Journal of the African Elephant, African Rhino and Asian

Transcription

Journal of the African Elephant, African Rhino and Asian
ISSN 1026 2881
Journal of the African Elephant, African Rhino
and Asian Rhino Specialist Groups
July – December 2012
Species
Survival
Commission
Editors
Dali Mwagore and Helen van Houten
Section Editors
Deborah Gibson–African elephants
Kees Rookmaaker–African and Asian rhinos
Editorial Board
Julian Blanc
Holly T. Dublin
Richard Emslie
Mike Knight
Esmond Martin
Benson Okita-Ouma
Robert Olivier
Diane Skinner
Bibhab K. Talukdar
Lucy Vigne
1
Chair reports / Rapports des Présidents
1
African Elephant Specialist Group report/
Rapport du Groupe des Spécialistes des
Eléphants d’Afrique
7
20
Address all correspondence,including enquiries
about subscription, to
The Editor, Pachyderm
PO Box 68200, 00200
Nairobi, Kenya
tel: +254 20 249 3561/65
fax: +254 20 2493570
email:[email protected]
website: http://african-elephant.org
http://pachydermjournal.org
Reproduction of this publication for educational
or other non-commercial purposes is authorized
without written permission from the copyright
holder provided the source is fully acknowledged.
Holly T. Dublin
African Rhino Specialist Group report/Rapport
du Groupe des Spécialistes des Rhinocéros
d’Afrique
Mike Knight
Asian Rhino Specialist Group report/Rapport du
Groupe des Spécialistes des Rhinocéros d’Asie
Bibhab K. Talukdar
23Research
23
36
Design and layout
Dali Mwagore
Illustrations
Philip Miyare
No. 52
49
Functional relationship between crop raiding by
the savannah elephant and habitat variables of
the Red Volta Valley in north-eastern Ghana
Patrick Adjewodah, William Oduro and
Alex Asase
Indentification et caractérisation des formations
végétales exploitées par l’éléphant Loxodonta
africana dans la Réserve de Biosphère de la
Pendjari au Nord-Ouest de la République du
Bénin
Tehou C. Aristide, Kossou Eric, Mensah G.
Apolinaire, Houinato Marcel and Sinsin Augustin
Brice
Optimizing the habitat of the Javan rhinoceros
(Rhinoceros sondaicus) in Ujung Kulon National
Park by reducing the invasive palm Arenga
obtusifolia
Adhi R.S. Hariyadi, Agus Priambudi, Ridwan
Setiawan, Daryan, Hendra Purnama and
Asep Yayus
Cover: African bull elephant in Ngorongoro, Tanzania
Credit: ©Sian Brown, Messerli Foundation
Journal of the African Elephant,
African Rhino and
July – December 2012
No. 52
Asian Rhino Specialist Groups
55
Demand for forest elephant ivory in Japan
Tomoaki Nishihara
66
Dispersal and social behaviour of the three adult female white rhinos at Ziwa
Rhino Sanctuary in the immediate period before, during and after calving
Felix J. Patton, Petra E. Campbell, Angie Genade, Robert Ayiko and Godfrey
Lutalo
72Management
72
Pilot study to validate PIKE-based inferences at site level
Hugo Jachmann
88
Rhino/ Field notes
88
Notes on black rhino mortalities in North Luangwa National Park, Zambia
Chansa Chomba, David Squarre and Harvey Kamboyi
91
New maps representing the historical and recent distribution of the
African species of rhinoceros: Diceros bicornis, Ceratotherium simum and
Ceratotherium cottoni
Kees Rookmaaker and Pierre-Olivier Antoine
97
Density-dependent effect affecting elephant seed-dispersed tree recruitment
(Irvingia gabonensis) in Congo Forest
David Beaune, Loïc Bollache, Barbara Fruth, Gottfried Hohmann and François
Bretagnolle
101
MIKE / ETIS updates
101
CITES-MIKE Update / Mise à jour de la CITES-MIKE
Julian Blanc
106
Progress in implementing the Elephant Trade Information System (ETIS) /
Avancement dans la mise en œuvre du Système d’Information sur le Trafic
des Eléphants (ETIS)
Tom Milliken and Louisa Sangalakula
113
Guidelines for contributors
Views expressed in Pachyderm are those of the individual authors and do not necessarily reflect those of IUCN, the
European Union, the Species Survival Commission or any of the three Specialist Groups responsible for producing
Pachyderm (the African Elephant Specialist Group, the African Rhino Specialist Group and the Asian Rhino Specialist
Group).
Journal of the African Elephant,
African Rhino and
July – December 2012
No. 52
Asian Rhino Specialist Groups
Acknowledgements
The production of this issue of Pachyderm was possible through contributions from a number of organizations
and individuals. In particular, we would like to thank the following:
EUROPEAN
COMMISSION
African Elephant Specialist Group report
CHAIR REPORTS
African Elephant Specialist Group report
Rapport du Groupe des Specialistes des Eléphants d’Afrique
Holly T. Dublin, Chair/Président
IUCN/SSC African Elephant Specialist Group, PO Box 68200 – 00200, Nairobi, Kenya
email: [email protected]
The past six months have seen a sharp increase in
awareness of the current pressures on elephants
from poaching and illegal ivory trade in many
parts of their range, in large part as a result of
IUCN’s joint reporting with MIKE and ETIS to the
CITES Standing Committee in July 2012. Highprofile press reports as well as statements from the
United States State Department, IUCN’s resolution
(see below) and initiatives by a variety of NGOs
indicate that the issue is now getting attention
at many levels. There is a significant amount of
goodwill out there, and all indications are that
people are gaining a deeper understanding of the
dynamics of the problem. We are all reflecting on
the failure of so many efforts to date and focusing
on identifying what actions might result in positive
outcomes. In all this, it is equally challenging
to find a way for elephant conservationists to
have impact in areas with which we have not
previously had experience, such as consumer
choice in China and law enforcement at border
crossings, to name just a couple. It is increasingly
clear that we need a much broader alliance, both
within governments and among the NGO and
intergovernmental organization community, to
come up with innovative and effective solutions all
along the illegal ivory supply chain. At the same
time, we must continue to work on the ground to
secure elephant habitat and corridors. These two
strands of work are essential to secure the future
for the African elephant.
Pachyderm No. 52 July–December 2012
Les six derniers mois ont vu une forte augmentation
de la prise de conscience des pressions actuelles sur
les éléphants émanant du braconnage et du commerce
illégal de l’ivoire dans de nombreuses zones de leur
habitat, en grande partie en raison des rapports conjoints
de l’UICN avec MIKE et ETIS au Comité permanent de
la CITES en juillet 2012. Des rapports à la une dans la
presse ainsi que des déclarations du Département d’Etat
Américain, la résolution de l’UICN (voir ci-dessous) et
les initiatives prises par diverses ONG indiquent que la
question attire maintenant l’attention à plusieurs niveaux.
Il y a de la bonne volonté, et tout porte à croire que les gens
comprennent mieux la dynamique du problème. Nous
réfléchissons tous sur l’échec de tant d’efforts jusqu’à
ce jour et nous nous concentrons sur l’identification des
mesures qui pourraient aboutir à des résultats positifs.
Dans tout cela, c’est aussi un défi de savoir comment les
défenseurs des éléphants peuvent avoir un impact dans
les domaines dans lesquels nous n’avons pas encore eu
l’expérience, comme le choix des consommateurs en
Chine et l’application de la loi aux frontières, pour n’en
citer que quelques-uns. Il est de plus en plus clair que nous
avons besoin d’une alliance beaucoup plus large, à la fois
parmi les gouvernements, les ONG et la communauté
des organisations intergouvernementales, pour proposer
des solutions innovatrices et efficaces tout au long de la
chaîne d’approvisionnement illégal de l’ivoire. En même
temps, nous devons continuer à travailler sur le terrain
pour sécuriser l’habitat et les corridors des éléphants. Ces
deux axes de travail sont essentiels pour assurer l’avenir
de l’éléphant d’Afrique.
1
Dublin
IUCN’s 5th World Conservation
Congress
The 5th session of the IUCN World Conservation
Congress was held in Jeju, Republic of Korea,
from 6 to 15 September 2012. Diane Skinner
and I both attended the congress; Diane Skinner
(AfESG programme officer) as an official member
of the congress team. At the Species Pavilion we
presented on elephants and poaching, and we
participated in discussions of the wild meat trade
and held a Knowledge Café on the African and
Asian Elephant Database (AAED).
The most important outcome for elephants,
however, was the passing of Resolution 025
‘Conservation of African elephants’ (http://portals.
iucn.org/docs/iucnpolicy/2012-resolutions/en/
WCC-2012-Res-025-EN%20Conservation%20
of%20African% 20elephants.pdf), that calls on
IUCN to take a number of actions, most urgently
to convene a high-level meeting on the growing
concern with regard to elephant poaching and illegal
ivory trade. AfESG has been working closely with
the German Federal Ministry for the Environment,
Nature Conservation and Nuclear Safety, the lead
sponsor of the original motion, to fine-tune the
scope and aims of the proposed meeting. The
intention is to raise awareness of poaching and
the illegal ivory trade all along the supply chain—
from source to destination—at the highest level
within governments. In each country, different
levels of government present barriers to effectively
protecting elephants or reducing the illegal trade in
ivory. In some cases, the defence forces or customs
authorities may be problematic; in others, resources
allocated to the wildlife management agency may
be insufficient to effectively protect elephants in
the field. It is therefore necessary to raise this issue
with the highest level within each state, and to
come together to determine the actions that each
can take, individually and collectively, to stem
the illegal ivory trade and to ensure that elephant
populations are protected or recovering.
With the resolution now in place, IUCN now has
the mandate to take on this work, but resources are
tighter than ever. Diane and I have been working
closely with the German government, the UK
government, the offices of the IUCN president and
director general and the IUCN Secretariat to raise
the funds required to implement the resolution.
2
5ème Congrès mondial de l’UICN sur la
Conservation
La 5ème session du Congrès mondial de l’UICN s’est tenue
à Jeju en République de Corée, du 6 au 15 septembre
2012. Diane et moi avons toutes les deux participé au
Congrès, Diane en tant que membre officiel de l’équipe
du Congrès. Au Pavillon des Espèces, nous avons fait une
présentation sur les éléphants et le braconnage, participé à
des discussions sur le commerce de la viande de brousse
et tenu un Café des connaissances sur la BDEAA.
Cependant, le résultat le plus important pour
les éléphants a été l’adoption de la Résolution 025
« Conservation des éléphants d’Afrique » (http://
portals.iucn.org/docs/iucnpolicy/2012-resolutions/en/
WCC-2012-Res-025-EN%20Conservation%20of%20
African% 20elephants.pdf), qui demande à l’UICN de
prendre un certain nombre d’actions et de convoquer
de façon urgente une réunion de haut niveau sur les
préoccupations croissantes relatives au braconnage des
éléphants et au commerce illégal de l’ivoire. Le GSEAf
travaille en étroite collaboration avec le Ministère Fédéral
allemand de l’Environnement, Conservation de la Nature
et Sécurité Nucléaire, le principal commanditaire de la
motion originale, pour peaufiner les objectifs de la réunion
proposée. Le but est de faire la sensibilisation au plus
haut niveau des gouvernements sur le braconnage et le
commerce illégal de l’ivoire tout au long de la chaîne
d’approvisionnement, de la source à la destination. Dans
chaque pays, il y a différents niveaux du gouvernement
qui présentent des barrières à la protection efficace des
éléphants ou à la réduction du commerce illégal de l’ivoire.
Dans certains cas, les forces de défense ou les autorités
douanières peuvent être problématiques; dans d’autres,
les ressources allouées à l’agence de gestion de la faune
sont insuffisantes pour protéger efficacement les éléphants
sur le terrain. Il faut donc soulever cette question au plus
haut niveau de chaque Etat, et se réunir pour déterminer
les actions que chacun peut prendre, individuellement
et collectivement, pour enrayer le commerce illégal de
l’ivoire et s’assurer que les populations d’éléphants sont
protégées ou se rétablissent.
Avec la résolution maintenant en place, l’UICN a le
mandat d’entreprendre ce travail, mais les ressources sont
plus limitées que jamais. Diane et moi avons travaillé en
étroite collaboration avec le gouvernement allemand, le
gouvernement britannique, les bureaux du Président de
l’UICN, le Directeur général et le Secrétariat de l’UICN
Pachyderm No. 52 July–December 2012
African Elephant Specialist Group report
The African and Asian Elephant
Database (AAED)
pour réunir les fonds nécessaires pour mettre en œuvre
la résolution.
Peter Mwangi (AfESG database officer) has
continued to enter and analyse the surveys of
elephant populations received since the publication
of the last status report in 2007. Almost 150
submissions have been made, including many by
data providers themselves. Peter is now working
on developing simple how-to tools to assist data
providers to upload their reports themselves to our
new online system.
While we are still awaiting a couple of reports
from surveys conducted in 2011, we have prepared
a set of pooled estimates with a data cut-off date at
the end of 2011. The numbers are currently under
review by AfESG’s Data Review Working Group.
As a general observation, there have, once again,
been few repeat surveys, making it extremely
difficult to infer trends. The amount of new data
coming from West Africa has been little, but
thankfully, the quality and the coverage of data for
Central Africa have notably improved. Coverage
in East and Southern Africa remains much the
same, with several repeat surveys in important
populations. However, a number of important
methodological and seasonal adjustments in the
underlying surveys make inferring trends in these
two subregions still quite challenging.
While we know there is a high demand to
see the updated estimates, the voluntary time
available from our survey experts is more limited
than ever in current economic times. Nonetheless,
we do hope to have the estimates out as soon
as possible. We are also aware that there is a
desire to see detailed trend analyses. This is not
possible with the current quality and frequency of
data available but could perhaps be achieved by
using models. We would be pleased to hear from
anyone who has interest in taking this possibility
forward, recognizing that AfESG currently has
no resources for such a process.
Having digitized all the survey boundaries
where data providers had not given us shapefiles,
Peter has also begun work on the new range map.
This is a time-consuming part of the process and
we appeal to data providers if at all possible to
send us the boundary shapefiles along with their
much-appreciated survey reports.
La Base de Données sur les Eléphants
d’Afrique et d’Asie (BDEAA)
Pachyderm No. 52 July–December 2012
Peter continue à saisir et à analyser les études des
populations d’éléphants reçues depuis la publication
du dernier rapport de situation en 2007. Près de 150
observations ont été faites, y compris un grand nombre par
des fournisseurs de données eux-mêmes. Peter travaille
actuellement sur le développement de simples instruments
de guide pratique pour aider les fournisseurs de données à
télécharger leurs rapports eux-mêmes dans notre nouveau
système en ligne.
Alors que nous attendons encore quelques rapports
des recensements menés en 2011, nous avons préparé
une série d’estimations groupées avec une date limite des
données à la fin de 2011. Le Groupe de Travail chargé de
l’examen des données du GSEAf est en train de passer
ces chiffres en revue. D’une manière générale, il y a eu
encore une fois très peu de recensements répétés et il est
donc extrêmement difficile de dégager des tendances.
Il y a eu très peu de nouvelles données d’Afrique de
l’Ouest, mais, heureusement, il y a eu une amélioration
notable dans la qualité et la couverture des données
pour l’Afrique centrale. La couverture en Afrique
orientale et australe reste la même, avec la répétition de
plusieurs recensements sur les populations importantes.
Cependant, à cause des ajustements méthodologiques et
saisonniers importants effectués lors des recensements,
il est difficile de bien comprendre les tendances dans ces
deux sous-régions. Alors que nous savons qu’il y a une
forte demande de voir les prévisions actualisées, le temps
dont disposent nos experts pour le volontariat est plus
limité que jamais dans la situation économique actuelle.
Néanmoins, nous espérons avoir des estimations dès que
possible. Nous sommes également conscients qu’il y a
un désir de voir des analyses détaillées des tendances.
Ce n’est pas possible avec la qualité et la fréquence
des données actuellement disponibles, mais on pourrait
peut-être le faire en utilisant des modèles. Nous serions
intéressés de connaître toute personne intéressée par la
poursuite de ces objectifs, reconnaissant le fait que le
GSEAf n’a actuellement pas de ressources pour un tel
processus. Ayant numérisé toutes les limites des études
où les fournisseurs de données ne nous ont pas donné les
informations, Peter a également commencé à travailler
sur la nouvelle carte de l’habitat. C’est une partie du
processus qui prend beaucoup de temps et nous faisons
3
Dublin
At the IUCN World Conservation Congress in
September, Diane Skinner worked with Simon
Hedges, Co-Chair of the Asian Elephant Specialist
Group, to convene a Knowledge Café event about
the new African and Asian Elephant Database.
The objective of the session was to further
sensitize other parts of IUCN and other specialist
groups on the features, values and potential uses
of the system. One useful outcome of the session
was a deeper understanding of the process that a
specialist group needs to go through to determine
which data management tools might be best for
them, depending on the nature and characteristics
of the population data they are dealing with, as
well as the analytical needs they might have.
This information has been passed on to the IUCN
Secretariat’s species team and, hopefully, will
assist in supporting a number of specialist groups
to better manage their data in future.
Peter Mwangi’s first year with AfESG also
allowed him some new experiences, including
participating in two different new events. One
was the 2012 survey of the Laikipia–Samburu
ecosystem in northern Kenya, where Peter
experienced many different parts of the count—
and loved it! The second was the workshop IUCN
ESARO held on data management needs across
East and Southern Africa, part of the larger IUCN
project on building capacity for protected area
management, also known as BIOPAMA.
Illegal killing and ivory trade
As I reported in the last Chair report, Diane Skinner
and I attended the 62nd meeting of the CITES
Standing Committee in Geneva in July. Diane
circulated a document explaining the outcomes
of that meeting to AfESG members and we have
now, like everyone else, turned our attention to
the 16th meeting of the Conference of the Parties,
to be held next March in Bangkok, Thailand.
Many of the processes we have been following
and assisting with since CoP15 in Doha will be
finalized or progressed at CoP16, including the
revision of Resolution Conf. 10.10 (Rev CoP15)
and discussions surrounding a possible decisionmaking mechanism for future trade in ivory.
4
appel aux fournisseurs de données de nous envoyer, si
possible, les limites des habitats en même temps que les
rapports de leurs recensements très appréciés.
Lors du Congrès mondial de l’UICN en septembre,
Diane Skinner a travaillé avec Simon Hedges, Co-président
du Groupe de spécialistes de l’éléphant d’Asie, pour
organiser un événement du Café des connaissances sur
la nouvelle Base de Données sur les Eléphants d’Afrique
et d’Asie. L’objectif de la session était de sensibiliser
les autres parties et groupes de spécialistes de l’UICN
sur les caractéristiques, les valeurs et les utilisations
possibles du système. Un résultat utile de la session était
une meilleure compréhension du processus qu’un groupe
de spécialistes doit suivre pour déterminer les outils de
gestion de données qui pourraient leur convenir le mieux,
en fonction de la nature et des caractéristiques des données
de population dont ils s’occupent, ainsi que les besoins
analytiques qu’ils pourraient avoir. Ces informations ont
été transmises à l’équipe du Secrétariat des espèces de
l’UICN et nous espérons qu’elles contribueront à aider
des groupes de spécialistes à mieux gérer leurs données
à l’avenir.
La première année que Peter Mwangi a passée au
GSEAf lui a permis d’avoir de nouvelles expériences, y
compris la participation à deux expériences différentes.
L’une était l’étude de 2012 de l’écosystème de LaikipiaSamburu au nord du Kenya, où Peter a vu les différentes
composantes du dénombrement - et il a aimé cela! La
seconde était l’atelier du Bureau régional de l’Afrique
Orientale et Australe de l’UICN tenu pour étudier les
besoins de gestion des données à travers l’Afrique
orientale et australe, une partie du grand projet de l’UICN
sur le renforcement des capacités pour la gestion des aires
protégées, également connu sous le nom de BIOPAMA.
L’abattage illégal et le commerce
d’ivoire
Comme je l’ai signalé dans le rapport précédent du
Président, Diane Skinner et moi avons participé à la 62ème
réunion du Comité permanent de la CITES à Genève
en juillet. Diane a fait circuler un document expliquant
les résultats de cette réunion aux membres du GSEAf
et comme tout le monde, nous avons maintenant tourné
notre attention vers la 16ème réunion de la Conférence des
Parties, qui se tiendra en mars à Bangkok en Thaïlande.
La plupart des processus que nous avons suivis et aidés
depuis la CdP15 de Doha seront finalisés ou avancés à la
CdP16, y compris la révision de la résolution Conf. 10.10
(Rev CdP15) et les discussions entourant un possible
Pachyderm No. 52 July–December 2012
African Elephant Specialist Group report
Update on the CITES-MIKE and
ETIS programmes
mécanisme de prise de décision pour le futur commerce
de l’ivoire.
Phase 2 of CITES-MIKE concluded at the end of
2012 and is now undergoing a final evaluation.
The European Commission has approved an
interim phase of the programme for 2013 and
2014. AfESG will continue to partner with CITESMIKE and TRAFFIC, in particular working
further on bringing together data and analysis
links along the supply chain. In November, I
attended a series of meetings in Brussels with the
European Commission and the Secretariat of the
African, Caribbean and Pacific (ACP) Group of
States, along with a number of representatives
from African elephant range States, TRAFFIC
and the CITES Secretariat to sensitize the ACP
to the contributions of AfESG, MIKE and ETIS
to elephant conservation, within the context of
the African Elephant Action Plan. This is in the
hope of lobbying for further support for the new
phase the European Commission is supporting for
the combined efforts of MIKE, ETIS and AfESG
from 2015 onwards.
Mise à jour sur les programmes de la
CITES-MIKE et ETIS
Pachyderm
Pachyderm 51 was our first with Dali Mwagore
back at the editing helm. While funding continues
to be tight, we anticipate being able to produce at
least issues 52 and 53 with the current arrangements
in place. We are also receiving a good number of
elephant contributions; our major challenge at the
moment being to find enough reviewers with the
time to help our senior editor, Debbie Gibson,
to review the many manuscripts in the pipeline.
If you are interested in being a reviewer, please
register on http://pachydermjournal.org and
also let Debbie and Dali know that you are ready
and willing to help out. Your efforts really do
contribute to keeping Pachyderm in high demand.
Human–elephant conflict
Since the publication of Richard Hoare’s review
paper in Pachyderm 51, we have been working
on a plan for AfESG’s 2013 work programme
with regard to human–elephant conflict. Funding
permitting, we plan to hold a meeting that will
Pachyderm No. 52 July–December 2012
La phase II de CITES-MIKE a été conclue à la fin de
2012 et fait actuellement l’objet d’une évaluation finale.
La Commission Européenne a approuvé une phase
intermédiaire du programme pour 2013 et 2014. Le
GSEAf continuera à collaborer avec CITES-MIKE et
TRAFFIC, surtout en travaillant davantage à rassembler
les liens des données et des analyses le long de la chaîne
d’approvisionnement. En novembre, j’ai participé à
une série de réunions à Bruxelles avec la Commission
Européenne et le Secrétariat du Groupe des Etats
d’Afrique, des Caraïbes et du Pacifique (ACP), avec
un certain nombre de représentants des Etats de l’aire
de distribution des éléphants d’Afrique, TRAFFIC et le
Secrétariat de la CITES pour sensibiliser les pays ACP
à la contribution au GSEAf, MIKE et ETIS pour la
conservation des éléphants, dans le cadre du Plan d’action
pour l’éléphant d’Afrique. Cela est dans l’espoir de faire
du lobbying en faveur d’un soutien supplémentaire pour
la nouvelle phase que la Commission Européenne soutient
pour les efforts combinés de MIKE, ETIS et GSEAf à
partir de 2015.
Pachyderm
Le numéro 51 de Pachyderm était le premier avec le retour
de Dali Mwagore à la tête de la publication. Bien que
le financement continue à être limité, nous prévoyons
d’être en mesure de produire au moins les numéros 52
et 53 avec les dispositions actuellement en place. Nous
recevons aussi un bon nombre de contributions sur les
éléphants; à l’heure actuelle notre défi majeur est de
trouver assez de critiques ayant suffisamment de temps
pour aider notre Rédactrice de section, Debbie Gibson,
à revoir les nombreux manuscrits qui attendent. Si vous
êtes intéressé à être un critique, veuillez vous inscrire sur
http://pachydermjournal.org et faites également savoir à
Debbie et Dali que vous êtes prêt et disposé à aider. Vos
efforts contribuent vraiment au maintien de Pachyderm
en très forte demande.
5
Dublin
include the current HEC Working Group, new
members who have the necessary expertise,
as well as institutional stakeholders such as
WWF and FAO, to update the AfESG tools and
guidelines, and to determine the future scope and
modus operandi of the working group.
Conclusion
I am close to finalizing AfESG member
appointments for 2013 to 2016. Building on our
redesigned website, I look forward to engaging
with a re-energized membership. In my last
Chair report, I implored AfESG members and
the elephant conservation community to continue
their efforts on behalf of elephants, and there has
certainly been a great deal of excellent work done
in the past few months. I thank you all for that.
However, in the run-up to CITES CoP16, which
has the potential to be highly divisive, I hope that
we can all remember that much more unites our
elephant conservation community than divides
it. I truly hope that we can come together to take
urgent and effective action on behalf of Africa’s
elephants now and in the future—let’s maintain
our passion, our commitment and our camaraderie.
6
Conflits homme–éléphant
Depuis la publication du document de synthèse de Richard
Hoare dans Pachyderme 51, nous avons travaillé sur un
plan pour le programme de travail du GSEAf pour 2013
en ce qui concerne les conflits homme-éléphant. Si les
fonds le permettent, nous avons l’intention d’organiser
une réunion qui inclura le Groupe de travail actuel sur le
CHE, les nouveaux membres qui possèdent l’expertise
nécessaire ainsi que les acteurs institutionnels tels que le
WWF et la FAO, pour mettre à jour les outils et les lignes
directrices du GSEAf, et déterminer la portée future et le
modus operandi du Groupe de travail.
Conclusion
Je suis sur le point de finaliser les nominations des membres
du GSEAf pour 2013 à 2016. En m’appuyant sur notre
nouveau site, je me réjouis de coopérer avec des membres
redynamisés. Dans mon dernier rapport du Président, j’ai
imploré les membres du GSEAf et la communauté de la
conservation des éléphants de poursuivre leurs efforts en
faveur des éléphants, et il y a certainement eu beaucoup
d’excellent travail accompli au cours de ces derniers
mois. Je vous remercie tous pour cela. Cependant, dans
la perspective de la CdP16 de la CITES, qui a le potentiel
d’être très délicat, j’espère que nous pouvons tous nous
rappeler qu’il y a beaucoup plus de choses qui unissent la
communauté de la conservation des éléphants que celles
qui la divisent. J’espère sincèrement que nous pouvons
nous unir pour prendre des mesures urgentes et efficaces
au nom des éléphants d’Afrique, maintenant et dans
l’avenir – maintenons notre passion, notre engagement
et notre camaraderie.
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
African Rhino Specialist Group report
Rapport du Groupe des Spécialistes des Rhinocéros d’Afrique
Mike Knight, Chair/Président
Park Planning and Development, South African National Parks, PO Box 76693, and Centre for African
Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth 6013, South Africa
email: [email protected]
IUCN World Conservation
Congress and rhino motion
The IUCN World Conservation Congress held in
Jeju, Republic of Korea, 6–15 September 2012,
approved a motion, ‘Conservation of rhinoceros
species in Africa and Asia’, which has since been
formalized into IUCN Recommendation 138,
whose text is given below:
ACKNOWLEDGING that the world’s five
species of rhinoceros are charismatic emblems of
conservation;
APPRECIATING that effective conservation
measures and significant political will and
conservation expenditure in some range States
in recent years have led to population increases
in three species—the Black, Southern White and
Greater One-horned Rhinos;
RECOGNIZING the important role that
commercial wildlife enterprises, including trophy
hunting, have played in generating incentives for
conservation and stimulating population increases
of rhinos on state, private and communal land in
Africa;
ALARMED that the populations of the two
rarest species, the Javan and Sumatran rhinos,
continue to decline, and are now at perilously low
levels;
DISTRESSED that two rhino subspecies, the
Western Black Rhino (Diceros bicornis longipes)
in Cameroon and the Indochinese Javan rhino
(Rhinoceros sondaicus annamiticus) in Viet Nam
have gone extinct in the last decade;
AWARE that the Northern White Rhino
(Ceratotherium simum cottoni) and the mainland
populations of the Sumatran Rhino are now
extremely close to extinction;
DEEPLY CONCERNED that pressure from
illegal hunting on all species of rhinos has grown
Pachyderm No. 52 July–December 2012
Le Congrès Mondial de l’UICN sur
la Conservation et la motion sur le
rhinocéros
Le Congrès mondial de l’UICN de Jeju en République
de Corée, du 6 au 15 septembre 2012 a approuvé une
motion intitulé Conservation des espèces de rhinocéros
en Afrique et en Asie, ce qui a été depuis officialisée dans
la recommandation de l’UICN 138, dont le texte figure
ci-dessous.
« RECONNAISSANT que les cinq espèces de
rhinocéros dans le monde sont des symboles charismatiques
de conservation;
CONSCIENTS que des mesures de conservation
efficaces et une volonté politique significative et les
dépenses de conservation dans certains Etats de l’aire
de distribution ont conduit ces dernières années à une
augmentation de la population des trois espèces - le
rhinocéros noir, le rhinocéros blanc du sud et le grand
rhinocéros unicorne;
RECONNAISSANT le rôle important que les
entreprises commerciales de la faune, y compris la chasse
aux trophées, ont joué dans la création des motivations pour
conserver et promouvoir la croissance des populations de
rhinocéros sur les terres publiques, privées et communales
en Afrique;
ALARME par le fait que les populations des deux
espèces les plus rares, les rhinocéros de Java et de Sumatra,
continuent à baisser, et sont maintenant à des niveaux
dangereusement bas;
Déplorant le fait que deux sous-espèces de
rhinocéros, le rhinocéros noir de l’ouest (Diceros bicornis
longipes) au Cameroun et le rhinocéros indochinois de
Java (Rhinoceros sondaicus annamiticus) au Viet Nam
ont disparu au cours de la dernière décennie;
SACHANT que le rhinocéros blanc du nord
(Ceratotherium simum cottoni) et les populations
continentales de rhinocéros de Sumatra sont maintenant
très proches de l’extinction;
7
Knight
seriously in recent years, linked to a significant
increase in non-traditional use of rhino horn and a
significant rise in the price of rhino horn in Asian
markets, especially in Viet Nam and China, as
well as a reduction in the capacity and efficiency
of some range State conservation authorities to
protect their rhinos;
ALARMED that a continued increase in illegal
hunting of rhinos and in rhino horn demand could
rapidly jeopardize the improvements that have been
achieved in the status of Black, White and Greater
One-horned Rhinos over the last two decades, and
together with inadequate biological management
could easily cause the extinction of the Javan and
Sumatran Rhinos in the foreseeable future;
NOTING that the measures taken by the
Convention on International Trade in Endangered
Species of Wild Fauna and Flora (CITES) to bring
the illegal trade in rhino products under control still
require commitment from key rhino range States
and rhino horn consuming countries;
AWARE that for many rhino range States the
cost of securing their rhino populations requires
significant assistance from both internal and
external sources, and that this has increased
opportunity costs to general conservation; and
CONCERNED that the increased risks
and costs associated with securing rhinos will
possibly provide a disincentive for private owners
and custodians of rhino in eastern and southern
Africa from investing in rhinos and conservation,
especially in the major range State South Africa
and also in Zimbabwe (where recent allocations
of hunting concessions linked to land reform
could pose additional economic threats to private
conservancies);
1. COMMENDS those rhino range States in
Africa and Asia that have taken strong measures to
conserve their remaining rhinos and actions against
the incentives to kill them illegally for their horns,
thus consequently have increasing populations;
2. CALLS ON all range States to give priority to
securing their rhino populations, bringing illegal
hunting and trade under control, and ensuring that
effective deterrents are in place and enforced in
order to minimize the levels of illegal hunting and
trade, whilst at the same time seeking to create an
enabling environment to encourage the continued
expansion of the rhino range and rapid growth in
rhino numbers;
8
Profondément préoccupé que la pression de
la chasse illégale sur toutes les espèces de rhinocéros a
sérieusement augmenté ces dernières années, et qu’elle
est liée à une augmentation significative de l’usage non
traditionnel de la corne de rhinocéros et d’une hausse
importante du prix de la corne de rhinocéros sur les
marchés asiatiques, en particulier au Viet Nam et en Chine,
ainsi que la réduction de la capacité et de l’efficacité
des autorités de conservation de certains états de aire de
répartition de protéger leurs rhinocéros;
ALARME par le fait qu’une augmentation continue
de la chasse illégale de rhinocéros et la demande pour
leurs cornes pourraient rapidement compromettre les
améliorations qui ont été obtenues dans la situation du
rhinocéros noir, du rhinocéros blanc et du grand rhinocéros
unicorne au cours des deux dernières décennies, conjugué
avec une gestion biologique inadéquate, pourraient
facilement causer l’extinction des rhinocéros de Java et
de Sumatra dans un avenir prévisible;
NOTANT que les mesures prises par la Convention sur
le Commerce International des espèces de faune et de flore
sauvages menacées d’extinction (CITES) pour maitriser
le commerce illicite en produits issus des rhinocéros
nécessitent encore de l’engagement des principaux
Etats de l’aire de distribution de rhinocéros et les pays
consommateurs de cornes de rhinocéros;
SACHANT que le coût de la sauvegarde des populations
de rhinocéros de nombreux Etats de l’aire de répartition
nécessite une aide importante à partir des sources internes
et externes, et que, par conséquent, les coûts d’opportunité
de la conservation en général ont augmenté, et
Craignant que les risques accrus et les coûts
associés à la sauvegarde des rhinocéros pourraient peutêtre décourager les propriétaires privés et les conservateurs
de rhinocéros en Afrique orientale et australe d’investir
dans la conservation des rhinocéros, surtout dans les
majeurs aires de distribution en Afrique du Sud et aussi au
Zimbabwe (où de récentes attributions de concessions de
chasse liées à la réforme agraire pourraient poser d’autres
menaces économiques pour les zones de conservation
privées);
1. FELICITE les Etats de l’aire de répartition du
rhinocéros d’Afrique et d’Asie qui ont pris des mesures
énergiques pour conserver leurs rhinocéros restants et
des actions contre les incitations à les tuer illégalement
pour leurs cornes, et qui par la suite ont des populations
croissantes;
2. APPELLE tous les Etats de l’aire de distribution à
donner la priorité à la sauvegarde de leurs populations de
rhinocéros, en maitrisant la chasse et le commerce illégaux,
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
3. ENCOURAGES all rhino range States to
manage their rhino populations to achieve rapid
growth, with long-term genetic and demographic
viability;
4. FURTHER ENCOURAGES range States to
evaluate the pros and cons of alternative strategies
to determine how best to reduce the illegal trade,
black market prices and illegal demand for rhino
horn and hence ultimately reduce poaching;
5. APPLAUDS the initiative of the President
of Indonesia for proposing the International Year
of the Rhino starting June 2012 and supports his
government’s emergency actions to save the Javan
and Sumatran Rhinos from extinction, that include:
establishing a high-level task force of national
and international experts on rhino population and
habitat management; identifying the most suitable
areas for establishing free-ranging rhinoceros
populations; allocating sufficient resources to
enforce their protection, to maximize the breeding
potential of the remaining animals, and to have
regular, frequent and intensive monitoring of all
rhino populations;
6. ENCOURAGES the government of Malaysia
to take urgent actions to save the Sumatran
Rhinoceros population in Sabah from extinction,
including through close management of rhinos
in fenced, managed conditions, and exploring
all possible techniques that may boost birth rate
above natural death rate, including super-ovulation,
artificial insemination, in vitro fertilization and
other advanced reproductive techniques;
7. COMMENDS the governments of India and
Nepal for the measures they have taken to secure
the status of the Greater One-horned Rhinoceros
in its wild habitats, but urges them to establish
new, viable, strictly protected populations of the
species in previously occupied habitats, as well as
enhancing the protection of existing populations,
noting that in the case of India this will require
concerted action from the Union Government as
well as from the State governments of Assam, West
Bengal, Bihar and Uttar Pradesh;
8. URGES all Asian rhino range countries to
adopt robust scientific techniques to estimate their
rhino populations, and to repeat these censuses at
least once every two years, ensuring independent
peer review of the methods and results;
9. CALLS ON African range States to:
Pachyderm No. 52 July–December 2012
et en veillant à ce que des mesures dissuasives efficaces soient
en place et appliquées afin de minimiser les niveaux de chasse
et de commerce illégaux, et en même temps en cherchant
à créer un environnement favorable pour encourager la
poursuite de l’expansion de l’habitat du rhinocéros et une
croissance rapide du nombre de rhinocéros;
3. ENCOURAGE tous les Etats de l’aire de distribution
de rhinocéros à gérer leurs populations de rhinocéros pour
atteindre une croissance rapide ainsi qu’une viabilité
génétique et démographique à long terme;
4. ENCOURAGE EN OUTRE les Etats de l’aire de
répartition à évaluer les avantages et les inconvénients des
différentes stratégies pour déterminer la meilleure façon
de réduire le commerce illégal, les prix du marché noir et
la demande illicite de cornes de rhinocéros et ainsi à la
longue réduire le braconnage;
5. SALUE l’initiative du Président de l’Indonésie de
proposer l’Année internationale du Rhinocéros à partir
de juin 2012 et de soutenir les actions d’urgence de
son gouvernement pour sauver les rhinocéros de Java
et de Sumatra d’extinction, actions qui comprennent: la
création d’un groupe de travail de haut niveau d’experts
nationaux et internationaux sur la population de rhinocéros
et la gestion de l’habitat, l’identification des zones les
plus appropriées pour l’établissement de populations de
rhinocéros en liberté; l’allocation des ressources suffisantes
pour faire respecter leur protection, afin de maximiser le
potentiel de reproduction des animaux restants, et un suivi
régulier, fréquent et intensif de toutes les populations de
rhinocéros;
6. Encourage le Gouvernement de la Malaisie à
prendre des mesures urgentes pour sauver la population
des rhinocéros de Sumatra en voie d’extinction à Sabah,
par exemple, grâce à une gestion stricte des rhinocéros dans
les conditions clôturées et gérées, et l’exploration de toutes
les techniques possibles qui peuvent stimuler un taux de
natalité supérieur au taux de décès naturel, comprenant la
super-ovulation, l’insémination artificielle, la fécondation
in vitro et d’autres techniques avancées de reproduction;
7. FELICITE les gouvernements de l’Inde et du
Népal pour les mesures qu’ils ont prises pour préserver
la situation des grands rhinocéros unicornes dans leurs
habitats naturels, mais les exhorte à établir de nouvelles
populations, viables et strictement protégées dans les
habitats occupés précédemment, ainsi qu’à améliorer la
protection des populations existantes, en notant que dans
le cas de l’Inde, cela nécessitera une action concertée du
gouvernement de l’Union ainsi que les gouvernements
des Etats de l’Assam, du Bengale occidental, du Bihar et
de l’Uttar Pradesh;
9
Knight
a. increase collaborative law enforcement
actions between range States, transit and
consuming countries;
b. improve detection of rhino horn at ports of
entry/exit with, inter alia, the aid of sniffer dogs,
specialized equipment and resourced staff;
c. increase the allocation of national resources
towards improving rhino security and conservation
authorities’ skills base;
d. increase the focus on intelligence gathering
and analysis to stop poachers before killing rhinos;
e. increase the rate of successful prosecutions
with deterrent sentences for illegal rhino-related
activities;
f. maintain enabling land-use and investment
policies together with support for appropriate and
well-managed, sustainable, income-generating
options that encourage investment in rhinos,
sustainable populations and which help fund
effective conservation by the private wildlife
industry and communities;
g. enhance socio-economic stability through
increased local community involvement;
h. encourage private rhino owners to willingly
cooperate with the authorities in the provision of
rhino information;
i. encourage all range States, transit and
consuming countries to improve and regularly
supply rhino-related information to the African
Rhino Specialist Group (AfRSG) of the IUCN
Species Survival Commission (SSC) and to
TRAFFIC to facilitate data management,
information sharing and their mandated reporting
to CITES’ Conference of the Parties;
j. further expand the use of DNA profiling of
rhino horns (using the RhoDIS database in Africa)
as an innovative means of combating the illegal
killing of rhinos and the trafficking of horn;
k. encourage the involvement of civil society in
facilitating awareness and generating resources in
line with priority needs, as well as assisting with
population monitoring, and with implementing
rhino conservation; and
l. improve rhino population monitoring to
inform management for population growth;
10. RECOGNIZES that the successful
conservation of rhinos across the entire range will
be best achieved via a diversity of management
and economic mechanisms;
10
8. EXHORTE tous les pays de l’aire de distribution du
rhinocéros d’Asie à adopter des techniques scientifiques
robustes pour estimer leurs populations des rhinocéros, à
répéter ces recensements au moins une fois tous les deux
ans, et à assurer un examen des méthodes et des résultats
par les pairs indépendants;
9. INVITE les Etats de l’aire de répartition en Afrique à:
a. accroître les actions collaboratives de mise en
application de la loi entre les Etats de l’aire de distribution,
les pays de transit et les pays consommateurs;
b. améliorer la détection de la corne de rhinocéros dans
les ports d’entrée/sortie, notamment avec l’aide de chiens
renifleurs, du matériel spécialisé et un personnel ayant des
ressources;
c. augmenter l’allocation des ressources nationales
vers l’amélioration de la sécurité des rhinocéros et les
compétences des autorités de conservation;
d. mettre l’accent sur la collecte et l’analyse de
renseignements pour arrêter les braconniers avant qu’ils
tuent les rhinocéros;
e. augmenter le taux de réussite des poursuites judiciaires
avec des peines dissuasives contre les activités illégales
liées aux rhinocéros;
f. maintenir des politiques d’utilisation des terres
et d’investissement favorables et soutenir des options
appropriées génératrices de revenus, bien gérées et durables
qui encouragent l’investissement dans les rhinocéros, des
populations viables et qui aident à appuyer financièrement
une conservation efficace par le secteur privé de la faune
et les communautés ;
g. renforcer la stabilité socio-économique grâce à une
participation accrue de la communauté locale;
h. encourager les propriétaires privés de rhinocéros à
coopérer avec les autorités dans la provision d’informations
sur les rhinocéros;
i. encourager tous les Etats de l’aire de distribution,
les pays de transit et les pays consommateurs à améliorer
et à fournir régulièrement des informations relatives au
rhinocéros, au Groupe de Spécialistes du Rhinocéros
d’Afrique de la Commission de la Survie des Espèces
de l’UICN et à TRAFFIC pour faciliter la gestion des
données, l’échange des informations et leur signalement
obligatoire à la Conférence des Parties de la CITES;
j. étendre davantage l’utilisation de profils d’ADN des
cornes de rhinocéros (en utilisant la base de données Rhodis
en Afrique) comme un moyen innovateur de lutte contre
l’abattage illégal de rhinocéros et le trafic de la corne;
k. encourager la participation de la société civile pour
faciliter la sensibilisation et la création de ressources en
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
11. REQUESTS the Director General and SSC
(especially its African and Asian Rhino Specialist
Groups) to provide ongoing support and guidance
to all rhino range States, and in particular to assist
in raising the profile of rhinoceros conservation
during the International Year of the Rhino;
12. CALLS ON donors to make the necessary
financial resources available to enable the range
States to secure their rhino populations, and
13. CALLS UPON those States implicated in
the increase in demand for rhino horn and the
surge in the black market prices for horn to fully
cooperate at all levels with the rhino range States
in positively addressing the rhino crisis and seeking
lasting solutions.
