Rapport stage TENNECO

Commentaires

Transcription

Rapport stage TENNECO
A2005
Etudiant : Vincent GUYON
Suiveur UTC : Didier LEMOINE
Amélioration du flux de fabrication en
zone de production « Lignes en Flux »
Entreprise : Tenneco Automotive
Lieu : Saint-Berthevin
Responsable : Mikaël Lazennec
Au terme des 24 semaines passées au sein de l’entreprise Tenneco Automotive, je tiens
avant tout à remercier Robert Mas, directeur de production pour le suivi et l’accompagnement du
projet et Mikaël Lazennec pour son savoir et son aide précieuse du début à la fin de l’étude.
Je remercie aussi Bruno Maggioli et Arnaud Thoral pour l’accueil qu’ils m’ont réservés, et
tout le personnel des différents services de l’entreprise avec qui j’ai eu l’occasion de collaborer à
de très nombreuses reprises au cours de mon stage.
Merci enfin à tous les opérateurs des Lignes en Flux et des autres sections pour leur
affabilité et leur disponibilité.
TABLE DES MATIERES
Introduction ...................................................................................................................... 1
L’entreprise TENNECO Automotive .............................................................................. 2
1. Tenneco Automotive France ........................................................................ 2
2. Le site de Saint-Berthevin ............................................................................ 3
Contexte de l’étude ............................................................................................................ 4
1. Le produit .................................................................................................... 4
2. La zone « Lignes en Flux » ......................................................................... 5
a. Disposition
5
b. Les machines
6
c. Le personnel
7
7
d. Le quotidien
Etude de l’amélioration du flux ........................................................................................ 9
1. Enjeu de l’étude ........................................................................................... 9
2. Etude menée ................................................................................................ 10
a. Polyvalence Robot
10
b. Etude de la charge des caristes
15
c. Synchronisation corps - tubes
18
3. Mise en place d’outils d’aide à la gestion .................................................... 20
4. Problèmes occasionnels et délais.................................................................. 22
5. Bilan de l’étude et analyse............................................................................ 23
a. Bilan projet par projet
23
b. Analyse globale
24
Conclusion ........................................................................................................................... 25
Tenneco Automotive
Amélioration du flux de fabrication
INTRODUCTION
Dans un contexte fortement concurrentiel, les entreprises sous-traitantes automobiles doivent
en permanence mettre en place de nouveaux outils afin d’augmenter leur compétitivité.
D’une philosophie complètement différente de celle connue à l’essor de l’industrie, les
systèmes de production contemporains maximisent la valeur ajoutée en faisant la chasse au
gaspillage, héritage d’une culture largement inspirée de l’industrie japonaise.
Avec des connaissances théoriques sur la gestion de production mais aucune expérience
« concrète » sur le terrain, le choix d’un stage chez le fabricant de systèmes d’échappement
Tenneco Automotive France m’est apparu parfaitement adapté à mon cursus tout en ayant la
possibilité de mettre mes compétences au service de la société.
J’ai réalisé mon stage de production dans un contexte d’évolution chez TENNECO marqué par
de nombreux changements, dans le but de donner de l’autonomie aux équipes de production.
L’objet de mon stage a été de contribuer à la mise en place et la réalisation de projets
d’amélioration continue mais aussi et surtout de participer à la gestion au quotidien de la zone de
production dite « flux », en secondant l’ingénieur production en charge de ce secteur.
Ce sont ces projets d’améliorations du flux de fabrication qui sont décrits et développés dans ce
rapport.
Vincent GUYON
1
Tenneco Automotive
Amélioration du flux de fabrication
TENNECO AUTOMOTIVE FRANCE
Le géant Américain Tenneco Automotive se consacre à deux pôles compétitifs dans le domaine
automobile : l’échappement et les systèmes pour la tenue de route. Ces deux secteurs sont destinés
aussi bien au marché d’origine (75 % de la production) qu’à celui de la rechange, en anglais
« aftermarket ».
La société compte 18400 salariés, 71 usines de productions et 13 centres de recherches sur les
cinq continents en couvrant 138 pays dans le monde.
CA 2004 (millions €)
Employés
Production annuelle
Tenneco Automotive
3 632
18 400
56 140 000 000
Tenneco Automotive France
77,27
500
2 020 000
1. Tenneco Automotive France
Créée en 1947, la fabrique d’échappement de M. Bellanger a été rachetée en 1976 par le
groupe américain Tenneco.
En 1990, l’entreprise Bellanger SA prend le nom de Walker France SA et fusionne en 1999
avec Monroe France pour ne former qu’une seule entité : Tenneco Automotive France
(certification ISO 9000 obtenue en 1995).
Avec trois sites en Mayenne (Ernée, Laval et Saint-Berthevin), Tenneco Automotive France
(TAF) lance en 2001 le projet CAP 3000 qui consiste à mettre en place des équipes autonomes de
production. Enfin l’usine de Laval est fermée en 2003, l’activité « composants » (coupelles, tubes,
flans, … cf. lexique) reste sur Ernée tandis que la production est réimplantée à Saint-Berthevin sur
plus de 15000 m².
Les principaux clients de Tenneco Automotive France pour l’aftermarket sont les centres
automobiles tel que Midas, Feu vert, Norauto, Speedy en France ainsi que des centres en Italie,
dans le Benelux ou encore en Grèce.
Outre ses deux sites de production Mayennais, Tenneco Automotive France compte sept dépôts
régionaux en France et 3100 points de livraisons.
Vincent GUYON
2
Tenneco Automotive
Amélioration du flux de fabrication
2. L’usine de production de Saint-Berthevin
Les services associés à l’activité de production à Saint-Berthevin sont les Méthodes, les
Finances, les Ressources Humaines, un service Qualité, un service Logistique et un département
distribution.
Cf. Annexe I : Organigramme de l’usine du site de Saint-Berthevin
L’usine de production est découpée en Unité Autonome de Production (UAP) et en Zones
Autonomes de Production (ZAP), lesquelles sont listées ci dessous :
•
•
•
UAP « A&B » (ZAP Lignes Flux)
UAP « C&D » comprenant les ZAP Corps, ZAP Tubes et ZAP Soudure
UAP Composants (à Ernée)
Environ 2300 références sont fabriquées dans l’usine de Saint-Berthevin et ces dernières sont
classées dans différents groupes A, B, C ou D, qui correspondent à un tri réalisé sur le nombre de
ventes annuelles.
Les références « A&B » sont peu nombreuses, mais sont en général fabriquées fréquemment en
grandes quantités (la moyenne est de 800 pièces par série). A l’inverse, la catégorie dite « C&D »
dénombre plus de 2000 références mais qui ont des tailles de lot beaucoup plus faible.
Vincent GUYON
3
Tenneco Automotive
Amélioration du flux de fabrication
CONTEXTE D’ETUDE
1. Le produit
Tenneco Automotive France s’est spécialisé dans la fabrication de silencieux (dernière partie
dans la ligne d’échappement : celle qui a le plus d’usure).
Les produits finis fabriqués dans l’usine de Tenneco Automotive sont constitués de deux sousensembles principaux : les corps et les tubes, fabriqués en acier dans l’usine. Par la suite, viennent
s’ajouter éventuellement d’autres éléments de fixation qui sont sous-traités, hormis quelques pattes
fabriquées dans l’usine (cf. lexique).
