# Chapitre 14 :Produit scalaire sur un R-ev

## Transcription

Chapitre 14 :Produit scalaire sur un R-ev
```T his work is licensed under a Creative Commons
!
"#
\$
) *
%
ϕ
•
,.
•
•
- ϕ,
∈ λ∈
)∈ λ ∈
)
+
#
×
-2
3 ϕ
ϕ,
+ ,&
1
1+
'
,,
×
!!!
!!! + ,
'
#
(
+ ϕ, +
ϕ , + λ ) + = ϕ , + + λϕ , ) +
ϕ,
+ λ ) + = ϕ , + + λϕ , ) +
,
+ = ϕ,
∈
ϕ , + ≥ / ,0
(
+=/
= / ,0 #
∈
&
'
→
→
+
+
!
ϕ
!
! 4
++
=
%
'
"
5
!
&
ϕ,
+=
6
!
≥/
=
+7
&(3 8 9
7
3
,
ϕ
&(3 8 9+
!
∈
(ϕ ,
"
3
∈
• 3 =/
ϕ, + ϕ,
• 3 ≠ /!
λ∈
6
ϕ ,λ + λ + + = λ ϕ , + + ϕ ,
≥/
+) ≤ ϕ ,
6
+ ×ϕ,
+
,
+ + λϕ ,
+
ϕ
+ + λϕ ,
#
+
ϕ
= λ6ϕ ,
+ +ϕ,
+ + 6λϕ ,
+
Ismaël Bouya http://melusine.eu.org/syracuse/immae/
+
4
#
(
≠/
ϕ
&:
λ '
#,
+!
"
∆ = ϕ, +6 − ϕ,
+ϕ ,
"% < %
!
.+ =
+ ≠ /! 4
#! 3
;
*
+≤/
*
"#
\$
•∀ ∈
•∀ ∈
%
%
, +≥/
, , +=/
•∀
∈
→
, + +≤
, +
, ++
, +,
ϕ
3
+
!
∈
,
"
" ;*
'
∈
ϕ,
'
= /+
,λ + = λ
•∀ ∈
>
ϕ,
! "
ϕ,
+=/
ϕ,
%
, + = ϕ,
6
+
+
ϕ,
+ ≥ /! "
' %
+
+
'
= /!
'
λ∈
ϕ ,λ λ + = λ ϕ , + = λ ϕ , + !
∈ !4
'
3
, + + ≤ , + + , + ⇔ ϕ, +
+ + ≤ ϕ, + + ϕ,
+
∈
6
⇔ ϕ, +
⇔ ϕ,
+ + ≤ ϕ,
+ + 6ϕ ,
+ + 6 ϕ,
+ + ϕ,
+ϕ ,
+ ≤ ϕ,
'
ϕ,
+ ≤ ϕ,
+ϕ ,
+
+ ≤ ϕ,
+ ≤ ϕ,
+ϕ ,
+ ,
"#
\$
•∀
•∀
•∀
•∀
+ϕ ,
+ + ϕ,
+
&(3 8 9+
ϕ
4
+"
+
+
+ 6 ϕ,
⇔ ϕ,
+ + ϕ,
*
%
∈
, +≥/
∈ , , +=/
= +
∈
, += , +
∈
, +≤ , ++ ,
×
→
'
+
6
3
%
,
*
"
4
•• ,
+= , − +
, − +≥/ %
,
+=
, − +
+
!
= !
− =/
'
• ,
+=
, − +=
,−, − ++ = −
, − += ,
• ,
+=
, − +=
, − + − +≤
, − ++
3
+
, − +≤ ,
++ ,
ϕ
*
*
+
ϕ!
%
"+ 4
4
"#
3
' ϕ,
0>
ϕ!
%
∈ !4
+ = /! 4
'
,⊥
⊥
ϕ+
2,
&
(
(
* 1+!
'
⊥/
∀ ∈ ϕ, / + = / !
,
&
+
∀ ∈
7
3
⊥
⇔
∈
!4
%'
"
3
, + + =
, + + = ϕ, +
=
, + + 6ϕ ,
6
, + + =
6
6
+ + = ϕ,
6
, + +
6
ϕ!
, + +
6
++
, +
+ + 6ϕ ,
, +
∈
6
+ + ϕ,
+
+=/⇔
⊥
6
, + ⇔ ϕ,
6
!
-+ "
4
"
ϕ
%
, + +6 =
, + 6 + 6ϕ ,
++
, + 6 ,-
, − + =
, + − 6ϕ ,
++
6
, + +6 +
, − +6 = 6 , +6 + 6 , +6 ,
6
6
, + + − , − + = ϕ,
6
6
, +
!
@
+
+
+
?
A+ A
4
"#
3 , +∈
• 5 #
ϕ!
%
#
!
∈ , ≠
⇔∀
#
• 5 #
∀
⇔
#
∈ , ≠
∀ ∈
=
=
/
+
⊥
∈ ϕ,
⇔∀
,4< δ
=
5 #
⊥
+
+ =δ
+
, +∈
⇔
⊂
#
⇔
⊂
#
#
λ
#
, +∈
!
,λ + ∈
#
=/
λ =/
∀ ∈
∈
3 , +∈
#
,
#
, +∈
"
3
+
, +∈
,λ + ∈
!
, +∈
#
⊂
!3
#
!3
λ
'
#
!3
=/ !
∈
ϕ,
ϕ,
∈ !
3
λ
+=
∈
λ ϕ,
∈
λ = /! "
∀ ∈
"
-2
/+ = /
=/
, +∈
+ = λ ϕ,
≠
λ = /!
+!"
≠/
!"
, +∈
!
#
5
'
!
=
/
,C/ 6π B
,
+
∈
#
∈
6π
/
,
+
, +
=
6π
6
#
,, + + + +
/
6π
+
/
!
#
!-
,, − + +
6π
≠
=
6
+
,, + + + +
−
,, − + +
6π
= ≠/
= =/
=
=
6
6
+
[6 ]/6π
=π ≠ /
,, + + + +
/
= 6π ≠ /
=/
/
##
,
#
∈
π
E+ 3
+
D
2
4
"#
3
ϕ!
%
⊥
! 4
,
2*
⊥
={ ∈
+!
%
"
• / ∈ ⊥
∀ ∈ ϕ ,/
• 3
)∈ ⊥ λ ∈ !
+ λ )∈ ⊥
∀ ∈
,
'
%
⊥
"#
3
∀ ∈
⊥
!
+=/
ϕ , + λ ) + = ϕ , + + λϕ , ) + = / + λ / = / !
# '
'
>
'
' F+
(
2
2⇔∀ ∈
#
⊥
4
-2
,
⊥
'
• {/ } =
⇔
⊂
⊥
⇔
⊥
⊂
!
?
+
)⊂
⊥
!
⊥
∀ ∈
⊥
∀ ∈
•
= {/ }! - ##
3
∀ ∈
∈ ⊥!
⊥
"% <
%
⊂ {/ }
ϕ, / + = /
⊥
•,
05
ϕ,
ϕ,
+ = /! -
+ = /! "
= /!
F
⊥ ⊥
+ ⊃
2*
2*
4
3
∈
'
∈
5%
#
#
'
1!
∈,
∈ ⊥
⊥ ⊥
+
⊥
)
,
*
,
⊥
∀ ∈
'
⊥
#
#
⊥
'
+
'
+
}
```

Plus en détail

Plus en détail

Plus en détail