Importantly, this resolution highlights the
successes in rhino conservation and the reasons
for it, but it also emphasizes the current poaching
plight facing rhinos, driven by increasing demand
for illegal rhino horn, principally in Viet Nam and
China, and the way forward. It also emphasizes the
current risks of private rhino owners disinvesting
in rhino conservation, which would translate into a
further reduction in numbers and homes for rhinos,
given that most state reserves in southern Africa are
at capacity. The rhino crisis was further highlighted
at an IUCN SSC Species Pavilion lunchtime event
organized by IUCN’s East and Southern African
Regional Office, The AfRSG scientific officer,
Richard Emslie, and AfESG’s programme officer,
Diane Skinner, gave presentations on the status and
challenges facing rhino and elephant conservation
in Africa, followed by a discussion session with
the audience.
Joint IUCN/TRAFFIC report for
CoP16
The third joint IUCN SSC/AfRSG/AsRSG and
TRAFFIC rhino report has been completed and
was forwarded to the CITES Secretariat. It has
been appended as an annex to the report on rhinos
by the CITES Secretariat and can be downloaded
from http://www.cites.org/eng/cop/16/doc/
E-CoP16-54-02.pdf. As with previous reports, it
is information rich and concludes with a series
of recommendations that Parties may wish to
consider putting into Decisions at the CoP. AfRSG
also intends to prepare a follow-up information
Pachyderm No. 52 July–December 2012
fonction des besoins prioritaires, et aider à la surveillance
de la population et à mettre en œuvre la conservation des
rhinocéros, et
l. améliorer la surveillance de la population des
rhinocéros afin d’informer la gestion de la croissance de
leur population;
10. RECONNAIT que le succès de la conservation des
rhinocéros dans tout l’habitat se réalisera le mieux par
une diversité de mécanismes de gestion et économiques;
11. PRIE le Directeur général et la Commission de la
Survie des Espèces (surtout ses Groupes de Spécialistes
du Rhinocéros d’Afrique et d’Asie) de fournir un soutien
continu et des conseils à tous les Etats de l’aire de
distribution des rhinocéros, et en particulier pour aider
à rehausser le profil de la conservation du rhinocéros au
cours de l’Année internationale du Rhinocéros;
12. INVITE les bailleurs de fonds à assurer les
ressources financières nécessaires pour permettre aux
Etats de l’aire de distribution de sécuriser leurs populations
de rhinocéros restants, et
13. INVITE les Etats impliqués dans l’augmentation
de la demande pour la corne de rhinocéros et la flambée
des prix du marché noir de la corne à coopérer pleinement
à tous les niveaux avec les Etats de l’aire de répartition
des rhinocéros pour faire face positivement à la crise du
rhinocéros et à la recherche de solutions durables. »
Fait important, cette résolution met en exergue les
réussites en matière de conservation des rhinocéros, mais
insiste aussi sur le problème actuel du braconnage auquel
les rhinocéros sont confrontés, causé par la demande
croissante de cornes illégales de rhinocéros principalement
au Viet Nam et en Chine, et la voie à suivre. Elle souligne
également le risque actuel que les propriétaires privés des
rhinocéros pourraient se désinvestir de la conservation des
rhinocéros ce qui se traduirait par encore une réduction
des rhinocéros et de leurs habitats, étant donné que la
plupart des réserves d’Etat de l’Afrique australe sont à
pleine capacité. La crise du rhinocéros a en outre été
mise en exergue lors d’un déjeuner au Pavillon de la
CSE de l’UICN organisé par le Bureau Régional de
l’Afrique Orientale et Australe de l’UICN. Richard Emslie,
spécialiste des questions scientifiques au GSRAf et Diane
Skinner, chargée de programme au GSEAf ont fait des
exposés sur la situation et les défis auxquels la conservation
des rhinocéros et des éléphants est confrontée en Afrique,
suivis d’une séance de discussion avec le public.
11
Knight
document at CITES CoP16 to provide Parties with
the latest information on rhino numbers, trends
and trade following its February 2012 meeting.
Rapport conjoint de l’UICN/TRAFFIC
pour la CdP16
Le troisième rapport conjoint de la CSE de l’UICN/le
GSRAf/le GSRAs et TRAFFIC sur le rhinocéros a été
finalisé et transmis au Secrétariat de la CITES. Il a été joint
en annexe au rapport sur les rhinocéros du Secrétariat de
la CITES et on peut le télécharger à partir de http://www.
cites.org/eng/cop/16/doc/E-CoP16-54-02.pdf . Comme
les rapports précédents, il est riche en informations et se
termine par une série de recommandations que les Parties
pourraient envisager d’inclure dans les décisions de la CdP.
Le GSRAf a aussi l’intention de préparer un document
d’informations de suivi pour la CdP16 de la CITES afin
de fournir aux Parties les dernières informations sur le
nombre de rhinocéros, les tendances et le commerce suite
à sa réunion de février 2012.
Poaching update
In the major rhino range State, South Africa,
poaching has markedly escalated during the
reporting period, reaching new highs in the last
three months of the year with a rhino being
poached almost every nine hours (Fig. 1).
The decision to prevent nationals of Viet Nam
from obtaining hunting licences, and changes to
the law in April 2012 requiring a law-enforcement
official to attend every hunt and prospective hunters
to demonstrate that they are bona fide, genuine
sport hunters, have significantly constricted the
illicit rhino horn supply from pseudo-hunting.
This constriction in supply could have forced
organized criminals to look for alternative sources
of illegal horn to supply unlawful demand, such as
from more poaching (by far the largest source of
illegal horn), illegal dehorning, or theft. However,
other factors that are completely unrelated to
South Africa’s policy decisions and legislative
and law-enforcement changes such as increasing
corruption, the emergence of new markets or
the escalation in existing demand, could also be
behind these increases.
While current poaching levels in South Africa
No. of rhinos poached per day
Dans le majeur Etat de l’aire de répartition du rhinocéros,
l’Afrique du Sud, le braconnage s’est considérablement
intensifié au cours de la période considérée pour atteindre
de nouveaux records au cours des trois derniers mois de
l’année avec un rhinocéros braconnés presque toutes les
neuf heures (Fig. 1).
La décision d’empêcher les ressortissants du Viet Nam
d’obtenir un permis de chasse, et les modifications apportées
à la loi en avril 2012 exigeant qu’un agent de la loi assiste
à chaque chasse, et exigeant que les chasseurs potentiels
2010 qtr
2011 qtr
3.00
2012 qtr
2.61
2.50
2.50
1.83
2.00
1.86
1.69
1.48
1.50
1.23
0.91
1.00
0.90
1.01
1.17
2.00
1.50
1.17 1.16 1.14
1.15
1.00
0.56
0.50
0.23
0.50
0.33
0.04
0.00
12
-De
c 20
12
12
Oct
t20
-Sep
July
12
e 20
r 20
-Ma
-Jun
Apr
Jan
-Ma
r 20
11
-Jun
201
1
JulSep
t 20
11
Oct
-De
c 20
11
Apr
Jan
Jan
-Ma
r 20
10
Apr
-Jun
201
0
JulSep
t 20
10
Oct
-De
c 20
10
2
201
Dec
-19
0
1
201
9
8
Jan
201
200
200
Avg
/yr
199 18 yrs
0-20
07
0.00
Nombre de rhinocéros braconnées par jour
Average annual rates
Taux annuels moyens
3.00
Mise à jour sur le braconnage
Period
Figure 1. The number of rhinos poached per day in South Africa, by year and quarter. [Le nombre de rhinocéros
braconnés par jour en Afrique du Sud, par année et par trimestre.]
12
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
are still well below historical metapopulation
growth rates, should the escalation in poaching
continue deaths will eventually start to exceed
births, with rhino numbers starting to decline in
South Africa as early as 2015/16. The escalation
in poaching has also significantly increased the
costs of protecting rhinos as well as increasing
risks to rhinos and their owners, families and field
staff. Live sale prices have been declining further,
reducing incentives to the private rhino industry.
This has coincided with an increasing number of
white rhino owners getting rid of or thinking about
getting rid of their rhinos. If this trend escalates it
is of major concern given that the ultimate carrying
capacity for rhinos and new homes for surplus
white rhinos are dependent upon the private sector
and community willingness to conserve them.
Any decline in live sales also threatens to reduce
budgets for conservation as well as negatively
affect biological management.
In the first nine months of the year poaching
encouragingly was down in Kenya and Zimbabwe,
with some animals lost in Malawi and Tanzania.
However, in the last two months of 2012, there
has been a sharp escalation in poaching in Kenya
with a total of 15 rhinos lost, bringing the annual
total to 29 poached rhinos. With a total population
of 1,000+ rhinos in Kenya, this poaching offtake
translated to about 3% of the entire population.
Overall, Kenya lost 103 (71 black and 32 white
rhinos) in a five-year period between 2008 and
2012 (Fig. 2). Not only is the impact considered
to be severe on the population growth trend, it is
also negatively affecting the hectarage under rhino
conservation. The joint IUCN/TRAFFIC report
for CoP16 contains more information including a
table documenting rhino poaching by country by
year since 2006.
More convictions with deterrent
sentences
In my last report I mentioned that the number
of convictions with deterrent sentences was
increasing. This trend has continued in South
Africa. A man convicted of illegally dehorning
and trying to illegally sell the horns was sentenced
to eight years in jail, plus a 1 million rand fine
(~$117,235) to be paid to the Environmental
Management Inspectorate (‘Green Scorpions’).
Pachyderm No. 52 July–December 2012
prouvent qu’ils sont de bonne foi, c’est-à-dire qu’ils sont
de véritables chasseurs sportifs, ont considérablement
réduit l’offre illicite de cornes de rhinocéros provenant de
la pseudo-chasse. Cette réduction de l’offre aurait forcé les
criminels organisés à chercher d’autres sources de cornes
illégales pour répondre à la demande illégale, telles que
celles provenant du braconnage accru (de loin la plus
importante source des cornes illégales), de l’écornage
illégal ou des vols. Cependant, d’autres facteurs qui n’ont
aucun rapport avec les décisions politiques en Afrique
du Sud et les changements législatifs et d’application
de la loi tels que la corruption croissante, l’émergence
de nouveaux marchés ou l’intensification de la demande
existante, pourraient également être à l’origine de ces
augmentations.
Bien que les niveaux actuels de braconnage en Afrique
du Sud soient encore en deçà des taux de croissance
historiques des métapopulations, si l’intensification du
braconnage devait continuer, éventuellement les décès
commenceraient à dépasser les naissances et le nombre
de rhinocéros à diminuer en Afrique du Sud dès 2015/16.
L’intensification du braconnage a également augmenté de
façon significative les coûts de protection des rhinocéros
ainsi que les risques encourus par les rhinocéros et leurs
propriétaires, les familles et le personnel de terrain. Le
prix ​​des animaux vivants a encore diminué, réduisant
les incitations à l’industrie privée de rhinocéros. Cela
a coïncidé avec le moment où un nombre croissant de
propriétaires se débarrassent ou pensent se débarrasser de
leurs rhinocéros blancs. Si cette tendance s’intensifie, c’est
très préoccupant étant donné que la capacité de charge pour
les rhinocéros et les nouveaux habitats pour les rhinocéros
blancs excédentaires dépendent du secteur privé et de la
volonté de la communauté de les conserver. Toute baisse
des ventes des animaux vivants menace aussi de réduire
les budgets de conservation et d’avoir des répercussions
négatives sur la gestion biologique.
Au cours des neuf premiers mois de l’année, le
braconnage a heureusement diminué au Kenya et au
Zimbabwe, avec la perte de quelques animaux au Malawi
et en Tanzanie. Toutefois, dans les deux derniers mois de
2012, il y a eu une brusque intensification du braconnage
au Kenya avec la perte d’un total de 15 rhinocéros, ce qui
porte le total annuel à 29 rhinocéros braconnés. Avec une
population totale de plus de 1.000 rhinocéros au Kenya, ce
prélèvement dû au braconnage représente près de 3% de la
population totale. Dans l’ensemble, le Kenya a perdu 103
rhinocéros (71 rhinocéros noirs et 32 rhinocéros
​​
blancs)
sur une période de cinq ans entre 2008 et 2012 (Fig. 2).
Non seulement l’impact est considéré comme grave pour
13
Knight
No. of rhinos poached /
nombre de rhinocéros braconnées
35
white rhino (rhino blanc)
black rhino (rhino noir)
30
25
9
20
5
6
11
16
16
14
20
2009
2010
2011
2012
15
10
1
5
0
0
1
2007
5
2008
Year / Année
Figure 2. Rhino poaching trend in Kenya from 2007
to 2012. [Tendance du braconnage des rhinocéros
au Kenya de 2007 à 2012.] Source: Kenya Wildlife
Service / Service Kenyan de la Faune.
He also forfeited additional assets to the value of
over $1.3 m (over 11m rand). The Thai criminal
Chumlong Lemtongthai, who used Thai sex workers
in Gauteng to apply for white rhino hunting permits
and was actively using psuedo-hunting as a vehicle
to obtain horns for illegal markets, was sentenced to
40 years in jail; although he has appealed. Kenya’s
cabinet ministers recommended a draft wildlife
conservation and management bill in October 2012
for parliamentary debate. The draft bill contains
proposed penalties that are more severe than the
current penalties for wildlife-related crimes. The
bill was due for debate by the current Kenya’s
parliament, whose term ended on 14 January 2013.
TRAFFIC Viet Nam report
A major TRAFFIC report on the rhino horn trade
between South Africa and Viet Nam written by
Tom Milliken and Jo Shaw was released during
the reporting period. It highlights Viet Nam’s
increasing role in illegal rhino horn trade as
well as South Africa’s responses. It makes for
recommended reading and can be downloaded
from http://www.rhinoresourcecenter.com/pdf_
files/134/1345588780.pdf. A shorter summary
document is also available at http://www.
rhinoresourcecenter.com/pdf_files/134/1345590401.
pdf. The report concludes with a number
of recommendations. Encouragingly, these
recommendations were subsequently discussed
together with progress in addressing them by South
Africa’s Department of Environmental Affairs
14
la croissance de la population, mais cela affecte aussi
de façon négative la superficie pour la conservation des
rhinocéros. Le rapport conjoint UICN/TRAFFIC pour la
CdP16 contient de plus amples renseignements, y compris
un tableau indiquant le braconnage de rhinocéros par pays
et par année depuis 2006.
Plus de condamnations à des peines
dissuasives
Dans mon dernier rapport, j’ai mentionné que le nombre
de condamnations à des peines dissuasives augmentait.
Cette tendance s’est poursuivie en Afrique du Sud. Un
homme reconnu coupable d’avoir illégalement écorné et
essayé de vendre illégalement des cornes a été condamné
à huit ans de prison, plus une amende de 1 million de
rands (~117 235$) à verser à l’Inspectorat de la Gestion
de l’Environnement (« Scorpions Verts »). On a également
confisqué des biens additionnels d’une valeur de plus de
$1,3 millions (plus de 11 millions de rands). Un Thaï,
Chumlong Lemtongthai, qui utilisait les prostituées
thaïlandaises dans le Gauteng pour faire la demande
de permis de chasse de rhinocéros blancs et utilisait
activement la pseudo-chasse comme un moyen d’obtenir
des cornes pour les marchés illégaux a été condamné à 40
ans de prison; mais il a fait appel. Le Conseil des Ministres
du Kenya a recommandé un projet de loi à soumettre au
Parlement sur la conservation et la gestion de la faune
en octobre 2012. Le projet de loi prévoit des sanctions
proposées qui sont plus sévères que les peines actuelles
relatives aux crimes de la faune. Le Parlement actuel du
Kenya, dont le mandat a expiré le 14 janvier 2013, devait
débattre ce projet de loi.
Rapport de TRAFIC sur le Viet Nam
Un rapport important de TRAFFIC sur le commerce de
cornes de rhinocéros entre l’Afrique du Sud et le Viet Nam
écrit par Tom Milliken et Jo Shaw a été publié au cours de
la période considérée. Il souligne le rôle croissant du Viet
Nam dans le commerce illégal des cornes de rhinocéros
ainsi que les réponses de l’Afrique du Sud. On recommande
sa lecture et on peut le télécharger à partir de http://www.
rhinoresourcecenter.com/pdf_files/134/1345588780.pdf.
Un document plus court est également disponible sur http://
www.rhinoresourcecenter.com/pdf_files/134/1345590401.
pdf. Le rapport se termine par un certain nombre de
recommandations. Fait encourageant, ces recommandations
ont ensuite été discutées ainsi que les progrès réalisés
dans leur mise en œuvre par le Ministère des affaires
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
in a report to a meeting of the South African
Parliamentary Portfolio Committee on Water and
Environmental Affairs in November 2012.
environnementales de l’Afrique du Sud lors d’une réunion
d’une commission parlementaire sud-africaine sur l’eau et
l’environnement en novembre 2012.
South African rhino issues
management dialogue process
continues
Le processus de dialogue sur la
gestion des questions relatives au
Rhinocéros d’Afrique du Sud se
poursuit
In my last Pachyderm report, I mentioned that
a rhino issues manager (RIM), Mr Mavuso
Msimang, had been appointed by South Africa’s
Department of Environmental Affairs, and
together with his team he was coordinating a
consultative rhino issues process with a view
to informing debate and ultimately coming up
with a set of recommendations for the minister. I
reported on the first two public meetings as part
of this RIM process in my last report. During
this reporting period, there have been another six
public meetings in Johannesburg and Umhlanga.
One meeting discussed biological management
and other aspects of conservation, while there
were two separate meetings on security and
another two on trade issues. There was also a final
public summary meeting. The AfRSG Secretariat
and other AfRSG members assisted on request,
giving a number of background and summary
presentations at the meetings, and providing
technical information on request to the RIM
team. In addition to these public meetings, Mr
Msimang also held a number of additional oneon-one meetings as well as a number of meetings
with the diplomatic community. The RIM team
reported back on their findings and the likely
recommendations to senior staff from the formal
conservation agencies but this was not a public
meeting. A draft report with recommendations
has been submitted to the minister. The minister
requested further information and is expected to
present the report to parliament in early 2013.
Next AfRSG meeting
Plans and organizations are well under way for
the 11th meeting of AfRSG, which is being held
in Naro Moru, Kenya. I will report on this meeting
in the next issue of Pachyderm.
Pachyderm No. 52 July–December 2012
Dans mon dernier rapport pour Pachyderme, j’ai mentionné
qu’un Gestionnaire des Questions relatives au Rhinocéros
(GQR), Mr. Mavuso Msimang, avait été nommé par le
Ministère sud-africain des affaires environnementales et en
collaboration avec son équipe, il a coordonné un processus
consultatif sur les questions relatives aux rhinocéros en
vue d’éclairer le débat et, finalement, proposer une série
de recommandations au Ministre. J’ai rendu compte des
deux premières réunions publiques dans le cadre de ce
processus du GQR dans mon dernier rapport. Pendant la
période considérée, il y a eu encore six réunions publiques
à Johannesburg et à Umhlanga. Une réunion a porté sur la
gestion biologique et d’autres aspects de la conservation,
tandis que deux réunions ont porté sur la sécurité et deux
autres sur les questions commerciales. Il y avait aussi
une réunion publique de synthèse finale. Sur demande, le
Secrétariat du GSRAf et les autres membres du GSRAf
ont aidé à donner des présentations sur l’historique lors des
réunions, et à fournir des informations techniques à l’équipe
du GQR. En plus de ces réunions publiques, Mr. Msimang
a également tenu un certain nombre d’autres réunions en
tête-à-tête ainsi que des réunions avec la communauté
diplomatique. L’équipe du GQR a rendu compte de ses
conclusions et ses possibles recommandations aux cadres
supérieurs des organismes officiels de conservation, mais
ce n’était pas une réunion publique. Un projet du rapport
contenant des recommandations a été soumis au Ministre. Le
Ministre a demandé de plus amples informations et il prévoit
de présenter le rapport au Parlement au début de 2013.
Prochaine réunion du GSRAf
Les préparatifs pour la 11ème réunion du GSRAf qui se
tiendra à Naro Moru au Kenya vont bon train. Je vais
présenter un rapport sur cette réunion dans le prochain
numéro de Pachyderm.
15
Knight
Namibian technology and
security meeting
Technologie de la Namibie et réunion
sur la sécurité
The US Fish and Wildlife Service (USFWS)
convened 40 experts from across the African
rhino range States from 25 to 29 November 2012
in Waterberg Plateau Park in Namibia to address
rhino security. The meeting was generously
co-sponsored by the Namibian Ministry of
Environment and Tourism and Save the Rhino
International (SRI).
Participants included wildlife managers, field
practitioners, security experts and law-enforcement
officers working on rhino conservation in Kenya,
Malawi, Namibia, South Africa, Swaziland,
Tanzania, Zambia and Zimbabwe. The meeting
shared experiences on the best ways to protect
Africa’s rhino populations and identified possible
diplomatic interventions and technological
equipment that could vastly improve rhino
survival.
The meeting provided the opportunity to 1)
introduce field practitioners to others facing
similar challenges, 2) allow field people to share
knowledge on which techniques and technologies
are working and which are not, and under what
conditions or circumstances, and 3) advise USFWS
and other US government agencies on how best
to contribute to improved rhino security through
technology or policy. The meeting also included
practical sessions to demonstrate and test new
technologies including unmanned aerial vehicles
and rhino marking and tracking equipment.
As a result of discussions at the meeting,
USFWS has compiled an outline of opportunities
for policy changes at international, regional and
national levels in rhino range States and a list of
standard equipment needs for rhino areas.
Le Service de la Pêche et de la Faune des Etats Unis a
invité 40 experts de tous les Etats de l’aire de répartition des
rhinocéros du 25 au 29 novembre 2012 au Parc du plateau
de Waterberg en Namibie pour aborder la sécurité des
rhinocéros. La réunion était co-sponsorisée par la générosité
du Ministère namibien de l’Environnement et du Tourisme
et Save the Rhino International (SRI). Les participants
comprenaient des gestionnaires de la faune, des praticiens
de terrain, des experts en sécurité et les agents d’application
de la loi travaillant sur la conservation des rhinocéros au
Kenya, au Malawi, en Namibie, en Afrique du Sud, au
Swaziland, en Tanzanie, en Zambie et au Zimbabwe. Les
participants ont échangé leurs expériences sur les meilleurs
moyens de protéger les populations des rhinocéros d’Afrique
et ont identifié d’éventuelles interventions diplomatiques
et l’équipement technologique qui pourraient améliorer
considérablement la survie des rhinocéros.
La rencontre a été l’occasion de 1) présenter les
praticiens sur le terrain à d’autres personnes confrontées
à des défis similaires, 2) permettre aux gens sur le terrain
de partager les connaissances sur les techniques et les
technologies qui marchent et celles qui ne marchent pas
et dans quelles conditions/circonstances, et 3) donner des
conseils au Service de la Pêche et de la Faune des EtatsUnis et d’autres agences du gouvernement américain sur la
meilleure façon de contribuer à l’amélioration de la sécurité
du rhinocéros grâce à la technologie ou des politiques.
La réunion comprenait également des séances pratiques
pour démontrer et tester de nouvelles technologies, y
compris les drones et les équipements pour le marquage
et la localisation des rhinocéros.
A la suite des discussions lors de la réunion, le Service
de la Pêche et de la Faune des Etats-Unis a dressé une liste
des possibilités de changements de politiques aux niveaux
international, régional et national dans les Etats de l’aire
de répartition des rhinocéros, et aussi une liste des besoins
en équipement standard pour les aires de distribution de
rhinocéros.
National rhino plans
During the reporting period, Kenya officially
launched its fourth edition of the national
conservation and management strategy for the
black rhino in Kenya. It can be downloaded
from http://www.kws.org/export/sites/kws/info/
publications/strategies/CONSERVATION_AND_
MANAGEMENT_STRATEGY_FOR_THE_
BLACK_RHINO_IN_KENYA_2012-2016.
16
Plans nationaux pour les rhinocéros
Pendant la période considérée, le Kenya a officiellement
lancé sa quatrième édition de la stratégie nationale de
conservation et de gestion du rhinocéros noir. On peut le
télécharger à partir de http://www.kws.org/export/sites/
kws/info/publications/strategies/CONSERVATION_
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
pdf. The overall goal of this strategic plan is to
increase black rhino numbers by at least 5% per
annum with poaching reduced significantly and
additional areas secured for population expansion
to reach a confirmed total of 750 rhinos by the end
of 2016. Six strategic objectives—Protection and
law enforcement; Monitoring for management;
Biological management; Population expansion;
Awareness and public support; and Coordination
and capacity—are outlined to achieve the overall
aim. A new national Rhino Steering Committee was
set up to ensure the strategic plan is implemented.
A number of other revised national plans still
await official sign off. Hopefully some will have
been signed off before the AfRSG meeting in
February 2013.
The revised South African black rhino
biodiversity management plan has been signed by
the minister and awaits gazetting in January 2013.
A draft South African national white rhino plan
has also been completed following a stakeholder
workshop and is now undergoing further editing
by the SADC Rhino Management Group.
The revised Botswana plan has yet to be finalized
and approved as the Department of Wildlife and
National Parks is sorting out its policy towards
private sector rhino ownership. However, we hope
this plan will be finalized and approved soon.
Although completed some time ago, the revised
Zimbabwe black rhino conservation strategy also
has not yet been signed by the minister of the
Environment.
Rhino and Elephant Security
Group and INTERPOL
Environmental Crime Working
Group meeting
A productive meeting of the Rhino and Elephant
Security Group and the Interpol Environmental
Crime Working Group was held at the Selous Bush
Camp near Pilanesberg National Park in South
Africa from 8 to 13 October 2012. In light of
the increase in elephant and rhino poaching, it
was decided to extend invitations to non-SADC
countries Kenya and Uganda, both of which sent
representatives. In addition to the usual reports,
presentations and discussions covering a range
of security issues, the meeting had a useful
Pachyderm No. 52 July–December 2012
AND_MANAGEMENT_STRATEGY_FOR_THE_
BLACK_RHINO_IN_KENYA_2012-2016.pdf.
L’objectif global de ce plan stratégique est d’augmenter
le nombre de rhinocéros noirs d’au moins 5% par an
en réduisant le braconnage de manière significative
et en sécurisant d’autres zones pour l’expansion de
la population pour atteindre un total confirmé de 750
rhinocéros à la fin de 2016. Six objectifs stratégiques - la
protection et l’application des lois; la surveillance pour
la gestion, la gestion biologique, l’augmentation de la
population; la sensibilisation et le soutien du public et la
coordination et le renforcement sont décrits pour qu’on
puisse atteindre l’objectif global. Un nouveau Comité
directeur national sur le Rhino a été créé pour assurer la
mise en œuvre du plan stratégique.
Plusieurs autres plans nationaux révisés attendent
toujours l’approbation officielle. J’espère que certains
auront été signés avant la réunion du GSRAf en février
2013.
La version révisée du plan de gestion de la biodiversité
du rhinocéros noir d’Afrique du Sud a été signée par le
Ministre et attend la publication au Journal officiel en
janvier 2013. Un projet de plan national du rhinocéros
blanc d’Afrique du Sud a également été réalisé à la suite
d’un atelier des parties prenantes et il fait actuellement
l’objet d’autres modifications par le Groupe de gestion
des rhinocéros de la SADC.
Le plan révisé du Botswana n’a toujours pas été
finalisé et approuvé car le Département de la faune et
des parcs nationaux est en train de repenser sa politique
à l’égard de la possession des rhinocéros par le secteur
privé. Cependant, nous espérons que ce plan sera bientôt
finalisé et approuvé.
Bien que la version révisée de la stratégie de conservation
des rhinocéros noirs au Zimbabwe soit terminé il y a
quelque temps, elle non plus n’a toujours pas été signée
par le Ministre de l’Environnement.
Réunion du Groupe sur la Sécurité
du Rhinocéros et de l’Eléphant/et le
Groupe de Travail d’Interpol sur le
Crime de l’Environnement
Une réunion productive du Groupe sur la Sécurité du
Rhinocéros et de l’Eléphant/et le Groupe de Travail
d’Interpol sur le Crime de l’Environnement a eu lieu au
Camp Selous Bush près du Parc National de Pilanesberg
en Afrique du Sud du 8 au 13 octobre 2012. Etant
donné l’augmentation du braconnage des éléphants et
17
Knight
workshop on intelligence database options. After
a presentation, delegates also had a useful practical
session on DNA sample collection using the special
forensic kits available.
62nd meeting of the CITES
Standing Committee
The AfRSG scientific officer attended the 62nd
meeting of the CITES Standing Committee and
took part in a brief CITES Rhino Working Group
document. The scientific officer and Chair also
provided an updated report, which IUCN printed
and made available to delegates. The AfRSG
Secretariat also commented on a draft CITES
Rhino Working Group report for CITES CoP16
that was produced just before the submission
deadline by the outgoing working group chair.
Unfortunately, concerns expressed by AfRSG
regarding the declining incentives for private
sector owners and communities to conserve rhino
and the worrying increase in owners disinvesting
in rhinos were not captured in the final version
that was submitted to the CITES Secretariat.
The report stresses the need to reduce demand.
Hopefully there will be opportunities for more indepth discussion at future meetings of the working
group, as well as intersessionally.
Other conferences
During the reporting period the AfRSG Chair and
scientific officer gave invited presentations and
were part of a panel discussing rhino conservation
challenges and approaches at the International
Wildlife Management Congress in Durban in
July 2012. In September the Chair also attended
and spoke at the Rhino Technical Advisory Group
session at the annual European Association of
Zoos and Aquaria conference in September 2012
in Innsbruck, Austria. The precarious situation
facing Africa’s rhinos was presented. A call
was also made for greater cooperation between
zoo and conservation communities, especially
towards supporting key field-focused rhino
conservation programmes. The scientific officer
also gave a keynote address at the Symposium
of Contemporary Conservation Practice held in
KwaZulu-Natal, South Africa, in October 2012.
18
des rhinocéros, il a été décidé d’étendre les invitations
aux pays qui n’appartiennent pas à la SADC comme le
Kenya et l’Ouganda, qui ont tous les deux envoyé des
représentants. En plus des rapports habituels de feedback,
des présentations et des discussions portant sur un
éventail de questions de sécurité, la réunion comprenait
un atelier utile sur les options de base de données sur les
renseignements. Après une présentation, les délégués ont
également eu une séance pratique et utile sur la collecte
d’échantillons d’ADN en utilisant les kits médicauxlégaux spéciaux disponibles.
62ème réunion du Comité permanent
de la CITES
Le chargé scientifique au GSRAf a participé à la 62ème
réunion du Comité permanent de la CITES et a pris part
à la rédaction d’un bref document du Groupe de travail
de la CITES sur le rhinocéros. Le chargé scientifique
et le président ont aussi fourni un rapport actualisé qui
a été imprimé par l’UICN et mis à la disposition des
délégués. Le Secrétariat du GSRAf a également fait des
commentaires sur un projet de rapport du Groupe de
travail de la CITES sur le rhinocéros pour la CdP 16 de
la CITES qui avait été produit juste avant la date limite de
soumission par le président sortant du Groupe de travail.
Malheureusement, les préoccupations exprimées par le
GSRAf en ce qui concerne la baisse de motivation des
propriétaires du secteur privé et des communautés pour
conserver les rhinocéros et l’augmentation inquiétante du
désinvestissement des propriétaires dans la conservation
du rhinocéros n’ont pas été capturées dans la version finale
soumise au Secrétariat de la CITES. Le rapport souligne
la nécessité de réduire la demande. J’espère qu’il y aura
des opportunités pour plus de débats approfondis lors des
prochaines réunions du Groupe de travail, ainsi qu’entre
les sessions.
D’autres conférences
Au cours de la période considérée, le président et le
chargé scientifique du GSRAf ont fait des présentations,
et faisaient partie d’un groupe de discussion sur les défis et
les approches de la conservation des rhinocéros au Congrès
International sur la Gestion de la Faune à Durban en juillet
2012. En septembre 2012 le président a également participé
et a pris la parole lors de la session du Groupe Consultatif
Technique sur le Rhinocéros à la conférence annuelle de
l’Association européenne des zoos et des aquariums à
Pachyderm No. 52 July–December 2012
African Rhino Specialist Group report
A number of other rhino-related papers were
presented at the conference. In November, the
scientific officer also gave an invited presentation
at the annual conference of the Professional
Hunters Association of South Africa.
Global Environment Facility
project development
A number of South African AfRSG members met
with the consultant who is helping South Africa’s
Department of Environmental Affairs apply for a
Global Environment Facility project in the hope
of securing a possible USD 2.69 million in donor
funds to boost wildlife forensic capabilities and the
analysis of wildlife crime intelligence information
in South Africa. A number of AfRSG members will
be assisting by providing direct inputs into the final
preparation of the application document.
Acknowledgements
I once again would like to acknowledge and
thank our various sponsors: WWF’s African
Rhino Programme (with funding from WWFNetherlands), US Fish and Wildlife’s Rhino
and Tiger Conservation Fund, Save the Rhino
International (SRI), International Rhino Foundation
and UK’s Department for Environment, Food and
Rural Affairs for their sponsorship of the scientific
officer’s time and next year’s AfRSG meeting.
The Endangered Wildlife Trust is also thanked
for administrative assistance. The assistance of
SRI’s Cathy Dean and Susie Offord with fund
raising, reporting and logistical support in helping
organize the next AfRSG meeting is appreciated.
I also thank Dr Richard Emslie, scientific officer,
and Mr Ben Okita-Ouma, deputy Chair, for their
inputs, constant support and advice.
Pachyderm No. 52 July–December 2012
Innsbruck en Autriche. La situation précaire à laquelle le
rhinocéros d’Afrique est confronté y a été présentée. On a
également fait un appel pour une plus grande coopération
entre les zoos et les communautés de la conservation,
surtout pour soutenir des programmes clés de conservation
des rhinocéros sur le terrain. Le chargé scientifique a
également prononcé un discours lors d’un symposium sur
les pratiques contemporaines de conservation qui s’est tenu
dans le KwaZulu-Natal en Afrique du Sud en octobre 2012.
Il y avait d’autres présentations se rapportant au rhinocéros
lors de la conférence. En novembre, le chargé scientifique a
également donné une présentation à la conférence annuelle
de l’Association des Chasseurs Professionnels de l’Afrique
du Sud.
Elaboration du projet du Fonds pour
l’Environnement Mondial
Plusieurs de membres du GSRAf d’Afrique du Sud se sont
réunis avec le consultant qui aide le Ministère sud-africain
des affaires environnementales à élaborer un projet pour le
Fonds pour l’Environnement Mondial (FEM) dans l’espoir
d’obtenir un financement possible de $ 2,69m des bailleurs
de fonds pour renforcer les capacités médico-légales en
matière de la faune et l’analyse des renseignements relatifs
au crime de la faune en Afrique du Sud. Des membres du
GSRAf donneront des contributions directes au document
final qui est en cours de préparation.