•
Le corps
Il existe 2 types de corps :
• corps sertis, où deux coupelles sont serties de part et d’autre du corps
• corps à coques où deux coques sont embouties puis serties (20% de la production
totale de corps).
Les corps sertis sont différenciés par le profil (surface, diamètre de l’ellipse). Les corps
fabriqués sur les Lignes en Flux sont tous sertis et sont de 7 profils différents.
Le corps de la référence 15985 : Renault Clio
Le corps est fabriqué à partir d’un flanc plat qui est enroulé sur un mandrin correspondant au
profil, puis agrafé pour créer une virole. Vient ensuite s’ajouter un faisceau, qui est enfilé dans la
virole. Enfin l’ensemble virole + faisceau est serti grâce à 2 coupelles positionnées aux extrémités.
(cf. lexique)
•
Tubes
Les tubes droits de différents diamètres et longueurs sont produits sur le site d’Ernée. Ils sont
ensuite cintrés, puis éventuellement recoupés, étrécis, encochés, évasés, … .
Le nombre de tubes varie entre un et trois par silencieux : tube d’entrée, intermédiaire et de
sortie (en considération du sens des gaz d’échappement).
Vincent GUYON
4
Tenneco Automotive
Amélioration du flux de fabrication
Le tube entrée de la référence 15985 : Renault Clio
•
Le tube sotie de la référence 8347 : Volkswagen Golf
Le produit fini
Une fois tous les éléments montés et soudés ensemble, le silencieux est étiqueté et stocké en
panier.
Le silencieux 8347 : Volkswagen Golf
2. La zone « Lignes en Flux »
La zone de production « Lignes en Flux » est une zone qui réunie les trois activités de
l’usine : la fabrication des corps, le cintrage des tubes et la soudure sur robot.
Cette zone est dédiée à la fabrication des références « A&B », 130 références de tailles de
lot importantes. La zone fabrique donc ses références en toute autonomie afin de simplifier les flux
de composants.
2a. Disposition de la zone
Le secteur ligne en flux est composé de 3 îlots de production (corps, cintrage et soudure
robot) séparés par une zone de stockage appelée « supermarché ».
Cette zone permet de stocker les corps et les tubes dans des contenants appelés rolls (cf.
lexique). Ces contenants permettent un déplacement aisé des composants : pas de nécessité
d’utiliser un chariot élévateur pour déplacer les composants.
Cf. Annexe II : Plan des Lignes en Flux
Vincent GUYON
5
Tenneco Automotive
Amélioration du flux de fabrication
2b. Les machines
Fabrication des corps
Les corps sont réalisés par 2 moyens de production aux process différents : la cellule corps 1
(notée LF1) et la cellule corps 2 (LF2). L’organisation est également différente :
- cellule 1 : travail en poste fixe
- cellule 2 : travail en opérateurs tournant au sein de la cellule (cellule en U, cf.
lexique)
Par ailleurs, les deux cellules ne réalisent pas les mêmes profils, il existe donc une distinction
entre les références passées sur la ligne corps 1 ou sur la ligne corps 2 (68 références pour la LF1
et 62 pour la LF2).
Cintrage des tubes
Le cintrage des tubes est réalisé par quatre machines :
- trois cintreuses « Addison » (notée Add2, Add10, Add16)
- une presse à cintrer (PAC10).
La presse à cintrer ne peut réaliser qu’une seule courbure sur les tubes contrairement aux
Addison qui peuvent effectuer un ou plusieurs cintres ; l’avantage en revanche de la « PAC » est sa
très grande cadence de fabrication.
Il existe une zone de stockage dans laquelle sont disposées les machines nécessaires à la
réalisation des opérations annexes (ébavurage, évasement, recoupe, rétreint, …).
Soudure Robot
En fin de process, 7 robots permettent de réaliser la soudure des différents sous-ensembles du
silencieux. Ces robots sont de 3 fournisseurs différents :
- 3 robots « ABB » (R23, R24, R25)
- 3 robots « Messer » (R1, R4, R5)
- 1 robot « OTC », R11, récemment installé (juin 2005).
Chaque référence de silencieux nécessite un programme de soudure spécifique : paramètres de
soudure et mouvements du bras du robots. Chaque robot possède une programmation différente,
sauf les 3 robots ABB.
Chaque référence « ligne flux » a son programme sur au moins un robot de la zone, mais les
sept robots de la zone ne sont pas 100% polyvalents et ne peuvent pas souder toutes les références,
ce qui pose très souvent des problèmes de planification des séries à produire.
Vincent GUYON
6
Tenneco Automotive
Amélioration du flux de fabrication
2c. Le personnel
La zone « lignes en flux » compte environ 20 opérateurs par équipes qui travaillent en 2x8 :
- de 5h à 13h pour l’équipe du matin
- de 13h à 21h en équipe d’après midi
Les opérateurs font une pause obligatoire de 30 minutes au bout de 4 h de travail.
L’organisation type d’une équipe est la suivante :
• 6 soudeurs sur les robots
• 8 opérateurs sur les cellules corps (4 sur chacune des lignes)
• 4 personnes au cintrage
• 3 caristes qui réalisent l’approvisionnement des postes de travail et l’évacuation des
produits finis.
Parmi les opérateurs, il existe plusieurs niveaux de compétences :
opérateur
opérateur régleur : l’opérateur régleur connaît suffisamment les machines et les process
pour être autonome et pour assurer seul les changements de séries.
Moniteur ou régleur : opérateur qui a validé une formation portant sur des connaissances
techniques plus avancées : programmation, réglages complexes...
« team leader » : opérateur qui a validé une formation axée management : il gère une
équipe autonome de production (EAP)
Les opérateurs robots ont besoin d’une qualification soudeur, validée et délivrée par le service
Qualité pour une durée de 2 ans.
2d. Le quotidien
Chaque matinée commence par la réalisation du planning de production des robots de la
journée à venir : affectation des références aux robots en fonction des composants disponibles, des
urgences et de la polyvalence des robots.
Ce planning recouvre trois équipes : il commence à 5h et court sur 24 heures.
Ce fichier tient compte des références, des temps de réglages (moyennés à 1h) ainsi que
l’efficience des robots (85 %). La réalisation du planning permet de s’assurer de
l’accomplissement des objectifs quotidiens sur les Lignes en Flux en terme de volume et
éventuellement de réaliser un plan d’actions si besoin est.
Cf. Annexe III : Fichier Planification Robot Lignes en Flux
Dans la zone de fabrication, le flux est dit « tiré », les cellules corps et le cintrage fabriquent
uniquement la quantité de pièces qui seront soudées sur les robots. Il n’y a aucun stock sur les
lignes en flux et les quelques pièces stockées dans la zone supermarché ne sont là que
momentanément, le temps que le robot les soudent. En règle général, la zone supermarché ne
contient pas plus d’un jour de stock.
Vincent GUYON
7
Tenneco Automotive
Amélioration du flux de fabrication
Chaque fabrication, que ce soit de tubes, corps ou produits finis, est accompagnée d’un ordre
de fabrication (OF) qui reprend :
- un numéro spécifique pour la gestion logistique
- la référence de la série
- le modèle du véhicule correspondant
- les opérations à exécuter
- le nombre de pièces à fabriquer
- la cadence (fonction du nombre d’opérateurs)
Les opérateurs ayant contribués à la fabrication indiquent leur nom, leur équipe, le nombre de
pièces réalisées, le nombre restant ainsi que le nombre de rebuts au dos de l’OF.
