long duration stratospheric balloons, general requirements for

Transcription

long duration stratospheric balloons, general requirements for
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
1 / 23
LONG DURATION STRATOSPHERIC BALLOONS,
GENERAL REQUIREMENTS
FOR ELECTRICAL DESIGN AND INTERFACES
Document managed in configuration: NO
CNES - 18, avenue Edouard Belin - 31401 Toulouse Cedex 9
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
2
MODIFICATIONS
Version
Date
1
02/04/07 First version
Object
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
3
CONTENTS
1.
OBJECT......................................................................................................................5
1.1.
scope .............................................................................................................5
1.2.
Definitions .....................................................................................................5
2.
DOCUMENTS .............................................................................................................6
2.1.
APPLICABLE DOCUMENTS.........................................................................6
2.2.
REFERENCE DOCUMENTS .........................................................................6
3.
ABREVIATIONS AND TBC/TBD LIST .......................................................................7
4.
DESIGN REQUIEREMENTS ......................................................................................8
4.1.
Power supply and protections.....................................................................8
4.2.
0 volt and ground connection......................................................................8
5.
6.
4.2.1.
General rules .............................................................................................................8
4.2.2.
Grounding of structural elements ............................................................................10
4.2.3.
« Faradization » of gondola made of insulating elements.......................................10
4.2.4.
Equipment ground connection.................................................................................11
4.2.5.
Ground internal connection and wiring shieldings...................................................11
4.2.6.
Isolation ...................................................................................................................12
4.2.7.
External harnesses and wiring ................................................................................12
4.2.8.
connectors ...............................................................................................................13
INTERFACE REQUIEREMENTS..............................................................................14
5.1.
Power supply circuit interface...................................................................14
5.2.
Command/control line interface ................................................................14
5.2.1.
command lines.........................................................................................................14
5.2.2.
telemetry lines..........................................................................................................15
5.2.3.
Numerical Bus .........................................................................................................15
EMC REQUIEREMENTS ..........................................................................................15
6.1.
Emissions and susceptibilities led by the powwer lines ........................15
6.2.
Radiated emissions and susceptibilities..................................................16
6.3.
Electro magnetic self compatibility...........................................................16
6.4.
ESD PROTECTIONS ...................................................................................17
7.
APPENDIX 1: GENERAL DIAGRAM OF DISTRIBUTION AND CENTRALIZED
PROTECTION ...................................................................................................................18
8.
APPENDIX 2 : GENERAL DIAGRAM OF THE CONVERTER FILTERING .............19
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
4
9.
APPENDIX 3 : GENERAL DIAGRAM OF EXTERNAL DIGITAL SIGNALS
PROTECTION ...................................................................................................................20
10. APPENDIX 4: 0V SECONDARY CONNECTION......................................................21
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
1.
OBJECT
1.1.
SCOPE
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
5
The long duration flight balloon systems are composed of several components located In various
places in the flight train and related through several functional and physical links. These
components, flight system gondola, payload module, scientific instruments or sensors are
developed by several entities.
In order to make sure that these different components will be compatible and that the whole
system will perform as expected in the flight environment, common design rules have to be defined
and applied. This document defines these requirements. It also defines the main rules for Electro
Magnetic Compatibility (CEM) and the necessaries tests to validate the design.
The applicability of these general requirements to a specific component will be discussed between
CNES and the component designer, and then defined in an applicability table.
1.2.
DEFINITIONS
In this document, each statement has been categorized as follows:
!
“R”
mean "Requirement". This specifies that the conformity and the checking of
conformity of these elements to this requirement must be carried out.
!
« O » mean "Objective". The objective must be regarded as requirement. However, it is
acceptable that, for technical reasons or of cost, this requirement evolved during the
development phase. Once they have been finalized and agreed on by CNES and the
component designer, is objective are transformed into requirement.
!
« D » mean "Definition", it must be used in all the document for which this specification is
applicable.
!