Remerciements
Je voudrais encore une fois remercier nos différents
sponsors: le Programme du WWF pour le rhinocéros
d’Afrique (avec un financement du WWF Pays-Bas), le
Fonds pour la Conservation du Rhinocéros et du Tigre du
Service de la Pêche et de la Faune des Etats-Unis, Save
the Rhino International, la Fondation Internationale pour
le Rhinocéros et le DEFRA du Royaume-Uni pour leur
soutien du chargé scientifique et de la réunion du GSRAf
l’année prochaine. Je remercie également le Fonds pour la
Faune et la Flore menacées d’extinction pour l’assistance
administrative. L’aide de Cathy Dean et Susie Offord de
SRI pour la collecte de fonds, la rédaction du rapport et
la logistique pour l’organisation de la prochaine réunion
du GSRAf est appréciée. Je remercie également le Dr
Richard Emslie (chargé scientifique) et Mr. Ben Okita
(vice-président) pour leur contribution, leur soutien
constant et leurs conseils.
19
Talukdar
Asian Rhino Specialist Group report
Rapport du Groupe de Spécialistes des Rhinocéros d’Asie
Bibhab K. Talukdar, Chair/Président
Aaranyak, 50 Samanwoy Path (Survey), PO Beltola, Guwahati – 781 028, Assam, India
email: [email protected]
IUCN World Conservation
Congress in Jeju, Korea
Le Congrès Mondial de l’UICN sur la
Conservation à Jeju, en Corée
The Chair of AsRSG attended the IUCN World
Conservation Congress in Jeju, Republic of
Korea, 5–16 September 2012. In the meeting
of specialist groups organized by the Species
Survival Commission of IUCN in Jeju on
6 September, the AsRSG Chair delivered a
presentation on activities AsRSG was carrying out
and on the current status of Asian rhinos in Asia.
During the IUCN Congress, side meetings were
held among the SSC Chair, Indonesian official
delegates and IUCN members actively engaged
in rhino conservation in Asia to discuss ways and
means to further promote the conservation of the
critically endangered Javan and Sumatran rhinos
in Southeast Asia.
Le Président du GSRAs a participé au Congrès mondial
de l’UICN sur la Conservation à Jeju, en Corée, du 5 au
16 septembre 2012. Lors de la réunion des groupes de
spécialistes organisée par la Commission pour la Survie
des Espèces de l’UICN à Jeju le 6 Septembre, le Président
du GSRAs a présenté un exposé sur les activités que le
GSRAs menait ainsi que l’état actuel des rhinocéros en
Asie. Lors du Congrès de l’UICN, des réunions parallèles
ont eu lieu entre le Président de la CSE, les délégués
officiels indonésiens et les membres de l’UICN activement
engagés dans la conservation des rhinocéros en Asie pour
discuter les voies et moyens de promouvoir davantage la
conservation du rhinocéros de Java et de Sumatra qui sont
en danger critique d’extinction en Asie du Sud.
Joint report for CITES CoP16
Rapport conjoint de la CITES pour la
CdP16
AsRSG, in close association with AfRSG and
TRAFFIC, has drafted the joint report on rhinos
for the upcoming CITES CoP16 scheduled for
Bangkok in March 2013. The report can be viewed
on the CITES website at http://www.cites.org/eng/
cop/16/doc/E-CoP16-54-02.pdf.
Le GSRAs, en association étroite avec le GSRAf et
TRAFFIC, a rédigé le rapport conjoint sur les rhinocéros
pour la prochaine CdP16 de la CITES prévue pour
Bangkok en mars 2013. Le rapport peut être consulté sur
le site Internet de la CITES sur http://www.cites.org/eng/
cop/16/doc/E-CoP16-54-02.pdf.
Indian Rhino Vision 2020
Vision 2020 pour le rhinocéros d’Inde
Between 2008 and 2012, about 18 wild rhinos
were captured from Pabitora Wildlife Sanctuary
and Kaziranga National Park (NP) of Assam and
translocated to Manas NP under the Indian Rhino
Vision 2020, a joint programme of the Assam
Forest Department, Bodoland Territorial Council,
the International Rhino Foundation, the US
Fish and Wildlife Service and WWF-India. Two
Entre 2008 et 2012, environ 18 rhinocéros sauvages ont
été capturés dans le Sanctuaire de la Faune de Pabitora et
au Parc National de Kaziranga de l’Assam et transportés
jusqu’au Parc national de Manas dans le cadre de la
Vision 2020 pour le rhinocéros d’Inde, un programme
conjoint du Département des Forêts de l’Assam, le Conseil
territorial de Bodoland, la Fondation Internationale pour
le Rhinocéros, le Service de la Pêche et de la Faune des
20
Pachyderm No. 52 July–December 2012
Asian Rhino Specialist Group report
translocated rhinos were poached in Manas NP
as of 31 December 2012; one female translocated
rhino gave birth to a calf at the end of September
2012.
The state of the greater onehorned rhino in South Asia
Within India, 2012 witnessed more than 20 greater
one-horned rhinos being poached in Assam, most
of them in and around Kaziranga NP. Rhinos were
poached in all the existing rhino-bearing areas
of Assam—Pabitora Wildlife Sanctuary, Orang
NP, Kaziranga NP and Manas NP—reflecting
that poachers and rhino horn traders are putting
their energies to target rhinos everywhere. During
the last part of September, in the span of a week
poachers taking advantage of the seasonal flood
killed about five rhinos in Kaziranga NP. This in
turn prompted the Honourable Gauhati High Court
to take a suo motto public interest litigation on
rhino poaching [where a government agency acts
on its own cognizance – Ed.], directing the state
government to file affidavits in the court.
Nepal has fought back rhino poachers strongly
and could keep its rhino population protected from
poachers, although one rhino was reported killed
by poachers during 2012.
The state of Sumatran and Javan
rhinos in Southeast Asia
The current state of the Javan rhinoceros, which
is restricted to the western part of Java, Indonesia,
is almost static and its current population could
be as low as 34 or as high as 44 rhinos, based
on a recent camera trapping exercise carried out
by authorities of Ujung Kulon NP. However, the
promising news is that the rhinos are breeding and
producing calves, and the rhino protection units
of Ujung Kulon NP are recording them through
footprints.
The current status of the Sumatran rhinoceros
in Indonesia seems stable, but there is no evidence
of its existence in Penisular Malaysia, although
the government of Mayalsia has initiated a
survey. The Sumatran rhino population in Sabah,
Malaysia, is reported to be isolated, and the future
of these rhinos cannot be assured. Consequently,
Pachyderm No. 52 July–December 2012
Etats-Unis et WWF-Inde. Deux rhinocéros transférés ont
fait l’objet du braconnage au Parc national de Manas avant
le 31 décembre 2012; un rhinocéros femelle transféré a
donné naissance à un bébé rhinocéros à la fin de septembre
2012.
L’état du grand rhinocéros unicorne en
Asie du Sud
En Inde, plus de 20 grands rhinocéros unicornes ont
fait l’objet du braconnage dans l’Assam en 2012, la
plupart d’entre eux au Parc national de Kaziranga et ses
alentours. Les rhinocéros ont été braconnés dans toutes
les aires existantes de l’Assam abritant les rhinocéros –
le Sanctuaire de la Faune de Pabitora, le Parc national
d’Orang, le Parc national de Kaziranga et le Parc national
de Manas – ce qui reflète le fait que les braconniers et
les négociants des cornes de rhinocéros font l’effort de
cibler les rhinocéros partout. Au cours de la dernière
partie de septembre, en l’espace de quelques semaines
les braconniers ont profité des inondations saisonnières
pour tuer environ cinq rhinocéros dans le Parc national
de Kaziranga. Cela à son tour a obligé la Haute Cour de
Gauhati d’entreprendre de sa propre initiative un procès
d’intérêt public suo motto sur le braconnage des rhinocéros
[où un organisme gouvernemental agit de sa propre
initiative – éd.], obligeant le gouvernement de l’Etat à
déposer des affidavits dans la cour.
Le Népal s’est fortement battu contre les braconniers
et a pu protéger sa population de rhinocéros, même si on
rapporte qu’un rhinocéros a été tué par des braconniers
en 2012.
L’état des rhinocéros de Sumatra et de
Java en Asie du Sud
L’état actuel du rhinocéros de Java, qui est limité à la
partie occidentale de Java, en Indonésie, est presque
statique et sa population actuelle pourrait être aussi bas
que 34 rhinocéros ou aussi haut que 44 rhinocéros, en
se basant sur un exercice de piégeage photographique
récente mené par les autorités du Parc national d’Ujung
Kulon. Cependant, la bonne nouvelle est que les
rhinocéros sont en train de se reproduire, et les unités
de protection des rhinocéros du Parc national d’Ujung
Kulon les enregistrent par le biais de leurs empreintes.
L’état actuel du rhinocéros de Sumatra en Indonésie semble
stable, mais il n’existe aucune preuve de son existence
dans la péninsule de Malaisie, même si le Gouvernement
21
Talukdar
the Borneo Rhino Alliance (BORA) and the
government of Sabah are planning to capture the
isolated rhinos and put them in larger breeding
areas within forests to save the species. Under
the leadership of SSC Chair Dr Simon Stuart
assisted by officials of BORA, a Sumatran Rhino
Conservation Summit is being planned for 1–4
April 2013 in Singapore to discuss issues related
to the Sumatran rhino.
22
de la Malaisie a organisé un recensement. On rapporte
que la population des rhinocéros de Sumatra à Sabah, en
Malaisie, est isolée, et l’avenir de ces rhinocéros ne peut
être assuré. Par conséquent, l’Alliance du Rhinocéros de
Bornéo (BORA) et le Gouvernement de Sabah envisagent
de capturer ces rhinocéros isolés et les mettre dans de plus
larges aires de reproduction dans les forêts pour sauver
l’espèce. Sous la direction du Président de la CSE, le Dr.
Stuart Simon, aidé par les représentants de BORA, on
prévoit d’organiser un sommet sur la Conservation du
Rhinocéros de Sumatra du 1 au 4 avril 2013 à Singapour
pour discuter des questions liées au rhinocéros de Sumatra.
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
RESEARCH
Functional relationship between crop raiding by the savannah
elephant and habitat variables of the Red Volta Valley in northeastern Ghana
Patrick Adjewodah,1* William Oduro2 and Alex Asase3
Ghana Ecological Research Centre, PO Box KN 6365, Kaneshie-Accra, Ghana
*corresponding author email: [email protected] and [email protected]
2
College of Agriculture and Natural Resources, Kwame Nkrumah University of Science and Technology,
University Post Office, Kumasi, Ghana
3
Department of Botany, University of Ghana, PO Box LG 55, Legon, Ghana
1
Abstract
We investigated the degree to which crop raiding by elephants in the Red Volta Valley is a function of: the
density and diversity of their natural browse, extent of degradation of their habitat, and proximity of crop
enclaves to the nearest forest boundary. We assessed 50 m x 5 m quadrats for browse and for agents of
degradation (m2 of quadrat area clear-felled, burned, and surface mined), and we adopted records of cropraiding rates in 2000–2002 for correlation with habitat variables. We estimated the distance of affected
enclaves from the forest, river and village using GIS; the total size of crop fields in a locale provided an
estimate of the extent of cultivation. Using correlation and regression analysis, we examined for each locale
the association between rate of crop-raiding incidents and the density and diversity of browse, size of crop
fields, and distance of affected enclaves from the forest, river and village. We used a stepwise regression model
to establish a functional relationship between crop raiding and the enumerated habitat variables. Second-order
jackknife and Michaelis-Menten asymptotic estimators showed that the density and diversity of browse was
near optimum. About 99% of the vegetation area sampled was burned, and 0.35 ha of vegetation was clearfelled for firewood. No evidence of mining was recorded. There was a significant inverse association between
crop raiding and distance of affected enclaves from the forest, while the association between crop raiding
and density and diversity of browse and the extent of degradation were not significant. A stepwise regression
model gave a functional relationship between the observed rate of crop-raiding incidents and proximity of
crop enclaves to the forest as Y = 25.105 + 3.2 – 9.73X (Y = rate of crop-raiding incidents and X the distance
from enclave to the forest boundary). Contrary to speculation, crop raiding in the study area is not influenced
by the status of browse, extent of degradation or size of cultivated fields. Thus, mitigation measures should
include relocating farms away from forest reserves, while measures aimed at reducing the density of farms or
replanting of the forest should be de-emphasized as they will not necessarily reduce crop raiding.
Additional key words: locale, enclave
Résumé
Nous avons étudié la mesure dans laquelle la maraude des cultures par les éléphants dans la vallée de la
Volta Rouge dépend de: la densité et la diversité de leur broutage naturel, l’ampleur de la dégradation de leur
habitat et la proximité des enclaves de cultures à la limite de la forêt la plus proche. Nous avons évalué des
Pachyderm No. 52 July–December 2012
23
Adjewodah et al.
quadrats de 50m x 5m pour le broutage et les agents de dégradation (m2 de superficie de quadrats coupés à
blanc, brûlés, et la surface exploitée par les mines), et nous avons adopté des données des taux de maraude
des cultures de 2000 à 2002 pour la corrélation avec les variables d’habitat. Nous avons estimé la distance
des enclaves affectées à partir de la forêt, de la rivière et du village en utilisant le SIG. La superficie totale des
champs cultivés dans un endroit a donné une estimation de l’étendue des cultures. En utilisant la corrélation
et l’analyse de régression, nous avons examiné pour chaque endroit l’association entre le taux d’incidents de
maraude des cultures et la densité et la diversité du broutage, la superficie des champs cultivés, et la distance
des enclaves affectées à partir de la forêt, de la rivière et du village. Nous avons utilisé un modèle de régression
par étapes pour établir une relation fonctionnelle entre la maraude des cultures et les variables énumérés de
l’habitat. Des estimateurs asymptotiques de second ordre de Jackknife et de Michaelis-Menten ont montré que
la densité et la diversité du broutage étaient quasi optimales. Environ 99% de la zone couverte de végétation
échantillonnée avait été brûlée, et 0,35ha de végétation avait été coupée à blanc pour le bois de chauffage.
Aucune preuve de l’exploitation minière n’a été enregistrée. Il y avait une association inverse significative
entre la maraude des cultures et la distance des enclaves affectées à partir de la forêt, tandis que l’association
entre la maraude des cultures, la densité et la diversité du broutage, et l’ampleur de la dégradation, n’étaient
pas significatifs. Un modèle de régression par étapes a donné une relation fonctionnelle entre le taux observé
d’incidents de maraude des cultures et la proximité des enclaves cultivées de la forêt de Y = 25.105 + 3.2 –
9.73X (Y = taux d’incidents de maraude des cultures, et X la distance de l’enclave à la limite de la forêt).
Contrairement aux spéculations, la maraude des cultures dans la zone d’étude n’est pas influencée par l’état
du broutage, l’ampleur de la dégradation ou la superficie des champs cultivés. Ainsi, les mesures d’atténuation
devraient inclure la délocalisation des fermes loin des réserves forestières, tandis que les mesures visant à
réduire la densité des exploitations agricoles ou la replantation de la forêt sont moins importantes car elles ne
réduiront pas nécessairement la maraude des cultures.
Mots clés supplémentaires: endroit, enclave
Introduction
The extent of natural browse—expressed in terms
of density, diversity and structure of woody
vegetation—is one of the key habitat requirements
by elephants (McShane 1987; Sukumar 1990, 2003).
A large proportion of the elephant’s natural diet is
from browse. Browse forms over 50% of their diet
(Bell 1985) and elephants need to take in 4–6% of
their weight in browse each day. Barnes et al. (1995)
observed a positive correlation between elephant crop
raiding and habitat status and reported that increased
crop-raiding levels are directly related to habitat
degradation. In localities where natural vegetation is
cleared for crops or burned, fewer browse resources
are available (Okoumassou et al. 1998; Sam et al.
1998) and elephants are thought to seek alternative
sources of food within crop fields (Sukumar 2003).
The spread of agriculture is a major source of
habitat degradation (Hoare & Du Toit 1999). As
human population grows, the need for more farmland
has caused further degradation of elephant habitat and
shifting of crop fields further into areas previously
24
occupied by elephants (Sam et al. 1998; Hoare &
Du Toit 1999; Sukumar 2003). As a result incidents
of elephant crop raiding have intensified where
crop fields are widespread and where enclaves of
cultivation have shifted closer into the elephants’
range (Sukumar 1990, 2003; Oppong et al. 2008).
Uncontrolled and recurrent incidents of wildfire are
said to pose a great constraint on habitat and resource
availability to wildlife in some savannah ecosystems
(Oteng-Yeboah & Asase 2001). In the Red Volta Valley,
fire is not controlled or used as a management tool as
prescribed for wildlife protected areas in the climaxed
savannahs (McShane 1987; Spinage 1994). Burning
vegetation is common even at the latter part of the dry
season (Ayigsi 1997; NCRC 1999, 2000) when fires
are most intense and thus kill rather than support the
growth of seedlings in the recruitment class (OtengYeboah & Asase 2001). This type of burning could have
an adverse impact on browse and cover for elephants.
Artisanal mining in the Red Volta Valley is common
in the dry season. Two methods are commonly used:
pit (or surface) mining, and alluvial mining. In the
former, local artisans use hoes and other hand-held
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
implements to dig up the soil and process it for gold
ore. In the process vegetation cover is removed and
several pits filled with water are left behind. Alluvial
mining involves collecting alluvial silt from the
riverbed. The practice is sporadic along sections of
the river during the dry season.
Elephants in the Red Volta Valley use the forest
reserves as a natural refuge and raid crops in fields
adjacent to the reserves (Jachmann 1992; Stalmans
& Anderson 1992; Sam 1994; Okoumassou et al.
1998). However, knowledge of the key variables that
influence the rate of crop-raiding incidents is scanty
and speculative. Previous workers have suggested that
the rate of elephant crop-raiding incidents could be
associated with degradation of the elephant’s natural
habitat and to dwindling browse resources (Ayigsi
1997; Okoumassou et al. 1998; Sam et al. 1998;
Adjewodah et al. 2003; Adjewodah 2004). Considering
the socio-economic effects of crop damage on the local
communities and their implications for the conservation
of elephants in the Red Volta Valley, a rigorous analysis
of the factors that influence elephant crop raiding in the
area is necessary.
In this paper, we examine the association between
elephant crop raiding and some key variables in the
Red Volta Valley of Ghana. The objectives of the
study were to 1) identify from a set of potential cause
factors variables that might influence local elephant
crop raiding and 2) develop a cost-effective statistical
model for determining the rate of elephant cropraiding incidents.
Study area
The Red Volta Valley comprises a network of adjoining forest reserves—Red Volta East, Red Volta
West, Gambaga Scarp East, Gambaga Scarp West,
and Morago East Forest Reserves—and adjacent
off-reserve woodlands, fallow land and crop fields
(latitude 10°30’ to 11°00’ N, longitude 0°45’ to
0°00’ W). The Red Volta Valley falls within Talensi–
Nabdam, Bawku West and Bongo Districts of the
Upper East Region of Ghana (Fig. 1). The vegetation
is savannah woodland and consists of deciduous
short trees and shrubs (Oteng-Yeboah 2001; Barnes
et al. 2006b). The banks of the Red Volta, White
Volta and Morago rivers are lined with gallery forest.
The forest reserves harbour transboundary elephant
migratory routes that link the Red Volta Valley to
Kabore–Tambi National Park and Nazinga Game
Pachyderm No. 52 July–December 2012
Ranch (in south central Burkina Faso), and to Fosseaux-Lions National Park in northern Togo (Sebogo &
Barnes 2003; Barnes et al. 2006a). About 1,049 km2
of the Red Volta Valley comprising the above forest
reserves and adjoining fallow woodlands is uninhabited
and thus potentially available for elephants.
The Forestry Services Division of the Forestry
Commission manages the Red Volta forest reserves
to protect watersheds. Wildlife management is not
a major priority. The area experiences two climatic
seasons: dry and wet. The wet season extends from
May to November and the dry season from December
to April. Mean annual rainfall is about 896 mm with
an annual peak in July, August and September. The
dry period is characterized by desiccating northeast winds known as harmattan, which bring dust
and haze from the Sahara Desert. The dry season is
also characterized by a high incidence of wildfires
between December and February, and during this
period wildfire damage to vegetation extends over
a large portion of the study area (Adjewodah 2004).
The main economic activity of the people is rainfed
subsistence agriculture. Farm sizes are small and
range from 0.1 ha to 7.3 ha (Adjewodah et al. 2005).
Crops common to the area include millet, maize and
groundnut. The Red Volta Valley has been discussed in
further detail elsewhere (Sam et al. 1998; Adjewodah
et al. 2005).
Materials and methods
With the help of a topographical map, we divided
the uninhabited natural area of the Red Volta Valley
into 18 locales. Each of the locales measured 7.63
km x 7.63 km and encompassed the gallery forest
along the Red Volta, White Volta and Morago rivers,
and adjoining savannah fallow lands. We randomly
selected six locales—Bongo, Buing, Kusanaba,
Morago, Sakote and Tilli—as the focal areas of
the study. The selected locales were put into grids
at 5-minute intervals (on both the longitudinal and
latitudinal axes), resulting in sub-units referred to as
cells (Fig. 2). A locale consisted of about 18 cells each
measuring 1.8 km x 1.8 km. We randomly selected 10
cells from each locale. We delineated a 1,000-m-long
transect within each cell. We determined the terminal
coordinates of each transect from a field map
beforehand, and field groups used a GPS, a compass
and tape measure to follow the transect line. Using
the tape measure, we measured 2.5 m on both sides
25
Adjewodah et al.
of the transect line to create 50 m x 5 m segments (quadrats) along each
transect. There were 20 adjoining segments or quadrats along each transect.
We surveyed 52 transects instead of 60, as 8 of the selected transects fell in
inaccessible terrain and were not surveyed.
To quantitatively describe habitat available to and used by elephants, we
enumerated the vegetation in 4 of the 20 quadrats, that is, in every 5th segment
along the 1000-m transect (Oteng-Yeboah 2001). We tallied trees above
diameter at breast height (dbh) by species and diameter classes, and tallied
shrubs over 30 cm tall by species. Trees and shrubs selectively browsed by
elephants of the neighbouring Kabore-Tambi National Park (Spinage 1985)
provided the basis for identifying browse species among the enumerated plants.
NANDOM
SISALI-TUMU
RED VOLT
MOLE
CHICHEDOM
DIGYA
GOABO
DADICAO
KAKUM
ANKABA
0
00º 45’
00º 30’
00º 15’
00º 00’
11º 00’
BURKINA FAS0
ed
R
Widinaba
lta
Vo
Zebilla Natinga
t
es
W
Bongo
e
serv
t Re
ores
st F
We
olta
ed V
ve R
er
es
R
st
re
Fo
Nangodi
Tilli
Garu Natinga
Sakote
Bugwia
Buipielise
WHITE
Kusanaba
Datoko
10º 45’
Morago East Forest Reserve
VOLTA
Shiega
100 km
TOGO
RED
A
VOLT
Zongoiri
Buing/Degare
Nakpanduri
V
O
Red Volta East
Forest Reserve
E
WHIT
Morago West
Forest Reserve
LTA
WHITE
Gambaga Scarp East
Forest Reserve
Red Volta West
Forest Reserve
rivers
LT
VO
A
international boundary
forest
Nalerigo
Tounga farms
sampled farms
00º 00’
00º 30’ 0’ E
0º 20’ 0’ E
N
Legend
10º 30’
SCALE 1:320,000
0º 10’ 0’ E
BURKINA FASO
Figure 1. Location of the Red
Volta Valley in north-eastern
Ghana and the study area.
Locale
Boundary transect
Rivers
Forest reserve
boundary
10º 50’ 0’ N
10º 50’
White Vo
TOGO
lta river
lta
Red Vo
10º 40’ 0’ N
river
10º 40’
o river
Morag
lta river
White Vo
10º 30’ 0’ N
10º 30’
0
0º 40’ 0’ E
26
roads
towns/villages
00º 30’
00º 40’ 0’ E
N
Gambaga
Gambaga Scarp West
Forest Reserve
00º 45’
Bimbago
Sakogu
0º 30’ 0’ E
3.75
0º 20’ 0’ E
7.5
15
22.5
0º 10’ 0’ E
30 km
Figure 2. The Red Volta
ecosystem showing the
research locales and
transects.
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
For extent of degradation, we measured the crosssectional area (in m2) of mining pits within each of
the selected 50 m x 5 m vegetation quadrats and took
size measurements (in m2) of the area of the quadrat
clear-felled for firewood and the area (in m2) affected
by wildfire. We obtained distance measurements of
enclaves of cultivation to the nearest forest boundary
by estimating the mean distance of a random sample
of farms from the reserve boundary. We also measured
the distances of enclaves of cultivation to the nearest
village (human settlement) and to the Red Volta River
using GIS. We adopted the size of crop field recorded
and rate of elephant crop-raiding incidents reported in
2000–2002 (Adjewodah et al. 2005) for correlation with
the extent of browse and the other habitat variables.
We estimated browse using the density of woody
stem and Michaelis-Menten species diversity
measurements (Gotelli & Colwell 2001; Sukumar
2003). We used the statistical programme EstimateS
(Colwell 2005) for rigorous extrapolation and
interpolations of the empirical sample-based dataset,
and computed sample-based rarefaction curves of the
diversity and density of browse by repeated resampling
(Gotelli & Colwell 2001). We calculated the secondorder jackknife and Michaelis-Menten species
richness and diversity indices for each locale. ANOVA
was used to compare the density of browse and nonbrowse species among locales, and the independent
t-test to compare density of browse species with
the density of all other enumerated species. Species
diversity indices including observed species richness,
second-order jackknife, and Michaelis-Menten
estimators (Gotelli & Colwell 2001) provided a test
of homogeneity or otherwise of the habitat in the six
locales in relation to distribution and diversity of
woody plants.
We used Pearson moment product correlation
test (Zar 1999) to determine the association between
browse density and the rate of elephant crop-raiding
incidents. Standard linear regression was used to
determine the type and strength of the relationship
between rate of elephant crop-raiding incidents and
distance of affected enclaves from the nearest forest
boundary. Spearman correlation was used to estimate
the association between the rate of incidents and size
of crop field.
We used Statistical Programme for Social Sciences
(SPSS Inc. 2007) to build a model of the rate of cropraiding incidents following the Stepwise Strategy
(Dytham 2003). The statistical package identified
Pachyderm No. 52 July–December 2012
the key factor(s) of rate of crop raiding (dependent
variable) in a locale from a set of habitat variables: 1)
size of crop field cultivated in the locale, 2) density
of woody stem, 3) density of browse, 4) distance
of enclave from the forest boundary, 5) distance of
enclave from the Red Volta River, and 6) distance of
the locale’s enclave from settlement. The analysis
produced a function between crop raiding and the
selected cause factor(s). We added and subtracted
the variables listed above in steps using only those
combinations and slopes that generated a better fit
(Dytham 2003). This allowed a stepwise algorithm
to choose the most important factor(s) and to select
a ‘best’ model for predicting the rate of elephant
crop raiding in the study area. We used ANOVA to
test the acceptability of the model from a statistical
perspective, and used a histogram and normality plot
of the residuals to check the assumption of normality
of the error term. We based the model on the equation
below (Zar 1999):
Yj = a + b1X1j + b2X2j + b3X3j + …. + bmXmj + ej
where
Yj = number of incidents in the jth locale
a = the intercept (the value of Y when X1, X2 and
X3 are zero)
m = number of predictors (or independent variables)
b1 = correlation coefficient of the 1st variable
X1j = denotes the jth observation of variable X1
ej = is the error in the observed value for the jth case
Results
A total of 12,948 trees and shrubs were enumerated
during the study. About 16% (n = 67) of the species
recorded were categorized as elephant browse based
on a list of browse species compiled by Spinage
(1985) (Table 1). All the browse species were present
in each of the locales, except for Borassus aethiopum,
which was recorded only in Sakote (Table 1).
The density of browse species was not significantly
different between locales (ANOVA: F5,66 = 0.52, P =
0.774, homogeneity of variances, P = 0.487). When
the density of all enumerated plants was compared
(Table 2), ANOVA indicates that neither was the
density of plants in general significantly different
between the locales (F5,46 = 0.44, P = 0.818).
To further explore the data for any variations among
locales, the density of browse species was compared
with the density of all other enumerated species to
determine relative abundance (Table 3). In this instance
27
Adjewodah et al.
Table 1. Density and distribution of elephant browse in the Red Volta Valley
Density (no. of stems/m2)
Browse species
Bongo
0.288
0.372
0.000
0.264
0.057
0.082
0.011
0.028
0.050
0.155
0.235
0.098
Acacia hockii
Acacia nilotica
Borassus aethiopum
Combretum sp.
Detarium microcarpum
Gardenia ternifolia
Lannea acida
Mitragyna sp.
Piliostigma thonningii
Pteleopsis suberosa
Terminalia macroptera
Vitellaria paradoxa
Buing
Kusanaba
0.042
0.002
0.000
0.129
0.652
0.032
0.004
0.021
0.018
0.351
0.218
0.136
Morago
0.252
0.218
0.000
0.473
0.070
0.013
0.006
0.001
0.117
0.137
0.196
0.161
Sakote
0.093
0.013
0.000
0.231
0.032
0.017
0.005
0.000
0.042
0.156
0.288
0.073
0.207
0.464
0.001
0.126
0.006
0.010
0.002
0.00
0.019
0.142
0.198
0.087
Tilli
0.093
0.013
0.000
0.231
0.032
0.017
0.005
0.013
0.042
0.156
0.288
0.073
Table 2. Density of woody plants enumerated in six localities of the Red Volta Valley
Locale
Bongo
Buing
Kusanaba
Morago
Sakote
Tilli
Density (no. of stems/m2)
T2
T1
T3
T4
T5
T6
T7
T8
T9
T10
0.381
0.296
0.235
0.340
0.357
0.251
0.153
0.293
0.092
–
0.195
0.195
0.263
0.400
0.367
0.289
0.326
0.325
0.268
0.052
0.327
0.244
0.336
0.257
0.233
0.187
0.131
0.233
0.188
0.152
0.389
0.290
0.188
0.174
0.085
0.362
0.143
–
–
–
0.328
0.450
0.340
0.060
0.340
0.115
–
–
–
–
0.227
0.249
0.205
0.334
0.408
0.061
0.202
0.238
0.138
0.162
Ty = transect y; – = missing data
Table 3. Number of stems per m2 of both browse and other woody plants in six locales in the Red Volta Valley
Locale
Bongo
Density (no. of stems/m2)
Non-browse woody
Non-browse woody
plants (range)
plants (mean)
0.09–0.38
0.266
Browse
(mean)
0.137
Buing
0.05–0.40
0.268
0.134
Kusanaba
0.15–0.33
0.229
0.137
Morago
0.14–0.39
0.233
0.079
Sakote
0.06–0.45
0.272
0.105
Tilli
0.06–0.41
0.222
0.080
independent t-test indicates there is a significant
difference between browse and non-browse species,
and thus affirmed the dominance of the former group
of plants (Levene’s test of equality of variances: P >
0.05; t-test, df =10, P < 0.05).
Observed species richness (Sob ), second-order
jackknife, and Michaelis-Menten estimators were
computed (Table 4) and compared for differences in
diversity of species. The Kruskal-Wallis test indicates
homogeneity of the habitat in relation to plant diversity
(species richness: chi-square = 5, P > 0.05; second-order
jackknife: P > 0.05; Michaelis-Menten: chi-square =
28
5, P > 0.05).
The observed species diversity (richness) within
locales was compared with the Michaelis-Menten
asymptotic estimate. An independent sample t-test
showed no significant difference between the observed
species richness (Sob ) and the projected MichaelisMenten asymptote (Levene’s test of equality of
variances: P > 0.05, t-test for equality of means P =
0.198). Species rarefaction curves (based on a series
of 100 randomizations) showed close similarity of the
vegetation within the locales (Fig. 3).
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
Table 4. Composition and diversity estimates for 208 vegetation quadrats within the six locales
(standard deviations are in brackets)
Observed
species
richness
(Sob) 1
Density (SD) 2
32
0.38 (0.09)
33.38
37.42
1.71 (1.06)
2.35 (0.90)
Buing
37
0.20 (0.10)
42.04
48.03
4.15 (2.15)
3.49 (2.10)
Kusanaba
42
0.23 (0.07)
48.37
50.16
4.01 (2.34)
4.52 (1.88)
Locale
Bongo
MichaelisMenten
estimate 3
2nd-order
jackknife
estimate 4
Singletone
(SD) 5
Doubletone
(SD) 6
Morago
48
0.23 (0.12)
58.14
49.51
3.05 (3.37)
4.01 (3.57)
Sakote
39
0.27 (0.15)
47.61
42.51
4.64 (2.4)
4.60 (2.11)
Tilli
34
0.23 (0.09)
37.92
40.65
1.84 (1.48)
2.76 (1.68)
Sob Observed species richness estimated as number of species expected in the pooled samples given the empirical data
Stem density (of all diameter classes) per square metre
3
Michaelis-Menten estimate of species richness: an asymptote estimator
4
Second-order jackknife richness estimator (mean among runs)
5
Singletone mean: number of species with only one individual in the pooled quadrats
6
Doubletone mean: number of species with only two individuals in the pooled data
1
2
Extent of habitat degradation in the
Red Volta Valley
Species
Evidence of wildfire was recorded in most of the
quadrats sampled, and about 99% of the vegetation
area sampled was severely burned (Table 5). There
was no evidence of mining in any of the vegetation
plots, and 0.35 ha involving 14 quadrats (n = 208)
was clear-felled for firewood (Table 5).
The vegetation was dominated (73–82%) by small
plants with girth size less than 5 cm diameter (Table
6), typical of a fire pro-climax (savannah) habitat.
Plants within size 25–35 cm were the least common,
making up only 3% of total plants enumerated; 5% of
Individuals
Bongo
Buing
Morago
Sakote
Kusanaba
Tilli
Figure 3. The mean species accumulation curve (observed
species richness) of woody stems in six locales of the Red
Volta Valley elephant range.
Pachyderm No. 52 July–December 2012
plants were within size class 15–25 cm and 4% were
greater than 35 cm in girth size (Table 6).
In this analysis, density of woody stem and species
diversity (weighed by the Michaelis-Menten species
richness) provided an estimate of browse, and quadrat
area burned or clear-felled provided an estimate of
degradation (Table 7).
Pearson product–moment correlation indicates a
weak association between the rate of incidents and
density (Pearson: r = 0.806, df = 5, P > 0.05), diversity
(Pearson: r = –0.007, df = 5, P = 0.98) of browse.
Similarly, there was no significant association between
rate of incidents and quadrat area burned (Pearson
product moment correlation: r = –0.557, df = 5, P
= 0.329), and clear-felled (Pearson product moment
correlation: r = –0.016, df = 5, P = 0.979). The extent
of cultivation in a locale is estimated by the size of crop
field (Table 7). When the analysis was run, Spearman
correlation indicated a positive but weak association
between size of cropland cultivated and rate of cropraiding incidents (r = 0.25, df = 5, P = 0.63).
The mean distance of a sample of farms from the
nearest forest reserve boundary provides an estimate
for proximity of an enclave to the forest reserve (core
elephant habitat) (Table 8). Correlation analysis shows a
significant association between crop raiding and proximity
of fields to the forest reserve. The number of crop-raiding
incidents markedly increases with decreasing distance to
the forest reserve (Pearson product moment correlation:
r = –0.96, df = 5, P = 0.002) (Fig. 4).
Correlation analysis indicates an inverse association
between the rate of crop-raiding incidents and distance
29
Adjewodah et al.
Table 5. Extent of habitat degradation observed in six locales
Vegetation burned by fire
Area (m )
No. of quadrats
burned
Locale
Bongo
Buing
Kusanaba
Morago
Sakote
Tilli
36
34
36
28
24
32
Vegetation clear-felled
% of area
sample
2
9,000
8,500
9,000
7,000
6,000
8,000
No. of quadrats
100
100
100
100
100
100
Area (m2)
0
3
8
2
1
0
0
750
2,000
500
250
0
Table 6. Distribution of vegetation among five diameter classes in six locales within the Red Volta Valley
Locale
Bongo
Buing
Kusanaba
Morago
Sakote
Tilli
Diameter class in cm (%)
Number of
<5
5–15
15–25
25–35
> 35
Plants
Transects
Trees/ha
82
73
79
73
81
76
7
12
8
16
10
10
3
7
6
5
4
7
4
4
3
2
2
4
4
4
4
4
3
3
2,400
2,684
2,294
1,696
1,635
2,239
9
10
10
7
6
10
804
724
481
654
518
537
Table 7. Rate of incident, extent of cultivation, extent of browse and habitat degradation in six locales of the Red
Volta Valley during 2000–2002
Density and diversity of browse
Locale
Bongo
Buing
Kusanaba
Morago
Sakote
Tilli
a
No. of
elephant
crop-raiding
incidents
9
9
18
6
45
3
Extent of
cultivationa
(ha)
250.6
585.2
221.9
462.7
1,104.6
250.6
Mean
density of
browse
species
0.137
0.134
0.137
0.079
0.105
0.080
Mean density Diversity index
of all species
(MichaelisMenten)
0.266
0.268
0.229
0.233
0.272
0.222
33.38
42.04
48.37
58.14
47.61
37.92
Extent of habitat
degradation
Quadrat
area burned
(ha)
Quadrat area
clear-felled
(ha)
0
8,500
9,000
7,000
6,000
8,000
0
750
2,000
500
250
0
Adjewodah et al. 2005
of crop fields from the Red Volta River (Pearson product
moment correlation: r = –0.43, df = 5, P = 0.39), but
the association was not statistically significant. In
contrast, the association between the rate of cropraiding incidents and distance of the nearest village
to the affected fields is not significant (r = –0.213, P
= 0.68) (Fig. 5).
Functional relationship between crop
raiding and habitat variables
A functional relationship between the rate of cropraiding incidents and some key habitat variables
was determined using a regression model. Eleven
30
potential variables of the rate of crop raiding are
considered in this analysis (Table 9).
Stepwise algorithm chooses ‘distance of the
affected farmed enclave to the forest boundary’ as
the only predictor of rate of elephant crop raiding in
a locale. Equation 1 provides the relationship between
the rate of crop-raiding incidents and proximity of
farmed enclave to the forest.
Y = 25.105 + 3.2 – 9.73X
(Equation 1)
where
Y = expected rate of incidents
X = distance of the affected enclave from the
nearest forest boundary
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
R2 linear = 0.04
30
Number of crop-raiding incidents
Number of crop-raiding incidents
30
20
10
0
R2 linear = 4.677E–4
25
20
15
10
5
7
1.00
1.50
2.00
2.50
2
3.00
Distance of farm from forest boundary (km)
Figure 4. Relationship between distance of cultivated
enclaves from the forest, and annual rate of elephant crop
raiding in Red Volta Valley in 2000–2002.
4
6
8
Distance of farm enclave from village (km)
Figure 5. Relationship between number of crop-raiding
incidents and distance of cultivated enclaves from the
nearest village.