Les ordres de fabrications sont affichés sur un tableau appelé « Heijunka Board » et qui permet
de synchroniser les fabrications des sous-ensembles et des produits finis :
• Verticalement, on distingue une série entière d’OF correspond aux 3 étapes de
fabrication : soudure, cintrage et fabrication du corps
• Horizontalement, ce sont les références à fabriquer.
Fonctionnement global de l’Heijunka Board :
La gestion logistique s’effectue en 2 étapes :
• Gestion à la semaine en fonction du besoin client estimé sur 4 semaines (revue de
façon hebdomadaire) : regroupement des série par profil
Cf. Annexe IV : Programme à la semaine des références Lignes en Flux
• Gestion quotidienne sur l’Heijunka Board en fonction des urgences et des aléas de
production
Le soucis de TENNECO de diminuer les coûts (stocks, transport, attente, …) m’a conduit à
étudier l’amélioration du flux dans la ZAP.
Vincent GUYON
8
Tenneco Automotive
Amélioration du flux de fabrication
AMELIORATION DU FLUX
1. Enjeu de l’étude
Dans toutes les zones de production et plus encore celle des « Lignes en Flux », la
production est constitué d’une chaîne successive d’opérations, chaque étape ne pouvant être brûlée
et l’une ne pouvant la plupart du temps démarrer sans que l’autre n’ait été commencée.
Afin d’améliorer la productivité, TENNECO met en place des outils d’amélioration
continue pour obtenir une production dite « maigre » (Lean Manufacturing). Ceci nous amène
donc à travailler sur le fonctionnement global du flux (matière, composants, charge de travail,
information, …) dans l’usine et contribuer à mieux faire fonctionner ensemble les postes de travail.
Les postes de travail sur les lignes en flux sont les suivants :
• La fabrication des corps
• le cintrage des tubes
• la soudure robot.
• l’activité logistique (le travail des caristes dans la zone)
Chaque secteur doit contribuer à l’amélioration du flux.
Par conséquent, l’étude d’amélioration du flux portera sur une étude de quatre activités : les
trois métiers exercés sur les Lignes en Flux et la charge des caristes.
Planification de l’étude
Les Bases
Le projet s’inspire de la méthode industrielle appelée « 5M » qui a pour fonctionnement l’étude
des facteurs Main d’œuvre, Machine, Méthodes, Milieu et Matières.
Pour chacun des postes de travail, nous utiliserons la méthode 5M pour déceler des sources
d’amélioration.
Vincent GUYON
9
Tenneco Automotive
Amélioration du flux de fabrication
La démarche à suivre
Nous allons commencer par caractériser la situation initiale (appelée T0), définir la situation
finale attendue Tf, puis définir le plan d’action à mener pour passer de l’une à l’autre.
T0 Plan d’action Tf
L’échange avec les opérateurs joue pour beaucoup dans la caractérisation. Ils sont sur le
terrain et connaissent au mieux leur métier : ils sont donc les plus aptes à déceler une voie
d’amélioration et à émettre des propositions.
Les étapes abordées seront dans l’ordre : la soudure, la charge des caristes, le cintrage et la
fabrication des corps.
Les objectifs
Afin d’améliorer le flux, nous avons travaillé sur les points suivants :
-
La polyvalence des robots (programmation des références)
L’analyse de la charge des caristes et la rédaction de modes opératoires
La synchronisation de la fabrication des sous-ensembles corps – tubes.
2. Etudes menées
2a. Polyvalence des robots
L’amélioration du flux et de la flexibilité dans la planification des références en soudure passe
obligatoirement par une meilleure polyvalence des robots au niveau de la programmation, toutes
les références « lignes flux » n’étant pas programmées sur les sept robots.
La création et la gestion des programmes diffèrent selon les robots :
• sur les robots ABB, l’opération est plus simple (utilisation d’un programme
informatique plus récent)
• sur les robots Messer, il existe un problème de versions de logiciel. Aucun des robots
1, 4 et 5 n’ont la même version et ces dernières ne sont pas compatibles entre elles.
• le robot 11 est d’un autre fournisseur : OTC.
Les Messer fonctionnent indépendamment avec leurs programmes propres, à l’inverse des
robots ABB qui utilisent un logiciel commun et qui permet de diffuser un programme sur les trois
instantanément par un simple copier - coller.
En résumé, si un moniteur réalise un programme sur un robot ABB, le R23 par exemple, ce
programme peut être transféré très rapidement sur les autres ABB, R24 et R25, tandis qu’un
programme n’est pas transférable entre les Messer (un programme créé sur R4 ne peut être copié
sur R1 ou R5).
Vincent GUYON
10
Tenneco Automotive
Amélioration du flux de fabrication
Nous avons donc décidé de nous concentrer sur la polyvalence des robots Messer et de réaliser
des campagnes de programmations dans le but d’avoir plus de souplesse lors des planifications.
Ce projet sur la polyvalence des robots s’est effectué en 8 étapes, établies en octobre. J’ai suivi
la méthode de qualité « PDCA » qui consiste à suivre quatre axes principaux dans la démarche
d’amélioration continue :
P (Plan) Réaliser une caractérisation de l’état à T0, planifier l’étude
D (Do) Mettre en place les opérations planifiées
C (Check) Vérifier les actions en place, recueillir les résultats
A (Act) S’assurer du bon fonctionnement et mettre en place un suivi de l’outil
PLAN
1. Listing des références ligne 1 et ligne 2 et des équivalences entre références
La première étape a été de dresser la liste de toutes les références appartenant aux Lignes en
Flux. Pour cela, le responsable de l’ordonnancement dans l’usine m’a fournit la liste séparée des
références des deux lignes.
On dénombre en tout 130 références Ligne Flux : 68 références « Ligne 1 » et 62 « Ligne 2 ».
Il existe des programmes communs à différentes références, j’ai donc établi toutes les
équivalences à l’aide d’une base de données Access. Le cas d’équivalence est fréquent lorsque l’on
fabrique des références qui sont à la fois destinées à l’aftermarket et au marché d’origine : la
conception et le programme pour le silencieux sont identiques, mais le marquage du produit est
différent.
2. Recherche des programmes sur les différents robots
J’ai listé tous les programmes sur robots Messer et ABB en utilisant les disques locaux sur le
réseau : il existe des répertoires ABB, R1, R4, R5 où sont rangés les références programmées sur
le robot en question. Il existe plusieurs types de programmation :
Programmation Inox
Ces programmes sont des mises à jours effectuées lors de l’implantation des robots à SaintBerthevin. La soudure acier est alors abandonnée pour passer à l’inox.
Programmation Inox2
Ce sont les programmes Inox revus et perfectionnés : ils sont plus récents mais peu
nombreux.
Vincent GUYON
11
Tenneco Automotive
Amélioration du flux de fabrication
Programmation Master
Les programmes Master sont les plus nombreux et ont été crées à Laval, avant le
déplacement des robots : ce sont les programmes de base.
Programmation Saint-Berthevin
Lorsque les robots ont été déplacés sur Saint-Berthevin, l’ensemble des programmes,
d’Ernée ou de Laval, ont été sauvegardés dans ce dossier.