« C » mean "Comment" which give explanation, it complements the formulation of the
requirement or objective.
The requirements and the objectives are numbered to facilitate the exchanges, and the writing of
the conformity and validation tables.
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
2.
DOCUMENTS
2.1.
APPLICABLE DOCUMENTS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
6
These documents listed in this paragraph are applicable. The reference (number of edition and
revision) of the applicable technical document will be the last editions or revisions.
Reference
2.2.
Title of document
REFERENCE DOCUMENTS
These documents listed in this paragraph are reference documents. It means that they are
considered as suitable to justify the design and verification on the components.
Reference
Volume 3, module XIII
Title of document
Technique et technologie spatiale TTVS
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
3.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
7
ABREVIATIONS AND TBC/TBD LIST
Initials
RF
ICD or DCI
ESD
EMC
TBC/TBD
Definition
Radio Frequency
Interface Control Document
Electro Static Discharge
Electro Magnetic Compatibility
Paragraph
Brief heading
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
4.
DESIGN REQUIEREMENTS
4.1.
POWER SUPPLY AND PROTECTIONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
8
R-4.1-10 : Primary power supply protections
The primary power supply (cells, battery) will be carried out by fuses with high derating (for
personnel safety) positioned near the power source.
R-4.1-20 : distribution network and primary power supply bus protection
The distribution network and primary power supply bus protection will be done in a centralized way
(protection and dispatching unit in a casing separate from the equipment item). The fuse protection
gauge will be selected with enough margin (derating) to avoid the risk of "fusing" at the time of
setting equipment unit ON/OFF or of the transitory “normal modes”. See diagram in appendix 1.
R-4.1-30 : secondary power supply bus protection
Protections, if necessary, can be installed on the secondary power supplies of the converters or
regulators. Protections on the 0 V lines are prohibited.
R-4.1-40 : protection against the opposite voltage
The equipment or instruments will have to be protected from the inversions of polarity (exception
for safety function of equipment unit).
R-4.1-50 : protections inside instruments and equipment units
The use of fuse is not recommended. If necessary, a specific limiting current device protection can
be included inside the equipment unit.
R-4.1-60 : under voltage and over voltage
Both equipment unit and instruments will not have to be deteriorated if the primary power supply
lies between 0V and the maximum voltage fixed for the system (function of architecture).
R-4.1-70 : converters Impedance
Power converters of any units must have an impedance adapted to the primary power supply
(depends on the source and the distribution: cells, battery...).
R-4.1-80 : Converters filtering
In order to ensure the compatibility of the various converters connected to the primary power
supply, conduct mode specifications (emission of disturbances in wiring) and radiated mode
specifications are to be met. With this intention, it is necessary to carry out a filtering in common
mode and differential mode at the converter input. See general diagram in appendix 2.
4.2.
4.2.1.
0 VOLT AND GROUND CONNECTION
GENERAL RULES
R-4.2.1-10 : structure current
The gondola’s structure or the instrument must not be used to lead current.
R-4.2.1-20 : shielding current
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
9
The electrical shielding items should not be used for return current. Except for RF signals.
R-4.2.1-30 : 0V diagram
A "zero volt" and ground connection diagram must be presented in the electrical DCI. The rules
defined below must be followed.
!
Direct power supply or through regulators
R
Unit 1
Solution 1
R
Unit 2
Unit 3
Solution 2
For RF parts of
equipment only
Unit 4
R
Regulator
Primary 0V
ZVS1
Secondary 0V
ZVS2
Ground
Unit 5
Solution 3
ZVS1
Unit 6
Solution 4
Figure 1: Rule for direct power supply or through regulators
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
Version : 1
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
!
NB-NT-43-350-CNES
Date :
02/04/07
Page :
10 / 23
Use of converters
Unit 1
Solution 1
Unit 2
Unit 3
Solution 2
For RF parts of
Seulement
equipment only
Unit 4
Regulator
ZVS1
Primary 0V
ZVS2
Secondary 0V
Unit 5
Solution 3
Ground
ZVS1
Unit 6
Solution 4
Figure 2: Rule for converters
4.2.2.