Table 8. Proximity of cultivated enclaves to the nearest forest reserve boundary, the Red Volta River, and
settlements, and the annual frequency of elephant crop-raiding in the Red Volta range during 2000–2002
Locale
Bongo
Biung
Kusanaba
Morago
Sakote
Tilli
Mean distance of farm enclave or affected farms (km)
from main
village
to Red Volta
Valley
1.28
4.36
7.10
4.24
1.58
2.62
5.24
7.99
8.26
14.45
4.81
5.33
from forest
boundary
Rate of incidents = Intercept + standard error of
estimate + coefficient x distance of enclave from
forest boundary (Equation 2)
The model, equation 1, is arrived at when the
standard error estimate and coefficients of the
regression (Table 10) are accounted for in equation
2. It indicates an inverse relationship between rate of
crop-raiding incidents and distance of the affected
enclave from the forest boundary, and predicts a best
guess of the rate of incidents in a locality of the Red
Volta to average 4.83 ± 2.75 crop-raiding incidents
per annum. The model states that the expected rate
of crop-raiding incidents in a locale is equal to 25.1
x distance of enclave from the forest minus 9.73. For
Sakote, where distance of enclave to forest boundary
is 1.27 km, the predicted rate of crop-raiding incidents
using this model is 15.95 incidents per annum.
Pachyderm No. 52 July–December 2012
2.9
2.50
2.23
3.00
1.27
2.65
Crop-raiding incidents (no.)
2000
2001
2002
Mean
0
8
2
0
28
0
2
0
12
6
5
1
7
1
4
0
12
2
3
3
6
2
15
1
The ratio of the regression and residual sums of
squares indicates that 70% of the variation in cropraiding incidents is explained by the model (regression
sum of squares = 98.79, residual = 42.04, total =
140.8; R2 = 0.72). Furthermore, ANOVA indicates
that the variation explained by the model is not due
to chance (F = 9.40, P = 0.037). The histogram and
normality plot of the residuals fairly follows the shape
of the normal curve (Fig. 6).
The multiple correlation coefficient (R) is examined
for the strength of the relationship between the modelpredicted values and the observed rate of crop-raiding
incidents. When this was carried out, stepwise
regression indicated a high correlation coefficient (R
= 0.838), and a strong coefficient of determination
(R2 = 0.702). As a further measure of the strength
of the model fit, the standard error (2.24 incidents
per annum) compares favourably with the standard
deviation of incidents (of 2.75 incidents per annum).
31
0
32
250
0
8,000
6,000
2,000
500
7,000
–
2.65
– = missing data
1.27
4.8
5.3
2.62
1.58
1,105
251
112
398
15
1
37.92
47.61
0.272
5.878
0.634
Sakote
Tilli
0.222
–
2.33
8.3
14.0
4.24
7.10
222
463
160
82
6
1
58.14
48.37
2.653
Morago
0.233
3.184
Kusanaba
0.229
–
–
5.2
8.0
4.36
1.28
251
585
195
114
3
3
42.04
33.38
0.6
Buing
0.268
5.438
Bongo
0.266
to river
Area culti­
vated (ha)
Farmers
(no.)
Raids
(no./yr)
The Red Volta Valley holds adequate browse resources for
elephants; 2 out of every 10 woody plants are edible for them. In
the savannah of Uganda, examination of the stomach contents of
elephants revealed only 25 species in their diet, which compares
with the 11 browse species recorded in the Red Volta Valley.
Woody stems were homogeneously distributed among locales,
and the abundance, diversity and richness of browse were near the
asymptotic estimates or optimum values expected for the area.
Evidence of damage to the vegetation by wildfire was widespread.
Though an assessment of the impact of fire on elephant browse was
beyond the scope of this study, observations from elsewhere in
Ghana (Oteng-Yeboah & Asase 2001) indicate that uncontrolled fire
can constrain the availability of resources to wildlife. For instance,
it can be assumed from the results that only 20–30% (plants that are
5 cm dbh or larger) of the enumerated plants in the Red Volta are
actually available to elephants, as the animals browse from 1 to 2 m
above ground level (Spinage 1994). Plants in the recruitment stage
(< 5 cm dbh), which form a majority of the specimens enumerated,
fall short of the preferred browse height and elephants would not
select them.
The results however indicate there is no marked association
among crop raiding, the extent of browse and habitat degradation.
Though some level of association was found between the rate of
crop-raiding incidents and the extent of cultivation within a locale,
this association was weak and lacked statistical significance. In
parallel, Sukumar (2003) found no clear relationship between crop
raiding and the status of elephant habitat in the immediate vicinity
of cultivated fields, and noted that crop raiding by elephants was
influenced by several attributes of their habitat which were not
mutually exclusive, but interrelated in a complex fashion that was
poorly understood.
Diversity
index
Discussion
Locale
Figure 6. Histogram and normality plot of the residuals
against rate of crop-raiding incidents.
from
forest
1.0
Distance of enclave (km)
0.5
Woody plant
density
(no./m2)
0.0
Crop area
de­stroyed
(ha)
–0.5
Regression standardized residual
Table 9. Potential predictor variables of the rate of elephant crop-raiding incidents in six localities of the Red Volta Valley
–1.0
9,000
2
–
Area burned
(ha)
4
8,500
6
from
village
Frequency
8
Area cleared
(ha)
Dependent variable:
mean no. of incidents
Mean = –4.56E–16
SD = 0.392
n =14
10
750
Adjewodah et al.
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
Table 10. Coefficients of regression and collinearity statistics of regression model
Model 1
Unstandardized
coefficients
B
Std. error
(Constant)
25.105
6.743
Distance of
farms from
forest boundary
–9.730
3.174
Standardized
coefficients
T
Sig.
3.723
0.020
–3.066
0.037
Beta
–0.838
Barnes et al. (2003) found that the rate of crop
raiding was proportional to the density of farms.
Similarly, Sukumar (1990) found that the frequency
of crop raiding during different months of the year
was proportional to the area of land under cultivation.
However, they made these observations at conflict sites
where elephants are present year round. In the Red
Volta Valley, the elephant population is seasonal and
the extent and rate of crop raiding is more dependent
on the migration of elephants into the study area across
the frontier with Burkina Faso (Adjewodah 2004). In
2003, no crop-raiding incident was reported even
though the size of cultivated land and crop availability
had not changed markedly from previous seasons
when incidents were high (Adjewodah et al. 2005).
This was attributed to a marked change in the elephant
migration pattern (Adjewodah 2004), as elephants
from Burkina Faso did not arrive in the study area
during the crop-raiding season (Sawadogo 2003).
A marked association between the rate of cropraiding incidents and proximity of enclaves to the
forest was observed. This confirms suggestions by
previous workers (Sam et al. 1997; NCRC 1999,
2000) that elephant preference for forest reserves
means farms nearer the forest are at greater risk
of being affected. This preference thus provides
scientific evidence to support suggestions that
relocating farms away from the forest reserve will
result in a reduced rate of crop-raiding incidents in
the Red Volta Valley. Stepwise algorithm regression
analysis selected ‘distance of affected enclave to the
forest boundary’ as the variable that best accounts
for the rate of crop-raiding incidents in a locale. The
other potential variables were ignored by the stepwise
algorithm because after adding ‘distance of enclave
to the forest’ none of them made any significant
addition to the model. Taking Sakote, for instance,
where the distance of the locale’s farmed enclave is
only 1.27 km from the forest boundary, the predicted
rate of crop-raiding incidents generated by the model
(15.948 incidents per annum) compares closely with
Pachyderm No. 52 July–December 2012
Correlations
Collinearity statistics
Zero-order
Partial
Part
Tolerance
VIF
–0.838
–0.838
–0.838
1.000
1.000
the observed rate, which is 15 incidents per annum.
The model does a good job of modelling the rate of
incidents in a locale as the R2 value of 0.72 means
that the model explains about 70% of the variation
in rate of incident. The significant F statistic further
indicates that the prediction of rate of incidents using
the model is statistically reliable.
Conclusion
The mention of inadequate browse resources as an
underlying cause of elephant crop raiding in the
Red Volta Valley is not upheld by this study. The
Red Volta Valley holds adequate browse resources
for elephants and the diversity of woody plants
is near the optimum expected value for the area.
Evidence of bush burning was extensive and poses
the greatest threat to elephant browse resources
relative to pit mining and clear-felling of vegetation.
The high percentage of enumerated plants within the
recruitment size is a manifestation of the effect of fire
on vegetation.
The rate of crop loss can be predicted from proximity
of cultivation to the nearest forest boundary but is not
markedly influenced by the extent of degradation
and the diversity of woody plants. Thus a mitigation
plan targeted at relocating fields away from the forest
reserves will yield a positive outcome, while measures
aimed at reducing the density of farms or replanting
of the forest with browse species may not necessarily
reduce the rate and extent of elephant crop raiding in
the study area.
Acknowledgements
This research was funded by the European Commission through the Small Grants Programme of the
African Elephant Specialist Group (AfESG) of
the Species Survival Commission (SSC), World
Conservation Union (IUCN). Earthwatch Institute
also provided support for follow-up work in the
33
Adjewodah et al.
Red Volta Valley in collaboration with the Nature
Conservation Research Centre. The kind support of
these institutions is deeply appreciated.
We thank the following individuals who in many
ways gave us the needed support through their advice
and guidance. Prof. Paul Beier of Northern Arizona
University visited with the lead author during the
fieldwork and critiqued the methodology. We are
grateful to the field staff for their endurance and hard
work.
References
Adjewodah, P. 2004. Habitat status, population and
distribution of the African savannah elephant
(Loxodonta africana) in north-eastern Ghana. IUCN/
AfESG Project SG0203, Nairobi. Unpublished
project report.
Adjewodah, P., Murphy, A., and Mason, J. 2003.
Mitigating elephant crop raiding: The Red Volta
Valley experience, Ghana. Available http://iucn.org/
themes/ssc/sgs/afesg/hec/pdfs/hecrvvrep.pdf.
Adjewodah, P., Beier, P., Sam, M.K., and Mason, J.J.
2005. Elephant crop damage in the Red Volta Valley,
north-eastern Ghana. Pachyderm 38:39–48.
Ayigsi, J. 1997. Volta–Morago community elephant
reserve project: summary of field report. Nature
Conservation Research Centre, Accra. Unpublished.
Barnes, R.F.W., Adjewodah, P., Ouedraogo, L., Godwin,
P., Seynou, O., Tiendrebeogo, C. and Pousga Célestin
Zida, C.P. 2006a. A route map for the preparation of
management plans for the transfrontier ecosystem
between Mali, Burkina Faso and Ghana. Project report.
IUCN/AfESG, Burkina Faso. 54 pp. Unpublished.
Barnes, R.F.W., Adjewodah, P., Ouedraogo, L., Héma,
E., Ouiminga, H. and Pousga Célestin Zida, C.P.
2006b. Transfrontier corridors for West African
elephants: The PONASI–Red Volta and Sahelian
Corridor Project. IUCN/AfESG, Burkina Faso. 50
pp. Unpublished.
Barnes, R.F.W., Azika, S. and Asamoah-Boateng, B. 1995.
Timber, cocoa and crop-raiding elephants: a preliminary
study from southern Ghana. Pachyderm 19:33–38.
Barnes, R.F.W., Boafo, Y., Nandjui, A., Dubiure, U.,
Hema, E.M., Danquah, E. and Manford, M. 2003.
An overview of crop raiding by elephants around the
Kakum Conservation Area: Part 2. Technical report.
Elephant Biology and Management Project, Africa
Program, Conservation International. Unpublished.
34
Bell, R.H.V. 1985. Elephants and woodland—a reply.
Pachyderm 5:17–18.
Colwell, R.K. 2005. Estimates: statistical estimation of
species richness and shared species from samples.
Version 7.5. User’s guide and application. Published
at http://purl.oclc.org/estimates.
Dytham, C. 2003. Choosing and using statistics: a
biologist’s guide. Oxford, UK: Blackwell Science.
Gotelli, N.J. and Colwell, R.K. 2001. Quantifying
biodiversity: procedures and pitfalls in the
measurement and comparison of species richness.
Ecological Letters 4:379–391.
Hoare, R. and Du Toit, J.T. 1999. Coexistence between
people and elephants in the African savannahs.
Conservation Biology 13:633–639.
Jachmann, H. 1992. Movement of elephants in and
around the Nazinga Game Ranch, Burkina Faso.
Journal of African Zoology 106:27–37.
McShane, T.O. 1987. Elephant–fire relationships in
combretum/terminalia woodland in Southwest Niger.
African Journal of Ecology 25:79–94.
[NCRC] Nature Conservation Research Centre. 1999.
The micro-best practices project: report of the
ecological baseline survey in the Red Volta River
Valley of the Upper East Region. Project report 1999.
Nature Conservation Research Centre/Technoserve,
Accra, Ghana. Unpublished.
[NCRC] Nature Conservation Research Centre. 2000.
The micro-best practices project: monitoring report
on the ecological impact of the project for the second
period. TechnoServe Inc., Accra, Ghana. Unpublished.
Okoumassou, K., Barnes, R.F.W. and Sam, M. 1998. The
distribution of elephants in north-eastern Ghana and
northern Togo. Pachyderm 26:52–60.
Oppong, S.K., Danquah, E. and Sam, M.K. 2008.
An update on crop raiding by elephants at Bia
Conservation Area, Ghana, from 2004 to 2006.
Pachyderm 44:59–64.
Oteng-Yeboah, A.A. and Asase, A. 2001. Wechiau
Community Hippo Sanctuary: Earthwatch Itineraries,
June 2000–February 2001. Botanical Surveys. Nature
Conservation Research Centre, Accra. Unpublished.
Sam, M.K. 1994. A preliminary survey of elephants in
Northern Ghana. Project report 1994. Ghana Wildlife
Department, Accra Ghana. Unpublished.
Sam, M.K., Barnes, R.F.W. and Okoumassou, K.
1998. Elephants, human ecology and environmental
degradation in north-eastern Ghana and northern Togo.
Pachyderm 26:61–68.
Pachyderm No. 52 July–December 2012
Functional relationship between crop raiding and habitat variables
Sam, M.K., Haizel, C. and Barnes, R.F.W. 1997. Cropraiding by elephants during the 1996 harvest season
in the Red Volta Valley (Upper East Region, Ghana).
Project report, 1997. Wildlife Department, Accra,
Ghana. Unpublished.
Sawadogo, B. 2003. Etude et cartographie des
mouvements et des zones de conflicts des éléphants
entre le Parc Nationale de Po dit Kabore Tambi et la
frontière du Ghana le long de la Volta rouge. Project
report. IUCN/AfESG, Nairobi, Kenya. Unpublished.
Sebogo, L. and Barnes, R.F.W. (eds.). 2003. Action
plan for the management of transfrontier elephant
conservation corridors in West Africa. Technical
Report, 2003, IUCN/AfESG Ouagadougou, 49 pp.
Unpublished.
Spinage, C.A. 1985. The elephants of Burkina Faso,
West Africa. Pachyderm 5:2–5.
Pachyderm No. 52 July–December 2012
Spinage, C.A. 1994. Elephants. London: T and AD
Poyser Ltd.
SPSS Inc. 2007. Statistical programme for data analyses.
USA: Polar Engineering and Consultancy.
Stalmans, M. and Anderson, J. 1992. The forest elephants
of Togo. African Wildlife 46:71–75.
Sukumar, R. 1990. Ecology of the Asian elephant in
southern India. II. Feeding habits and raiding patterns.
Journal of Tropical Ecology 6:33–53.
Sukumar, R. 2003. The living elephants: evolutionary
ecology, behaviour, and conservation. New York:
Oxford University Press.
Zar, J.H. 1999. Biostatistical analysis. Upper Saddle
River, NJ: Prentice Hall.
35
Aristide et al.
Indentification et caractérisation des formations végétales
exploitées par l’éléphant Loxodonta africana dans la Réserve de
Biosphère de la Pendjari au Nord-Ouest de la République du Bénin
Tehou C. Aristide,¹,2,* Kossou Eric,² Mensah G. Apolinaire,3 Houinato Marcel 2 and Sinsin Augustin
Brice 2
¹ Projet W–Arly–Pendjari, 02 B.P. 527, Cotonou 01, République du Bénin
* [email protected]
² Laboratoire d’Ecologie Appliquée/FSA/UAC, 01 B.P. 526 Recette Principale, Cotonou 01, République du Bénin
3
Institut National des Recherches Agricoles du Bénin, 01 B.P. 2359, Recette Principale, Cotonou 01, République
du Bénin
Résumé
Les formations végétales de la Réserve de Biosphère de la Pendjari (RBP) sont soumises à une utilisation
permanente par la population des éléphants. Ces formations représentent une importante source d’alimentation
pour la faune en général et en particulier pour les éléphants mais aussi une source d’approvisionnement en
viande de gibier et autres produits forestiers non ligneux pour les populations riveraines. Peu de données
scientifiques existent sur les relations entre les formations végétales exploitées par les éléphants et les éléphants
dans la RBP. Les objectifs de l’étude sont les suivants: identifier les différentes zones exploitées par les
éléphants ; caractériser les différentes formations végétales exploitées par les éléphants ; et évaluer les dégâts
occasionnés par les éléphants sur ces formations. La méthode de Braun-Blanquet a été utilisée pour les relevés
phytosociologiques. Les matrices des données collectées à partir des relevés ont été traitées avec le logiciel
STATISTICA. Le dendrogramme a été obtenu à l’aide du logiciel STATISTICA par la méthode de Ward sur la
base des distances euclidiennes pour définir les groupements végétaux. La surface terrière, la structure verticale
et la structure horizontale ont été les paramètres dendrométriques calculés. L’ensemble des données a été soumis
au test de Monté Carlo pour analyser les corrélations entre les facteurs environnementaux et les différentes
phytocénoses exploitées par les éléphants dans le but d’évaluer l’impact des éléphants sur les formations
végétales. Les résultats ont montré que les zones de Porga et d’Arly étaient des zones de forte concentration en
éléphants, tandis que celles de Batia et Konkombri étaient des zones de faible concentration en éléphants. Sur
les 61 relevés x 183 espèces effectués sur l’ensemble des zones identifiées, le dendrogramme a fait ressortir 5
groupements végétaux discriminés suivants les facteurs type de formations végétales, niveau de dégradation
due à la densité en éléphants et la superficie des zones abritant ces groupements. La structure verticale observée
était une distribution s’ajustant dans l’ensemble à une distribution en cloche de Gauss. La structure horizontale
était en J renversé et traduisant une formation naturelle. Selon la typologie des dégâts occasionnés par les
éléphants, la présence des chablis étaient fortement corrélés avec les zones de forte concentration en éléphants.
En somme, la caractérisation dendrométrique faite souligne que la végétation de la RBP demeure en bon état
de conservation malgré son caractère giboyeux dans la sous région de l’Afrique de l’ouest.
Mots clés supplémentaires : phytosociologie, dendrométrie, Chablis, régénération
Abstract
The plant communities of the Pendjari Biosphere Reserve (PBR) are continuously consumed by the elephant
population. These plant communities are an important source of food for wildlife in general and for elephants
in particular, and they are also a source of bushmeat and other non-woody forest products for the neighbouring
populations. Little scientific data exist on the relationship between the plant species that elephants eat and
36
Pachyderm No. 52 July–December 2012
Formation végétales exploitées par l’éléphant dans la Réserve de Biosphère de la Pendjari
elephants in the PBR. The objectives of the study were to: identify the different zones elephants use, characterize
the different plant communities elephants consume, and evaluate elephant damage on the plant communities.
The Braun-Blanquet method was used for the phytosociological survey. Matrices of data collected from the
survey were processed using STATISTICA software. The dendrogram was obtained using STATISTICA
software by Ward’s method using Euclidian distances to define plant species. The earth’s surface, the vertical
and horizontal structures, were the dendrometric parameters calculated. All data were subjected to the Monte
Carlo test in order to analyse the correlations between environmental factors and the different phytocenoses
elephants use to evaluate their impact on plant communities. The results showed that Porga and Arly zones had
high concentrations of elephants while Batia and Konkombri had low concentrations. Out of 61 plants surveyed
x 183 species in all the zones identified, the dendrogram identified five groups of plants differentiated according
to typical characteristics of plant communities, the level of degradation caused by elephants and the area of the
zones containing these groups of plants. The vertical structure observed corresponded mainly with a Gaussian
bell-shaped distribution. The horizontal structure was an inverted J and resulted from a natural formation. As
regards the type of damage caused by elephants, the presence of felled trees was strongly correlated with areas
of high concentration of elephants. Overall, the dendrometric characterization carried out underlines the fact
that the vegetation in the PBR is still in a good state of conservation despite the number of wild animals in this
West African sub-region.
Additional key words: phytosociology, dendrometrics, felled trees, regeneration
Introduction
La population d’éléphants de l’ordre de 1808 têtes de
la Réserve de Biosphère de la Pendjari (RBP) constitue
la plus importante de l’ensemble des aires protégées
du Bénin (Sinsin et al. 2006). Ce taxon constitue un
maillon important dans le processus de la régénération
des communautés végétales dans les savanes en
Afrique. De ce fait, cette espèce mérite une attention
particulière pour capitaliser les efforts inhérents à sa
conservation. Il est nécessaire de prendre en compte
cette espèce dans l’étude de la régénération des forêts
et des savanes en Afrique qui a été jusqu’ici une
préoccupation majeure des spécialistes de la gestion
de la faune. A l’instar d’autres espèces fauniques, la
dynamique des populations d’éléphants est affectée
par divers facteurs écologiques et anthropiques.
Les types de formations végétales de la zone
soudano-sahélienne du Nord-Bénin constituent
une ressource alimentaire importante pour la faune
sauvage, voire aussi un habitat pour certaines espèces
animales comme des mammifères rongeurs, oiseaux,
reptiles, etc. En effet, l’étude de l’écologie et de
l’éthologie de la faune sauvage des aires protégées
du Bénin a permis de disposer des connaissances sur
l’interaction végétation et animaux sauvages comme
c’est le cas des éléphants (Tèhou 2001).
L’éléphant fait preuve d’une souplesse écologique
stupéfiante (Pfeiffer 1989). En tant qu’un strict
Pachyderm No. 52 July–December 2012
herbivore sauvage, il présente une gamme de
structure variée et de mœurs dans les savanes des aires
protégées où il ingère principalement des graminées,
des feuilles d’arbre ou de buissons et des fruits. La
présence des éléphants dans les aires protégées et
savanes est plutôt bénéfique et contribue à l’équilibre
de la flore et de la faune. En général, les éléphants
consomment au niveau de la strate arborescente des
gousses de légumineuses, des baies, des drupes et
des samares. Les différentes parties consommées au
niveau des espèces de cette strate sont les rameaux, les
feuilles, les fruits, les écorces et les racines. Au niveau
de la strate herbacée, les éléphants broutent aussi les
graminées. Dans les exploitations agricoles, le régime
alimentaire est surtout constitué de noix de karité
lorsque cette espèce est en fructification. Entre le mois
de mai et de juillet, d’autres espèces consommées dans
les champs sont Sclerocarya birrea, Parkia biglobosa,
Mangifera indica, Zea mays, Dioscorea alata, Cajanus
cajan, Sorghum bicolor, Vigna unguiculata, Arachis
hypogaea et Gossypium hirsutum (Tèhou et Sinsin
1999). Une bonne connaissance des écosystèmes
devient de plus en plus indispensable pour une gestion
communautaire durable des populations d’éléphants
(Tèhou 2001). Tout ce qui précède justifie la présente
étude sur l’identification et la caractérisation des
formations végétales exploitées par l’éléphant
Loxodonta africana dans la Réserve de Biosphère
de la Pendjari.
37
Aristide et al.
Milieu d’étude
L’étude a lieu dans la Réserve de Biosphère de Pendjari
située géographiquement au 10°30’ et 11°30’N, 0°50’
et 2°00’E. Ce milieu bénéficie d’un climat de type
soudanien et une pluviométrie unimodale de 1.100
mm.
Matériels et méthodes
Matériels
La carte de végétation de la réserve a été utilisée
pour connaître toutes les formations végétales de
la RBP et pour les identifier. Les cartes annuelles
des mouvements des éléphants dans la RBP ont
été utilisées pour la superposition des différentes
années afin d’avoir la distribution des éléphants dans
le temps et dans l’espace. La carte des différentes
bandes de précipitations de la RBP a permis d’avoir
des informations sur les mouvements des éléphants
dans les différentes strates en rapport avec l’intensité
des pluies. Un GPS a été utilisé pour géoréférencier
les données collectées sur le terrain. Les couloirs
de passage, les crottes, les espèces appétées et les
dégâts occasionnés par les éléphants et autres ont été
mentionnés dans un carnet de notes.
La caractérisation floristique des formations
végétales (Sokpon et al. 2001) parcourues par
l’éléphant dans la RBP a été faite avec la mise en
place des placeaux de 50m x 20m à l’aide d’un ruban
de 50m, d’une boussole de marque SUNTO pour
l´orthogonalité des angles aux sommets des placeaux,
des piquets de coins en bois coupés à l’aide d’un
coupe-coupe et enfoncés à l’aide d’un marteau
pour matérialiser les placeaux. Des fiches ont été
élaborées pour faire des relevés phytosociologiques
et dendrométriques. Pour la réalisation d’un herbier,
un sécateur de jardinier a été utilisé pour prélever les
échantillons de plantes transportés dans des sachets
et sacs poubelles en plastique, rangés, conservés et
protégés dans des sachets de productivité en papier
buvard. Un clinomètre a été utilisé pour la mesure
des pentes et des hauteurs. Un ruban pii a été utilisé
pour la mesure des circonférences.
Méthodes
L’identification des zones de répartition des éléphants
dans la RBP a été effectuée en les deux phases
suivantes : une phase d’analyse bibliographique et de
38
laboratoire afin de vérifier les données collectées sur
le terrain ; et une phase de collecte de données dans
la zone d’étude. A l’aide du logiciel Arcview GIS3.2
la carte de végétation a été superposée à la carte de
présence des éléphants dans la RBP ; les deux cartes
étant de même échelle.
Pour la caractérisation floristique des formations
végétales exploitées par les éléphants dans la RBP,
les placeaux d’inventaire ont été installés dans
les formations répondant aux critères de sélection
et en tenant aussi bien compte de la taille de la
formation dans la réserve, de la topographie, de
l’accessibilité, de la présence ou non d’eau, du type
de sol et de l’homogénéité floristique. Ainsi, les
relevés phytosociologiques ont été effectués suivant
la méthode sigmatiste de Braun-Blanquet (1932).
Au niveau de chaque site, l’inventaire des espèces
ligneuses a été réalisé à l’intérieur des placeaux de
20m x 50m (1.000 m2) et celui des herbacées était fait
dans des placettes de 10m x 10m (100m2) installées
à l’intérieur du placeau de 20m x 50m suivants les
facies en présence dans le milieu (savanes, forêts
claires et galeries forestières). A l’intérieur de ces
placeaux la caractérisation floristique des formations
végétales parcourues par l’éléphant dans la RBP a été
faite. Les relevés dendrométriques ont été effectués
dans les mêmes placeaux de 20m x 50m utilisés
pour les relevés phytosociologiques. Le diamètre
à hauteur d’homme (dbh) des individus d’arbres a
été le paramètre collecté. Un transect a été installé
perpendiculairement au lit mineur du cours d’eau
considéré. Le nombre d’individus de chaque espèce a
été déterminé. En dehors des relevés effectués au sein
des placeaux, un relevé itinérant a été fait au niveau
de tous les transects et il a contribué à l’estimation de
la richesse spécifique de chaque zone (Yedomonhan
2002).
Analyse des données
La matrice de données constituée de 61 relevés
phytosociologiques et de 183 espèces végétales
ont été soumises à l’aide du logiciel CANOCO
(Canonical Community Ordination) version 4.5 à
une DCA (Dentrended Correspondence Analysis) pour
déterminer les groupements végétaux. La classification
hiérarchique des relevés (clustering) a été réalisée sous
ce même logiciel.
La richesse spécifique et la diversité d’une
communauté végétale sont les deux éléments qui
recouvrent la détermination de la richesse d’un
Pachyderm No. 52 July–December 2012
Formation végétales exploitées par l’éléphant dans la Réserve de Biosphère de la Pendjari
taxon. Ainsi, le nombre de familles a été dénombré
(diversité de familles) de même que les espèces
(richesse spécifique). La diversité spécifique a été
analysée à partir de la richesse spécifique (S), l’indice
de diversité de Shannon et le coefficient d’équitabilité
de Pielou.
Indice de diversité de Shannon (H’ en bits)
La formule de l’indice de diversité de Shannon (H’
en bits) est la suivante (Shannon et Weiner 1949 dans
Shannon et Weiner 1963) :
avec :
Pi = (ni/n) est la fréquence relative des individus
de l’espèce (i) ;
(ni) est le nombre de fois que l’espèce (i) est
contactée et (n) est l’effort total de prospection dans
la station. L’indice de Shannon Weaner exprime donc
la quantité d’information nécessaire à la description
de l’avifaune d’un milieu.
Equitabilité de Pielou (E)
L’équitabilité de Pielou (E) est souvent calculée
pour traduire le degré de diversité atteint par rapport
au maximum possible. Elle varie de 0 à 1 et son
expression est la suivante :
,
avec : H’ max = log2(S), où S est le nombre total
d’espèces dans la station considérée.
Les individus d’arbres dans chaque groupement ont
été groupés en des classes de diamètre de 10 cm pour
construire l’histogramme de la structure diamétrique
de chaque groupement. La structure des groupements
a été ajustée au modèle de Weibull à cause de sa
grande flexibilité (Johnson et Kotz 1970 ; Bonou et
al. 2009). La fonction de densité de probabilité de
la distribution de Weibull est donnée par la formule
(
;
exp[-
où :
x est le diamètre de l’arbre i
a est le paramètre de position (ici a = 10) ;
b est le paramètre d’échelle ou de taille ;
c est le paramètre de forme lié à la structure
Pachyderm No. 52 July–December 2012
observée. La caractérisation des peuplements est à
faire sur base du coefficient de forme c (Bonou et
al. 2009).
Résultats
Identification des groupements végétaux
Les relevés phytosociologiques effectués dans les
formations végétales exploitées par les éléphants
dans la RBP correspondaient à une matrice de 61
relevés et de 183 espèces. Cette matrice soumise à
une classification hiérarchique ascendante suivant la
méthode de Ward et de Person a permis d’obtenir un
dendrogramme issu de cette analyse (Figure 1).
L’analyse hiérarchique ascendante a permis
l’identification des cinq groupements végétaux dans
les différentes formations exploitées par les éléphants
dans la RBP suivants :
• des groupements végétaux GV1 et GV2 de la zone
de Porga rencontrés dans une zone de forte concentration en éléphant.
• des groupements GV3, GV4 GV5 du complexe
Arly, Batia et Konkombri. Ce complexe regroupe
une zone de forte concentration (Arly) et deux zones
de faible concentration (Batia et Konkombri).
Les groupements de forte concentration ont été
caractéristiques des zones riches en mares.
Facteurs déterminant la répartition spatiale des
groupements végétaux
L’analyse de la figure 2 présentant la projection dans
un plan factoriel des relevés phytosociologiques,
a révélé que, dans le plan factoriel 1-2, l’axe 1 qui
représentait 10,37 % (tableau 1) de l’inertie totale
opposait d’une manière générale les relevés de la zone
de Porga [comportant le groupement à Andropogon
gayanus et Acacia gourmaensis (R33, R29, R38,
R32, …, R35 )] à celui des zones de Arly, Batia et
Konkombri [comportant le groupement à Andropogon
pseudapricus et à Anogeissus leiocarpus (R17, R16,
R7, R13, R10, R59, ……. , R1)] décrivant un caractère
d`exiguïté de l`espace à Porga et une forte densité
entraînant la dégradation du milieu due à un fort taux
de charge en éléphant.
En somme, les facteurs déterminant l’identification
et la répartition spatiale des groupements végétaux ont
été le gradient pédologique en relation avec le niveau
de dégradation due à la pression et à la densité suivant
39
Aristide et al.
Arbre de 61 relevés
Méth. de Ward
1-r Pearson
120
100
(Dcla./Dmax)*100
80
G1
G2
60
40
GV1
GV2
GV4
GV3
GV5
0
R33
R29
R28
R37
R32
R27
R38
R36
R35
R32
R30
R23
R22
R21
R34
R26
R24
R25
R55
R58
R42
R57
R43
R40
R18
R61
R53
R47
R5
R9
R6
R14
R3
R56
R54
R20
R60
R45
R51
R50
R48
R2
R17
R16
R15
R11
R19
R39
R4
R49
R44
R46
R41
R12
R52
R7
R8
R13
R10
R59
R1
20
Axis 2
Figure 1. Dendrogramme des 61 relevés effectués dans les formations exploitées par l’éléphant dans la RBP.
G = groupe; GV = groupement végétal
R34
Tableau 1 : Valeurs propres et variances
expliquées par les axes
R30
R25
80
R26
R21
R 55
R 48
R44
R50 R54
R52
R8
0
R41 R59
R17R12
R14 R46 R24
R19 R4 R56
R47 R15R51R2
R7
R9
R42
Valeurs
propres
Variances
Variances
cumulées
1
10,95
17,66
17,66
2
4,72
7,67
25,29
3
3,33
3,75
29,04
R13
R16
R3
R22 R23
R30 R32
Axes
R10
R18
R45
R39
R5 40
R61
R1
R49
R6 R11
R53
R40
R57
Axis 1
R60
R20
80
R33
R35
R28
R37
R 29
R36
R43
R38
R32
R27
0
R58
Figure 2. Projection dans un plan factoriel des 61 relevés effectués
dans les formations exploitées par les éléphants dans la RBP.
40
Pachyderm No. 52 July–December 2012
Formation végétales exploitées par l’éléphant dans la Réserve de Biosphère de la Pendjari
l`axe 1 et le gradient de couverture des formations.
Tous les deux gradients étaient en relation avec les
zones de concentration en éléphant. Toutefois, les axes
1 et 2 ne contribuaient que pour 15,67% de l’inertie
totale. Ceci dénotait d’une dispersion de l’information
sur les axes factoriels.
Structure horizontale
Au niveau du groupe A constitué par le groupement à
Andropogon gayanus et Acacia gourmaensis et celui
à Andropogon pseudapricus et Vitellaria paradoxa,
il n’existait pas de très grands arbres (figure 3).
Toutefois, le fait que ces groupements se trouvent sur
le parcours des éléphants nous a amené à dire que
ce phénomène pouvait être dû à la pression comme
les dégâts chablis des éléphants sur certains arbres
de grand diamètre comme Adansonia digitata par
exemple, puisque le groupe appartenait à une zone
caractérisée par de fortes concentrations en éléphants.
Au niveau du groupe B constitué par le groupement
à Andropogon tectorum et Balanites aegyptiaca et
celui à Andropogon pseudapricus et Anogeissus
leiocarpa, la structure horizontale traduisait par le
fait que les arbres ayant un grand diamètre ont été
épargnés (figure 3).
Au niveau du groupe C constitué par le groupement
à Aneilema lanceolatum et Acacia goumaensis,
l’effectif des arbres de diamètre supérieur à 30 cm
était considérable (figure 3).
La lecture de la structure horizontale dans les deux
zones a permis de constater que l’effectif des ligneux
à Dbh compris entre 25 et 30 cm était moins élevé
en zone de forte concentration comparativement aux
ligneux de cette même classe dans la zone à faible
concentration. Ceci pouvait s’expliquer par le fait que
les éléphants exercent une pression (mutilation des
baobabs) sur les arbres de cette classe dans la zone
de forte concentration.
Dans la zone à faible concentration, le phénomène
contraire s’observait pour illustrer la faible pression
due peut-être à la faible densité dans la zone et à la
diminution des facteurs favorisant l’émergence des
éléphants.
Structure verticale
La structure verticale a montré que le groupe 1 était
constitué par le groupement à Andropogon gayanus
et Acacia gourmaensis et celui à Andropogon
pseudapricus et Vitellaria paradoxa (figure 4). Ce
Pachyderm No. 52 July–December 2012
groupe était caractérisé par l’inexistence des individus
de petite taille de 1 à 4 m de hauteur ce qui devait
être dû tant à l’effet de piétinement par les éléphants
qu’à l’absence d’individus de taille variant entre 10
et 12 m due au fait que ces arbres peuvent être l’objet
de chablis ou l’objet d’aliments pour les petits et
les grands éléphants. En effet, l’éléphant dans cette
zone de forte concentration casse l’arbre qui perd en
hauteur. Ce phénomène observé pour les individus
des classes comprises entre 10 et 12 m pourrait être
dû au fait que les éléphants par leur prélèvement sur
les individus de basse classe empêchent la croissance
en hauteur de ces derniers.
Le groupe 2 constitué du groupement à
Andropogon tectorum et Balanites aegyptiaca et celui
à Andropogon pseudapricus et Anogeissus leiocarpa,
était caractérisé par la présence à la fois des individus
de petite taille et de grande taille (figure 4). Cet état
de choses était dû au fait que ce groupe se retrouve
dans une zone de faible et de forte concentration en
éléphants avec assez de conditions favorables n’ayant
pas forcément de lien avec les ligneux comme la
présence des mares et de grande superficies.
Le groupe 3 constitué par le groupement à Aneilema
lanceolatum et Acacia goumaensis était caractérisé
par l’absence des arbres de faible taille et la présence
des arbres de grande taille (figure 4). Ceci était dû au
fait que ces arbres ont été épargnés parce que dans le
milieu la préférence alimentaire des éléphants ne se
basait pas sur ces espèces ou parce que celles-ci sont
peut-être toxiques.
De façon générale, la distribution en cloche de
Gauss observée dans tous les groupements a montré
l’impact des éléphants sur les arbres de faible hauteur
par mutilation et par chablis et sur la régénération par
piétinement (figure 4). Ainsi, une relation existait
entre le diamètre et la hauteur des ligneux appétés
par les éléphants puisque suivant le type de zone,
l’importance des dégâts sur les ligneux s’exprimait
d’abord par la mutilation et puis après la conséquence
était que l’arbre perdait sa capacité de croître en
hauteur ou était sujet à devenir un chablis plus tard.
Selon les deux graphes comparatifs illustrant la
structure verticale dans les deux zones, l’effectif des
individus de classe comprise entre 10 et 12 m de
hauteur était faible dans la zone de forte concentration
des éléphants. Ceci dénotait de la pression (chablis)
enregistrée par les éléphants sur les espèces de cette
classe. Cet état de choses n’était pas observé dans
la zone de faible concentration des éléphants. Ainsi,
41
Aristide et al.
y = –1,4124x3 + 19,976x2 - 92,171x + 140,34
R2 = 0,99
10–15
15–20
20–25
25–30
y = –5,8333x3 + 63,643x2 – 222,52x + 250
R2 = 0,99
100
80
Effectif en (%)
Effectif en (%)
80
70
60
50
40
30
20
10
0
60
40
20
0
-10 10–15
30– +
Classe de diamètre (cm)
15–20
20–25
25–30
30–+
Classe de diamètre (cm)
Distribution par classe de diamètre du groupement à
Andropogon gayanus et Acacia gourmaensis
Distribution par classe de diamètre du groupement à
Andropogon pseudapricus et à Vitellaria paradoxa
70
60
50
40
30
20
10
0
y = –2,6961x3 + 31,828x2 – 119,89x + 150,88
R2 = 0,99
10–15
15–20
20–25
25–30
60
Effectif en (%)
Effectif en (%)
Structures horizontales du groupe A
50
y = –0,5587x3 + 8,9785x2 – 46,887x + 87,039
R2 = 0,99
40
30
20
10
0
30–+
10–15
Classe de diamètre (cm)
Distribution par classe de diamètre du groupement à
Andropogon tectorum et Balanites aegyptiaca
15–20 20–25 25–30
30– +
Classe de diamètre (cm)
Distribution par classe de diamètre du groupement à
Andropogon pseudapricus et Anogeissus leiocarpa
Structures horizontales du groupe B
Effectif en (%)
40
y = 1,0511x3 - 3,0245x2 – 17,589x + 58,739
R2 = 0,98
30
20
10
0
10–15
15–20
20–25
25–30
30–+
Classe de diamètre (cm)
Distribution par classe de diamètre du groupement à
Aneilema lanceolatum et Acacia gourmaensis
Structures horizontales du groupe C
70
y = –1,7316x3 + 22,681x2 – 96367x + 137,53
R2 = 0,99
50
40
30
20
10
0
70
60
Effectif en (%)
Effectif en (%)
60
y = -3,5813x3 + 39,079x2 - 138,33x + 166,28
R2 = 0,99
50
40
30
20
10
10–15
15–20
20–25
25–30
30–+
Classe de diamètre (cm)
Distribution par classe de diamètre des ligneux
de la zone de forte concentration
0
10–15
15–20
20–25
25–30
Classe de diamètre (cm)
30–+
Distibution par classe de diamètre des ligneux de
la zone de faible concentration
Figure 3. Structures horizontales des groupes A, B et C constitués par divers groupements végétaux.