Les programmes ont le même numéro que la référence (facilitant la recherche) et si une
référence est présente dans n’importe quel répertoire d’un robot, elle peut être produite dessus.
Pour la recherche des programmes sur le robot 11, j’ai été directement lire, avec l’aide d’un
moniteur, la liste des références programmées en consultant la console du robot OTC.
3. Listing général des références des 2 lignes
L’établissement sur Excel de la liste des programmes sur les sept robots constitue la première
étape dans la caractérisation de la situation à T0. (Nous noterons ce fichier le « fichier source »).
Pour l’expression des résultats, j’ai mis en place un indicateur appelé « taux de programmation
Tp » qui reflète le nombre de références lignes flux qui sont programmées sur un ou plusieurs
robots.
Avec Nbre de référence Ligne Flux = 130
A T0 (10/11/2005) :
Tp(Messer) = 50,00%
Tp(ABB) = 73,85%
On voit que la polyvalence est mauvaise sur les robots Messer ce qui nous conforte dans notre
objectif de programmer sur les Robots R1, R4, R5 en priorité.
Vincent GUYON
12
Tenneco Automotive
Amélioration du flux de fabrication
DO
4. Tri des références
J’ai obtenu de l’ordonnancement, trois critères pour chacune des références Lignes en Flux :
Les prévisions des ventes sur les 12 prochains mois
La taille moyenne de lot
Les ventes réalisées sur les 12 derniers mois
Nous allons fixer nos priorités en fonction du tri selon les prévisions des ventes (critère le plus
rentable).
Cf. Annexe V : Tri des références Lignes Flux, selon les prévisions des ventes
5. Listing des références à programmer
Après avoir retiré les références qui avaient déjà un programme sur un ou plusieurs Messer
(c’est notamment le cas de la référence n°1 des ventes : 15985), nous avons pu établir la liste des
références à programmer en priorité.
Nous nous sommes limités aux références qui ont une prévision de vente supérieure à 8000, ce
qui correspond à environ 150 pièces par semaine.
Cf. Annexe VI : Liste des références à programmer en priorité
6. Choix du robot support à la programmation.
Vincent GUYON
13
Tenneco Automotive
Amélioration du flux de fabrication
Il apparaît clairement que le robot R1 est beaucoup plus léger en programmes que les robots
R4 et R5 et donc nous programmerons en priorité sur celui-ci.
(on a : Tp(R1) = 40,77 %
Tp(R4) = 55,38 %
Tp(R5) = 54,62 % )
7. Etablissement d’un calendrier de programmation
Nous avons établit un plan d’action qui vise 3 programmations par semaine, en savant à
l’avance l’impossibilité de suivre l’ordre des priorités (la programmation dépend de la disponibilité
des moniteurs, du robot, de la série...)
CHECK
8. Mise à jour de la liste
Au fur et à mesure que les programmations seront réalisées, il est nécessaire de mettre à jour le
tableau qui liste les programmes (fichier source). On utilise pour cela un fichier Excel simplifié et
rempli par les opérateurs au fil des programmations : ils notent la date, la référence et sur quel
robot ils ont programmé.
L’avancement et les résultats de ce projet obtenus en fin de stage sont décrits et analysés en
page 28 : « Bilan et analyses ».
Vincent GUYON
14
Tenneco Automotive
Amélioration du flux de fabrication
2b. Charge des caristes
Il est difficile de caractériser concrètement la charge d’un cariste lors d’une journée ; son
activité est directement liée à l’objectif de production et sa charge varie selon le nombre de
machines à alimenter.
Quelques soient les objectifs de production, les différentes activités auxquelles s’emploie le
cariste dans sa journée restent toujours les mêmes, mais avec un fréquence plus ou moins grande.
Au mois de septembre, les caristes opérants sur les lignes en flux sont trois par équipes :
•
Un cariste qui s’emploie au reconditionnement des bacs de composants et l’approvisionnement des cellules corps
• Un cariste dit « Amont » qui alimente les moyens de cintrage et la zone de réception en
composants pour les cellules corps
• Un cariste « Aval » se consacre à l’approvisionnement des robots et à la gestion des
produits finis.
(cf. lexique)
(1) Estimation de la charge de reconditionnement
La logistique des Lignes en Flux a été revue à partir de la semaine 49 afin de cesser l’activité
de reconditionnement sur le site de Saint-Berthevin, libérer les deux caristes s’y consacrant et les
faire passer en production (passage en « main d’œuvre directe »).
Ces modifications ont pour but de déplacer le reconditionnement dans l’UAP Composants, à
Ernée. Le but final est de faire arriver les composants directement en bac :
- de chez les fournisseurs
- du site d’Ernée : les composants étant mis directement en bac en sortie
d’outils (suppression de l’étape mise en benne)
Pour étudier la possibilité de mise en place d’un tel système sur le site d’Ernée, l’activité de
reconditionnement a dû être caractérisée pour en connaître la charge horaire.
Dans l’ordre chronologique de l’activité de reconditionnement, on note donc :
1
2
3
4
5
Récupération de la benne de composant et mise sur basculeur
Récupération de rollers de bacs vides
Reconditionnement des composants en bac
Mise sur palette des bacs pleins et filmage de la palette
Evacuation de la palette sur le quai.
(cf. lexique)
J’ai calculé d’abord la charge de chacune de ces étapes en établissant le temps moyen par série.
Ensuite, en utilisant le nombre moyen d’OF par jour, j’ai obtenu la charge journalière.
Nombre moyen d’OF / jour = Moyenne de pièce produites = 3600
Taille moyenne d’un OF
800
Nombre moyen d’OF / jour = 4,5
Vincent GUYON
15
Tenneco Automotive
Amélioration du flux de fabrication
récupération benne, mise en basculeur
récupération des rollers de bacs vides
reconditionnement des composants
filmage de la palette
évacuation de la palette
Total
Par OF
0:22:30
0:35:00
1:39:47
0:05:41
0:08:45
2:51:43
Par Journée
1:41:15
2:37:30
7:29:00
0:25:36
0:39:22
12:52:43
BILAN :
On estime la charge des caristes « reconditionnement » à 12h52 par jour. Les lignes corps ne
tournant pas la nuit, on estime donc la charge à 6h26 par équipe, soit 0,86 personne / équipe.
Il nous faut donc une personne par équipe pour gérer la charge « amont »
Situation initiale : 3 caristes
Situation finale théorique : 2 caristes
Gain théorique = 1 personne / équipe
Coût mensuel d’un intérimaire : 2700 euros
D’où gain annuel du projet = 2700 x 12 mois x 2 équipes
Gain annuel théorique = 64800 euros
Pour entrer dans le détail du calcul de la charge horaire :
Récupération de la benne de composant et mise sur basculeur : 02:30 min par benne.