GROUNDING OF STRUCTURAL ELEMENTS
R-4.2.2-10 : Metallic structure
All the metallic parts of units, including the main frame and the cases must have a DC resistance
between assemblies < 2,5 mOhm.
R-4.2.2-20 : insulating assemblies
If a direct metal to metal assembly cannot be carried out, a "strap" for ground connection must be
used. DC resistance DC must be < 10 mOhm.
4.2.3.
« FARADIZATION » OF GONDOLA MADE OF INSULATING ELEMENTS
R-4.2.3-10 : « faradization »
The gondolas assembled in insulating case (e.g. polystyrene) must be “faradized" with a flexible
metal cloth which must be connected to the metallic structure with a DC resistance between
assemblies < 2,5 mOhm.
R-4.2.3-20 : Cables ways and antennas
"faradized through connectors" (metal caps) must allow the ways of cables.
CNES - 18, avenue Edouard Belin - 31401 Toulouse Cedex 9
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
11
The impact of this "faradization" (ground plan,…) on the antennas performances must be analyzed
at the time of the design.
4.2.4.
EQUIPMENT GROUND CONNECTION
R-4.2.4-10 : thermal protections and radiators
All the gondola conducting elements used for thermal protection and radiators must be connected
to the structure ground. DC resistance must be < 10 mOhm.
R-4.2.4-20 : connectors
All connectors structure must be connected to the gondola frame. DC resistance must be < 2,5
mOhm.
R-4.2.4-30 : internal mechanical elements
All mechanical elements inside the gondola must be connected to the gondola’s frame. DC
resistance must be < 2,5 mOhm.
4.2.5.
GROUND INTERNAL CONNECTION AND WIRING SHIELDINGS
R-4.2.5-10 : primary power supply
The primary power supply must have the negative polarity connected to the ground in a single
point as close as possible to the supply (power case or power pack).
R-4.2.5-20 : secondary power supply
The return lines of each secondary power supply must be connected to the ground in a single
point. Except for RF equipment and the functions having an operational frequency higher than 10
MHz. See diagram on appendix 4.
R-4.2.5-30 : Line power supply
Each line must be isolated and must have a driver dedicated to current return.
R-4.2.5-40 : Control signals
The wiring of the control signals must use twisted pairs (AWG 26). Cables signals carrying
requiring a rise time < 200µs and having a level of susceptibility lower than 10 V 10 ms must be
shielded.
R-4.2.5-50 : Digital signals
Serial digital signals and low level command signals must use shielded twisted pair.
R-4.2.5-60 : relay
The relay control or relay state acquisition must be completely isolated and have a dedicated
current return line.
R-4.2.5-70 : thermistors and heaters
The thermistors acquisition lines and heaters control lines must be isolated and must have a
dedicated current return line. For thermistors shielded twisted pairs must be used; for heaters
twisted pairs must be used.
R-4.2.5-80 : analog signals
Each analog acquisition line must use shielded twisted pairs and have a dedicated line for return
current which must be connected at one end to the ground (gondola side preferentially).
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
12
Note: for lines used for high accuracy acquisitions the ground connection is optional.
R-4.2.5-90 : shielding
Each functions lines must be evaluated to determine need of shielding. If the shielding is required it
must have a coveraged of, at least 90 % of the line.
4.2.6.
ISOLATION
R-4.2.6-10 : primary power supply
The gondola’s primary power supply (or the primary power supplies) must have an insulation > 1
M" with a parallel capacity lower than 50 nF between:
! The positive line and the mainframe.
! The primary 0V and the secondary 0V (if converters are used).
R-4.2.6-20 : 0V secondary power supplies
The power supplies constituted by converters are defined as “secondary power supplies” and must
be connected to the mechanical ground in a single point as close as possible to the source with an
impedance < 2,5 m".