42
Pachyderm No. 52 July–December 2012
Formation végétales exploitées par l’éléphant dans la Réserve de Biosphère de la Pendjari
70
60
50
40
30
20
10
0
-10
-20
y = -0,1389x5 + 4,3078x4 – 44,537x3 + 191,67x2 – 327,49x + 177,03
R2 = 0,76
Effectif en(%)
Effectif en (%)
y = –0,2459x5 + 6,4642x4 - 60,805x3 + 247,88x2 – 413,29x + 220,84
R2 = 0,78
1–2
2–4
4–6
6–8
8–10 10–12 12–+
Classe dehauteur
70
60
50
40
30
20
10
0
-10
-20
Distribution par classe de hauteur du groupement à
Andropogon gayanus et Acacia gourmaensis
1–2
2–4
4–6
6–8
8–10
10–12 12–+
Classe de hauteur
Distribution par classe de hauteur du groupement à
Andropogon pseudapricus et Vitellaria paradoxa
Structures verticales du groupe 1
y = 0,0164x5 – 0,0112x4 – 2,9407x3 + 20,156x2 – 34,566x + 18,227
R2 = 0,98
35
25
Effectif en (%)
Effectif en (%)
30
y = 0,0714x5 – 1,0011x4 + 3,3983x3 + 3,5119x2 – 20,245x + 17,143
R2 = 0,99
20
15
10
5
30
25
20
15
10
5
0
1–2
2–4
4–6
6–8
8–10
0
10–12 12– +
Classe de hauteur
Distribution par classe de hauteur du groupement à
Andropogon tectorum et Balanites aegyptiaca
1–2
2–4
4–6
6–8
8–10 10–12 12–+
Classe de hauteur
Distribution par classe de hauteur du groupement à
Andropogon pseudapricus et Anogeissus leiocarpa
Structures verticales du groupe 2
35
y = –0,2825x5 + 6,2468x4 – 51,22x3 + 187,92x2 – 289,07x + 146,49
R2 = 0,99
Effectif en %
30
25
20
15
10
5
0
-5
1–2
2–4
-10
4–6
6–8
8–10
10–12
12–+
Classe de hauteur
Distribution par classe de hauteur du groupement à
Aneilema lanceolatum et Acacia gourmaensis
Structures verticales des groupements 3
y = 0,121x5 – 1,8267x4 + 8,1928x3 - 9,0726x2 – 1,8744x + 4,6083
R2 = 0,97
y = -0,2392x5 + 6,0068x4 - 54,429x3 + 214,95x2 – 348,41x + 183,96
R2 = 0,84
60
40
35
Effectif en (%)
Effectif en (%)
50
40
30
20
10
0
-10
-20
30
25
20
15
10
5
1–2
2–4
4–6
6–8
8–10 10–12 12–+
Classe de hauteur
Distribution par classe de hauteur des ligneux
en zone de forte concentration
0
-5
1–2
2–4
4–6
6–8
8–10 10–12 12–+
Classe des hauteurs
Distribution par classe de hauteur des ligneux
en zone de faible concentration
Figure 4. Structures verticales des groupes 1, 2 et 3 constitués par divers groupements végétaux.
Pachyderm No. 52 July–December 2012
43
Aristide et al.
ces chablis pouvaient être causés lors du passage
de l’éléphant ou au moment du broutage pour
l’alimentation de ses éléphanteaux. De plus, ces zones
étaient riches en espèces du genre acacia. Aussi, dans
la zone de forte concentration des éléphants, la densité
de ligneux est élevée et le taux de dégât était élevé.
Discussion
Formations végétales exploitées par les
éléphants
Dans la RBP, l’étude montre que les éléphants
exploitent beaucoup plus les formations ouvertes
caractérisées par la présence des mares et dans
lesquelles ils trouvent assez d’espèces qu’ils appètent.
Les formations plus ou moins fermées servent de
lieu de repos mais plus tard deviennent ouvertes.
Toutefois, les éléphants étant de bons disséminateurs
(Alexandre 1978 ; Alfa Gambari 2002, 2003) de telles
zones deviennent plus tard des zones très riches sur
le plan de la diversité et de la richesse en espèces. Ce
phénomène s’explique puisque par leurs crottes qu’ils
laissent sur le lieu de repos, les éléphants participent
bien à la régénération des espèces ce qui contribue
à la reconstitution à long terme de la flore (White et
al. 1993).
Au cours des investigations, les zones de forte
concentration des éléphants à Arly et Porga présentent
des caractéristiques telles que : abondance des
mares, richesse en espèces appétées avec un niveau
de protection très appréciable. Ces caractéristiques
sont des indicateurs qui favorisent la présence des
éléphants dans ces zones. Concernant l’abondance
des mares où la concentration des éléphants est plus
élevée, ce résultat est conforme à ceux de Laws
(1993) et Ekobo (1995) cités par Mubalama (2000)
qui ont noté des liens étroits entre les éléphants et
les habitats « inondés » (marécages, bas-fonds et
les forêts périodiquement inondées). De même, ce
résultat est conforme à celui de Tehou et de Sinsin
(1999) qui ont trouvé que les éléphants sont surtout
localisés autour des mares et sur les affleurements.
Caractéristiques phytoécologiques des
groupements végétaux
Le Parc National de la Pendjari fait partie d`un réseau
d’aires protégées dans la sous-région de l’Afrique de
l’Ouest et le résultat relatif à la richesse en espèces
44
appétées, est analogue aux observations faites par
Kidjo (1992a, 1992b). D’ailleurs, Tehou (1995) lie
la distribution spatiale des éléphants à la recherche
alimentaire. En effet, du côté de Porga, en plus de ces
caractéristiques, nous pouvons ajouter l’anthropisation
car de ce côté, il y a la zone d’occupation contrôlée
(ZOC) où se mènent des activités champêtres. Ainsi,
parlant des activités champêtres, Tehou et Sinsin (1999)
ont montré que le mouvement des éléphants vers les
terroirs villageois est dû à un problème de préférence
alimentaire basé surtout sur la phénologie des essences
fruitières. Toutefois, dans cette étude la zone de Porga
s’est distinguée du complexe Arly, Batia, Konkombri.
Cet état de choses peut également être dû au fait que
les formations végétales du complexe Arly, Batia et
Konkombri sont dans un premier temps beaucoup plus
riches en peuplement d’Anogeissus leiocarpa, de B.
aegyptiaca, d’Acacia et d’autres espèces appétées
par les éléphants. Par conséquent, à l’effet de la
superficie s’ajoute l’effet de la composition floristique
des formations végétales. C’est ce qui explique leur
fréquentation dans les habitats purs d’Anogeissus
leiocarpa, de B. aegyptiaca et d’Acacia qui leur
servent non seulement de garde-manger mais aussi
et surtout leur offrent un cadre de repos. Dans un
second temps, le caractère de couverture de cette zone
comparativement à celui de Porga est que le complexe
Arly-Batia-Konkombri est composé de formations
végétales plus ou moins fermées. Ceci se justifie parce
que les éléphants affectionnent les formations ouvertes
ou plus ou moins fermées (Tehou 2001). De plus, la
richesse spécifique indiquée par les divers indices de
diversité calculés montre que les zones pâturées par
les éléphants ont une diversité en espèces végétales
entrant dans leur alimentation considérable.
Le nombre de 183 espèces relevées dans les
formations végétales exploitées par les éléphants
lors de la présente étude est du même ordre que ceux
obtenus par Legba (2005) avec 170 espèces recensées
sur les collines de RBP, Gaoué (2000) avec 175 espèces
inventoriées dans la plaine de la zone cynégétique
de la Pendjari, et Avohou (2003) avec 185 espèces
dans la région de Tanguieta-Batia sur la chaîne de
l’Atacora. Par contre, ce nombre est faible par rapport
aux 589 espèces enregistrées dans les Monts Kouffé
au centre du Bénin par Houinato (2001). Ainsi, la
faible richesse floristique est probablement due à la
période de collecte des données en pleine saison des
pluies où l’accès à plusieurs formations végétales ont
été quasi impossible à cause de la montée des eaux.
Pachyderm No. 52 July–December 2012
Formation végétales exploitées par l’éléphant dans la Réserve de Biosphère de la Pendjari
Dans la RBP les familles les plus représentées sont
similaires à celles recensées dans la région soudanienne
par d’autres études comme celle de Houinato (2001)
avec 99 familles au nombre desquelles les familles
des Poaceae, des Fabaceae et des Asteraceae sont les
plus représentées et celle de Wala (2004) sur la chaine
de l’Atacora avec 107 familles dont les familles des
Poaceae, des Fabaceae et des Rubiaceae sont les plus
dominantes. Ceci peut s’expliquer par le fait que la
RBP se retrouve en zones savanicoles où les espèces
annuelles et pérennes dominent généralement la strate
herbacée. De même, toutes les espèces caractérisant
les ligneux de ces groupements végétaux sont des
ligneux appétés par les éléphants.
Caractérisation dendrométrique
Dans la RBP les groupements végétaux étudiés sont
caractérisés pour la plupart par des Phanérophytes en
nombre important (41,4%). Houinato et Sinsin (2001)
ont trouvé des proportions similaires pour les savanes
humides et les forêts claires, en moyenne 36,3% pour
les Phanérophytes et 34% pour les Thérophytes. Nos
résultats dans ce domaine corroborent ceux trouvés par
Gaoue (2000). L’abondance des Phanérophytes dans
la quasi-totalité des groupements végétaux traduit le
climat auquel appartient la zone d’étude. Aussi, cette
prédominance des Phanérophytes peut être interprétée
comme une bonne propension à la régénération des
sols de la région. Les méga-Phanérophytes sont peu
communes du fait que les savanes sont les principales
formations végétales dans lesquelles les mésoPhanérophytes et les micro-Phanérophytes sont les plus
fréquents (Avohou 2003). De plus, cette abondance
explique la présence des éléphants car selon certains
auteurs, les éléphants aiment plus les Phanérophytes
de la classe méso et micro, certainement compte tenue
de leur taille comprise entre 3 et 3,5 m. C’est ce qui
justifie l’intégration des éléphants dans la Réserve de
Biosphère de la Pendjari.
La physionomie des groupements végétaux étudiés
est déterminée beaucoup plus par les Thérophytes et
les Hémicryptophytes ce qui est le cas avec les résultats
de Gaoué (2000) dans la plaine de la zone cynégétique
de la Pendjari où tous les groupements observés sont
essentiellement constitué de Thérophytes. Cela se
justifie parce que les éléphants appètent beaucoup
les Thérophytes (Tchamba 1996 ; Tchamba et Seme
1999). Aussi, cette dominance de Thérophytes peut
constituer un indice de forte perturbation. Le fort taux
Pachyderm No. 52 July–December 2012
de Thérophytes retrouvé sur les parcours des éléphants
peut s’expliquer par l’influence des actions des megaherbivores tels que les éléphants à travers leur fort
piétinement et forte pression sur le pâturage, ainsi
que celles des feux d’aménagement. Les formations
végétales exploitées par les éléphants dans la RBP sont
dominées par les espèces soudaniennes et soudanozambéziennes en termes de recouvrement. Ceci peut
s’expliquer aisément parce que la RBP est située dans
une zone soudanienne. Ce résultat est conforme aux
résultats de Tchamba (1996) en zone savanicole où
les espèces appétées par les éléphants sont en grande
partie de type soudanienne ou soudano-zambéziennes.
De façon générale, ces résultats au niveau de
la structure horizontale sont conformes à ceux de
Gaoué (2000) et de Yabi (2002) qui trouvent que
cette structure est normale car nous sommes en
formation naturelle où la densité des jeunes arbres
est généralement élevée. Cette décroissance rend
compte de la forte prépondérance de la régénération
dans les groupements étudiés. Si la structure est
normale de façon générale, nous pouvons donc dire
que les éléphants n’influencent pas trop la structure
horizontale des peuplements. Ce constat rejoint celui
de Pfeiffer (1989) qui trouve que l’éléphant fait preuve
d’une souplesse écologique stupéfiante. Ainsi, au
niveau du groupe C constitué par le groupement
à Aneilema lanceolatum et Acacia goumaensis,
l’effectif des arbres de diamètre supérieur à 30cm
est considérable. Ce résultat rejoint ceux obtenus
par Tchamba (1996) et Tchamba et Seme (1999)
qui ont trouvé dans la région de Waza Logon, un
milieu savanicole, que les éléphants sélectionnent
certains grands arbres et les épargnent du fait de leur
caractère toxique ou de la disponibilité alimentaire
dont fait preuve le parc à l’endroit des animaux. C’est
ainsi que plusieurs espèces sont épargnées. La faible
représentativité des espèces à large distribution dont
la prédominance dans une phytocénose est synonyme
de dégradation (Sinsin 1993) permet de conclure
que la flore exploitée par les éléphants dans la RBP
conserve encore sa spécificité. Dans la zone à faible
concentration, le phénomène contraire s’observe pour
illustrer la faible pression due peut-être à la faible
densité dans la zone et à la diminution des facteurs
favorisant la présence des éléphants. Ces résultats
s’expliquent aussi par les conclusions d’O’Coonor et
al. (2007) qui précisent que les facteurs influençant la
vulnérabilité des arbres à être mutilés incluent la force
de l’arbre, la profondeur et l’extension du système
45
Aristide et al.
racinaire, de même que la stabilité du substrat.
Dans la structure verticale, le groupe 1 est
caractérisé par l’inexistence des individus de petite
taille (1 à 4m). L’éléphant dans cette zone de forte
concentration casse l’arbre qui perd en hauteur. Ces
résultats sont conformes avec ceux de Maire (2000)
qui ont montré que l’éléphant exploite les ligneux entre
0 et 6m de hauteur. Ce phénomène observé pour les
individus des classes comprises entre 10 et 12m peut
être dû au fait que les éléphants par leur prélèvement
sur les individus de basse classe empêchent leur
croissance en hauteur. Concernant la structure
verticale, dans les deux zones de concentration des
éléphants, l’effectif des arbres de classe comprise
entre 10 et 12m de hauteur étant faible dans la zone
de forte concentration des éléphants, ceci dénote de
la pression (chablis) enregistrée par les éléphants sur
les espèces de cette classe. Cet état de choses n’étant
pas observé dans la zone de faible concentration des
éléphants, alors ces chablis peuvent être causés lors
du passage de l’éléphant ou au moment du broutage
pour l’alimentation de ses éléphanteaux. De plus,
ces zones sont riches en espèces du genre acacia,
alors que selon Kruger et al. (2007), les acacias se
régénèrent malgré la coupure faite par les éléphants
tandis que les autres espèces ne peuvent se régénérer.
Aussi, dans la zone de forte concentration, la densité
de ligneux est élevée et le taux de dégâts est élevé
car, selon Law et al. (1975), Coe et al. (1976) et
Cumming et al. (1997), en cas de fortes densités, les
éléphants déciment généralement les terrains boisés
qui deviennent des prairies plus clairsemées.
Conclusion
L’étude de l’identification et de la caractérisation des
formations végétales exploitées par les éléphants dans
la Réserve de Biosphère de la Pendjari permet de voir
que les éléphants affectionnent plus les formations
ouvertes que les formations fermées. Dans la Réserve
de Biosphère de la Pendjari, ces formations sont
les savanes arbustives, arborées localisées souvent
dans des zones riches en espèces appétées et en
mares temporaires et/ou permanentes. De même,
les éléphants exploitent souvent des formations qui
sont proches des zones anthropisées où se mènent
des activités champêtres. Les analyses du point de
vue floristique montrent que les éléphants de la RBP
aiment et/ou préfèrent les zones ayant une diversité
floristique importante. L`étude phytosocologique
46
permet de constater que les types de groupement
observés et identifiés regorgent d`une diversité en
espèces appétées par les éléphants.
Les analyses sur le plan dendrométrique montrent
que les éléphants à la recherche d`une bonne
alimentation qualitativement et quantitativement,
et surtout sur les couloirs de passage détruisent les
arbres qui perdent en hauteur (chablis) ou en diamètre
(mutilation) dans la Réserve de Biosphère de la
Pendjari.
Références bibliographiques
Alexandre, O.Y. 1978. Le rôle disséminateur des
éléphants en forêt de Tai, Côte d’Ivoire. La Terre et
la vie 32 : 47–72.
Alfa Gambari S. 2002. Suivi écologique des troupeaux
d’éléphants d’Alfakorara dans la zone cynétrique de
la Djona au Bénin. Mémoire de DIT. CPU/UAC. 99 p.
Alfa Gambari S. 2003. Déterminants du pouvoir
germinatif des semences excrétées par les éléphants
et la persistance des phytocénoses à l’irradiation par
zoochorie : cas des éléphants et des phytocénoses
du Parc Régional du W/Bénin et de ses zones
périphériques. Mémoire de DEA. FLASH/UAC, 93 p.
Avohou, T.H. 2002. Détermination des potentialités
pastorales de la chaine de l’Atacora au Nord–Ouest
du Bénin, Région de TANGUIETA-BATIA. Thèse
d’ing. agro., FSA/UAC, Bénin. 136 p.
Bonou, W., Glèlè, K.R, Assogbadjo, A.E, Fonton, H.N and
Sinsin, B. 2009. Characterisation of Afzelia africana
S.M. habitat in the Lama Forest Reserve of Benin.
Forest Ecology and Management 258:1084–1092.
Braun-Blanquet, J. 1932. Plant sociology. The study of
plant communities. Ed. New-York, London: McGray
Hill. 439 p.
Coe, M. J., Cumming, D. H. and Phillipson, J. 1976.
Biomass and production of large African herbivores in
relation to rainfall and primary production. Oecologia
(Berl.) 22:341–354.
Cumming, D.H.M., Fenton, M.B., Rautenback, I.L.,
Taylor, R.D., Cumming, G.S., Cumming, M.S.,
Dunlop, J.M., Ford, A.G., Hovorka, M.D., Johnson,
D.S., Kalcounis, M., Mahlangu, Z. and Portfors,
C.V.R. 1997. Elephants, woodlands and biodiversity
in southern Africa. South African Journal of Science
93:231–236.
Gaoué, O.G. 2000. Facteurs déterminants pour le zonage
de la zone cynégétique de la Pendjari comme base de
Pachyderm No. 52 July–December 2012
Formation végétales exploitées par l’éléphant dans la Réserve de Biosphère de la Pendjari
gestion intégrée. Th. Ing. Agr., FSA/UNB, AbomeyCalavi, Bénin. 106 p.
Houinato, M. 2001. Phytosociologie, écologie, production
et capacité de charge des formations végétales pâturées
dans la région des Monts Kouffé (Bénin). Thèse
Doctorat. Fac. Se. Lab. Bot. Syst et phyt. Uni. Lib.
Bruxelles, Belgique. 219 p.
Houinato, M., Sinsin, B. et Lejoli, J. 2001. Impact des
feux de brousse sur la dynamique des communautés
végétales dans la forêt de Bassila, (Bénin). Acta
Botanica gacillia-cat.inist.fr .
Johnson, N.L. and Kotz, S. 1970. Distributions in
statistics: Continuous univariate distributions. 2.
New York: Wiley.
Kidjo, F.C. 1992. Ecodéveloppement rural d’Alfakoara
(Djona). Eco-éthologie des éléphants (Loxodonta
africana). SEAPA/PGRN/DFRN. 28 p.
Kruger, L.M., Coetzee, J.A. and Vichers, K. 2007. The
impacts of elephants on woodlands and associated
biodiversity. Summary report to South African
National Parks. Organization of Tropical Studies.
Laws, R.M., Parker, I.S.C. and Johnstone, R.C.B. 1975.
Elephants and their habitats. The ecology of elephants
of north Bunyoro, Uganda. Oxford, UK: Clarendon
Press. 376 p.
Legba, F. 2005 Contribution de la végétation des collines
de la zone cynégétique et du Parc national de la
Pendjari du Bénin comme milieu ressource de la faune
sauvage. Th. Ing. Agr. FSA/UAC/Bénin. 121 p.
Maire, M. 2000. Impact actuel des éléphants sur la savane
à Acacia seyal : Parc national de Zakouma (Sud-est du
Tchad), N’Djaména, Tchad. Fif-Engref/Commission
Européenne. 34 p.
Mubalama, K.L. 2000. Les relations hommes-éléphants
dans la Réserve de Faune à Okapis (Okapia johnstonii)
en République démocratique du Congo. Nature et
faune 16(2) : 19–34.
Natta, A.K. 2003. Ecological assessment of riparian
forests in Benin: phytodiversity, phytosociology,
and spatial distribution of tree species. PhD thesis,
Wageningen. 205 p.
O’Connor, T.G. 2007. A functional hypothesis of the
threat of local extirpation of woody plant species
by elephant in Africa. Biological Conservation 136:
329–345.
Pfeiffer, P. 1989. Vie et mort d’un géant. L’éléphant
d’Afrique. L’odyssée, Flammarion. 192 p.
Pielou, E.C. 1966. Species diversity and pattern diversity
in study of ecological succession. Theor. Biol. 10 :
370–383.
Pachyderm No. 52 July–December 2012
Poole, J. 1996. L’éléphant d’Afrique. Nairobi, Kenya:
African Wildlife Foundation. pp. 1–7.
Sinsin, B. 1993. Phytosociologie, écologie, valeur
pastorale, productivité et capacité de charge des
pâturages naturels du périmètre de Nikki-Kalalé au
Nord Bénin. Thèse doctorat. Université Ub. Buxelles,
Belgique. 390 p.
Sokpon, N., Biaou, H., Gaoue, O.G., Hunhyet, O.K.,
Ouinsavi, C. et Barbier, N. 2001. Inventaire et
caractérisation des formations végétales du Parc
national de la Pendjari, Zones cynégétiques de la
Pendjari et de l’Atacora (Région de Konkombri).
Unité de Sylviculture et d`Ecologie Forestière/FSA/
UNB/République du Benin. 48 p.+annexes.
Shannon, C.E., and Weiner, W. 1963. Mathematical
theory of communication. Illinois, USA: University
of Illinois Press, Urbana.
Sinsin, B., Akpona, H. et Ahokpe, E. 2006. Dénombrement aérien de la faune dans la Réserve de Biosphère
de la Pendjari. Rapport technique. CENAGREF/
Projet Pendjari – GTZ – GFA Consulting. Cotonou,
Benin. 35 p.
Tchamba, M.N. 1996. Elephants and their interaction
with people and vegetation in the Waza-Logone
Region, Cameroon. PhD thesis, University of Utrecht,
Netherlands.
Tchamba, M.N. and Seme, P.M. 1999. Diet and feeding
behavior of the forest elephant in the Santchou
Reserve, Cameroon. African Journal of Ecology
31:165–171.
Tehou, A.C. 1995. Etude écologique des éléphants
(Loxodonta africana) d’Alfakoara. PGRN/VGEFER.
41 p.
Tehou, A.C. 2001. Mode de dissémination des espèces
les plus appétées par les éléphants dans la zone
cynégétique de la Djona, les forêts classées de
Goungoun, de la Sota et des environs, Nord-Bénin.
Pachyderm 30 : 65–69.
Tehou, A.C. 2002. Les éléphants (Loxodonta africana)
dans la Reserve de Biosphère de la Pendjari, NordOuest République du Bénin : abondance, densité et
répartitions spatiales. Pachyderm 33 : 64–68.
Tehou, A.C. et Sinsin, B. 1999. Elephants and their
interactions with people and vegetation in the WazaLogon region. Cameroun, NUFFIC. 230 p.
Tehou, A.C. et Sinsin, B. 2000. Ecologie de la population
d’éléphants (Loxodonta africana) de la zone
cynégétique de la Djona (Bénin). Mammalia 64 (1) :
29–40.
47
Aristide et al.
Wala, K. 2004. La végétation de la chaîne de l’Atacora
au Bénin : diversité floristique, phytosociologie et
impact humain. Thèse doctorat. Université de Lomé.
Togo : 138 p + annexes.
White, L.J.T., Titin, C.E.G. and Fernanders, M. 1993.
Group composition and elephant diet on forest
48
elephants, Loxodonta cyclotis Matshie 1900, in the
Lope Reserve, Gabon. African Journal of Ecology
31:181–199.
Yedomonhan, A.P. 2002. Etude de la végétation sociale du
secteur méridional du centre Bénin. Mémoire FLASH/
UAC, Bénin. 94 p.
Pachyderm No. 52 July–December 2012
Optimizing the habitat of the Javan rhino in Ujung Kulon National Park
Optimizing the habitat of the Javan rhinoceros
(Rhinoceros sondaicus) in Ujung Kulon National Park by
reducing the invasive palm Arenga obtusifolia
Adhi R.S. Hariyadi,1 Agus Priambudi,2 Ridwan Setiawan,1 Daryan,2 Hendra Purnama
Asep Yayus 2
2
and
WWF Indonesia – Ujung Kulon Project, Jl. Perintis Kemerdekaan no 104, Labuan–Pandeglang, Banten–42264,
Indonesia
2
Balai Taman Nasional Ujung Kulon, Jl. Perintis Kemerdekaan, Labuan–Pandeglang, Banten–42264, Indonesia
1
Abstract
The dominance of the arenga palm had been identified as a potential limiting factor in the distribution of Javan
rhinos because it prevented the growth of food plant species, thus created a nutrition-poor area in which rhinos
roamed. Palm dominance was reduced in an area consisting of four 1-ha plots (assigned as plots A–D) that
was selected on the basis of various ecological criteria such as number of palm trees (shading) and potential
for connecting home ranges of several rhinos. The research was carried in two phases—palm control and
monitoring—to study the impact of palm control on the growth of food plants and, consequently, on the area’s
accessibility by rhinos. Palm control resulted in increasing abundance and diversity of food plants for rhinos, and
increasing visitation by rhinos. Results from this research show that controlling palm and other invasive plant
species can potentially be used to improve the Javan rhinoceros’s accessibility to certain areas within the habitat.
Résumé
La domination du palmier Arenga avait été identifié come un facteur limitatif potentiel dans la distribution
des rhinocéros de Java, car il empêche la croissance des espèces de plantes alimentaires et crée une zone
« pauvre en nurition » pour les rhinocéros. La réduction de la domination du palmier s’est effectuée dans une
zone composée de quatre parcelles d’un ha sélectionées sur base de divers critères écologiques tels que le
nombre de palmiers (ombrage) et le potentiel de relier les habitats vitaux de plusieurs rhinocéros. La recherche
a été effectuée en deux phases—le contrôle de palmier Arenga a entraîné une augmentation de l’abondance
et de la diversité des plantes alimentaires pour les rhinocéros ainsi qu’une augmentaiton de la fréquentation
par les rhinocéros. Le résultat de cette recherche montre que le contrôle du palmier et des autres espèces de
plantes envahissantes pourrait être utilisé pour améliorer l’accessibilité des rhinocéros à certaines zones au
sein de leur habitat.
Introduction
After enduring a period of a very small population
with only 25 animals in 1967, the Javan rhinoceros
(Rhinoceros sondaicus) reached a population of
58 in 1980, but unfortunately there has not been a
significant increase in population size since then
(Setiawan et al. 2002; Groves & Leslie 2011). Many
studies have been conducted in Ujung Kulon National
Park (NP) to determine the limiting factors causing
the population to stagnate. The factor suspected to
be the major setback is habitat conditions that reduce
Pachyderm No. 52 July–December 2012
the park’s carrying capacity. The carrying capacity of
habitats for herbivores such as the Javan rhinoceros
is determined by many factors, such as rainfall and
soil quality, which eventually influence the abundance
and diversity of food plants (Fritz & Duncan 1994) as
well as their nutritional quality (Hobbs & Swift 1985).
Low food quality is a threat that should be avoided
when managing wild herbivore populations as it may
result in mortality during the first six months of an
animal’s life due to lack of nutrition in the food supply
(Freeland & Choquenot 1990). It is also important to
note that in the context of large herbivores, access
49
Hariyadi et al.
to food sources such as feeding ground plays an
important role in determining the limit of the habitat’s
carrying capacity (Boone & Hobbs 2004). Previous
studies done by Bogor Agricultural University indicate
that the dominance of arenga palm, Arenga obtusifolia,
a rapidly spreading palm species, poses a threat by
reducing the availability of food plants for rhinos.
Therefore, in addressing the issue of availability of
food plants, it is important to reduce the dominance of
this invasive palm in certain areas within Ujung Kulon
peninsula to allow the growth of other plant species
with high palatability for Javan rhinos (Putro 1997).
Arenga palm is classified under the Arecaceae
(or Palmae) family (Sastrapradja 1978) that relies
on both root extension and seed for spread and
dispersal. The arenga palm was not recorded in
Ujung Kulon NP in the 1980s (Hommel 1987),
but it is now found in most places within the park.
Ripe fruits are normally consumed by palm civets
(Paradoxurus hermaphroditus) and the long-tailed
macaque (Macaca fascicularis) that help in seed
dispersal by expelling palm seeds through faeces or
by dropping seeds after consuming the fruit (Lucas
& Corlett 1992; Putro 1997). Besides seed dispersal,
the arenga palm can also spread and sprout using its
extensive subterraneous roots that also restrict the
growth of other plant species (Supriatin 2000). These
dispersal methods make the arenga palm superior over
other species in the course of vegetation succession in
Ujung Kulon. As its mode of expansion and dispersal
is known, it is important to ensure that the palm’s fruits
and roots are removed completely or destroyed to
minimize the probability of it regrowing. This can be
done by removing it manually or by using chemicals
such as isopropyl ammonium glyphosate, an active
ingredient of common weed killer, that has no negative
effects on the natural flora (Carlson & Gorchov 2004)
even after a prolonged five-year use (Hochstedler
et al. 2007). Unfortunately, despite the potential of
isopropyl ammonium glyphosate to effectively and
efficiently eradicate the invasive arenga palm, the
relevant authorities have note approved its use inside
Ujung Kulon NP and all efforts to control the arenga
palm must resort to manual interventions.
Materials and methods
An area measuring 4 ha was selected in the peninsula
of Ujung Kulon NP (6º43ʹ14.8ʺ–6º43ʹ17.3ʺ S and
105º19ʹ12.3ʺ–105º19ʹ12.3ʺ E) based on criteria that
50
included known presence of rhinos in the vicinity of
the plot based on previous observation and census
data; presence of other determinants for rhinos such as
wallow holes, feeding ground, etc.; high palm density
of more than 700 palm trees/ha (causes shading that
prevents the growth of other plant species); and
potential viability as a corridor to connect rhino
home ranges in the peninsula of Ujung Kulon NP.
The habitat was manipulated for 17 months from
February 2008 until June 2009. The work schedule
consisted of: phase 1, clearing between February
and April 2008, phase 2, treating in May–November
2008, and phase 3, monitoring from December 2008
to June 2009. Specific activities included systematic
clearing of a palm-infested plot, monitoring the growth
of food plants important to the Javan rhinoceros, and
monitoring rhino visitation to the treated plot. The 4-ha
area designated as the study area was divided into four
plots each measuring 1 ha. Each of the four plots (plots
A to D) was further divided into smaller subplots of 20
m x 20 m containing smaller grids—2 m x 2 m, 5 m x
5 m, and 10 m x 10 m—to allow vegetation analysis
of four classes of growth stages: sapling, hedge, young
tree, and full-grown tree. Each subplot was used to
calculate the density of full-grown tree densities, the
10 m x 10 m grids were used to calculate density of the
young trees, the 5 m x 5 m grids were used for shrubs,
and the 2 m x 2 m grids were used to calculate sapling
densities in each subplot (Fig. 1). Palms were cleared
within the first five months of the study by a team of
10 persons: two persons each operating a Motoyama
24-inch chainsaw, and eight persons removing the
fallen palms out of the optimization plot to prevent
them regrowing through seed dispersal. Next, palm
roots and stubs were removed from the plot using
shovels and hatchets to prevent arenga palm regrowing
from roots. The effect after treatment on food plants
important to rhinos was reflected in the diversity of
food plants (numbers of plant genera) and abundance
(quantity of food plants available).
To study the nutritional value of the new food
plants growing on the plot, proximate analyses were
conducted with gravimetric, acid-base extraction,
bomb calorimeter, auto analysis destruction, Atomic
Absorbance Spectrophotometry, and conventional
spectrophotometry, specifically water, fat, ash,
rough fibres, energy, protein content, calcium, and
phosphate-tannin. All food plant samples were sun
dried for 8 hours and oven dried at 60 ºC until they
reached constant weight before the proximate analysis.
Pachyderm No. 52 July–December 2012
Optimizing the habitat of the Javan rhino in Ujung Kulon National Park
(Analystsoft). One-way
analysis of variance (ANOVA)
was used to test the null
hypotheses that there would
be no significant differences
in the numbers and diversity
of sapling presence before and
after treatment.
Results
Systematic clearing of the
area dominated by the arenga
palm resulted in an increase
in the number of saplings
(Fig. 2). ANOVA rejected the
null hypothesis and indicated
significant differences between
the number of saplings before
clearing between February
and April and after clearing
phases in May–November
(df = 1; Fcrit = 5.9874; F =
21.8474), but not between
clearing in May–November
Figure 1. The plot layout for vegetation measurements on the 4-ha study area, an
and monitoring phases in
area of 1 ha (100 m x 100 m) divided into smaller grids of 2 m x 2 m (A), 5 m x 5
m (B), 10 m x 10 m (C), and 20 m x 20 m (D) to properly assess various stages of
December–June (df = 1; Fcrit
vegetation consisting of seedling, hedge, young tree, and full-grown tree.
= 5.9874; F = 4.2505). ANOVA
also rejected the null hypothesis
An average of three random observation points and suggested that the diversity of newly growing
was set up monthly within the 4-ha study area to saplings differs significantly between February–April
observe rhino presence from 0800 h to 1730 h in the and May–November phases (df = 1; Fcrit = 5.9874; F
period between 19 August 2008 and 17 July 2009. = 93.0258) as well as between May–November and
The frequency of rhino visits to the 4-ha plot was December–June phases (df = 1; Fcrit = 5.9874; F =
calculated as the number of observation periods with 14.2274). Descriptive analysis showed that, unlike
rhino presence divided by total number of observation the numbers of saplings growing in the plot area,
periods of rhino visits in the treated plots. This the diversity of saplings (indicated by the numbers
information was compiled to analyse how rhinos used of different plant species) continued to increase
the treated areas every month during the monitoring significantly throughout these periods. In the initial
phase of this study. Rhinos were identified by the period, vegetation analysis showed an average of 42.5
footprint size and visually using a DVREye automatic plant species per plot, while the later period showed an
video camera (Pix Controller, Inc., 1056 Corporate average of 65 plant species per plot. Table 1 gives the
Lane Murry Corporate Park Export, PA. USA), while plant species found in the palm control plots, Table 2
plots, subplots and rhino presence were marked using the nutritional values of some of the rhino food plant
a Garmin 12 XL global positioning device (GPS) to species growing in this area. Rhino visitation data
obtain all coordinates. Data from vegetation analyses showed a trend of increasing occurrence throughout
and rhino visitations were compiled using spreadsheet the year (Fig. 2), and at least two different rhinos
software Microsoft Excel (Microsoft Inc.), and were identified through the automatic video camera
statistical analyses were done using biostat software installed in the combined 4-ha study area. Frequency
Pachyderm No. 52 July–December 2012
51
Hariyadi et al.
A
B
D. Dec-June, 59
D. Dec-June, 423
C. Dec-June, 506
D. Feb-Apr, 23
C. Feb-Apr, 28
D. May-Nov, 498
C. Dec-June, 68
D. May-Nov, 55
B. Dec-June, 416
C. May-Nov, 42
C. May-Nov, 305
B. Feb-Apr, 31
B. May-Nov, 198
A. Feb-Apr, 16
A. May-Nov, 283
B. May-Nov, 35
A. Dec-June, 713
B. Dec-June, 58
A. Dec-June, 75
A. May-Nov, 38
Figure 2. Bar graph indicates the numbers of seedlings (A) and the diversity of seedling species (B) growing in the areas
before palm clearing (February–April), after clearing (May–November), and at maintenance period (December–June). The
data show information from all four plots (plots A–D) combined; no data were collected for seedling diversity during the
February–April period.
of rhino visitation indicated no visitation in August and
September 2008 (treated phase), and showed steady
visitation by two individuals (footprint size 25–26
cm and 27–28 cm) in treated and monitoring phases
between November 2008 and July 2009 with most
occurrences (100% rhino findings in every observation
Table 1. Plant species known to be food plants for
Javan rhinos found growing as seedlings in the cleared
area.
Food plant species
Spondias pinnata
Lagerstroemia speciosa
Mikania cordata
Musa sp.
Unclassified 1
Mallotus floribundus
Unclassified 2
Cordia dichotoma
Zanthoxylum rhetsa
Eupatorium odoratum
Lantana camara
Unclassified 3
Tetrastigma lanceolarium
Solanum sp.
Unclassified 4
Donax canniformis
Glochidion rubrum
Amomum sp.
Unclassified 5
Trema orientalis
Solanum torvum
Anthocephalus chinensis
Dillenia obovata
Pterocymbium tinctorium
Lepidagathis javanica
52
No. of stems
found in plot
115
24
17
15
11
9
8
8
7
7
6
5
4
3
3
2
2
2
2
2
1
1
1
1
1
occasion) in the monitoring phase between December
2008 and February 2009 and in April 2009.
Discussion
Statistical analysis confirmed that the number of
arenga palms in all four plots (plots A–D) was
significantly reduced and was followed by the growth
of non-palm saplings that included rhino food plant
species. The pattern of sapling growth in the palm
control plot showed similarity with a succession where
a period of growth was followed by a period of growth
stagnancy, indicating that the optimum capacity of
growth was reached. Furthermore, the composition
of plant species found in the area showed a trend of
increasing diversity (increasing numbers of species)
throughout the observation periods. These facts
suggest a direct correlation between the decreasing
palm populations with the increasing growth of other
plant species. The plant species were dominated by
Spondias pinnata, a relatively good source of water
and calcium for the rhinos but a poor source of energy
(lower calorie content than that of other food plant
species). The plants showed lower water content than
they normally would in natural state due to the drying
processes; therefore the water content from proximate
analysis was suitable for indicating the water content
that could be retained by these plant species.