On compte une moyenne de 9 composants dans un corps, cette opération prend donc 22:30 minutes par OF
Récupération de rollers de bacs vides
Hauteur : 8 bacs par roller
Positionnement des huit bacs et positionnement proche de la benne : 1 min
Pour calculer le nombre de bacs nécessaire par OF, j’ai du moyenner deux données :
o le nombre de composants d’un corps : 9 (en moyenne 4 coupelles, 3 tubes et 2 turbine par pièce).
o le nombre de composants dans un bac :
30 pour les coupelles et les turbines
20 pour les tubes
4 (coupelles) * 800 (pièces) + 3 (tubes) * 800 (pièces) + 2 (turbines) * 800 (pièces)
30 coupelles par bacs
20 tubes par bacs
30 turbines par bacs
Soit : 107 bacs pour les coupelles + 120 bacs pour les tubes perforés + 53 bacs pour les turbines
Conclusion : 280 bacs par OF
35 rollers (280/8) transportés
Cette étape du reconditionnement nécessite donc au total 0:35:00 par OF.
Vincent GUYON
16
Tenneco Automotive
Amélioration du flux de fabrication
Reconditionnement des composants
Réalisation d’un chrono suivant les composants pour le remplissage d’un bac :
En arrondissant, on peut ainsi en déduire la charge de l’opération :
Qté moy. de composants par pièce :
Qté moy. de bacs utilisés par OF :
Recondt d'un bac de composant :
Tps nécessaire au recondt par OF :
coupelles
4
107
00:00:18
00:32:06
tubes
3
120
00:00:25
00:50:00
turbines
2
53
00:00:20
00:17:40
Total
01:39:46
Le reconditionnement pour un OF occupe plus de 1h39 dans la journée du cariste.
Mise sur palette des bacs pleins et filmage de la palette
Filmage
1
40,71
2
35,15
3
42,44
MOY
39,43
280 bacs par OF, 32 bacs sur une palette (4 colonnes de 8 bacs), il y a donc 280/32 = 8,75 palettes filmées
soit 00:05:41 par OF.
Evacuation de la palette : 1 min
On utilise 8,75 palettes par OF donc cette opération nécessite 00:08:45.
(2) Rédaction de modes opératoires.
Suite au déplacement de l’activité de reconditionnement sur Ernée, nous avons calculé que la
charge cariste nécessitait 2 personnes.
Dans un but de standardisation du travail, j’ai défini les tâches respectives sous forme de
modes opératoires pour assurer le bon fonctionnement des flux de pièces dans la zone :
-
Le cariste « robot » récupère l’activité d’approvisionnement du cintrage
L’approvisionneur « réception » prépare les composants et alimente les cellules corps.
Cf. Annexe VII : Mode opératoire de l’approvisionneur
Cf. Annexe VIII : Mode opératoire du cariste Robot
Vincent GUYON
17
Tenneco Automotive
Amélioration du flux de fabrication
2c. Synchronisation corps – tubes
Dans la ZAP Lignes en Flux, les communications entre les opérateurs d’une même équipe sont
peu nombreuses. Les opérateurs réalisent leur production sans s’occuper des autres secteurs ce qui
crée des stocks de sous-ensembles ou des attentes robots.
La coordination des activités amont (cintrage et fabrication des corps) est donc primordiale et
passe par une amélioration de la synchronisation corps - tubes.
Objectif : fonctionnement autonome de l’Heijunka Board (régler automatiquement les problèmes
de priorité de soudure, d’avancement par rapport au planning, ...)
Dans ce point, nous allons définir le stock nécessaire au bon fonctionnement de l’Heijunka
Board et réaliser un outil de management visuel aidant à sa bonne marche.
Cette démarche nous a conduit à faire varier les stocks de chaque sous-ensemble afin de
trouver le point d’équilibre entre trop de stock et attente des robots. Pour nous aider à gérer des
situations de déséquilibre, nous avons mis en place des aides pour les cas de fonctionnement en
« modes dégradés ».
•
Construction de l’outil de management visuel
Suite à une étude où nous avons fait varier les stocks des sous-ensembles, nous avons défini un
stock idéal de fonctionnement : les robots ont une bonne disponibilité sur l’Heijunka Board lorsque
3 OF de soudure sont prêts à être soudés (c'est-à-dire que les sous-ensembles sont faits ou en
cours).
Le management visuel effectué consiste à situer la fabrication des sous-ensembles dans trois
zones du tableau et y associer un mode de fonctionnement :
- Les 3 premières séries du tableau mode de fonctionnement dégradé 1
- Les 5 séries suivantes mode de fonctionnement normal
- Les séries au-delà du 8è OF mode de fonctionnement dégradé 2.
Mode fonctionnement
Normal
dégradé 1
dégradé 2
Fabrication
sous-ensemble
Corps et tubes se
fabriquent dans la zone
définie en vert
Fabrication des sousensembles en zone rouge :
ils sont en retard par
rapport à l'équilibre
Les sous-ensembles ont
trop d'avance
Disponibilité Robots
Les robots ont 3 OF
soudure prêts : nous
sommes au point d'équilibre
Les robots ont moins de
disponibilité et peuvent
attendre les composants
Plan d'action
Pas de plan d'action en
fonctionnement normal
Ralentir les robots et
accélérer la fabrication des
corps ou des tubes
Vincent GUYON
Les robots ont beaucoup de
disponibilité mais le stock
de sous-ensemble est trop
élevé
Il faut cette fois accélérer
les robots et ralentir la
fabrication des sousensembles pour revenir à
l'équilibre
18
Tenneco Automotive
Amélioration du flux de fabrication
Les opérateurs savent visuellement où ils se situent avec l’utilisation des codes couleurs et
savent le plan d’action correspondant à mettre en place (deux notices A4 ont été affichés dans
l’espace communication pour expliquer le fonctionnement).
Cf. Annexe IX : Management visuel du stock idéal sur l’Heijunka Board
•
Mise en place des aides
Deux actions ont été mises en place, pour les cas de « déséquilibres » :
1. Planning soudure robot
Lorsque l’on fonctionne en mode « dégradé 1 », les sous-ensembles font attendre les robots :
l’OF soudure démarre alors que les OF corps et tubes ne sont pas complétés.
Les opérateurs ont donc besoin de savoir quelles séries seront soudées dans la journée :
actuellement nous avons le planning soudure robot (annexe III).
Les opérateurs « amont » jugeant ce fichier complexe (trop d’informations), j’ai réalisé un
planning de besoin en composant indiquant uniquement :
- les séries soudées dans la journée,
- à quelle heure,
- sur quel robot.
Cf. Annexe X : Planning besoin en composant
2. Réunion
Pour palier aux problèmes en cas de déséquilibre, les leaders des îlots (corps, cintrage et robot)
peuvent se réunir en début d’équipe pour aborder les avances/retards éventuels.
Nous avions envisagé de généraliser cette réunion (de façon quotidienne) mais, après avoir
noté les réactions des leaders, il est apparu qu’elle ne serait nécessaire qu’en cas de déséquilibre.
Cf. Annexe XI : Réaction des leaders de chaque îlot à une réunion
Dans le but de respecter le flux tiré, ce sont les robots qui doivent « tirer » les composants vers
eux : c’est donc au leader robot de s’assurer de la disponibilité des pièces et d’alerter en cas de
problème.