R-4.2.6-30 : secondary power supplies
Except for the 0V, the secondary power supplies must have an insulation > 1 M" with a parallel
capacity lower than 50 nF between:
! Positive line and the main frame
! The primary 0V and the secondary 0V (if converters are used)
4.2.7.
EXTERNAL HARNESSES AND WIRING
R-4.2.7-10 : segregation
All the circuits generating incompatible electromagnetic interferences must be “segregated", for
wires as well as for connectors in order to minimize the interferences and the couplings. This
segregation is necessary between the following circuits:
! Power supply and command signals.
! Digital signals (0-5 V).
! Analogical signals (0-5V).
! RF signals
! Digital Bus.
R-4.2.7-20 : Wires
All the wires (assembly of several lines) which are subjected to the external environment must be
“overshielded". The shieldings must be connected to the mechanical ground at each end with a
resistance < 2,5 mOhm.
R-4.2.7-30 : Power lines and command signal lines protections.
Both power supply lines and command signal lines transmitted through harness outside the
gondolas must be protected from overvoltage related to the electric fields external by "transorb" (or
specific neons) located as close as possible to the connectors at each end.
R-4.2.7-40 : digital signals protection
The digital lines (differential) transmitted through external harness must be protected by "transorb"
(or specific neons). They must also have differential adjustable impedance adaptation elements for
differential and common modes (to be adjusted according to length of line) and blocking ferrites
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
13
located as close as possible to the connectors. See diagram in appendix 3.
4.2.8.
CONNECTORS
R-4.2.8-10 : data-processing bus
All the data-processing buses must have a specific connector which should not be shared with
other type of signal
R-4.2.8-20 : type of connectors
The external connectors of the gondolas must be all different to present accidental mismaking.
However, if identical connectors must be used they employed connectors keying.
R-4.2.8-30 : assignment of the "pins" connectors
If two or more circuits categories must share a connector, pin assignments should be made to
provide a maximum of insulation in the connector. A minimum of two pins separation should be
used.
R-4.2.8-40 : ground connection of the connectors
The connectors structure must be connected to the unit frame with a resistance < 2,5 mOhm.
R-4.2.8-50 : test connectors
The test connectors must be protected by an EMC ”cap”.
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
5.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
14
INTERFACE REQUIEREMENTS
C
The interfaces between gondola’s equipment units or between gondola and instruments
must be specified in a common document (interface specification) and are latter described in the
DCI. The general requirements of the following paragraphs are given by way of example and will
have to be supplemented according to specific needs of each product.
5.1.
POWER SUPPLY CIRCUIT INTERFACE
R-5.1-10 : Power supply voltage
To be define
R-5.1-20 : Power available
To be define
R-5.1-30 : Nominal current and started current
To be define
5.2.
COMMAND/CONTROL LINE INTERFACE
5.2.1.
COMMAND LINES
Discrete Order command :
C
this type of command is intended to activate relays.
R-5.2.1-10 : command definition « DO »
Orders "DO" are positive impulses of voltage. They must be in agreement with the technical data
(graphs) of the relays.
Digital command :
C
this type of command is intended to transmit logical command or synchronization signal
(e.g. PPS signal from GPS). It is a RS485 differential line with a line "Data" a line
"complementary data" and a reference GND.
R-5.2.1-20 : command definition "LL"
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
DRIVER
+
-
5.2.2.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
15
RECEIVER
+
-
+
TELEMETRY LINES
Analog telemetry:
C
this kind of telemetry is intended to acquire analog signals unipolar or bipolar.
R-5.2.2-10 : "analogical" telemetry definition
Analogical telemetry...
« Digital » telemetry:
C
this kind of telemetry is intended to acquire digital signals simple (pallet of relays) or Bi
levels.
R-5.2.2-10 : "digital" telemetry definition
To be define.
5.2.3.
NUMERICAL BUS
Serial link RS232 :.