Increased growth of plants known to be food
sources for Javan rhinos seemed to influence the
rhinos’ use of the treated plots. This can be inferred
from the data showing the increase in rhino visitation
(percentage of rhino occurrences in the area) at
Pachyderm No. 52 July–December 2012
Optimizing the habitat of the Javan rhino in Ujung Kulon National Park
Table 2. Proximate analysis of various plant species
Grams per 100 grams
Calorie
kcal/kg
Water
Protein
Fat
Rough
fibre
Ash
C
P
Tannin
Spondias pinnata
3.005
9.42
9.16
2.62
15.57
20.16
4.70
0.19
0.02
Mallotus
floribundus
3.521
7.89
15.71
4.45
25.93
11.42
2.42
0.30
0.91
Amomum sp.
4.151
9.58
10.24
1.63
33.79
8.69
0.67
0.23
0.18
Lantana camara
4.004
8.37
7.67
4.11
15.96
9.99
2.04
0.16
0.05
Plant species
Plots visited by rhinos
(visitation frequency) %
100
100%
100%
100%
80
60
50%
50%
50%
50%
40%
40
20
0%
0
0%
0%
Aug. Sept. Oct. Nov.
0%
Dec.
Jan.
Feb.
Mar.
Apr.
May
Jun.
Jul.
Observation months
approximately the same time as the increase in growth chemical as well as biological agents to control its
of food plants. Rhinos were first identified by their spread. The use of biological agents (insects) has been
footprints; the footprint sizes suggested two animals implemented and evaluated for controlling Lantana
were entering this study area. Further observation camara in Australia (Day et al. 2003), and a similar
using video trap revealed that the two rhinos were a concept may be applied to control the arenga palm.
mother travelling with her calf (Fig. 4). Results from Potentially invasive plant species that could affect the
field observations were supported by
video clip records of the rhinos showing
them using these plots as a new path
as well as new feeding ground. Since
no rhino presence had been recorded
previously in this particular area, it can
be concluded that the palm control area
provided a new access for certain rhinos.
Therefore, habitat optimization by
reducing the amount of invasive palm (or
any other plant) species could be used
by park managers as a tool to increase
access and probability of joining the
isolated rhinos for breeding purposes
and for improving the quality of rhino
home ranges.
In addition to manually removing the Figure 4. Rhino mother and calf using the study area as the new feeding
arenga palm, there are options for using ground.
Pachyderm No. 52 July–December 2012
53
© Ujung Kulon NP Authority/WWF-Indonesia
Figure 3. Occurrence of rhino visitation (%) in three observation points in all cleared plots
(combined) from August 2008 to July 2009.
Hariyadi et al.
habitat quality of the Indonesian rhinoceros included
vine (Merremia peltata) and wild bamboo species
such as Schizostachyum zollingeri and Bambusa sp.,
as well as Lantana camara.
Acknowledgements
This research was supported by the Ujung Kulon
National Park Authority and WWF-Indonesia with
funding from WWF-Germany and WWF-UK. Video
trap equipment was provided by the International
Rhino Foundation and the Asian Rhino Project.
References
Boone, R.B. and Hobbs, N.T. 2004. Lines around
fragments: effects of fencing on large herbivores.
African Journal of Range and Forage Science
21(3):147–158.
Carlson, A.M. and Gorchov, D.L. 2004. Effects of
herbicide on the invasive biennial Alliaria petiolata
(garlic mustard) and initial responses of native plants
in a south-western Ohio Forest. Restoration Ecology
12(4):559–567.
Freeland, W.J. and Choquenot, D. 1990. Determinants of
herbivore carrying capacity: plants, nutrients. Equus
asinus in northern Australia. Ecology 71(2):589–597.
Fritz, H. and Duncan, P. 1994. On the carrying capacity
of the large ungulates of the African savannah
ecosystems. Proceedings of the Royal Society,
London B. 256:77–82.
Day, M.D., Broughton, S. and Hannah-Jones, M.A.
2003. Current distribution and status of Lantana
camara and its biological control in Australia with
recommendations for further biocontrol introductions
into other countries. Biocontrol News and Information
63N–76N.
54
Groves, C.P. and Leslie, D.M. 2011. Rhinoceros sondaicus
(Perissodactyla: Rhinoceroidae). Mammalian Species
43(887):190–208.
Hochstedler W.W., Slaughter B.S., Gorchov, D.L.,
Saunder, L.P. and Stevens, M.H.H. 2007. Forest floor
plant community response to experimental control
of the invasive biennial Alliaria petiolata (garlic
mustard). Journal of the Torrey Botanical Society
134(2):155–165.
Hobbs, N.T. and Swift, D. 1985. Estimates of habitat
carrying capacity incorporating explicit nutritional
constraints. Journal of Wildlife Management
49(3):814–822.
Hommel, P.W.F.N. 1987. Landscape ecology of Ujung
Kulon (West Java, Indonesia). PhD dissertation. Soil
Survey Institute, Wageningen.
Lucas, P.W. and Corlett, R.T. 1992. Notes on the
treatment of palm fruits by long-tailed macaque
(Macaca fascicularis). Principes 36(1):45–48.
Putro, H.R. 1997. Heterogenitas habitat badak Jawa
(Rhinoceros sondaicus Desm. 1822) di Taman
Nasional Ujung Kulon. Media Konservasi edisi
khusus (1997):17–40.
Sastrapradja, S. 1978. Palem Indonesia. Lembaga
Biologi Nasional – LIPI, Bogor.
Setiawan, R., Yahya, A., Hariyadi, A.R.S. and Polet, G.
2002. Population and distribution of Javan rhinoceros
(Rhinoceros sondaicus, Desmarest, 1822) based on
the calculation of fecal collection in Ujung Kulon
National Park. WWF Report. Cooperation WWF
Indonesia and Ujung Kulon NP Authority Project
ID 0091.07.
Supriatin. 2000. Studi kemungkinan adanya pengaruh
alelopati langkap (Arenga obtusifolia Blumme ex.
Mart) terhadap pertumbuhan semai tumbuhan pakan
badak Jawa (Rhinoceros sondaicus Desmarest 1822)
di Taman Nasional Ujung Kulon. PhD dissertation.
Institut Pertanian Bogor, Bogor, Indonesia.
Pachyderm No. 52 July–December 2012
Demand for forest elephant ivory in Japan
Demand for forest elephant ivory in Japan
Tomoaki Nishihara
Senior Technical Adviser of Operations and Protection, Wildlife Conservation Society
BP 14537, Brazzaville, Republic of Congo
email: [email protected]
Abstract
Japan is the only country where a strong demand for ‘hard’ or forest elephant ivory still exists. This demand
differs from that of China, which consumes more ivory but where no preference for soft or hard ivory exists.
While there is no hard evidence that ivory originating from forest elephants in Central Africa is smuggled into
Japan, the question remains whether only old stock of hard ivory can be meeting the stable demand. Through
investigations in ivory markets in Japan, it was found that ivory dealers there have limited knowledge of the
domestic ivory-trade control system and have not applied it. Also, this control system is not sufficient to manage
the legal ivory trade. These factors may facilitate the illegal importation of hard ivory into the Japanese market.
We recommend that the Japanese ivory-management system be re-evaluated and improved, focusing on hard
ivory stock management. In addition, Japan should develop an information-sharing system for forest elephant
conservation by producing and distributing practical education materials in Japanese. These are priorities because
hard ivory originates in the Central African region, where poaching pressure on forest elephants is increasing,
resulting in a drastic decline in their populations.
Résumé
Le Japon est le seul pays où il existe toujours une forte demande pour l’ivoire «dur» ou l’ivoire des éléphants
de forêt. Cette tendance diffère de celle de la Chine qui a une plus grande consommation d’ivoire, mais où il
n’existe aucune préférence pour l’ivoire souple ou dur. Bien qu’il n’y ait pas de preuves tangibles que l’ivoire
provenant des éléphants de forêt en Afrique centrale passe en contrebande au Japon, il reste la question de
savoir si seulement le vieux stock d’ivoire dur pourrait répondre à la demande stable. Grâce à des enquêtes
sur les marchés d’ivoire au Japon, on a constaté que les négociants d’ivoire au Japon ont une connaissance
limitée du système de contrôle interne du commerce de l’ivoire et ne l’appliquent pas. En outre, ce système
de contrôle ne suffit pas à gérer le commerce légal de l’ivoire. Ces facteurs peuvent faciliter l’importation
illégale d’ivoire dur sur le marché japonais. En conclusion, le système de gestion de l’ivoire japonais doit être
réévalué et amélioré, et l’accent mis sur la
​​ gestion des stocks d’ivoire dur. En outre, le Japon devrait mettre
au point un système d’échange d’informations sur la conservation de l’éléphant de forêt, en produisant et en
distribuant du matériel didactique pratique aux Japonais. Tout cela est prioritaire parce que l’ivoire dur provient
d’Afrique centrale, où la pression du braconnage sur les éléphants de forêt s’accroît ce qui donne lieu à une
baisse drastique de leurs populations.
Introduction
TRAFFIC—the wildlife-trade monitoring system—
states that 2011 saw the largest seizures of ivory by
weight since the CITES (Convention on International
Trade in Endangered Species of Wild Fauna and
Flora) ban on ivory trade in 1989 (TRAFFIC 2011).
While most of this ivory originated in Africa there is
no indication of its precise origins. These seizures are
Pachyderm No. 52 July–December 2012
related to the current high demand for ivory in Asia,
particularly from China (Martin & Vigne 2011; Gabriel
et al. 2012). It is highly probable that part of the seized
ivory came from forest elephants (Loxodonta africana
cyclotis) if we consider their recent population decline
(Beyers et al. 2011; Bouche et al. 2011; Maisels et al.
in review) and high poaching pressure for their ivory.
Historically, Japanese ivory carvers have produced
most of their items from ‘hard ivory’ originating from
55
Nishihara
Asian elephants and from forest elephants of Central
Africa (Martin 1985), which is preferred to ‘soft
ivory’ from savannah elephants (Loxodonta africana
africana) of eastern, western and southern Africa.
The major ivory items produced in Japan are hanko
(personal name seals) and musical implements, such
as bachi (plectrum for the shamisen, a traditional
Japanese musical instrument), preferably made of
hard ivory (Vigne and Martin 2010).
However, due to the CITES ivory ban of 1989, hard
ivory could not be imported to Japan, resulting in a
drop in amount of its stock. With two one-off ivory
sales under CITES regulations, in 1999 and in 2008,
Japan acquired a quantity of soft ivory. Since the ban,
more and more ivory items in Japan were therefore
made from soft ivory, but most Japanese ivory dealers
consider soft ivory useless for traditional carving,
particularly for bachi (Nishihara 2003). Although
Japanese consumer demand for hanko made of ivory
has been declining since the last decade (Vigne and
Martin 2010), it is clear that there is still continuous
demand for ivory (Motegi 1988; Tsugawa 2004;
Tanaka 2008), especially for hard ivory (Tanabe 1963)
from the Central African region for bachi (Association
of Japanese Actors 2000; Tanaka et al. 2009).
The major objective of this study was to examine the
current status of demand for hard ivory in Japan, and
to investigate knowledge about elephants and ivory
as well as about the Japanese domestic management
system of ivory by ivory dealers in Japan. At the
same time, the Japanese ivory management system
was examined, with suggestions for improving its
functioning to control illegal importation and use of
ivory more efficiently. This study is based mainly
on descriptive information because the author was
unable to collect quantitative data on hard ivory, its
products and its demand due to a lack of information
from Japanese authorities and bachi-related people.
Materials and methods
Investigations in internet
and ordinary shops in
Japan that deal in ivory
products, particularly
hanko and bachi, were
conducted by three
Japanese investigators
under supervision of the
author, during two periods
56
in 2010—March–April and August–September—in
Tokyo, Yamanashi Prefecture, where traditionally
many ivory hanko have been produced, and in the
neighbouring prefectures of Kanagawa, Saitama and
Gunma. In this report, the shops selected were in this
area of Japan; most internet shops are located in the
western part of Japan.
The investigators posed as clients, aware that most
of the shopkeepers were wary about discussing ivory
issues. This sensitive reaction may be related to poor
understanding of the legal sale of ivory products
in Japan and the international ban on ivory trade.
Table 1 shows the number of shops investigated.
Also, during the period November 2009–October
2011, any information related to Japanese ivory issues
was collected from books, journals, newspapers and
websites.
In ordinary hanko shops, the investigators asked
three categories of questions:
1. Current trends in hanko trade
• Prices of hanko made of any material including
ivory
• Trends in prices, demand and supply, age class of
buyers, seasonal variations and annual variations
of ivory sales
2. Knowledge of elephants and ivory
• Knowledge of the geographical origin of ivory
• Knowledge of ivory in general, for instance, how
it is harvested, whether ivory is regenerated after it
is removed from the elephant
• Knowledge of hard and soft ivory
3. Knowledge of the legal issues of ivory
• CITES and Japanese domestic management system
of ivory
• Presence of CITES certificate seal (Fig. 1)—the
official seal with the CITES logo provided by the
relevant Japanese ministries
One investigator carried out research on internet
hanko shops by checking for any information
including hanko prices.
Table 1. Shops and other sources interviewed during this investigation
Period in 2010
Ordinary
hanko shops
Internet
hanko shops
Shamisen
shops
JWRC and
TIACA
March and April
66
23
12
2
August and September
36
10
17
0
102
33
29
2
Total
JWRC – Japan Wildlife Research Center; TIACA – Tokyo Ivory Arts and Crafts Association
Pachyderm No. 52 July–December 2012
Demand for forest elephant ivory in Japan
business activities—purchasing raw ivory,
holding meetings to exchange the ivory
and products, advertising ivory business,
and holding exhibitions for immediate
ivory sale (http://www.tokyo-ivory.or.jp/
englishversion/index.html).
Results
Price of hanko and current trend in
the hanko market
Currently, the common material for hanko
is horn of the Asian domestic water buffalo,
Bubalis bubalis, because it is much cheaper
than ivory but aesthetically pleasing and
strong enough for use as hanko. Almost half
of the ordinary hanko shops investigated
Figure 1. CITES certificate seal attached to ivory products in Japan with (44 of 102 shops) explained this current
the CITES logo (about 2.5 cm x 2.5 cm), with the wording ‘Certificate trend. Titanium as hanko material is also
seal is proof that ivory products are legal based on the Law for the recommended by some shops, but it is
Conservation of Endangered Species of Wild Fauna and Flora (LCES)
expensive and has yet to gain popularity
(from a brochure published by the Ministry of Environment and the
among the Japanese. Table 2 compares
Ministry of Economy, Trade and Industry, 2008).
maximum and minimum prices of JitsuFor shamisen shops, one investigator posed the
in hanko (officially individually registered
same questions used in hanko shops. Apart from seal) of typical 15-mm diameter made from various
ivory shops, one investigator visited ivory-related materials, indicating current price trends. The greater
organizations to gather information on ivory range exists between minimum and maximum prices
management and legal issues. These organizations for hanko made of ivory and buffalo horn, but this
are 1) the Japan Wildlife Research Center (JWRC), the is because of the quality differences between parts
governmental organization that hosts the department of materials. Sample numbers of hanko made with
of CITES, and manages and registers wildlife products titanium were few and therefore the prices cannot be
under the Ministry of Environment and the Ministry of considered indicative. The minimum price of ivory
Economy, Trade and Industry, and 2) the Tokyo Ivory hanko seems to be cheap, especially in the internet
Arts and Crafts Association (TIACA), which has four shops. One ivory dealer said that it is impossible for
prices of ivory hanko in the
Table 2. Maximum and minimum prices of Jitsu-in hanko (officially individually
internet shops to be so low if
registered seal) with typical 15-mm diameter, made from various materials as
we see the ordinary wholesale
sold in ordinary and internet hanko shops
prices, indicating that internet
Price (JPY)
Hanko
hanko shops use illegal ways
Material / type of shop
investigated (no.)
Minimum
Maximum
to obtain ivory materials more
Ivory
cheaply because they are not
Ordinary
86
11,800
110,350
well controlled.
Other current trends
Internet
93
9,800
273,750
Horn of black buffalo
such as age class of buyers,
Ordinary
12
9,980
46,220
seasonal variations and annual
Internet
41
1,680
30,450
variations of ivory sales were
Titanium
not clearly detected during this
Ordinary
1
15,555
15,555
investigation.
Internet
6
Approximately JPY 90 = USD 1 during the investigation period
Pachyderm No. 52 July–December 2012
7,600
38,750
57
Nishihara
It is important to know the extent of awareness of
ivory legal issues and also knowledge of elephants
and ivory. This knowledge is essential for interactions
between vendors and clients because with accurate
information about elephants, ivory vendors can explain
ivory products to clients with more transparency. It
is indispensable for vendors to have this knowledge
as now since the ivory ban most clients in Japan
hesitate to buy any ivory products. Clients know
little about elephants and ivory, and they request clear
explanations from vendors. The following information
was obtained from the shopkeepers:
• Professional ivory carvers can traditionally distinguish between hard and soft ivory, but more than
70% of the shops cannot, which means they do not
know the difference in properties or from which
species each ivory type derives.
• About two-thirds of the shops did not know the
geographical origin of elephant ivory; only onethird knew that it came from Africa but even they
had no specific information about areas in Africa.
• Two shopkeepers believed that elephant tusks regenerate even after they are completely removed
from the elephant. Only 11% of shops knew that
the tusks do not regenerate.
• One shopkeeper believed that tusks are pulled out
completely from living elephants without killing
them.
This information highlights the lack of knowledge
about ivory in Japan. Many of the shopkeepers are
not aware of the existence of hard ivory, the origin of
ivory, or the fate of elephants.
Investigation of shamisen and of shops
selling Japanese musical instruments
about knowledge of elephants and ivory
The shamisen (Fig. 2) is one of the most popular
traditional Japanese instruments, dating back more
than 500 years, being used in Japanese performance
arts such as Kabuki and Bugrake, both with 400 years
of history (Tsugawa 2004; Tanaka et al. 2009). Bachi
(Figs. 3 and 4) made from ivory started being used
during the later age of the Edo period (Tanabe 1963)
and became popular among professional shamisen
musicians after the Meiji era, about 150 years
ago. More than 60% (18 of 29) of shamisen shops
58
© PIXTA
Investigation of ordinary hanko shops
about knowledge of elephants and ivory
Figure 2. Shamisen, one of the most traditional and popular
Japanese musical instruments, with bachi, a shamisen
plectrum of ivory.
investigated mentioned this history of bachi.
People insist that hard ivory is still available in
Japan from old stock acquired before the CITES ban.
But the author was unable to procure information from
the traders on hard ivory stocks in Japan including
whether they contain large tusks. The average weight
of ivory tusks, either hard or soft, in Japanese stock
between 1995 and 2007 was only 12.86 kg (data from
JWRC 2007); one bachi requires a large tusk weighing
more than 15 kg (Fig. 5), ideally without any cracks.
During the study period, the author found bachi made
with tusk fragments because they could not make
a whole bachi from cracked ivory, but the vendor
explained that this was not ideal for professional users.
A bachi made of hard ivory provides better and
softer sound; bachi made of soft ivory does not produce
good sound, according to Japanese shamisen players
from two different blogs. Bachi made of alternative
materials such as synthetic resin have been used but
Pachyderm No. 52 July–December 2012
© Tamiko Tamura
Demand for forest elephant ivory in Japan
Figure 3. Ivory art technician, Kyoto, Japan, during the Edo
period. The craftsman is cutting the ivory tusk into pieces;
the shamisen bachi (plectrum) are at the lower right. Source:
Jin Rin Kin Mou Zui (in Japanese)
more research needs to be done, particularly with
regard to the elasticity of the bachi edge. The future for
traditional music in Japan, particularly music of highquality sound, is not favourable due to the shortage
of materials such as hard ivory (Tanaka et al. 2009).
A stable demand for bachi exists from professional
shamisen musicians because they change bachi
regularly. Musicians vary widely as to how often
they change ivory bachi—some once per year while
others only every 10 years. Musicians use wooden
bachi for practising and ivory bachi only for public
performances, although that too varies among
musicians. However, one millimetre of wear from
the bachi, which touches the strings of the shamisen,
significantly reduces sound quality (Tanaka 2008) and
musicians need to replace it.
In Tokyo, 29 shops selling shamisen and other
Japanese musical instruments were surveyed. The
findings:
• More than 60% of the shops surveyed knew the
difference between hard and soft ivory. Also, about
half the shops stated that hard ivory is the only
material useful for bachi.
• Most of the shops did not know the geographical
origin of elephant ivory; only 20% mentioned that
it came from Africa, but even they had no specific
information on areas in Africa.
• Only 10% of the shops had correct information
about hard ivory and its origins.
It is interesting to note that these shopkeepers were
more familiar with hard ivory than were the ordinary
Pachyderm No. 52 July–December 2012
Figure 4. Bachi, shamisen plectrum, made of wood; the
size of bachi varies but the ordinary length is about 25 cm,
maximum width 15 cm and maximum thickness 2.5 cm.
hanko shops interviewed. This is probably linked to
the exclusive use of hard ivory for bachi. General
knowledge of ivory—its geographical origins,
elephant sub-species and habitat—is still poor.
Evaluation of the Japanese ivory
management system
Japan established its own domestic trade management
system of ivory to prevent illegal ivory imports
into Japan, under the Law for the Conservation of
Endangered Species of Wild Fauna and Flora (JWCS
2000, 2002; Martin & Stiles 2003). The system
requires that all ivory and ivory products be strictly
registered at every link along the commodity chain:
importers, retailers, carvers and vendors. Nevertheless,
loopholes still exist.
All dealers, at whatever level in the chain, must
register each ivory item using a document with a
unique number. This number should enable each item
to be tracked, verifying that the product comes from
legal ivory. However, no computer database exists for
this system, only a paper numbering system with the
dealers (JWCS 2000). Thus it is almost impossible to
track the origin of any particular ivory product and
extremely difficult to judge its legality.
All ivory dealers in Japan are required to be
authorized by the Ministry of Environment and
the Ministry of Economy, Trade and Industry. An
authorized certificate with dealer’s number is given to
each authorized ivory dealer (JWCS 2002). However,
our investigations determined that the certificate
papers were confirmed in fewer than half of the shops:
59
© Emiko Nishihara
Nishihara
Figure 5. Comparison in size of a 15-kg tusk and a bachi. Although the tusk is long and large, it is almost impossible to
make even one bachi from it because such a tusk is usually hollow at the base (as indicated in white) and the maximum
diameter of solid ivory is not as wide as the maximum width of bachi (outlined in red).
38% of the ordinary hanko shops (39 of 102 shops)
and 45% of the internet hanko shops (15 of 33 shops).
This indicates that more than half of the shops are
operating illegally without authorization certificates
for dealing in ivory.
Relevant ministries have recommended that ivory
shops put a CITES seal (the official seal with the CITES
logo provided by these Japanese ministries, Fig. 1)
on each ivory product sold, with a unique number
on the seal to assure clients that the item is legal,
each number being registered (JWCS 2000, 2002).
However, putting a seal on each ivory product is only
a recommendation from the Japanese government,
not an obligation. Our investigation indicated that
22% (22 of 102 shops) of ordinary hanko shops did
not use seals or understand the system of seals; 73%
(24 of 33 shops) of internet hanko shops showed no
evidence of using seals; about 80% (23 of 29 shops)
of shamisen shops either did not use seals or did not
register the numbers that were on the seals. These
findings show that shops poorly manage their ivory
products, a trend more pronounced in internet hanko
shops and shamisen shops than in ordinary hanko
shops. An ordinary hanko shop uses the CITES seals
but uses the same number on every piece, illegally
duplicating the seals and thus making them useless
as a proper register.
The department of CITES management at JWRC
handles the administration related to ivory registration
and certification of ivory products in Japan. Even if
Japanese citizens buy (or are given) illegal ivory in
Japan, all they need to do is to register such items by
using the given format and sending the form to JWRC.
60
Once certified, the items become legal. During this
investigation, one of the officials in JWRC admitted
that the system is vague as to how non-registered
ivory gains legal certification.
Ivory dealers should know about the CITES
regulations in order to manage their ivory business
legally. However, their knowledge is poor (JWCS
2000). For instance, we found that less than 20% of
ordinary hanko shops knew about CITES and the two
legal one-off ivory trades under CITES regulations.
The TIACA staff said that the association is no
longer powerful and effective in conducting its
responsibilities of creating awareness of the domestic
ivory management system and CITES regulations.
Younger people are not joining the association and
many ivory dealers have left due to the complicated
ivory management system. One TIACA member
alleged that during the one-off ivory auction in 2008 in
South Africa under CITES regulation, hard ivory was
found among ivory pieces available in the auction.
Japanese dealers selectively bought this ivory,
although hard ivory should not have been included
in the sale because there are no forest elephants living
in southern Africa.
When asked for information, the ministry could not
give clear answers regarding 1) the lack of a computer
database to manage commodity chains of ivory deals
and to easily identify the origin of each ivory product,
2) how to control internet shops, where most dealers
do not respect ivory management procedures, 3)
why some ivory dealers do not correctly use CITES
certificate seals on each ivory product or even have
the proper authorization to do so, 4) the current weak
Pachyderm No. 52 July–December 2012
Demand for forest elephant ivory in Japan
legal ivory register system, and 5) the lack of stock
quantity and a specific system for managing hard
ivory in spite of the strong demand for it in Japan.
There are no strict controls at customs checks in any
of the Japanese international airports. For example,
Japanese travellers can easily transport pieces of ivory
in their luggage. Recently, it was found that some
Japanese tourists were bringing in uncarved ivory
hanko materials, especially from other Asian countries
like China, and having their names carved on them in
ordinary hanko shops (JWCS 2000). Four cases were
found during this investigation period. These incidents
are examples of illegal importation of ivory into Japan
and there is no effective system to control this activity.
Also, at the Tokyo seaport customs control, it was
found that shipping imports controls are lax with no
system for determining the geographical origin of
confiscated items or to prevent confiscated items from
entering local markets.
Discussion
Recommendations to improve the
Japanese ivory management system
In Japan the quantity of musical instrument parts
made of ivory is small (Vigne and Martin 2010).
More importantly, the focus should be on the size of
the tusks necessary to make a complete bachi. In the
past, as many as four bachi could be made from large
tusks (Martin 1985) weighing at least 15 kg (see Fig.
5 caption). However, data from tusks confiscated by
guard patrols in the Republic of Congo (Domingos Dos
Santos, pers. comm. 2012) show that tusks weighing
more than 15 kg are rare (only one pair weighing 21 kg
and two pairs weighing 18 kg among 44 pairs). Tusks
from current ivory stocks in Japan weigh on average
12 kg, which is not adequate for even one bachi. If
musicians need 100 new bachi during the course of a
year, at least 50 forest elephant tusks without cracks
and weighing more than 15 kg would be needed, but
data from both the field and the Japanese ivory stocks
show that it is difficult to meet this demand.
The current Japanese ivory stock management
system has no means of quantifying the amount
of forest elephant ivory; no differentiation is made
between savannah and forest elephants. This is because
CITES does not differentiate between the two species
of elephants, savannah and forest, although elephants
in general are classified as vulnerable under IUCN.
Pachyderm No. 52 July–December 2012
However, recent morphological and genetic studies
insist on the distinction that these two so-called subspecies are actually two independent species (Roca
et al. 2001, 2007; IUCN/SSC 2002; Rohland et al.
2010; Ishida et al. 2011a, 2011b). This distinction
is important because forest elephant populations
have drastically declined in number due to poaching
(Beyers et al. 2011; Bouche et al. 2011; Maisels et
al. in review). There is no hard evidence that ivory
originating from forest elephants in Central Africa is
smuggled into Japan. However, the question remains
whether only old stock of hard ivory can still maintain
the demand for bachi that requires large tusks of hard
ivory originating from forest elephants in Central
Africa. At the least, a system for monitoring stock
quantity and a specific management system for hard
ivory should be put in place to ascertain the demand
for hard ivory in Japan.
The following measures should be improved as
mentioned above: 1) a computer database should be
created to manage commodity chains of ivory deals
and to easily identify the origin of ivory of each ivory
product, 2) clear strategies to control internet shops
for ivory products, where presently most dealers do
not respect ivory management procedures, 3) the
regulation needs to be enforced that requires ivory
dealers to be authorized and obliges them to use
correctly a CITES certificate seal on each ivory
product, 4) the current legal ivory register system
needs to be improved.
In addition, the relevant ministries should take
a strong initiative to create awareness among ivory
dealers of the domestic ivory management system
and the CITES regulations. At the same time, poor
knowledge of elephants and ivory, such as the origin
of ivory and the difference between hard and soft
ivory, causes a lack of transparency between vendors
and clients; more awareness should be created and
information disseminated about elephants and ivory.
Japanese customs officials should also establish
a system to identify through DNA analysis illegal
ivory that was confiscated, in order to determine the
quantity of hard ivory illegally destined for Japan
from Central Africa.
More investigations needed on hard ivory
and its products in Japan
We need additional intensive investigations to learn
more about hard ivory and its products in Japan,
61
Nishihara
especially quantitative data on products. Since bachi
is the most numerous item made from hard ivory,
it is the most important target to investigate, as the
demand for hanko made from ivory has declined. A
freelance Japanese journalist, a colleague of the author
familiar with Japanese traditional performances such
as Kabuki, will conduct interviews and dialogues
with staff and performers in the next phase of our
study. These participants will range from scholars
with expertise in this domain, major managers of
performance groups including shamisen players, stage
hands and ivory dealers offering bachi to shamisen
players. The results will help evaluate the future of
traditional and professional demand for hard ivory
bachi in Japan. The following questions will be asked:
• Who and how many shamisen players need bachi
made of hard ivory?
• How many hard ivory tusks of what size are used
annually in making bachi?
• What is the existing stock quantity of hard ivory in
Japan available for bachi?
• How often do shamisen players replace ivory bachi
with new ones, especially after cracking the tips?
• What is the commodity chain from ivory dealers to
bachi makers to musicians?
• Are there alternative materials that would suffice
in making bachi?
Performers and staff are proud of their traditional
jobs and performances and remain in an isolated
setting with little outside communication. They are
likely unaware of the status of wildlife in Central
Africa or the role of the ivory trade. Given that
ivory-made bachi are essential to their performances,
discussions will revolve around the theme of how to
find a balance between traditional Japanese cultural
values and biodiversity conservation. The initial
meeting will gather information to determine the
existing knowledge of these performers and their
use of ivory, and introduce them to forest elephants
and their conservation status. The second meeting
will be a follow-up with the same group to gauge how
views and practices of staff have changed and to focus
more on conservation issues. These meetings will use
educational materials (see below).
More awareness needed in Japan on
elephant conservation
Traditionally, Japan has a culture that respects nature
and wildlife. The Japanese enjoy seasonal displays of
62
spring blossoms, summer green forests, autumn leaves
and winter landscapes. They eat little wild bush meat.
These customs and appreciation of nature and wildlife
are expressed in Japanese traditional poems (waka
or haiku) and in Japanese folklore where many wild
animals appear as friendly neighbours. The Japanese
people also enjoy imitating nature—gardening, flower
arrangement, bonsai, etc.
Because of this traditional Japanese concept of
nature and wildlife, it can be said that historically
the Japanese have a good sense of nature and wildlife
conservation in Japan. However, these trends have
almost no relationship with the fact that Japanese
people do not fully understand the importance of
elephant conservation. Indeed, the Japanese have been
using ivory without a conservation concept. This is
mainly because the qualities of ivory—its colour,
durability, absorption properties and hardness—allow
it to be carved into detail. It is also partly related to
particular Japanese Shinto spirits, which encourage
using natural materials such as ivory as they are the
best nature spirits (Motegi 1988; Takeda 2010). The
demand for ivory for hanko production is currently
declining, because of the psychological pressure of
the ivory ban and also simply because the younger
generation is losing interest in luxury ivory products
(Vigne and Martin 2010), and not because the Japanese
comprehend global conservation.
The relationship between traditional culture in
Japan and ivory use is also vague. The use of hanko
to identify any documents needing certification was
widespread in the Edo era, more than 300 years ago.
Originally, major materials for hanko were stones
of clear crystals (http://www.rokugo.com). Hanko
culture and carving techniques are traditional with
a long history, but not for hanko made of ivory, a
practice that came into fashion just after World War
II. Shamisen and bachi are also part of traditional
culture but not bachi made of ivory. Shamisen dates
back more than 500 years, and this instrument has
been used in well-known Japanese performances with
400 years of history. But bachi made of ivory became
popular only after the Meiji era, about 150 years ago.
Thus, we suggest that the Japanese people should be
taught to understand that using ivory is not part of
traditional culture but is used for technical reasons.
In Japan, one urgent task is to establish an
information-sharing mechanism on wildlife
conservation, particularly on issues outside Japan.
The Japanese need to understand in the context of
Pachyderm No. 52 July–December 2012
Demand for forest elephant ivory in Japan
global biodiversity conservation the adverse effects
of using wildlife products. In Japan, there is neither
much opportunity nor material from which to learn.
Especially, little information is available about the
African tropical forest and its conservation status,
including about forest elephants, their ecology and
the threats to their existence.
It is essential to create educational materials
for use in Japan aimed at many and varied target
groups: schools, universities, zoos, non-government
organizations (NGOs), businesses involved in
corporate social responsibility, ecotourism sectors,
ivory dealers, traditional artists such as Kabuki
actors and shamisen players, ministries, development
people, and also for the internet. The author initiated
a project in April 2012 with a Japanese NGO and
a professional Japanese educator in biodiversity
conservation who visited the Central African region
to make conservation education materials under
the author’s supervision. These materials will be
distributed widely to the Japanese public. Also, field
training sessions for young Japanese in the Central
African forest area, an area of the world unfamiliar
to most Japanese, should be organized. These field
trainees who are interested in careers in conservation
will become not only future field conservationists
but also strong messengers spreading the global
conservation ethic to the Japanese. The author is in
the ideal position to initiate this action, as the only
Japanese who has been working in Central African
conservation under the Wildlife Conservation Society
(WCS) for more than two decades.
China’s ivory demand compared with that
of Japan
After the CITES ban of 1989, Japan was allowed a oneoff ivory trade from southern African nations in 1999
under CITES regulations. A second similar shipment
was allowed in 2008 for both Japan and China. China
has more than 1,800 years of history using ivory. The
demand for ivory in China is growing because it has a
population of more than a billion people, and growing
middle and upper classes that buy ivory. At the same
time it should be noted that currently more and more
Chinese people in Africa are buying raw tusks and
ivory products and are linked to illegal smuggling
operations. This situation has resulted in serious
poaching pressure on elephants and the illicit trade
of ivory everywhere, particularly between Africa and
Pachyderm No. 52 July–December 2012
China (Gabriel et al. 2012).
Such Chinese demands need to be expressed in
relation to Japan’s demand in order to compare and
contrast the trends of the two countries. In the past
the Chinese made personal seals out of ivory, but
the current trend is mostly to use ivory in crafts and
accessories (Gabriel et al. 2012), using any quality
of ivory including cracked portions of tusks (Gendai
Inshou 2009). This is related to the current Chinese
boom of using mammoth tusks, most of which are
cracked (Martin & Vigne 2011) and are considered
of lower quality by Japanese ivory dealers. Also, the
Chinese do not differentiate between hard and soft
ivory (Yan Xie, pers. comm. 2010). Japan bought
expensive hard ivory at the CITES ivory auction
in 2008 without competition from Chinese buyers,
who bought the cheaper, softer ivory from savannah
elephants, including cracked tusks. This indicates
that Japan has a specific demand for hard and noncracked ivory.
Conclusions
• Japan is the only country in the world where a
strong demand for hard ivory, originating from
forest elephants in Central Africa region, still exists.
• Though there are no quantitative data, currently
most of the demand for hard ivory in Japan is for
bachi, used in playing the Japanese traditional
musical instrument, the shamisen, with a decline
in ivory-made hanko.
• One bachi requires one non-cracked complete tusk
of more than 15 kg, and Japanese shamisen players
need to replace bachi once the edge is cracked.
• We need to determine if old stocks of hard ivory
are available to match the demand for bachi, which
require a large tusk for each piece.
• Most Japanese ivory dealers have insufficient
knowledge of the domestic management system for
ivory, CITES regulations, and general information
about elephants and ivory, which contributes to
illegal ivory imports into Japan.
• It is recommended that the current Japanese management system for ivory be improved, especially
to enforce control of hard ivory, for which there is
great demand.
• More investigations on the use of hard ivory, especially for bachi, are planned to get more quantitative data.
• As traditional Japanese culture appreciates nature
63
Nishihara
and wildlife, it is important to produce educational
materials on global biodiversity conservation that
will make the Japanese public aware of the conservation issues concerning elephants.
• Japan and China confront different challenges regarding the potential for illegal ivory to come into
their countries and their responsibility in a large
part for future elephant conservation.
Acknowledgements
This report is based on information gathered under
the Toyota research grant project November 2009–
October 2011, ‘Re-evaluation of value of Japanese
traditional culture using ivory and study of forest
elephant poaching in Central Africa’ (D09-R-0129),
led by Tomoaki Nishihara, under the WCS Congo
program. Many thanks to WCS, particularly the WCS
Congo program director, Dr Paul T. Telfer, who has
strongly supported this project from the beginning.
As my principal job is in the field in northern Congo,
I am deeply indebted to five Japanese investigators—
Fumiaki Nagaishi, Hideaki Fujii, Tamiko Tamura,
Yoshio Katsui and Yukiyo Enomoto, and the
coordinator of those investigators, Keiko Ikemoto—
who helped in this project. I wish to thank Andrea
Turkalo, who helped revise this paper and encouraged
its publication, and to Emiko Nishihara, who produced
Figure 5.
References
Anon. 1690. Jin Rin Kin Mou Zui. Asakura, H. (ed.).
Touyou Bunko 519, Heibon-sha (in Japanese).
Association of Japanese Actors. 2000. Performance
art: its technicians at Kabuki. Yagi Publisher (in
Japanese).
Beyers, R., Sinclair, T., Hart, J., Grossman, F., Dino, S.
and Klinlenberg, B. 2011. Resource wars and conflict
ivory. The impact of civil conflict on elephants in
the Okapi Faunal Reserve: 1995–2006. PLoS One
6(11):e27129. doi:10.1371/journal.pone.0027129.
Bouche, P., Douglas-Hamilton, I., Wittemyer, G.,
Nianogo, A.J., Doucet, J.L., Lejeune, P. and
Vermeulen, C. 2011. Will elephants soon disappear
from West African savannahs? PLoS One 6:1–11.
Gabriel, G., Hua, N. and Wang, J. 2012. Making a killing:
A 2011 survey of ivory markets in China. International
Fund for Animal Welfare.
Gendai Inshou. 2009. June 2009. 12 pp. (in Japanese).
64
Ishida, Y., Demeke, Y., Van Coeverden de Groot, P.J.,
Georgiadis, N.J., Leggett, K.E.A., Fox, V.E. and
Roca, A.L. 2011a. Distinguishing forest and savannah
African elephants using short nuclear DNA sequences.
Journal of Heredity 102(5):610–616.
Ishida, Y., Oleksyk, T.K., Georgiadis, N.J., David, V.A.,
Zhao, K., Stephens, R.M., Kolokotronis, S.O. and
Roca, A.L. 2011b. Reconciling apparent conflicts
between mitochondrial and nuclear phylogenies in
African elephants. PLoS ONE 6:1–16.