Vincent GUYON
19
Tenneco Automotive
Amélioration du flux de fabrication
3. Mise en place d’outils d’aide à la gestion
Tout en poursuivant les différents projets d’amélioration du flux, j’ai également participé à la
gestion de la zone « Ligne en Flux » :
- réalisation d’un fichier polyvalence robot sous Excel :
A l’établissement du planning, il faut pouvoir connaître rapidement si une référence prête peut
être fabriquée ou non sur un robot (donc voir si le programme s’y trouve). Au lieu de faire une
recherche pénible parmi les 130 lignes du tableau du « fichier source », la recherche est simplifiée
par l’affichage direct des robots sur lesquels est programmé la référence :
Cet outil, mis en place en novembre, a beaucoup évolué suite aux problèmes rencontrés au
quotidien :
•
rajout possible des commentaires (capitalisation de l’information)
•
affichage des références équivalentes (regroupement des séries d’où gain en temps de
réglage)
Vincent GUYON
20
Tenneco Automotive
Amélioration du flux de fabrication
- réalisation d’un outil pour optimiser le besoin en personnel
Lors de la réunion « effectifs », prévoyant le besoin en effectif de la semaine suivante, le
responsable de la ZAP avait du mal à évaluer la charge en personnel.
Dans ce but, nous avons réalisé une base de calcul permettant de calculer une cadence
moyenne à la semaine (appelée mixte) à partir du fichier programme ligne flux (annexe IV).
J’ai pu également perfectionner certains outils déjà en place tel que le fichier planning robot en
incluant les temps de réglages dans les heures restantes en fin de journée ou en déplaçant les
tableaux pour respecter leurs positions « physiques ».
Vincent GUYON
21
Tenneco Automotive
Amélioration du flux de fabrication
4. Délais suivis et problèmes occasionnels
Ce stage de 24 semaines m’a permis non seulement d’opérer aux côtés du responsable de la
zone Lignes en Flux (gestion et management de la ZAP au quotidien), mais également de définir et
mettre en place l’étude d’amélioration du flux.
Les deux premiers mois de stage (jusqu’à novembre), j’ai observé et analysé le fonctionnement
de la ZAP pour connaître plus précisément les procédures de l’entreprises, les systèmes de
production utilisés et quelques notions techniques sur le produit et les machines.
Avec Mikaël Lazennec, nous avons exploité à partir de mi-novembre les observations réalisées
et les besoins de la ZAP pour mettre en place le plan de l’étude « Amélioration du flux ».
J’ai rencontré quelques difficultés lors de la mise en route des différents projets :
-
communication avec les autres services (logistique, lean manufacturing)
les réactions des opérateurs
implication des opérateurs dans les nouveaux projets
lutter contre la multiplicité des documents (informatiques ou écrits)
Enfin, le fait de gérer beaucoup de « quotidien » (être sur le terrain et régler des problèmes au
cas par cas) n’a pas facilité l’avancement des études menées : la première difficulté a été de réussir
à se détacher du quotidien.
Vincent GUYON
22
Tenneco Automotive
Amélioration du flux de fabrication
5. Bilan de l’étude et analyse
5a. Bilan projet par projet
Polyvalence des robots
Les programmations ont débutées dès le début de l’année 2006 par les références prioritaires.
Au 3 février, 9 références (dont les 7 plus vendues) ont été programmées sur le robot R1.
Au 03/02/2006, on a : Tp(R1) = 47,69 %
Tp(Messer) = 52,56 %
Pour rendre le
programmation :
o
o
o
o
projet durable (« Act » du PDCA), nous pouvons étendre le champ de
Programmer sur les autres Messer pour obtenir Tp(Messer) = Tp(ABB)
Lancer des programmations sur l’OTC (R11)
Programmer certaines séries sur ABB
A terme, que chaque référence ait son programme sur au moins 4 robots de
la zone.
Parallèlement au développement des machines que nous réalisons, nous pouvons aussi
développer les compétences des opérateurs (utilisation du 5M dans la recherche de solutions).
Pour palier au manque de moniteurs (expliquant en partie le retard pris sur la programmation),
des formations dispensées par Messer sont planifiées sur 2006.
Etude de la charge des caristes
Sur le site d’Ernée, tous les composants devaient être mis en bacs en sortie de fabrication, sans
passer par l’utilisation des bennes. Cela a été possible pour les turbines et une partie des coupelles
(deux tiers du volume). Par contre, la ligne à tube ayant une cadence de 1000p/h, cela n’a pas été
possible ; nous recevons encore à Saint-Berthevin des bennes à reconditionner.
Nous avons donc une surcharge de travail (le reconditionnement des tubes et de certaines
coupelles). Mettre 2 personnes (1 dans chaque équipe) au poste « amont » s’est révélé insuffisant :
les opérateurs des cellules corps étant contraints d’aider à la mise en bac des tubes et à
l’approvisionnement des lignes (en moyenne 3 heures par équipe).
Situation initiale : 3 caristes
Situation finale théorique : 2 caristes
Gain théorique = 1 personne / équipe
Situation finale réelle : 2 caristes + 3 heures
Gain réel = 4,5 h / équipe
Gain journalier = 2 x 4,5 heures gagnées par équipe x coût horaire d’un intérimaire = 162 euros/j
Gain annuel = 162 euros/jour x 20 jour/mois x 12 mois/an
Gain annuel = 38880 euros /an
Vincent GUYON
23
Tenneco Automotive
Amélioration du flux de fabrication
Etudes en cours pour gagner les 3 heures de main d’œuvre directe perdue :
- transfert de charge (3 heures) vers un autre cariste
- réorganisation de la zone réception (passage en zones spécifiques attribuées à un OF pour
éviter les manipulations caristes)
- travail sur la mise en bac en sortie de ligne tube et coupelle à Ernée.
Synchronisation corps - tubes
Depuis la mise en place de l’outil de management visuel, nous avons amélioré la maîtrise du
stock d’en-cours et nous avons par conséquent une meilleure maîtrise du volume de produits finis
fabriqués quotidiennement (respect des engagements auprès des clients).
Les régleurs de chaque périmètres ayant une meilleure visibilité de leur travail, ils anticipent
mieux les problèmes ce qui a améliorer la productivité de la ZAP.
5b. Analyse globale
Les différents sujets traités ont améliorés le flux de fabrication de la zone « Lignes en Flux »
en dynamisant quelques points :
• l’autonomie des leaders sur les Lignes Flux
• la souplesse pour la réalisation du planning
• la facilité de remplacement du personnel (réalisation de mode opératoire, polyvalence)
• la réorganisation logistique
• visibilité dans le travail
Les différentes études ont été bien reçues par les opérateurs d’autant plus que certaines des
démarches étaient souhaitées (polyvalence robot, aide à la synchronisation des postes amont).
Nous avons constaté des améliorations du flux lors des trois études :
- Polyvalence robot
meilleur flux de matières, de mains d’œuvre
- Standardisation de l’activité cariste meilleur flux de composants, de mains d’œuvre
- Synchronisation postes amont
meilleur flux d’information, de mains d’œuvre, de matière
Au final, les projets menés ont conduit à une amélioration de la productivité de la ZAP lignes
en flux : passage de 76 % en octobre 2005 à 85 % en janvier 2006.
Vincent GUYON
24
Tenneco Automotive
Amélioration du flux de fabrication
CONCLUSION
Au cours de ce semestre au sein de l’entreprise Tenneco Automotive, j’ai eu l’opportunité
d’observer et de partager les tâches et les missions d’un ingénieur production. Son activité
comporte deux axes : management au quotidien de son périmètre (sécurité, qualité et productivité)
et développement de projets d’amélioration continue.
