#$
.
1
$
78"
*
%7"
!8&%
78"
($ "
!"#
"
!"#
4
4
.
*
1
;4.
'
.*
(
,
"&%$
%
77%:
C7%"#
&!&##"
C7
.
4J
()
A
)?!.?4
,;,?*
8"#%87
B8%C
1
/;
"##O 8&%"?8& '(
)-
)
+( ()
./
#"&&#"
%
*
*/01, 8&"?8&
%7"
"
!"#

Documents pareils