IUCN/SSC African Elephant Specialist Group. 2002.
Statement of the taxonomy of extant Loxodonta,
February 2002.
[JWCS] Japan Wildlife Conservation Society. 2000.
Effect of resumption of international trade on
Japanese ivory market. Tokyo: JWCS.
[JWCS] Japan Wildlife Conservation Society. 2002.
Black and grey illegal ivory and Japanese markets.
Tokyo: JWCS.
[JWRC] Japan Wildlife Research Center. 2007. Report
on evaluation of national ivory-trade management
system and investigation for its improvement (in
Japanese). Tokyo: JWRC.
Maisels F. et al. in review. Devastating decline of forest
elephants in Central Africa. PLoS One.
Martin, E. 1985. The Japanese ivory industry. Tokyo:
World Wildlife Fund.
Martin, E. and Stiles, D. 2003. The ivory markets of
East Asia. London and Nairobi: Save the Elephants.
Martin, E. and Vigne, L. 2011. The ivory dynasty: a report
on the soaring demand for elephant and mammoth
ivory in southern China. London: Elephant Family,
Aspinall Foundation, Columbus Zoo and Aquarium.
Motegi, K. 1988. Nihon no Gakki – sono sozai to hibiki
(Japanese music instrument – its materials and
sound). Ongaku-no-Tomo sha (in Japanese).
Nishihara, T. 2003. Elephant poaching and ivory
trafficking in African tropical forest with special
reference to the Republic of Congo. Pachyderm
34:66–74.
Roca, A.L., Georgiadis, N., Pecon-Slanttery, J. and
O’Brien, S.J. 2001. Genetic evidence for two species
of elephant in Africa. Science 293:1473–1477.
Roca, A.L., Georgiadis, N., Pecon-Slanttery, J. and
O’Brien, S.J. 2007. Cyto-nuclear genomic dissociation
and the African elephant species question. Science
Direct Quaternary International 169–170:4–16.
Rohland, N., Reich, D., Mallick, S., Meyer, M., Green,
R.E., Georgiadis, N.J., Roca, A.L. and Hofreiter, M.
2010. Genomic DNA sequences from mastodon and
Pachyderm No. 52 July–December 2012
Demand for forest elephant ivory in Japan
woolly mammoth reveal deep speciation of forest and
savannah elephants. PLoS Biology 8:1–10.
Takeda, T. 2010. Why the Japanese people are the
most attractive in the world. PHP Shinsho 705 (in
Japanese).
Tanabe, H. 1963. Shamisen Ongakushi (history of
shamisen). Soushisha (in Japanese).
Tanaka, K. 2008. Zukai Nihon Ongakushi (Japanese
history of music with pictures). Tokyo-do shuppan
(in Japanese).
Tanaka, Y., Nogawa, M. and Haikawa, M. 2009.
Marugoto Shamisen no hon (Shamisen, a Japanese
Pachyderm No. 52 July–December 2012
traditional music instrument). Seikyuu-sha (in
Japanese).
TRAFFIC. 2011. ‘Annus horribilis’ for African elephants.
TRAFFIC press release, 29 December 2011.
Tsugawa, N. 2004. Shamisen wo hajimeyou (Let’s start
playing shamisen, a Japanese traditional music
instrument). Seibi-do (in Japanese).
Vigne, L. and Martin, E. 2010. Consumer demand for
ivory in Japan declines. Pachyderm 47:45–54.
65
Patton et al.
Dispersal and social behaviour of the three adult female
white rhinos at Ziwa Rhino Sanctuary in the immediate
period before, during and after calving
Felix J. Patton,* Petra E Campbell, Angie Genade, Robert Ayiko and Godfrey Lutalo
Ziwa Rhino Sanctuary, Nagasongola, Uganda
*corresponding author email: [email protected]
Abstract
The paper presents details of the dispersal and social behaviour of the three adult female white rhinos at Ziwa
Rhino Sanctuary in Uganda in the period one month before, the month during and one month after calving
where published information from other reserves is limited. All six births occurred during night-time hours
in areas of dense habitat. Births took place within 32 hours of the older calves being chased away by their
mothers. Each female moved within the rhinos’ preferred habitat of open woodland with short grass and spent
most of her time alone with her new calf and little time associating with other rhinos in the population. Apart
from the chasing away of the older calves, there was no indicator of an impending birth.
Résumé
Le document donne les détails de la dispersion et du comportement social des trois rhinocéros blancs femelles
adultes au sanctuaire de Ziwa au cours du mois avant, pendant le mois et le mois après le vêlage là où les
informations publiées à partir d’autres réserves sont limités. Les six naissances ont eu lieu durant la nuit dans
des zone d’habitat dense. Les naissances ont eu lieu dans les 32 heures après que les jeunes rhinocéros plus âgés
aient été chassés par leurs mères. Chaque femelle s’est déplacée vers l’habitat de rhinocéros préféré de fôrets
claires aux herbes courtes où elle a passé la plupart de son temps seule avec son nouveau bébé en s’associant
peu avec d’autres rhinocéros dans la population. En dehors du fait d’avoir chassé des jeunes rhinocéros plus
âgés, il n’y avait aucun autre indicateur d’une naissance imminente.
Introduction
A search of the published literature on the behaviour
of white rhino females and their associates at and
around the birth of a new calf showed that there was a
paucity of detailed information on the subject. OwenSmith (1975) is the research most often referred to
in papers relevant to the social behaviour of white
rhinos. He reported that calves were driven away by
their mothers prior to the birth of a subsequent calf,
but gave no details as to how soon after the former calf
was driven away the new birth took place or at what
time of day or in what type of habitat births took place.
No reports could be found to indicate whether the
behaviour of the female in the weeks leading up to the
birth of a new calf altered in any way that could be
66
used as an indicator of an impending birth. Such an
indicator may be useful in the management of the cow
and calf where additional security may be required to
ensure their survival.
Limited information exists on the changes to the
social behaviour of a white rhino population after
the birth of calves. Owen-Smith (1975) reported
that a newly released calf might be found with a
mother–offspring pair but that such associations were
mostly temporary and the pair was not related to
it. Owen-Smith also stated that most subadults not
accompanying cows were associated with a similarly
aged companion of the same or opposite sex with a
group structure of up to five individuals. Shrader and
Owen-Smith (2002) concluded that new subadults
prefer to seek an association rather than remain alone.
Pachyderm No. 52 July–December 2012
Behaviour of three white rhinos in the period before, during and after calving
This paper presents a detailed analysis of the
dispersal and social behaviour of the three adult female
white rhinos at Ziwa Rhino Sanctuary in the period
one month before, the month during and one month
after the three females calved. Published information
from other reserves is limited. The study identifies
the time of day, location and habitat when the rhinos
calved, the length of time between the older calf being
chased away and the new birth, whether the females
changed their location or habitat immediately before
and immediately after calving, and whether there
was a noticeable effect on the females’ sociability
(associations) with the other rhinos in the population.
A principle objective of the study was to determine
if the females made any noticeable changes within the
few days leading up to the birth of their new calves
that reserve managers could use as indicators of an
impending birth.
Method
males—Taleo, Moja and Hassani—and three adult
females with calves—Nandi and calf Obama, Bella
and calf Augustu, Kori and calf Justus. The calves
were the first-borns of the three females. In June 2011,
Nandi produced a second calf, Malaika, while Bella
had Donna and Kori had Laloyo in January 2012.
The rhinos at Ziwa are held under heavy 24-hour-aday security by armed guards and monitoring rangers.
Since June 2010 to better understand the behaviour
and movements of the rhinos the monitors have kept
an hourly record of the location, key activities of each
rhino and their associations with conspecifics (for
more details see Patton et al. 2011).
Rangers monitoring each of the Ziwa rhinos—six
adults and six calves—follow the animals on foot
from a distance but keeping them in sight as much
as possible. During the hours of darkness, rangers
have torches, which they use to observe the rhinos
whenever they hear any sound of activity, and at least
at 15-minute intervals to check on the rhinos. During
full moon periods the rhinos are easily observed
without the need for torches.
Ziwa Rhino Sanctuary covers 64.2 km2 in Nagasongola District, central Uganda.
Before becoming a wildlife
W1
W3
sanctuary in 2004 the area
was part of a cattle farming
M2
W2
R1
operation. About 30% of
R2
the reserve is swamp, but
R3
only the southern swamp
L1
area is always water bound.
L3
Other swamp areas dry out
L2
K1
in times of low rainfall and
flood during high rainfall.
For security and
monitoring purposes, the
dense bushland
reserve is organized into five
open woodland with short grass and a few thickets
sectors: Karakwende (K),
Mikerenge (M), Wangoriro
dense bushland with tall and short grass
W = Wangoriro
(W), Rwanyanya (R) and
L = Lugogo
belt of tall grass dominated by loudetia, digitaria, with shrubs
Lugogo (L). Each sector
R = Rwanyanya
rhus, acacia and phoenix (palm)
is further organized
M = Mikerenge
short grassland with scattered trees
K = Karakwende/Kamira/
into either three or four
Kasozi
belt of short grass, cyperus and digitaria
numbered blocks. Figure 1
shows the location of each
airstrip, tall grass of hyperrhenia dominated by Acacia hockii
of the sectors and blocks.
belt of swamp with papyrus
At the start of 2011,
swamp consists mainly of perotis, brachiaria, digitaria and hyparrhenia grasses
the white rhino population
of Ziwa Rhino Sanctuary
consisted of three adult Figure 1. Basic vegetation map of Ziwa Rhino Sanctuary.
Pachyderm No. 52 July–December 2012
67
Patton et al.
The rangers completed a daily sighting form for occurred during night-time but in different sectors
each hour of the 24 hours of each day of each of the and blocks. Nandi pushed away her first calf, Obama,
months from June 2010 to May 2012. For each rhino around 32 hours before her new calf, Malaika, was
the rangers recorded the location—sector and block; born. Bella pushed away her first calf, Augustu,
type of habitat—wet swamp, dry swamp or other; one around 8 hours before she gave birth to her new calf,
of three main activities—feeding, resting, moving; Donna. Bella started getting aggressive with Augustu
plus any of four secondary activities—drinking, 3 hours before he finally parted. Kori’s first calf,
wallowing, mating or fighting—that might also have Justus, left Kori without aggression (together with
occurred during each hour. All other rhinos found in Obama and Augustu) around 3 hours before her new
close proximity (within 10 m) were recorded as an calf, Laloyo, was born.
association.
The three females moved independently of each
Data were entered using Microsoft Excel 2007 on other. Table 2 shows the total number of hours
a Toshiba Satellite Pro laptop. Macros were written to analysed for each female, the number of major
automate the consolidation and analysis of the data. changes of location made during these hours and
For location and habitat type, the analysis was based the average number of hours per change in location
on the number of rhinos found in each location and for the research period. A major location change was
habitat type for each hour of the day; for activities the determined when the rhino was recorded in a different
analysis was based on the number of hours spent on sector or block after an hour.
the activity per day. The daily data were not always
The results show that the amount of data collected
complete as there were occasions when the particular for Kori (total hours) is marginally outside the range of
rhino was out of sight (especially in thick bush habitat) the standard deviation for the group with a consequent
or had run off and had to be found again, especially similarly marginal effect on the analysis of location
after a disturbance at night.
changes and average hours per location. However,
Data analysis was carried out for female 1 (Nandi) given the small number of individuals and variability
for the period May–July 2011, and females 2 (Bella) in the efficiency of some rangers in maintaining contact
and 3 (Kori) for the period December 2011–February with the monitored rhinos, the data collected can
2012. The number of hours between
the time the female chased the older
Table 1. Data on birth of the six white rhino calves born at Ziwa
calf away and gave birth to the new
calf was determined along with the
Calf name Birth date
Birth
Time of birth*
location
location and time of birth of each
Obama
24 June 2009
R1/M2
in the early hours a.m.
new calf. The number of hours and
percentage of time that each female
Augustu
07 Oct 2009
R3
in the early hours a.m.
spent in each sector in the period
Justus
02 Jan 2010
L2
believed around 2 a.m.
before and after calving and the
Malaika
04 June 2011
L2
between 11 p.m. and 12
difference between the two were
a.m.
considered. The associations between
Donna
10 Jan 2012
W2
around 11 p.m.
the three adult females with the other
Laloyo
15 Jan 2012
R2
between 12 a.m. and 5 a.m.
rhinos in the population before and
*All births occurred at night.
after the birth of their new calves
were analysed by the number of hours
Table 2. Summary of location changes made by the Ziwa females in
the research period
and the number of events where an
association took place in the relevant
Name
Total hours
Location
Average hours per
time periods.
(no.)
changes (no.)
location change (no.)
Results
Table 1 shows details of the birth
date, location and time of day of the
six calves born at Ziwa. All births
68
Bella
2,142
136
15.7
Kori
1,832
107
17.1
Nandi
2,188
135
16.2
Mean
2,054
126
16.3
194
17
SD
0.71
Pachyderm No. 52 July–December 2012
Behaviour of three white rhinos in the period before, during and after calving
be considered sufficiently consistent to individually
compare the results of the three females.
All three females changed their preferred location
after calving (Table 3). Nandi spent less time in sector
L (–22%) and more time in sector W (+32%); Bella
spent less time in sector W (–27%) and more time
in sector L (+34%); Kori spent less time in sector W
(–49%) and more time in sector L (+65%). The main
vegetation type in both the sectors L and W is similar,
open woodland with short grassland and dense thickets,
but sector W is on higher ground than sector L.
The three females did not change their locations
to calve, but they did move to a neighbouring sector/
block: after 69 hours for Nandi, after 215 hours for
Bella and after 288 hours for Kori.
Table 4 shows the effect of the birth of the new
calf on the sociability of the three females with other
individuals in the population and the immediate effect
of the mothers releasing the three older calves on the
social organization of the population.
The data show that the total length of associations
and the total number of events when an association
took place were greatly reduced after calving for all
three females. Obama remained in association with
his mother Nandi for only 191 hours while Augustu
and Justus had no association with their mothers at
any time in the month following the new calvings.
Discussion
The white rhino mother chasing away her older calf
was the only indication of an impending birth in the
wild. Our study showed that the female chased away
the older calf between 3 and 32 hours before the birth of
the new calf. Even the maximum of 32 hours gives little
prior warning that the birth of a new calf is imminent.
Location
The females made no major location change around
the time of calving, during which the rhino was
recorded in a different sector or block in the hour
Table 3. Location of the female rhinos at Ziwa in the period around their calving date
 
Nandi
Block
K
L
M
R
W
Before
Bella
After
Difference
45 (0)*
590 (77)
6 (1)
104 (14)
16 (2)
0 (0)
674 (55)
0 (0)
129 (10)
417 (34)
761
1220
Total
–45 (0)
84 (–22)
–6 (–1)
25 (–4)
401 (32)
Before
Kori
After
Difference
7 (0)
31 (3)
25 (3)
155 (17)
691 (76)
0 (0)
441 (37)
0 (0)
165 (14)
593 (49)
909
1199
–7 (0)
410 (34)
–25 (–3)
10 (–3)
–98 (–27)
Before
After
0 (0)
139 (13)
0 (0)
274 (25)
671 (62)
0 (0)
867 (78)
0 (0)
93 (8)
144 (13)
1078
1104
Difference
0 (0)
728 (65)
0 (0)
–181 (–17)
–527 (–49)
* Figures in parentheses are percentage of the equivalent time.
Table 4. Associations of the female rhinos with other rhinos at Ziwa before and after their calving, shown as total
hours/no. of events
Nandi
Bella
Kori
 Association
Before
After
Diff.
Before
After
Diff.
Before
After
All associations
Males
Taleo
Moja
Hassani
First calves
Obama
Augustu
Justus
Females
Nandi
Bella
Kori
287/32
178/16*
250/18
128/12*
–122/–6
1194/18
41/7*
81/9
36/6
91/9
73/5
14/2
91/9
34/2
85/5
55/6
38/4
12/2
53/4
0/0
17/3
8/2
191/1
0/0
0/0
52/2
ALL
0/0
0/0
0/0
0/0
953/7
63/1
ALL
0/0
0/0
0/0
27/3
52/5
0/0
0/0
0/0
 24/3
9/1
16/1
4/2 
–73/–3 
–2/–2 
 
–52/–2 
n/a 
0/0 
 
9/1 
 –8/–2 
0/0
40/4
18/1
ALL
0/0
0/0
–109/–16
 
–8/–4
–22/–4 
0/0
 
191/1
0/0 
0/0 
 
 –27/–3
–52/–5
4/1
53/3
 –
0/0
16/1
 –
Diff.
–1153/–11
 
0/0
 –23/–1
–10/1
 –953/–7
–63/–1
n/a
 
 –4/–1
 –37/–2
 –
* not including the association with first calf
ALL represents the first calf was always associated with its mother at all times up to the birth of the new calf.
Pachyderm No. 52 July–December 2012
69
Patton et al.
before. But all births took place in dense habitat and
out of direct sight of the monitoring team. However,
the females with their new calves moved into new
areas relatively soon (3 days, 9 days and 12 days)
after the births. Both before and after the new births,
the females’ locations were in open woodland with
short grass and a few thickets. Owen-Smith (1975)
and Schrader (2003) reported that white rhinos
primarily fed on short to intermediate-height swards
of green grass. This was similar to the finding at Ziwa
but with the thickets allowing the females to calve in
a more secluded and secure habitat.
The females changing their location shortly after
the birth of their new calves can be explained by
the effect of the amount of rainfall in the relevant
months on the level of waterlogging of the soil in
the former and new locations. Sector L is in close
proximity to the permanent swamp and has a high
water table such that the ground gets waterlogged
after rain. Sector W is on higher ground in the northwest of the reserve, which tends to dry out during
periods of limited rain.
Before Nandi calved in June 2011, there had been
heavy rainfall in May 2011, as there was in July.
When accompanied by her new calf, Nandi showed
a preference for sector W where the higher ground
was drier than in sector L where she had stayed with
her first calf.
The opposite was recorded for Bella and Kori
when accompanied by their new calves. December
2011, January and February 2012 were all low rainfall
months. The mothers and calves moved from the
higher, drier ground of sector W to the lower ground
of sector L where water was available despite the
dry months.
Whether the presence of the new calf precipitated
an earlier move in location is open to conjecture. On
one hand, a newly born calf may be considered to
be more susceptible to disease if constantly standing
and lying in wet conditions, while on the other hand
it is likely that a white rhino mother with a new calf
at foot will need a higher than normal intake of water
to maintain her milk supply. The mother may react
to the presence of too much or too little water and
change location accordingly.
With the knowledge that major changes in the
chosen locations some days after the births may occur,
security and monitoring may be enhanced at this time
to ensure the maintenance of efficient and effective
systems.
70
Associations
All three females made fewer associations in the
period immediately after the birth of their new calves
than in the period immediately before.
Nandi associated strongly with the two males
Hassani and Taleo both before and after she calved.
Bella and Kori associated mostly with the male Moja.
The association between Nandi and Hassani was
considered to be non-sexual with no mating behaviour
observed. The two were raised at the same location in
the USA before they were translocated to Ziwa. Taleo
was observed to have mated with Nandi, producing
her first offspring, Obama, and was probably the
parent of the new calf (subject to proofing by DNA
evidence). The similarity in the amount of time Taleo
spent in association with Nandi both before and after
the female calved supports this conclusion.
The association between Kori and Moja was
observed to be sexual with mating behaviour
previously having been recorded. The absence of the
other breeding male, Taleo, before and after the female
calved and the presence of Moja indicate that Moja
was most likely the parent of the new calf (subject to
proofing by DNA evidence).
Obama was with his mother, Nandi, up to the time
of the new birth. After the calving, Obama remained
in close association with his mother for nearly 8
days (191 hours). He then moved away to form an
association for 953 hours with the female Kori and
her calf Justus up until the birth of Kori’s new calf.
Owen-Smith (1975) reported that a newly released
calf might be found with a mother–offspring pair but
that such associations were mostly temporary and the
pair were not related to the calf. This was the situation
recorded for Obama but it should be noted that at this
time there was no alternative association to a mother–
offspring pair as there were no other subadults in the
population for Obama to associate with.
Augustu was in association with his mother, Bella,
until the birth of the new calf but remained for only one
day afterwards while Justus ceased association with his
mother, Kori, the day before the birth of the new calf.
The three first calves joined up in association
from 15 January, just a few hours after the final birth,
that of Kori, and remained together for the rest of
the reporting period. This form of association was
also reported by Owen-Smith (1975), who stated
that most subadults not accompanying cows were
associated with a similarly aged companion of the
Pachyderm No. 52 July–December 2012
Behaviour of three white rhinos in the period before, during and after calving
same or opposite sex with a group structure of up to
five individuals. Owen-Smith regarded associations
of more than two subadults to be unstable.
Shrader and Owen-Smith (2002) concluded that new
subadults prefer to associate rather than remain alone.
This was considered a security measure against the
adult males. Owen-Smith (1974) reported an instance
where a solitary subadult male was challenged tensely
for 32 minutes by a territorial male. However, another
territorial male had confronted this same subadult only
briefly 5 months earlier, when the latter had another
subadult male companion. Taleo, the dominant male
in the Ziwa population, was found to be particularly
aggressive towards any unaccompanied subadult.
Conclusion
This paper presents details of the dispersal and social
behaviour of three adult female white rhinos in the
immediate period surrounding calving, a subject
about which little has been published. A principle
objective of the study was to determine if there were
any noticeable behaviour changes of the females
within the few days leading up to the birth of their
new calves which could be used by reserve managers
as indicators of an impending birth, for example, a
noticeable shift in location or the older calf being
found alone having been chased away by the mother.
The Ziwa females showed no change in location
before the birth of the new calves. Each female
remained with her current calf almost until the birth
of the new calf. As such, there was no behavioural
change that acted as an indicator of the impending
calving.
Pachyderm No. 52 July–December 2012
Acknowledgement
The authors acknowledge the work of the Ziwa rhino
monitoring rangers in collecting the daily rhino
behaviour data, without which the analysis would not
have been possible.
References
Owen-Smith, N. 1974. The social system of the white
rhinoceros. In: Geist, V. and Walther F.R. (eds.),
The behaviour of ungulates and its relation to
management, IUCN, Morges. pp. 341–351.
Owen-Smith, N. 1975. The social ethology of the
white rhinoceros Ceratotherium simum (Burchell
1817). Zeitschrift für Tierpsychologie 38:337–384.
Patton, F.J., Campbell, P.E., Genade, A., Ayiko, R. and
Lutalo, G. 2011. The behaviour of white rhinos at
Ziwa Rhino Sanctuary, Uganda, with particular
reference to night-time activity. Pachyderm 50:77–
83.
Schrader, A.M. 2003. Use of food and space by white
rhinos. PhD thesis. University of Witwatersrand,
Johannesburg, South Africa.
Shrader, A.M. and Owen-Smith, N. 2002. The
role of companionship in the dispersal of white
rhinoceroses (Ceratotherium simum). Behavioral
Ecology and Sociobiology 52:255–261.
71
Jachmann
MANAGEMENT
Pilot study to validate PIKE-based inferences at site level
Hugo Jachmann
Bergstaat 77, 6174RP Sweikhuizen, The Netherlands
email: [email protected]
Abstract
The primary objective of the Monitoring of Illegal Killing of Elephants (MIKE) programme is to monitor
worldwide trends in elephant poaching. MIKE has been employing in its analyses the proportion of illegally
killed elephants (PIKE) as a relative indicator of poaching levels. PIKE is subject to a number of potential
biases that need to be understood to assess the validity of inferences made from analyses based on it. In four
well-managed sites (Queen Elizabeth and Murchison Falls in Uganda, and Mole and Kakum in Ghana), a
pilot study was carried out to examine the on-site reliability of PIKE. The detection probability of elephant
carcasses was examined in relation to visibility (habitat types) on patrol, and PIKE results were compared with
the results of a catch per unit effort (C/E) analysis. Due to sharply increased patrol coverage in three out of four
sites, by 2011, the detection probability of elephant carcasses approached 1. PIKE, based on verified field data
corrected for detection probability, compared well with data from the carcass sheets in the MIKE database.
C/E results provided support for the on-site use of PIKE. Because the relationship between the C/E index and
law-enforcement effort varied by site, which makes pooling of data complicated, for MIKE’s purposes C/E
analysis was not considered a practical tool with which to monitor worldwide elephant poaching. PIKE data
on the other hand can be easily pooled, and the pooling may erode away some of its imperfections. PIKE was
found to be superior to C/E analysis for a system like MIKE.
Additional key words: MIKE, elephant poaching, monitoring
Résumé
L’objectif principal du programme du Suivi de l’abattage illégal des éléphants (MIKE) est de faire le suivi des
tendances mondiales du braconnage des éléphants. Dans ses analyses MIKE utilise la proportion des éléphants
abattus illégalement (PIKE) comme un indicateur relatif du niveau de braconnage. PIKE est sujet à un certain
nombre de partis pris potentiels. On doit comprendre ces partis pris afin d’évaluer la validité des conclusions
faites à partir des analyses qui se basent sur PIKE. Sur quatre sites bien gérés (Queen Elizabeth et Murchison
Falls en Ouganda, Mole et Kakum au Ghana), une étude pilote a été réalisée pour examiner la fiabilité de PIKE
sur le site. La probabilité de détection des carcasses d’éléphants a été examinée par rapport à la visibilité (types
d’habitats) en patrouille, et on a comparé les résultats de PIKE à ceux de l’analyse de la capture par unité d’effort
(C/E). En raison de la forte intensification de la couverture de patrouille dans trois des quatre sites, jusqu’en
2011, la probabilité de détection des carcasses d’éléphants avoisinait 1. PIKE basée sur des données vérifiées,
corrigée pour la probabilité de détection, s’est comparée bien aux fiches de carcasse dans la base de données
de MIKE. Les résultats de l’analyse C/E ont appuyé l’utilisation de PIKE sur le site. Puisque la relation entre
l’indice de l’analyse de C/E et l’effort de l’application de la loi variait selon le site, ce qui complique la mise
en commun des données, pour les fins de MIKE, on ne considère pas l’analyse C/E d’être un outil pratique
72
Pachyderm No. 52 July–December 2012
Pilot study to validate PIKE-based inferences at site level
pour surveiller le braconnage des éléphants dans le monde entier. D’autre part, on peut facilement mettre en
commun les données de PIKE, et la mise en commun peut éroder certaines de ses imperfections. On a donc
trouvé que PIKE était meilleure que l’analyse C/E pour un système comme MIKE.
Mots clés supplémentaires: MIKE, braconnage des éléphants, monitoring
Introduction
The Monitoring of Illegal Killing of Elephants (MIKE)
programme, approved in 1997 by the Convention on
International Trade in Endangered Species (CITES)
and ratified at the 11th Convention of Parties in 2000,
was set up to monitor trends in elephant poaching
so that decisions on elephant issues taken by CITES
are based on sound information. Poaching trends are
monitored in a sample of about 80 sites spread across
the range of African and Asian elephants. The second
objective of MIKE is to build capacity in range States to
manage elephant populations. The MIKE programme
was designed to analyse data on elephant mortality and
law-enforcement effort, obtained primarily from lawenforcement patrols local patrol staff routinely conduct
at designated MIKE sites. While a reasonable amount
of data on elephant mortality has been compiled since
MIKE’s inception in 1997, it has not been possible
to obtain law-enforcement effort data from the vast
majority of MIKE sites, primarily due to a number of
operational difficulties.
In 2008 the MIKE programme initiated the
deployment of MIST (Management Information
System), a comprehensive field data management
information system. It was anticipated that by better
serving the protected area management needs of range
states (and not just those of MIKE), MIST would help
to improve the quantity and quality of data flowing to
MIKE. Although the goal of obtaining comprehensive
law-enforcement data maintains a high priority on the
agenda for MIKE, and while MIST deployment has
been progressing well, most sites are not yet ready to
deliver effort data.
In view of the lack of effort data, and to meet its
reporting obligations to the CITES parties, the MIKE
programme has been employing in its analyses the
proportion of illegally killed elephants (PIKE) as
a relative indicator of poaching levels. PIKE is the
number of illegally killed elephants found divided by
the total number of elephant carcasses encountered by
patrols or other means, aggregated by year for each
site. PIKE is a relative indicator of elephant poaching
Pachyderm No. 52 July–December 2012
levels that does not require adjustment by level of
law-enforcement effort but is subject to a number of
potential biases. These biases need to be understood
in order to assess the validity of inferences made from
analyses based on PIKE.
This paper presents the results of a pilot study
carried out from March to April 2012 to examine the
reliability of the within-site sample used to compute
PIKE. Mainly due to time constraints, this pilot
study was not expected to result in conclusive data
on PIKE’s reliability, but to provide the foundation
of a comprehensive study planned for phase 3 of the
MIKE programme.
We began by looking at the detection probability
of elephant carcasses in relation to visibility or
habitat type, to compare PIKE calculated from the
raw carcass data with that corrected for differential
detection probabilities. We then examined the
detection probability in relation to the cause of death,
e.g. natural deaths, illegally killed, and those in the
unknown category. Because law-enforcement effort
data were available for the four sites that were selected
for this study, we compared PIKE with the results of
a catch per unit effort analysis (C/E), first to look at
the pitfalls and merits of both methods, and second
to examine whether C/E results provided support for
PIKE-based inferences at the site level. We concluded
by comparing PIKE with absolute elephant mortality.
Study areas
For this pilot study we focused on relatively small
populations in relatively small but well-managed
sites (≤ 4,500 km²), representative of the main habitat
types found within the elephant range (savannah and
forest), with MIST as the main tool for monitoring
law enforcement. Considering these broad criteria,
we selected four sites:
1.Kakum Conservation Area (CA) in Ghana
comprises Kakum National Park (NP) and the
adjoining Assin Attandanso Resource Reserve, both
covered by moist evergreen forest of the Upper
Guinea forest belt, totalling 366 km². The last count
73
Jachmann
in 2004 returned 164 elephants (Danquah 2004).
2. Mole NP in Ghana is covered by Guinea savannah
woodland with gallery forests along the main rivers;
it totals 4,504 km². The last count in 2006 returned
401 elephants (Bouché 2007).
3.Murchison Falls NP in Uganda comprises open
savannah and woodland, with gallery forest along
the main rivers, totalling 3,893 km². The last
count in 2010 returned 904 elephants (Rwetsiba &
Wanyama 2010).
4.Queen Elizabeth NP in Uganda has a mosaic of
open savannah, wetlands and semi-deciduous forest,
covering 2,294 km². The last count in 2010 returned
2,502 elephants (Plumptre et al. 2010).
Methods and materials
Detection probability
In each of the four sites, we estimated the maximum
mean strip width with regard to detecting elephant
carcasses. Using a vegetation map combined with
maps of the road system and elephant distribution, we
applied a simple general stratification process based on
three factors: elephant distribution, ratio of dominant
vegetation types, and presence of roads. Layout of
transects followed elephant distribution and was in
proportion to the distribution of dominant vegetation
types, but due to time constraints accessibility (road
network) remained an important factor. Each of the
roads selected was sampled both left and right at exactly
1-km intervals for the three savannah sites, and at
50-m intervals at Kakum, by sending a patrol staff at a
perpendicular walk away from the road until roughly
1.3 m of the person became invisible to the observers
(only head and shoulders visible). However, this
approach may result in a biased estimate of strip width:
first, because a moving object is easier to detect than a
stationary one, and second, because an object moving
away from focused observers may be visible longer than
stationary objects at shorter distances. These sources of
bias are interrelated and may lead to an overestimate of
strip width and an underestimate of carcass densities.
There was simply not enough time to carry out a more
complicated, bias-free design using stationary objects.
Moreover, carcasses in an advanced state of decay, such
as merely bones and some skin remaining, will have a
lower detection rate and therefore narrower strip width,
while strip width will also be narrower during the peak
and late wet season.
74
To test for bias due to the object moving away
from the observers, once the patrol staff had moved
completely out of view, without informing the
observers, he walked to either the left or the right
for a particular distance, then back to the road. The
perpendicular distance to the location where head and
shoulders of the person re-appeared as first detected
by the observers was measured and compared with the
distance obtained when moving away from the road.
Distances were measured with a Garmin GPSMap
60CSx using the 3D setting to limit the error to 1 to
2 m. Shorter distances in the Kakum forest, where
satellite coverage was poor, were obtained with a
tape measure.
After inspection of the underlying distribution
of each data set, a Wilcoxon matched pairs test was
done to test for differences between the moving-away
and the moving-back data. When the difference was
not significant, the two data sets were combined to
estimate strip width. The resulting estimate of strip
width should be considered an approximation of the
maximum mean strip width for the six-month period
covering the dry season. The mean for the six-month
wet season was approached by comparing unburned
areas with burned areas of the same vegetation type,
wherever possible by comparing left and right at the
same location for sites that were nearly completely
burned (Murchison Falls and Mole). For Queen
Elizabeth, of which approximately 35% was burned
(estimate by management), we used measurements in
burned areas to estimate dry-season mean strip width
and those in unburned areas to estimate the mean for the
wet season. We estimated the size of the area patrolled
each year by multiplying the maximum mean strip
width with the total distance patrolled, while correcting
for the six-month period with lower visibility. The
probability of detecting an elephant carcass on patrol
was estimated by the proportion of the site covered
by patrols for a particular year. Elephant carcasses
found by patrol teams, for both natural and illegal or
unknown deaths, except for those detected through
the presence of vultures, were corrected for the area
not covered by patrols in a particular year using the
inverse of the detection probability. Carcasses corrected
for detection probability were enumerated with those
detected through information a priori (informers,
general public, tourists and researchers) or through
the presence of vultures in savannah sites (strip width
between 1 and 3 km).
Pachyderm No. 52 July–December 2012
Pilot study to validate PIKE-based inferences at site level
For relatively small sites with small elephant
populations under sound management, the information
provided by the protected area staff and MIKE carcass
forms on the mode of detection of each carcass,
combined with area coverage by patrols, gave
approximations of the mean detection probability over
a six-year period for each class of carcass, i.e. natural
deaths, illegally killed elephants and unknown.
Comparing C/E results with PIKE
For each of the four sites, annual effort data were
available in the form of distance covered on patrol
(km) for the period from 2006 to 2011. The relationship
between conventional patrol effort and poaching,
which includes elephant poaching, follows a detection/
deterrence curve, its shape determined by a number
of factors such as size of the elephant population, size
of the area, patrol effort and coverage, which includes
the average size of patrol groups, poaching rate and
visibility (Jachmann 1998, 2008). For example, in
terms of visibility or habitat type, the curve peaks
at much lower efforts in wide, open areas (grassdominated savannah) compared with areas with low
visibility, such as forest (Jachmann 2008). Initially,
increasing patrol effort results in increased detection
of poaching activities, resulting in a near linear to
exponential ascending detection part of the curve that
peaks at a short consolidation phase whereby effort
and poaching levels are in equilibrium, followed by
a descending deterrence phase, whereby the catch
declines with increasing effort. As an example, the
Pachyderm No. 52 July–December 2012
150
Serious poaching offences encountered/
effective patrol man-day
Carcass detection probability and cause of
death
relationship between serious poaching offences
encountered per effective patrol man-day per month
(catch) and increasing patrol effort (effective patrol
man-days per month) for three forest sites in Ghana
combined from 2005 to 2007 (Kakum, Ankasa and
Bia Conservation Areas) is provided (Fig. 1). This
relationship was best described by a third degree
polynomial: Y = –1E – 0.7x³ + 0.0003x² – 0.0841x
+ 63.3020, P < 0.001 (Jachmann 2008). Prior to
comparing C/E results with PIKE, we had to examine
where the C/E data sets of the four sites were located
on their respective detection/deterrence curves. We
started by plotting patrol coverage and C/E elephants
found killed illegally over time for each site. Then we
inspected the relationships between C/E and PIKE and
compared their trends. However, we should note that
the C/E index is not independent from PIKE, because
both have elephants killed illegally in the nominator.
Therefore, results and discussion will merely focus on
pitfalls and merits of both methods.
140
130
120
110
100
90
80
70
60
50
200
400
600
800
1000
1200
1400
Effective patrol man-days/month (2005–2007)
1600
Figure 1. Relationship between serious poaching offences
50
encountered
per effective patrol man-day/month and
effective
patrol man-days per month for three forest sites
45
combined for 2005 to 2007 (Jachmann 2008).
40
No. of observations
Using MIST data, we examined patrol distribution
and the distributions of live and dead elephants for
each year. Testing for randomness of patrols was not
necessary, because the four sites selected are relatively
small and were intensively patrolled on foot, applying
a patrol strategy that aimed for total coverage per year
(Murchison Falls and Mole) or per quarter (Kakum
and Queen Elizabeth) whenever practically feasible.
The spatial distribution of illegally killed elephants
was compared with that of elephants that died of
natural causes.
The corrected PIKE was then compared with the
raw PIKE as estimated from the detailed carcass data
from the MIKE database.
35
Comparing
absolute mortality with PIKE
30
For25the years 2006 to 2011, PIKE corrected for
detection
probability was compared with absolute
20
elephant
mortality
(total mortality) for the four sites
15
combined. Because few elephant counts had been done
10
in Ghana, we used the results of the most recent ones
5
(see section on Study areas above) to estimate total
0
annual
mortality
for all sites combined.
0 50 100 150 200 250 300 350 400 450 500 550 600
Distance (m) for back data for QENP
75
Serious
Jachmann
60
50
200
Results
45
Mole National Park, Ghana
The away and the back data both followed an
approximate log-normal distribution, but with
significantly different means (Wilcoxon matched
pairs test (T = 387.50, Z = 7.29, P = 0.0000), (mean
away = 67.67 ± 30.55, range 22–241; mean back =
52.95 ± 27.74, range 18–216). The back data were
21.8% lower than the away data and were used to
estimate the mean maximum strip width (Fig. 4). Our
sample of 100 back measurements showed that 96%
of the site was burned. Although based on a small
sample size (n = 4), visibility in unburned areas (wet
season) was roughly 40% lower than in burned areas
(dry season). Corrected for the six-month wet season
period with lower visibility, the mean maximum strip
width was (6 x 106 + 6 x 42)/12 = 74 m.
76
No. of observations
40
35
30
25
20
15
10
5
0
0
50 100 150 200 250 300 350 400 450 500 550 600
Distance (m) for back data for QENP
Figure 2. Frequency diagram and distribution of back data
for Queen Elizabeth NP (QENP).
35
No. of observationsNo. of observations
30
25
35
20
30
15
25
10
20
5
15
0
10
0
50 100 150 200 250 300 350 400
Distance (m) for back and away data for MFNP
450
50
5 3. Frequency diagram and distribution of away data
Figure
45
and back
data combined for Murchison Falls National Park
0
(MFNP),
North Bank.
40
No. of observationsNo. of observations
Murchison Falls National Park, Uganda
The away and the back data both followed the same
approximate log-normal distribution (Fig. 3) with similar
means (Wilcoxon matched pairs test (T = 1373.00, Z =
1.84, P = 0.0662), (mean away = 158.01 ± 85.92, range
31–403; mean back = 151.70 ± 87.36, range 18–404).
The two sets of data were combined to estimate the mean
maximum strip width. The sample of 176 strip width
measurements showed that 93% of the site was burned.
Corrected for the six-month wet season (33.4% lower
visibility than dry season), mean maximum strip width
was (6 x 310 + 6 x 206)/12 = 258 m.