To be define
Link RS422 :
To be define
Link RS485 :
To be define
6.
EMC REQUIEREMENTS
6.1.
EMISSIONS AND SUSCEPTIBILITIES LED BY THE POWWER LINES
C
it is generally not necessary to conduct EMC CE/CS test on the gondolas or integrated
instruments because each group of equipment units, of the same subsets, has usually a
dedicated power supply. However, the need to conduct or not such tests must be analyzed
during preliminary design phase.
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
6.2.
C
6.3.
C
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
16
RADIATED EMISSIONS AND SUSCEPTIBILITIES
As for EMC CE/CS, it is generally not necessary to conduct EMC RE/RS tests on gondolas
or integrated instruments. However, the need to conduct or not such tests must be
analyzed during preliminary design phase.
ELECTRO MAGNETIC SELF COMPATIBILITY
The simultaneous operation of electronic and RF units must be validated, by analysis and
test, in real flight configuration to verify that the functional and performance requirements
are met in worst case.
R-6.3-10 : self compatibility analyze
An analysis of the RF self compatibility of the system will have to be carried out on the basis of the
frequency plan, of the transmitter / receiver characteristics and of possible susceptibilities of units
and sensors.
R-6.3-20 : self compatibility test
A test of compatibility functional /performance will have to be carried out, in flight configuration and
for a representative functional sequence, to make sure that the compatibility of units in flight is
guaranteed.
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
6.4.
C
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
17
ESD PROTECTIONS
The electromagnetic environment in the stratosphere may induce the need for validation by
tests that the systems withstand that environment, especially when the external lines are
very long. Two types of performance tests may be conducted on real hardware or on
representative mock-ups.
Direct discharges:
R-6.4-10 : direct discharges
The integrated systems should withstand without damage the direct electric discharges of 10 mJ
(level TBC).
Indirect discharges :
R-6.4-20 : Indirect discharges
The integrated systems should support without damage the indirect and repetitive electric 2
300 mm
300
mn
Figure 8.3.2-1: unit under indirect arc discharge.
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
7.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
18 / 23
APPENDIX 1: GENERAL DIAGRAM OF DISTRIBUTION AND CENTRALIZED PROTECTION
Distribution and protection
unit
On / Off
Protection 1
Converter 1
Electronic
function 1
Converter 2
Electronic
function 2
On / Off
Protection 2
Figure 3: General diagram of distribution and centralized protection
Although more complicated to set a distributed protection (protection in equipment unit), centralized protection has the advantage of not diluting
this important function in the equipment unit, and of separating protection well from the element likely to create short-circuits Moreover this
architecture makes it possible to save cable of On/Off remote control.
CNES - 18, avenue Edouard Belin - 31401 Toulouse Cedex 9
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
8.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
19
APPENDIX 2 : GENERAL DIAGRAM OF THE CONVERTER FILTERING
Connector
Common mode
inductance placed as
close as possible to the
connector
C1 >> C2 and the whole of the capacities connected to
shortest to the converter and the mechanical ground of the
case
+
Differential
mode
inductance
Power line
C1
R
C
Converter
Electronic
function
C2
Equipment case
Figure 4: General diagram of the converter filterin
As a first approximation one can choose the elements R and C in the following way:
C must be higher than:
! 3 times the value of C1
!
2% L
#Lowest.converter.negative.resis tan ce$2
function. R must selected close to
, taking a margin in the worst case when of the voltage delivered where the converter can
3% L
or be adjusted in experiments to have the impedance the lowest possible sight by the
2%C
converter L, C and C1 being selected.
Remark: The choice of the elements could also be done by simulating the filter and by checking the stability condition (the impedance presented
in entry of the converter lower than the negative resistance presented by the converter).