J’ai eu l’opportunité de développer mes connaissances en outils de production tout comme les
contacts humains, indispensable à tout travail en équipe : savoir être à l’écoute des opérateurs et
collaborer avec les services supports.
Parallèlement à un développement technique et surtout humain, le projet mené m’a également
permis de me familiariser avec les activités que l’on retrouve dans une usine de production :
management, gestion, amélioration continue, qualité, maintenance ; constituant ainsi une
expérience enrichissante du monde industriel, de ses tenants et de ses aboutissants.
Vincent GUYON
25
A2005
Etudiant : Vincent GUYON
Suiveur UTC : Didier LEMOINE
Amélioration du flux de fabrication en zone de
production « Lignes en Flux »
CAHIER D’ANNEXES
et
LEXIQUE
Entreprise : Tenneco Automotive
Lieu : Saint-Berthevin
Responsable : Mikaël Lazennec
TABLE DES MATIERES
ANNEXES
Annexe I
Organigramme de l’usine du site de Saint-Berthevin
1
Annexe II
Plan des lignes en flux
2
Annexe III
Fichier planification Robots Lignes en Flux
3
Annexe IV
Programme à la semaine des références Lignes en Flux
4
Annexe V
Tri des références Lignes Flux, selon les prévisions des ventes
5
Annexe VI
Liste des références à programmer en priorité
6
Annexe VII
Mode opératoire de l’approvisionneur
7
Annexe VIII
Mode opératoire du cariste robot
9
Annexe IX
Management visuel du stock idéal sur l’Heijunka Board
13
Annexe X
Planning besoin en composant
15
Annexe XI
Réactions des leaders de chaque îlot à une réunion
16
LEXIQUE
17
Annexe I : Organigramme de l’usine du site de Saint-Berthevin
Directeur de Production
Robert MAS
Responsable UAP Composants
Arnaud THORAL
Responsable UAP « A&B »
Mikaël LAZENNEC
Responsable UAP « C&D »
Didier GUILLAUME
ZAP Tube, Corps
Christophe ROMAGNE
Responsable Nuit
Mickaël DESPOUY
Maintenance
Michel GARNAVAULT
ZAP Soudure
David ABLANCOURT
1
Annexe II : Plan des lignes en flux (le 01/10/2005)
Zone de réception :
stockage composants
corps et tubes,
Approvisionnement
ligne corps
LF 2
LF 1
Espace communication
Zone stockage
contenants vides
Zone stockage machines
ADD 16
ADD 10
PAC 10
ADD 2
R 23
R 24
R5
R 25
R4
R1
R 11
Zone supermarché
2
Annexe III : Fichier planification Robots Lignes en Flux
3
Annexe IV : Programme à la semaine des références Lignes en Flux
4
Annexe V : Tri Pareto des références Lignes Flux, selon les prévisions des ventes
5
Annexe VI : Références à programmer en priorité
Référence
17166
70338
19071
21223
70341
70362
13228
70062
70070
13224
70327
70339
9406
70324
52745
17275
14531
19357
13662
17469
22099
17584
12298
70417
70083
17182
71036
22623
15524
70445
52702
15499
72020
15103
19582
13598
52703
15108
50885
50934
Ligne
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
Ligne Flux
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Prévision des ventes
67000
39500
37000
24000
20000
19000
17500
15000
13659
11000
8500
8500
8400
8000
7925
6900
5800
5500
4800
4300
4000
3700
3639
3100
2600
2238
2200
1902
1419
1418
1252
1200
984
436
411
342
93
0
0
0
Taille lot
1396
823
771
1000
833
792
729
625
569
688
531
531
525
500
495
431
483
458
400
358
333
308
303
517
433
373
367
317
237
236
209
325
267
291
274
228
62
50
50
50
Ventes 2005
66046
36824
36523
20823
19963
17918
15213
16068
11756
9959
8824
8764
7740
7103
5760
5859
5415
4757
3936
4601
3255
3419
3750
3296
2268
2189
2170
0
1295
880
1400
1250
498
385
84
341
0
14
0
0
6
Annexe VII : Mode opératoire de l’approvisionneur
INSTRUCTION DE
FABRICATION
TITRE : MODE OPERATOIRE DE L’APPROVISIONNEUR
Rédaction
Vérification
Nom :
Nom :
Date de rédaction :
Date de vérification :
VISA :
VISA :
1 - OBJET
Cette instruction a pour but de décrire le mode opératoire du cariste opérant en zone de réception et
approvisionnant les lignes corps 1 et 2.
2 - DOMAINE D'APPLICATION
Cette instruction s'applique à tous les approvisionneurs exerçant dans la zone de réception des « Lignes en
Flux ».
3 - MODE OPERATOIRE
3-1- APPROVISIONNEMENT DE LA ZONE RECEPTION (Cf. annexe 1)
- Récupérer les Transfer Order1 des composants pour les lignes corps 1 et 2 sur l’heijunka board
- Récupérer les bennes dans les emplacements réservés
- Gerber les bennes sur les basculeurs dans la zone réservée à la référence du TO
- Déposer les palettes filmées dans la zone appropriée puis les défilmer
- Déposer les bennes vides dans la zone appropriée
- Ranger les bacs de composants Kanban et mettre les fiches Kanban en place
3-2- RECONDITIONNEMENT
- Reconditionner les composants en bennes dans des bacs KL (mise en roller)
- Déplacer les bacs en bout de zone et les disposer côte à côte, une rangée par composant
1
Transfer Order : document indiquant l’emplacement originel de la benne et son lieu de destination
7
3-2- APPROVISONNEMENT DES LIGNES CORPS (Cf. annexe 1)
- Amener le roller sur les lignes corps 1 et 2
- Identifier les rangées des racks dynamiques par la référence du composant
- Disposer les bacs dans les racks dynamiques
- Evacuer les bacs vides des lignes
- Filmer les palettes de bacs vides KL2 et KL4 puis les conduire vers la zone de stockage
- Evacuer les pièces des séries terminées (en zone de pesée - logisitique)
- Récupérer les corps en réintégration sur demande du régleur ligne corps 1 ou 2 et les amener sur ligne
- Maintenir le tableau blanc de réintégration à jour (effacer la référence récupérée)
8
Annexe VIII : Mode opératoire du cariste robot
INSTRUCTION DE
FABRICATION
TITRE : MODE OPERATOIRE DU CARISTE ROBOT
Rédaction
Vérification
Nom :
Nom :
Date de rédaction :
Date de vérification :
VISA :
VISA :
1 - OBJET
Cette instruction a pour but de décrire le mode opératoire d’un cariste dit robot c'est-à-dire
approvisionnant les moyens de cintrage et les robots et assurant le suivi des produits finis.
2 - DOMAINE D'APPLICATION
Cette instruction s'applique à tous les caristes robots exerçant dans la ZAP « Lignes en Flux ».
3 - MODE OPERATOIRE
3-1- APPROVISIONNEMENT DES MOYENS DE CINTRAGE
- Approvisionner les cintreuses Addisson 2, 10, 16 et la Presse à cintrer 10 en composants en
suivant le Transfer Order2 (TO) donné par l’opérateur au cintrage
Cf. Annexe 1 : Zones de stockage
- Effectuer la confirmation du TO
- Gerber les bennes sur les basculeurs
- Mettre à disposition des rolls adéquats vides pour les lignes corps et tubes
- Evacuer des rolls pleins vers le supermarché.