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
9.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
20
APPENDIX 3 : GENERAL DIAGRAM OF EXTERNAL DIGITAL SIGNALS PROTECTION
To Driver RSXXX
Adaptation
Adaptation
differential mode common mode
Transil
Ferrite
Shielding connected to the
mechanical ground (case),
via the connector
Data
Data
NData
NData
0V
0V
0V
To Driver RSXXX
Metal case
Electronic card
Metal connector
Shielding
Signal line
Metal Spacer
0V connected to the
mechanical ground (case)
by metal spacer
Figure 5: General diagram of external digital signals protection
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
10.
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
21 / 23
APPENDIX 4: 0V SECONDARY CONNECTION
CNES - 18, avenue Edouard Belin - 31401 Toulouse Cedex 9
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
22 / 23
Figure 6: 0V secondary connection
CNES - 18, avenue Edouard Belin - 31401 Toulouse Cedex 9
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
Réf. :
DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS
NB-NT-43-350-CNES
Version : 1
Date :
02/04/07
Page :
23 / 23
DIFFUSION
NOM
SIGLE/SOCIETE
CAZAUX Christian
BL/D
LIODENOT Christelle
BL
DOUCHIN Françoise
BL
NB
1
NOM
SIGLE/SOCIÉTÉ
NB
CHADOUTAUD Pierre
BL/OB
1
JOUHANNET Nathalie
BL/OB
1
BELOT Alice
BL/OB
GEAY KAMINSKI Nathalie
BL/GS
1
CARDONNE Alain
BL/OB
NAUCODI Réjane
BL/GS
1
DUGARRY Jean-Marc
BL/OB
COCQUEREZ Philippe
BL/PR
1
DUPOUY Gilles
BL/OB
VARGAS André
BL/PR
1
GELOT Philippe
BL/OB
ESCARNOT Jean-Pierre
BL/NB
1
GUILBOT Bernard
BL/OB
BEZ Pascale
BL/NB
1
LACOURTY Michel
BL/OB
BRAY Nicolas
BL/NB
1
LAMARQUE Christian
BL/OB
CARRERE Jean-Claude
BL/NB
1
LOPEZ Jean-Marc
BL/OB
EVRARD Jean
BL/NB
1
LUZE Patrick
BL/OB
GAUSSERES Serge
BL/NB
1
MARTINEZ Jean-Louis
BL/OB
HUENS Thomas
BL/NB
1
RAVISSOT Alain
BL/OB
LEFEVRE Jean-Paul
BL/NB
1
CHARBONNIER Jean-Marc
BL/VP
1
MIRC Frederi
BL/NB
1
LE DINH Loan
BL/VP
1
NICOT Jean-Marc
BL/NB
1
BERTIAUX Jean-Yves
BL/VP
RAGAZZO Patrick
BL/NB
1
DERAMECOURT Arnaud
BL/VP
TAPIE Pierre
BL/NB
1
FACON Ghislaine
BL/VP
VERDIER Nicolas
BL/NB
1
HIRSEKORN Martin
BL/VP
VIANES Patrick
BL/NB
1
LETRENNE Gérard
BL/VP
LACOGNE Jean
BL/AE
1
PERRAUD Sophie
BL/VP
DEHEEM Gilles
BL/AE
POUJADE Sébastien
BL/VP
GIRAUDEAU Hubert
BL/AE
SOSA-SESMA Sergio
BL/VP
ALBY Fernand
DA
THOMASSIN Jérôme
BL/VP
DARGELOS Nathalie
DA
VALDIVIA Jean Noël
BL/VP
BIONDI Hubert
AQ/MQ
PANH Johan
TV/EL
SPICQ Denis
AQ/SO
BERGER Patrick
AQ/SO
ESPADA Bernard
APAVE pr AQ/SO
1
DAUBAN Gilles
EQUERT pr AQ/QP
1
CNES - 18, avenue Edouard Belin - 31401 Toulouse Cedex 9
Ce document est la propriété du CNES.
Les informations contenues dans celui-ci ne peuvent être communiquées, publiées ou reproduites sans l’accord préalable du CNES
Form-NT-BL-Juil06
1
1
1