NB : utilisation de l’andon bleu pour la gestion des réapprovisionnements
3-2- APPROVISIONNEMENT DES ROBOTS
- Chercher les composants nécessaires (pattes en fil, passage de gaines, colliers, …) dans les
zones prévues à partir du Transfer Order donné par l’opérateur
Cf. Annexe 1 : Zones de stockage
2
Transfer Order : document indiquant l’emplacement originel de la benne et son lieu de destination
9
- Effectuer la confirmation du TO
- Ranger les composants par série dans le supermarché
- Reconditionner ces pièces en benne dans des bacs KL
- Mettre les bacs dans le rack dynamique du robot
- Amener au robot les bacs de composants Kanban en utilisant le petit train
- Mettre à disposition les rolls pleins, corps et tubes
NB : utilisation de l’andon bleu pour la gestion des réapprovisionnements
- Evacuer les bacs et les rolls vides.
- Filmer les palettes de bacs vides KL0 et KL1 puis les conduire en zone de stockage
- Réintégrer les pièces des séries terminées
Cf. Annexe 1 : Zones de stockage
3-3- GESTION DES PRODUITS FINIS ET DES CONTENANTS
- Ramener les contenants vides (paniers WE, carton R650, R800 ou autres), les dépolluer, puis
les déplier dans la zone
- Remplacer les paniers pleins
NB : utilisation de l’andon bleu pour la gestion des réapprovisionnements
- Evacuer le panier plein en bout de ligne en attendant un second panier
- Evacuer les 2 paniers pleins en zone de confirmation
cf Annexe 2 : déplacement du cariste Aval dans l’usine
- Disposer toujours 4 paniers WE prêts en bout de ligne
3-4- SUIVI DE LA PRODUCTION DES ROBOTS
- Relever les objectifs et les quantités produites par les robots (sur les panneaux format A0) aux
heures indiquées dans l’espace communication et les noter sur le panneau correspondant.
10
INSTRUCTION DE
FABRICATION
Annexe 1 : Zones de stockage
11
INSTRUCTION DE
FABRICATION
Annexe 2 : Déplacement du cariste « Robot » dans l’usine
Légende :
Zone de stockage momentané en bout de ligne flux
Zone de réception
Zone de stockage des paniers vides
Trajet avec paniers pleins
Trajet chariot vide
Trajet avec paniers vides
12
Annexe IX : Management visuel du stock idéal sur l’Heijunka Board
13
14
Annexe X : Planning besoin en composants
15
Annexe XI : Réaction des leaders de chaque îlots à une réunion
Christian B., team leader, cellule corps :
« Pas besoin de réunion, le tableau Heijunka Board joue ce rôle : il permet d’avoir la visibilité sur
l’avancement de chacun des postes de travail. Quand il y a un problème éventuel (manque de pièces…), on
se voit entre leader mais une réunion quotidienne serait inutile. »
Alban L., régleur, cellule corps :
« On ne fait pas de réunion et ça ne servirait à rien d’en faire une. On a le tableau et c’est ensuite, si
problème sur le tableau, que l’on va voir la personne concernée. Pour les échanges de personnel, on
s’arrange en temps réel sans anticiper, chose rarement possible. »
Dominique D., régleur, cintrage :
« C’est une bonne idée, à réaliser en début d’équipe. Actuellement, on se passe des consignes entre nous de
temps en temps mais une réunion permettrait de savoir à l’avance l’utilité de chaque composant. On ne
connaît pas toujours l’avancement des robots et parfois, on fait beaucoup de tubes dont l’utilité n’est pas
immédiate. »
Richard R., régleur, cintrage :
« J’y avais pensé, mais on change souvent de programme à cause de problèmes matières. Ce serait pas mal
de se réunir mais il faudrait être rigoureux dans le sens où si on avance une programmation, on s’y tient.
Autrement, on échange parfois avec les robots mais jamais régulièrement : je leur demande s’ils ont besoin
des pièces directement sur le robot et eux me demandent la disponibilité de certaines références. »
Michel R., team leader, robots :
« Pourquoi pas une réunion, mais à 6h, pas 5h du matin puisqu’au tout début d’équipe, il y a trop de points
à régler ou à mettre en route. Le problème d’une réunion en début d’équipe c’est qu’on manque de visibilité
sur les événements de milieu ou de fin d’équipe : il est impossible d’être affirmatif en début d’équipe sur
l’avancement qu’on aura en fin. De plus, les problèmes se règlent au cas par cas, si il y a un souci, on
s’interroge entre leader mais en général le tableau Heijunka Board nous renseigne tout seul. En général, à
chaque changement de série, je viens jeter un œil au tableau qui renseigne sur la disponibilité des
composants. »
Emmanuel G., team leader, robots :
« On n’a pas vraiment besoin d’une réunion, on se voit déjà, dès qu’on veut savoir s’il manque des pièces
ou l’avancement d’une références. Cela se fait directement sur place mais je ne sais pas si ce serait une
bonne idée d’organiser une réunion tous les matins. »
16
LEXIQUE
Bac : petit contenant standard de plusieurs formats : les plus petits font 1,8L, les plus grands, 7,2
Cellule en U : Mode de fonctionnement où les opérateurs tournent et changent de postes de travail,
présentant quelques intérêts en terme de productivité :
• L’opérateur contrôle la chaîne du début à la fin
• Gain en temps de cycle, les temps successifs des processus sont moyennés
Collier : collier à vis permettant la jonction de deux tubes sur certaines références
Coupelle : élément intérieur ou extérieur du corps qui fixe la position des tubes dans le
corps
Faisceaux : assemblage de tubes perforés, de turbines et de coupelles, constituant
l’intérieur du corps
Flan : Double plaque d’acier de différentes surfaces qui sera enroulé sur un mandrin d’un certain profil
Mandrin (barre de mandrin) : barre du profil approprié sur
lequel s’enroulent les flancs juste avant d’être agrafés.
Panier : Les produits finis soudés sont rangés dans des paniers standards
pliables nommés WE
Passage de gaine : élément de fixation au véhicule qui se positionne sur les pattes en fil
Patte en fil : fil d’acier permettant la fixation au véhicule, soudé sur les tubes ou les corps
Productivité : indicateur utilisé en production et qui correspond aux heures standards (temps réellement
passé sur les machines) divisé par le nombre d’heures total d’ouverture machine
17
Rack dynamique : Châssis métallique contenant les bacs, disposés sur plusieurs hauteurs et permettant à
l’opérateur d’avoir tous les composant directement « sous la main »
Reconditionnement : action de mettre les composants en bacs à partir d’une benne mise sur inclineur
Roll : Contenant roulant de différents formats permettant le déplacement des tubes ou des
corps
Roller : petite base sur roulette utilisé pour le transport de plusieurs bacs
Sous-ensemble : c’est un composant fabriqué du silencieux, il désigne le corps ou le(s) tube(s)
Turbine : Petit tube serrant un matelas de laine de roche, limitant les bruits d’échappement
et les secousses du corps
Virole : Nom donné à un flan enroulé et agrafé, créant un « cylindre vide »
Zone supermarché : zone qui permet le stockage momentané des composants (corps, tubes, pattes, etc.)
avant qu’ils soient soudés sur les robots
18

Documents pareils