1600
50
Estimation of mean maximum strip width
Queen Elizabeth National Park, Uganda
The away and the back data followed a log-normal
distribution (Fig. 2), but with significantly different
means (Wilcoxon matched pairs test (T = 367.50, Z =
6.54, P = 0.0000), with the mean strip width for the
back data being 25% lower than that for the away data,
and the variance 24% lower (mean away = 136.53 ±
146.65, range 11–622; mean back = 102.44 ± 111.72,
range 8–525). Due to bias in the away data, the back
data were used to estimate the mean maximum strip
width. The sample of 88 back measurements showed
that 39% of the site was burned, which was close to the
estimate provided by management. For burned areas,
the mean strip width was 164.85 m, and for unburned
areas it was 64.07 m. The mean maximum strip width
was (6 x 329.70 + 6 x 128.14)/12 = 229 m.
400
600
800
1000
1200
1400
Effective patrol man-days/month (2005–2007)
0
50 100 150 200 250 300 350 400
Distance (m) for back and away data for MFNP
0
20
40 60 80 100 120 140 160 180 200 220 240
Distance (m) for back data for Mole NP
0
20
40 60 80 100 120 140 160 180 200 220 240
Distance (m) for back data for Mole NP
35
450
50
30
45
25
40
20
35
15
30
10
25
5
20
0
15
10
5
0
Figure 4. Frequency diagram and distribution of back data
for Mole NP.
Pachyderm No. 52 July–December 2012
Pilot study to validate PIKE-based inferences at site level
Kakum Conservation Area, Ghana
18
18
The away and the back data both followed an
16
approximate log-normal distribution, but with
significantly different means (Wilcoxon matched pairs
14
test (T = 338.50, Z = 2.21, P = 0.0273), (mean away =
12
20.68 ± 8.23, range 3–37; mean back = 17.56 ± 7.96,
10
range 3–45). The back data (Fig. 5) were 15.1% lower
than the away data and were used to estimate the mean
8
maximum strip width (2 x 17.56 m) = 35 m.
No. of oobservations
No. of oobservations
16
8
2
0
2
0
5
10
15 20 25 30 35 40 45
Distance (m) for back data for KCA
50
Figure
5. Frequency
back data
5 24010
15 20 diagram
25 30 and
35distribution
40 45 of50
for Kakum Conservation
Area
Distance (m) for
back(KCA).
data for KCA
No. of observations
No. of observations
220
200
Murchison Falls National Park
180
Queen Elizabeth National Park
Mole National Park
160
Kakum Conservation Area
Murchison Falls National Park
140
Queen Elizabeth National Park
120
Mole National Park
Kakum Conservation Area
100
80
60
40
20
0
0
0
100
100
200
200
300
300
400
400
500
500
Figure 6. Log-normal distribution of strip width data for the four
sites.
Park management in Queen Elizabeth NP
aims to have patrols cover the entire site on
a quarterly basis, without duplicating a single patrol
path. Although management of Murchison Falls NP
aims for patrols to cover the entire park annually but
with emphasis on the North Bank, only 30–40% of
all patrol data were entered into MIST. There was
no information on duplicate patrol routes. Park
management in Mole NP aims to have patrols cover
the entire site annually, with all patrols using a GPS
and all patrol data incorporated in MIST. As the site
is savannah with easy access throughout, according
to management, duplicate patrol routes are rare.
Management of Kakum aims to have patrols cover
the entire site every quarter. Although Kakum is a
forest site, where patrols tend to use existing elephant
Pachyderm No. 52 July–December 2012
10
4
4
Approximate log-normal distributions of strip width
0
for the four sites show the pronounced differences in 0
visibility profiles, thus detection probabilities (Fig. 6).
Kakum CA consists predominantly of moist
240
secondary forest with pockets of primary
220
forest on mildly undulating terrain; it had a
200
mean maximum strip width of 35 m. Mole
180
NP consists primarily of woodland savannah
160
on mildly undulating terrain; it had a mean
140
strip width of 74 m. Queen Elizabeth NP was
covered by a mosaic of different vegetation
120
types but was dominated by open grassland
100
on mildly undulating terrain; mean strip width
80
was 229 m. Murchison Falls NP consisted
60
primarily of wide open grassland with
40
Borassus aethiopum and Acacia woodlands
20
on mildly undulating terrain but with sharp
0
ridges; mean strip width was 258 m.
Patrol coverage
12
6
6
Summary of site mean maximum strip
widths
14
trails, management enforces strict rules that elephant
trails or other existing pathways are not to be used
during patrols. This implies that even at this patrol
density, duplicate routes may be rare. Because all
four sites were completely covered at least annually,
there was no need to perform tests of randomness of
patrol routes.
Estimation of detection probability
Distances and areas patrolled, detection probabilities
and correction factors for each of the four sites are
provided in Tables 1 to 4. In Murchison Falls NP,
numbers of patrols using a GPS, hence patrol data
entered into the MIST system, varied between roughly
77
Jachmann
30% and 40%. Moreover, before 2011 few patrols were
carried out on the South Bank of the park. Therefore,
we may conclude that the North Bank, which is also
the main tourist area, was always entirely covered.
Thus detection probabilities for the years 2006 to 2011
(Table 2) are most likely much higher, approaching
1 in most years, which implies that the carcass data
did not need to be corrected for detection probability.
However, due to limited incorporation of patrol data
into the MIST system, results for Murchison Falls
should be interpreted with caution.
For each of the four sites we calculated patrol density
(coverage) in terms of distance covered on patrol (km)
per square kilometre of site. By plotting detection
probability against patrol density, we estimated the
minimum patrol density for which the probability of
detecting an elephant carcass approached 1.00 (Tables
1 to 4). Using grassland cover in each of the four sites
Table 1. Distance and area patrolled, and detection probability of carcasses in Queen Elizabeth NP, Uganda
Year
2006
2007
2008
2009
2010
2011
Distance patrolled (km)
7,245
5,531
7,243
7,809
10,439
10,339
Area patrolled (km²)
1,659
1,267
1,659
1,788
2,390
2,368
Detection probability
0.72
0.55
0.72
0.78
1.00
1.00
Correction factor
1.39
1.82
1.39
1.28
1.00
1.00
The area site is 2,294 km², strip width 0.229 km for all years.
Table 2. Distance and area patrolled, and detection probability of carcasses in Murchison Falls NP, Uganda
Year
2006
2007
2008
2009
2010
2011
Distance patrolled (km)
6,333
4,228
6,212
4,744
2,989
4,706
Area patrolled (km²)
1,634
1,091
1,603
1,224
771
1,214
Detection probability
1.00
0.73
1.00
0.82
0.51
0.81
Correction factor
1.00
1.37
1.00
1.22
1.96
1.24
Area site is 1.500 km², strip width 0.258 km for all years.
Table 3. Distance and area patrolled, and detection probability of carcasses in Mole NP, Ghana
Year
2006
2007
2008
2009
2010
2011
Distance patrolled (km)
58,866
48,314
65,832
81,437
107,777
122,528
Area patrolled (km²)
4,356
3,575
4,872
6,026
7,976
9,067
Detection probability
0.97
0.79
1.00
1.00
1.00
1.00
Correction factor
1.03
1.27
1.00
1.00
1.00
1.00
Area site is 4,505 km², strip width 0.074 km for all years.
Table 4. Distance and area patrolled, and detection probability of carcasses in Kakum CA, Ghana
Year
2006
2007
2008
2009
2010
2011
Distance patrolled (km)
8,693
9,206
12,765
12,170
14,696
10,857
Area patrolled (km²)
304
322
447
426
514
380
Detection probability
0.83
0.88
1.00
1.00
1.00
1.00
Correction factor
1.21
1.14
1.00
1.00
1.00
1.00
Area site is 366 km², strip width 0.035 km for all years.
78
Pachyderm No. 52 July–December 2012
Pilot study to validate PIKE-based inferences at site level
For each carcass found in the four sites and their
immediate surroundings, the mode of detection was
obtained from the MIKE carcass sheets, complemented
with information provided by management and
patrol staff (Tables 6 to 9). For natural, illegal and
unknown deaths, carcasses were divided into three
categories: those found with prior information through
the intelligence network, tourists, general public and
researchers; those found on regular foot patrols; and
those found through the presence of vultures. Because
the presence of vultures increased strip width to
anywhere between 1 and 3 km, these carcasses did
not require correction for detection probability. With
the exception of Murchison Falls, carcasses found
during regular foot patrols were corrected for detection
probability. Because the MIST data on patrol statistics
for Murchison Falls were not reliable, carcass data
could not be corrected for detection probability.
However, as concluded in a previous section, detection
probability of all classes of carcasses must have been
close to 1.00, and for Murchison Falls we will merely
compare PIKE derived from the detailed carcass data
(MIKE) with the raw but verified field data.
Spatial distribution of carcasses
For Kakum CA and Mole NP in Ghana, numbers of
carcasses were too low to examine spatial distribution.
Elephant carcasses found in Queen Elizabeth between
2002 and 2011 were evenly distributed over the park,
much in line with elephant distribution, while the cause
of death was of no influence on the spatial distribution
of carcasses, with natural, illegal and unknown deaths
Pachyderm No. 52 July–December 2012
15
10
5
0
0
10
20
30
40
50
60
70
Visibility (% grassland cover)
Figure 7. Patrol density at detection probability 1.00
against visibility (percentage of grass cover) for four sites.
evenly
0.9 spread over the site. Although inspection of
from detailed carcass sheets (MIKE)
field0.8data onPIKE
site
showed that more or less the same
PIKE from verified corrected field data
applied
to
Murchison
Falls, most carcass data were
0.7
missing
in
the
MIST
database.
0.6
Corrected PIKE versus MIKE PIKE
0.5
0.4
For0.3
Queen Elizabeth, Murchison Falls and Mole NPs,
PIKE
0.2 obtained from verified field data and corrected
for 0.1detection probability closely followed PIKE
calculated
from the detailed carcass sheets obtained
0.0
from
MIKE/CCU
(Table 10, Figs. 8–10).
-0.1
Due
numbers
carcasses
2005to the
2006small
2007
2008 of2009
2010 and
2011minor
2012
Year the field for Kakum
inaccuracies in reporting from
Conservation Area, PIKE obtained from verified field
data and corrected for detection probability deviated
from PIKE calculated from the detailed carcass sheets
(Fig. 11).
PIKE
Mode of detecting carcasses
Patrol density (km/km2)
as a measure of visibility, with 0 grassland cover Table 5. Visibility (percentage of grassland cover) and
ranked as 10 and 100% grassland cover ranked as minimum patrol density (patrol distance (km/km²) for a
0, we plotted patrol density at detection probability carcass detection probability of 1.00, for four sites
1.00 against visibility (Table 5, Fig. 7).
Site
Grassland
Rank
Patrol density
The relationship between patrol density
(%)
(km/km²)
(coverage) at which the detection probability
Murchison Falls NP
60
4
4.0
approaches 1.00, and visibility in terms of
Queen Elizabeth NP
40
6
4.4
Mole NP
10
9
14.5
percentage of grass cover was negative exponential
Kakum CA
0
10
29.5
(y = 1.384 + e(3.166 – 0.047x); R = 0.97, variance
explained = 94.356%), most likely running
35
asymptotic at roughly 60% grass cover (Fig. 7).
30
Although this relationship is based on the data of four
sites only, it suggests that independent of grass cover,
25
thus visibility, a minimum patrol density of roughly 4
20
patrol km/km² of site is required (Fig. 7).
Cause of death and detection probability
The samples were too small to compare detection
probabilities for the three different categories of
carcasses for the four different sites. However, for the
four sites combined, the mean detection probability for
elephants that died of natural causes (0.887 +/- 0.125
79
Jachmann
Table 6. Carcass numbers by mode of detection for Queen Elizabeth NP, with carcasses corrected for detection
probability in brackets
Mode of detection
Legal
Natural
Prior information
Regular patrol
Vultures
Illegal
Prior information
Regular patrol
Vultures
Unknown
Prior information
Regular patrol
Vultures
Total
Carcass numbers per year
2008
2009
0
0
2006
0
2007
0
2010
0
2011
1
1
2 (2.8)
0
0
0
0
2
2 (2.8)
0
1
1 (1.3)
0
1
0
1
0
0
0
0
2 (2.8)
0
0
2 (3.6)
0
0
0
0
1
2 (2.6)
0
1
3
0
7
12
1
1
0
0
6 (7.6)
4
2 (3.6)
0
8 (11.2)
1
1 (1.4)
0
6 (7.2)
1
2 (2.6)
0
8 (9.5)
1
4
0
11
0
4
0
25
Table 7. Carcass numbers by mode of detection for Murchison Falls NP, 2006–2011
Mode of detection
Legal
Natural
Prior information
Regular patrol
Vultures
Illegal
Prior information
Regular patrol
Vultures
Unknown
Prior information
Regular patrol
Vultures
Total
2006
0
2007
0
0
0
0
Carcass numbers per year
2008
0
2009
1
2010
0
2011
0
0
1
0
0
1
0
0
0
0
1
0
0
0
4
0
0
1
0
0
0
0
0
2
0
1
2
0
0
3
0
7
9
0
0
1
0
2
0
0
0
1
0
1
0
4
2
0
0
6
1
2
0
7
0
4
0
24
Table 8. Carcass numbers by mode of detection for Mole NP, with carcasses corrected for detection probability in
brackets
Mode of detection
Legal
Natural
Prior information
Regular patrol
Vultures
Illegal
Prior information
Regular patrol
Vultures
Unknown
Prior information
Regular patrol
Vultures
Total
80
2006
0
2007
0
0
0
0
Carcass numbers per year
2008
0
2009
0
2010
0
2011
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2 (2.1)
0
0
2 (2.5)
1
0
3
0
0
0
0
0
2
0
0
0
0
0
0
0
2 (2.1)
1
1 (1.3)
0
5 (5.8)
0
1
0
4
0
0
0
0
0
0
0
2
1
0
1
2
Pachyderm No. 52 July–December 2012
0
10
20
30
40
50
60
70
Visibility (% grassland cover)
Pilot study to validate PIKE-based inferences at site level
0.9
0.8
0.7
1.0
0.6
0.8
0.5
PIKE
PIKE
0.4
0.3
0.2
2006
2007
2008
2009
2010
2011
2012
Year
-0.2
2005
2006
2007
2008
2009
2010
2011
2012
Year
Figure 8. Comparison of proporation of illegally killed
elephants (PIKE) from detailed carcass sheets (MIKE/
CCU) with verified field data, corrected for detection
probability, for Queen Elizabeth NP.
Figure 10. Comparison of proporation of illegally killed
elephants (PIKE) from detailed carcass sheets (MIKE/
CCU) with verified field data for Mole NP.
PIKE from detailed carcass sheets (MIKE)
PIKE from verified corrected field data
1.2
PIKE from detailed carcass sheets (MIKE)
1.0
PIKE from verified corrected field data
0.8
0.6
PIKE
PIKE
0.4
0.0
0.0
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
2005
0.6
0.2
0.1
-0.1
2005
PIKE from detailed carcass sheets (MIKE)
PIKE from verified corrected field data
1.2
PIKE from detailed carcass sheets (MIKE)
PIKE from verified corrected field data
0.4
0.2
0.0
2006
2007
2008 2009
Year
2010
2011
-0.2
2005
2012
2006
2007
2008
2009
Year
2010
2011
2012
Figure 11. Comparison of proporation of illegally killed
elephants (PIKE) from detailed carcass sheets (MIKE/
CCU) with verified field data, corrected for detection
probability,
for Kakum Conservation Area.
45
Figure 9. Comparison of proporation of illegally killed
elephants (PIKE) from detailed carcass sheets (MIKE/
CCU) with verified field data, for Murchison Falls NP.
PIKE from verified corrected field data
1.0
PIKE
Mode of detection
0.8
Legal
Natural
0.6
Prior information
0.4
Regular
patrol
Vultures
0.2
Illegal
Prior
0.0 information
Regular patrol
-0.2
Vultures
2005 2006 2007
Unknown
Prior information
Regular patrol
Vultures
Total
2008
2009
Year
2006
0
2007
0
0
0
0
0
0
0
0
1 (1.2)
0
0
0
0
2010
2011
0
0
0
1 (1.2)
Pachyderm No. 52 July–December 2012
2012
1
0
0
1
Patrol coverage (km/km2 of site)
Table 9. Carcass numbers by mode of detection for Kakum CA, 40
with carcasses corrected for detection probability
PIKE from detailed carcass sheets (MIKE)
1.2
35
, 2006–2011
in brackets
30Carcasses
25
2008
20 0
15
10 0
0
5
0
0
2005
2006
numbers
2009
0
2010
0
2011
0
0
0
0
0
1
0
0
0
0
2007
1
0
0Queen Elizabeth 1
0
0
0
0
0
1
0
0
0
1
2008
2009
2010
Year
1
2011
2012
0
0
Kakum
1
0
0
0
0
3
0
0
0
1
Murchison Falls 1
Mole
81
Jachmann
Table 10. Comparing PIKE from detailed carcass sheets with verified field data corrected for detection probability
PIKE comparison
Queen Elizabeth NP
Carcass sheets
Field data
Murchison Falls NP
Carcass sheets
Field data
Mole NP
Carcass sheets
Field data
Kakum CA
Carcass sheets
Field data
– = no data
2006
2007
2008
2009
2010
2011
0.33
0.37
0.25
0.32
0
0
0.38
0.38
0.36
0.36
0.74
0.80
0.50
0.50
0
0
0.50
0.50
0.40
0.50
0.29
0.43
0.88
0.67
1.00
1.00
0.80
0.60
0.75
0.75
0
0
1.00
1.00
–
0.50
0
1.00
0
0
1.00
1.00
1.00
1.00
0
0.67
–
1.00
(SD)) was identical to that for those killed illegally
(0.887 +/- 0.151) (Table 11). Detection probability for
carcasses in the ‘unknown’ category was slightly higher
(0.906 +/- 0.157) than in the other two categories (Table
11), and significantly different from those that died of
natural causes (sign test, Z = 2.846, P = 0.004), but
not from those killed illegally (Z = 0.267, P = 0.789).
This difference stems from the fact that 37% of the
carcasses in the unknown category were found through
information systems (intelligence networks, tourists,
researchers, or general public), which compares with
29% of those that died of natural causes. Because the
majority of carcasses in the unknown category were
old, the cause of death was difficult to determine, but
there had been ample time for these carcasses to be
detected through another information system.
Comparing elephants found killed illegally/
patrol km (C/E) with PIKE
For this entire section, elephants found killed illegally
by patrols includes those found through information
channels, while PIKE was calculated from the raw
carcass sheets, validated in the field, and corrected
for detection probability. Elephant carcasses found
by patrols using prior information only involved a
few years, mostly concerning 2011 for the two sites in
Uganda and two carcasses in Kakum, while analyses
omitting these carcasses gave identical results. For
the period 2006 to 2011, the size of patrol groups was
between about four and five for each of the four sites.
Throughout this section, patrol density and patrol
coverage are used alternately, but both apply to patrol
km/km² of site. Furthermore, as discussed in a previous
section, the C/E index and PIKE are not independent,
because both have elephants killed illegally in the
nominator. Taking into account differences in habitat
types, hence visibility, we were able to compare patrol
density (coverage) in terms of patrol km per km² of
site (Fig. 12).
Patrol density required for a carcass detection
probability of 1 will be lower than that required to
deter poachers from entering a conservation area.
Information on patrol density merely provided an
indication on where approximately the C/E results
were located on their respective detection/deterrence
curves (see Fig. 1). With C/E results located around
the peak and descending part of the curve, comparing
with PIKE may give unreliable results. Moreover,
PIKE, given stable natural and legal mortality, follows
Table 11. Detection probability by cause of death for four sites
Site
Queen Elizabeth National Park
Murchison Falls National Park
Mole National Park
Kakum Conservation Area
Combined +/– SD
Natural
0.88
0.85
–
1.00
Cause of death and detection probability
Illegal
Unknown
0.94
0.92
0.86
0.84
0.99
0.98
0.97
1.00
0.887 +/– 0.125
0.887 +/– 0.151
0.906 +/– 0.157
– = no data
82
Pachyderm No. 52 July–December 2012
2005
2006
2007
2008
2009
Year
2010
2011
2012
Pilot study to validate PIKE-based inferences at site level
35
30
25
20
15
10
5
0
2005
2006
2007
Queen Elizabeth
2008
2009
Year
Murchison Falls
2010
2011
Mole
2012
Kakum
Figure 12. Patrol density (coverage) in patrol km/km²
of site for Queen Elizabeth and Murchison Falls NPs in
Uganda, and Kakum Conservation Area and Mole NP in
Ghana, 2006–2011.
an asymptotic function, gradually slowing down at
higher levels of poaching, and levelling off when it
approaches 1 (Jachmann 2012). Therefore, even when
C/E results are located on the mostly linear ascending
part of the curve, when comparing these results with
PIKE values > 0.7 (Jachmann 2012), they may not
be reliable. During the study period, patrol density
(coverage) in Queen Elizabeth slowly increased but
remained under 5 km/km² of site, whereas coverage
in Murchison Falls sharply dropped from more than
40 km/km² in 2006 to less than 5 km/km² in 2007, and
remained well below 5 km/km² up to 2011 (Fig. 12).
Due to anomalies in data collection and incorporation
into the MIST system, as outlined above, the results for
Murchison Falls National Park should be interpreted
with caution. In Mole, patrol density steeply increased
from slightly below 15 km/km² in 2006 to about 27
km/km² of site in 2011, while Kakum showed a similar
steep increase from about 14 km/km² in 2006 to about
40 km/km² of site in 2010, and then sharply dropped
to about 29 km/km² in 2011 (Fig. 12).
With mean maximum strip width used as a measure
of visibility, Mole, being dominated by woodland
savannah, had more than twice the visibility of the
Kakum forest environment (0.074/0.035 = 2.11), and
therefore theoretically Kakum required more than twice
the patrol coverage of Mole for a similar deterrence
effect. Murchison Falls and Queen Elizabeth,
dominated by grassland savannah, had respectively
3.49 and 3.10 times better visibility than Mole and
therefore theoretically required only one-third the
patrol coverage of Mole for a similar deterrence
effect. However, in 2011, Mole had more than five
0.8
0.0022
0.0018
C/E
PIKE
0.7
0.6
0.5
0.0014
0.4
0.0010
0.3
0.2
0.0006
0.1
0.0002
-0.0002
2005
PIKE
40
times the patrol density of Queen Elizabeth and hardly
any elephant poaching, with C/E most likely in the
deterrence part of the curve. On the other hand, effort
in Kakum, being a forest area with low visibility but
high patrol density, may have been along the top of
the curve, with parts in the ascending detection phase.
In Queen Elizabeth and Murchison Falls, effort was
most likely still in the mostly linear ascending part of
the curve. With only 30–40% of patrol data entered in
MIST, comparing C/E results with PIKE for Murchison
Falls may give unreliable results, but those for Queen
Elizabeth may compare well.
For Queen Elizabeth NP, the C/E trend in terms
of elephants found killed illegally/patrol km roughly
follows that of PIKE (Fig. 13). Because the data
sets were small, the underlying distributions of
C/E and PIKE were not significantly different from
normal (Kolmogorov-Smirnov test; C/E, d = 0.432,
P < 0.2; PIKE, d = 0.272, P > 0.2), and the linear
relationship was significant at P = 0.012 (Fig. 14). As
an additional test, the Spearman rank correlation was
also significant at P < 0.05 (r = 0.943). For Queen
Elizabeth, C/E analyses provided support for the use
of PIKE to monitor elephants killed illegally, albeit at
relatively low levels of patrol density and at relatively
low levels of elephant poaching.
For Murchison Falls NP, albeit with strong
divergence of individual data points, both the C/E
index and PIKE showed an upward trend in elephant
poaching from 2007 onwards (Fig. 15). Due to this
divergence in data points, the relationship between
the C/E index and PIKE was not significant.
For Mole NP, with the exception of 2006 and 2007,
the trend of the C/E index roughly followed that of
Elephants found killed illegally/patrol km (C/E)
Patrol coverage (km/km2 of site)
45
0.0
2006
2007
2008 2009
Year
2010
2011
-0.1
2012
Figure 13. Comparison of the trend in C/E with that of
proportion of illegally killed elephants (PIKE) for Queen
Elizabeth NP, 2006–2011.
0.8
0.7
Pachyderm No. 52 July–December 2012
0.6
0.5
E
0.4
83
2005
2006
2007
2008 2009
Year
2010
2011
2012
Jachmann
0.8
0.7
0.6
0.5
PIKE
0.4
0.3
0.2
0.1
0.0
-0.1
-0.0002
0.0002
0.0006
0.0010
0.0014
0.0018
0.0022
Elephants found killed illegally/patrol km (C/E)
0.0040
C/E
0.7
PIKE
0.0035
0.6
0.0030
0.5
0.4
0.7
0.3
0.0035
0.0015
0.6
0.2
0.0030
0.0010
0.5
0.1
0.0025
0.0005
0.4
0.0020
0.0
0.0000
0.3
0.0015
–0.0005
-0.1
0.2
0.00102005 2006 2007 2008 2009 2010 2011 2012
0.1
0.0005
Year
0.0
0.0000
0.0040
0.0020
C/E
PIKE
PIKE
0.0025
PIKE
Elephants foundElephants
killed illegally/patrol
(C/E)
found killedkm
illegally/patrol
km
(C/E) foundElephants
Elephants
killed illegally/patrol
(C/E)
found killedkm
illegally/patrol
km (C/E)
Figure 14. The relationship between proportion of illegally
killed elephants (PIKE) and C/E for Queen Elizabeth NP,
2006–2011 (broken lines represent the 95% confidence
limits).
Figure 15. Comparison of the trend in C/E with that of
–0.0005
-0.1
1.2
0.00007 of illegaly killed elephants (PIKE) for Murchison
proportion
2005
2006 2007 2008 2009 2010 2011 2012
Falls
NP,
2006–2011.
0.00006
Year
0.00005
0.8
0.00004
0.00007
PIKE
1.2
0.6
0.00003
0.00006
1.0
0.4
0.00002
0.00005
0.00001
0.00004
1.0
0.8
0.2
C/E
PIKE
0.6
0.0
PIKE
0.00000
0.00003
0.4
–0.00001
–0.2
0.00002
2005 2006 2007 2008 2009 2010 2011 2012
0.2
C/E
0.00001
Year
PIKE
0.0
0.00000
–0.00001
–0.2
2005 2006 2007 2008 2009 2010 2011 2012
Year
Figure 16. Comparison of the trend in C/E with that of
proportion of illegaly killed elephants (PIKE) for Mole NP,
2006–2011.
84
PIKE (Fig. 16). Consistently high and increasing
patrol coverage deterred most elephant poaching,
resulting in small numbers of carcasses with C/E
data mainly distributed over the peak and descending
deterrence parts of the curve, causing high variability
(Fig. 16). The relationship between the C/E index
(elephants found killed illegally/patrol km) and PIKE
was not significant but otherwise provided a textbook
example of a detection/deterrence curve (Fig. 17).
For the Kakum Conservation Area, with the
exception of 2010, the trend in PIKE closely
followed that of the C/E index (Fig. 18). However,
the relationship between the C/E index and PIKE was
not significant. Throughout the study period, patrol
coverage in Kakum was sufficiently high to deter most
elephant poaching, which resulted in few elephants
killed illegally, a PIKE data set containing mostly
ones and zeros, and C/E data distributed over the
peak and ascending detection parts of the detection/
deterrence curve. In general terms, the trend in C/E
for Kakum supports the use of PIKE for monitoring
elephant poaching.
For Queen Elizabeth, Mole and Kakum combined,
with the exception of 2007 the trend in PIKE was
similar to that of the C/E index (Fig. 19). The
underlying distributions of C/E and PIKE were not
significantly different from normal (KolmogorovSmirnov test: C/E, d = 0.223, P > 0.2; PIKE, d =
0.164, P > 0.2), but due to the divergence in data
points for 2007, the linear relationship was barely
significant at the 10% level (Fig. 20; P = 0.100). If
2007 is omitted, a highly significant linear relationship
emerges (P = 0.0137).
In summary, because the shape of the detection/
deterrence curve depends on a number of factors that
may vary by site, C/E analysis remains a complicated
method to monitor elephant poaching using aggregated
data from a large number of sites, frequently with
pronounced differences in habitat type, poaching, law
enforcement and other relevant factors. When C/E is
compared with PIKE, the latter has its limitations due
to its asymptotic function, but in spite of a number
of potential biases in the method, it remains superior
to C/E analysis to monitor poaching trends using
aggregated data from sites that vary in at least a few
but often most of the factors discussed above.
Comparing absolute mortality with PIKE
With the exception of 2006, in general terms, the trend
Pachyderm No. 52 July–December 2012
Pilot study to validate PIKE-based inferences at site level
0.75
0.8
0.65
0.6
0.55
PIKE
1.0
0.45
0.2
0.35
0.0
0.25
0.00002
-0.2
-0.00001
0.00001
0.00003
0.00005
Elephants found killed illegally/patrol km (C/E)
0.00007
0.0014
0.0010
1.2
0.75
1.0
0.70
0.8
0.65
0.6
0.0006
0.4
0.2
0.0002
–0.0002
2005
C/E(L)
2006
2007
2008 2009
Year
2010
0.0
PIKE(R)
2011
–0.2
2012
PIKE
0.65
0.00010
0.55
0.00008
0.45
0.00006
0.00002
2005
0.25
2006
2007
2008
2009
2010
2011
2012
Year
Figure 19. Comparison of the trend in C/E with that of
proportion of illegally killed elephants (PIKE) for Queen
Elizabeth and Mole NPs, and Kakum Conservation Area
combined, 2006–2011.
in PIKE follows that of absolute mortality in the four
sites combined (Fig. 21). With more up-to-date and a
longer series of survey results, the trend in absolute
mortality could be refined and may follow that of
PIKE more closely. Thus, PIKE may also be used to
monitor absolute mortality.
Pachyderm No. 52 July–December 2012
1.0
0.55
0.8
0.50
0.45
0.6
0.40
0.4
2006
2007
2008 2009
Year
2010
2011
0.2
2012
Figure 21. Comparison of the trend in PIKE, corrected for
detection probability, with that in absolute mortality for the
four sites combined, 2006–2011.
0.35
0.00004
1.2
0.60
2005
0.75
0.00012
0.00018
1.4
PIKE corrected for detection probability
Absolute mortality corrected for
detection probability
0.30
PIKE
Elephants found killed illegally/
patrol km (C/E)
0.00014
C/E
0.00014
0.35
Figure 18. Comparison of the trend in C/E with that of
proportion of illegally killed elephants (PIKE) for Kakum
Conservation Area, 2006–2011.
0.00016
0.00010
Figure 20. The relationship between proportion of illegally
killed elephants (PIKE) and C/E for Queen Elizabeth and
Mole NPs and Kakum CA combined; 2006–2011 (broken
lines represent the 95% confidence limits).
PIKE
Elephants found killed illegally/
patrol km (C/E)
Figure 17. The relationship between proportion of illegally
killed elephants (PIKE) and C/E (elephants found killed
illegally/patrol km) for Mole NP, 2006–2011.
0.00006
Elephants found killed illegally/patrol km (C/E)
Absolute mortality (%)
0.4
PIKE
PIKE
1.2
Discussion
Throughout the report, the mean strip width was
dubbed the mean maximum strip width for a good
reason. The strip width measured applied to the
detection of relatively fresh carcasses with a height
of roughly 1.3 m, but not to old carcasses in various
stages of decay. For older carcasses, the strip width will
be narrower. We considered incorporating a correction
factor for older carcasses in the estimation of strip
width but refrained from doing so simply because
without sufficient research combined with a small
data set, we would merely further weaken the results.
Moreover, although management at three out of four
sites insisted that patrols never used duplicate routes,
upon inspecting patrol coverage we were inclined to
doubt these statements. The higher the frequency of
duplicate patrol routes, the lower the probability of
85
Jachmann
detecting a carcass. In other words, our estimates of
strip width may be positively biased—that is, they may
be too wide—and so may be our estimates for patrol
density (coverage).
Both of these biases may have resulted in
overestimation of detection probability and
underestimation of carcass densities. However, over
the past six years, in three of the sites visited, lawenforcement effort in terms of patrol distance covered
per square kilometre of site increased by 69% in
Kakum (2006 to 2010), 108% in Mole, and 30%
in Queen Elizabeth. Therefore, it is highly likely
that even with a narrower strip and correction for
duplicate patrol routes, during the end of the study
period, the probability of detecting an elephant carcass
may have approached 1 in each of these sites. The
same may have applied to Murchison Falls, with
only 30–40% of all patrols entered into the MIST
system. This, however, does not account for undersampling of juvenile deaths, especially the youngest
ones (< 1 year). All of the above biases may have led
to underestimates of carcass densities.
PIKE may also be biased because of differential
detection probabilities for different causes of
mortality and because of background variation in
elephant mortality (Burn et al. 2011). Although
our study did not find any evidence with regard to
differential detection probabilities for different causes
of mortality, the sample was small and pertained to
four sites that were well managed and intensively
covered by patrols. Within the MIKE sample of
80 sites there are undoubtedly many sites that are
not well managed or properly patrolled, where
detection probabilities may vary by cause of death.
Background variation in elephant mortality may be
caused by adverse environmental conditions, such as
prolonged drought (Burn et al. 2011). For the period
and sites covered in this pilot, we did not find any
adverse environmental conditions. Another source
of bias may be hidden in the spatial distribution of
elephant carcasses, especially where the distribution
of elephants that died of natural causes differs from
those killed illegally. If a statistically significant
difference exists between the spatial distribution of
elephants killed illegally and those that died of natural
causes, detection probabilities may differ, depending
on patrol density. Albeit based on limited data, this
pilot study did not find any evidence for differential
spatial distribution of carcasses by cause of death.
Moreover, for the four sites combined, detection
86
probabilities for elephants that died of natural causes
and those killed illegally were exactly the same (Table
11). These biases, however, may balance when sample
size is large enough.
An interesting observation on detection probability
of carcasses in the savannah is that out of a total of
123 carcasses, only 4 were detected through the
presence of vultures and none through the presence
of other scavengers. This information was derived
not only from carcass sheets and patrol forms but
mostly through interviews with patrol staff who were
present when a carcass was found. Moreover, in the
forest environment of Kakum, 3 out of 8 carcasses
were found through information channels (37.5%),
while in the three savannah sites, 36 carcasses were
found through prior information (29.3%). Although the
sample is relatively small, it just may shed some doubt
on the generally accepted idea that in the savannah most
elephant carcasses are detected through the presence
of vultures or other scavengers, and that in the forest
most carcasses are found through information channels
(intelligence, tourists, researchers and information
provided by the general public).
It may be a few more years before sound effort
data come available for more than the above four
sites. However, data gaps in MIST need to be filled,
sites should aim to incorporate all patrol data into
MIST, all patrols need to carry a GPS, data should
frequently be backed up, and problems with individual
systems need to be resolved. To accomplish this,
however, requires resources well beyond the current
capacity of MIKE, implying that the responsible
authorities in the countries involved will have to cover
at least part of these shortfalls. In Ghana, data gaps
and shortcomings in MIST were complemented with
information from the manual system that was set up
in 2004 (Jachmann 2004). Without the manual system
in place, incomplete MIST data would have been
insufficient to perform the analyses detailed above.
It would be prudent to set up a similar system for all
MIKE sites. Although C/E analysis provided support
for the use of PIKE at the site level, it also showed
that using patrol effort in C/E analysis has its intrinsic
problems, primarily related to the polynomial function
of the detection/deterrence curve. The curve shape
depends on a number of factors that may vary by site.
Thus, when using effort in C/E instead of PIKE to
monitor elephant poaching throughout their range in
a wide variety of habitat types and other variables, the
key is to find a generalized model that fits all different
Pachyderm No. 52 July–December 2012
Pilot study to validate PIKE-based inferences at site level
shapes of the curve. Elsewhere it has been suggested
that to account for detection versus deterrence, a
dynamic model is required that uses data of individual
patrols rather than the site aggregates by year (Burn et
al. 2011). Although this is undoubtedly true, practice
shows it has been a major feat to obtain sound by-year
aggregates from only a handful of sites. In practice,
obtaining detailed data by patrol for 80 different
sites will prove to be next to impossible. We may as
well conclude that for MIKE’s purposes—that is, to
monitor elephant poaching at sub-regional, regional
and continental levels, due to the highly variable
nature of the detection/deterrence curve, C/E analysis
is too complicated and therefore not a practical
approach to achieving this objective. PIKE data, on
the other hand, can be easily pooled, and the pooling
is likely to erode some of its imperfections—in other
words, balance out some of its biases. As concluded
earlier, PIKE is superior to C/E analysis for a system
like MIKE. Moreover, a three-year study in the
Laikipia–Samburu area of Kenya showed that PIKE
offered a useful metric for comparing levels of illegal
offtake temporarily and spatially, while its trends
were relatively robust to systematic differences in
methodology and spatial differences in data collection
(Kahindi et al. 2009). In addition, PIKE may even
prove to be a useful measure to monitor absolute
elephant mortality.
In the meantime, based on the information
collected in four relatively small and well-managed
sites, PIKE, we may conclude, may prove to be a
promising measure for monitoring elephant poaching
at different spatial and temporal levels. However, the
exercise described in this paper should be repeated
for a sample of sites at the other end of the quality
range—that is, some poorly managed sites with high
illegal offtake, a clumped elephant distribution, and
a patrolling density that is spatially irregular and
low. These sites, however, should not be so poorly
managed that information cannot be retrieved.
Acknowledgements
First, I would like to express my gratitude to the
sub-regional support officer for eastern Africa,
Edison Nuwamanya, and the regional director of the
Wildlife Division in Ghana, Moses Kofi Sam, for
organizing logistics and field visits, and for being of
great assistance in every possible way. Many thanks
to management and field staff in each of the sites, who
Pachyderm No. 52 July–December 2012
offered both their precious time and their assistance
to facilitate data collection. Special thanks to staff of
the Uganda Wildlife Authority and the Ghana Wildlife
Division for granting permission to visit the sites. We
are most grateful to Ken Burnham and one unknown
reviewer for providing valuable comments on an
earlier draft.
References
Bouché, P. 2007. Northern Ghana elephant survey.
Pachyderm 42:58–69.
Burn, R.W., Underwood, F.M. and Blanc J. 2011. Global
trends and factors associated with the illegal killing of
elephants: A hierarchical Bayesian analysis of carcass
encounter data. PLoS ONE 69: e24165.
Danquah, E.K.A. 2004. CITES–MIKE–Kakum National
Park retrospective elephant survey 2004. A Rocha
Ghana, Accra. Available at: http://www.cites.org/
common/prog/mike/sub_regNN_Africa/ghana_2
004_survey.pdf.
Jachmann, H. 1998. Monitoring illegal wildlife use and
law enforcement in African savannah rangelands.
Lusaka: Environmental Council of Zambia.
Jachmann, H. 2004. Monitoring law enforcement for
adaptive management: A manual. Wildlife Division,
Accra. 124 p.
Jachmann, H. 2008. Illegal wildlife use and protected
area management in Ghana. Biological Conservation
141:1906–1918.
Jachmann, H. 2012. Pilot study to validate PIKE-based
inferences at the site level. CITES/MIKE technical
report. 56 p.
Kahindi, O., Wittemeyer, G., King, J., Ihwagi, F., Omondi,
P. and Douglas-Hamilton, I. 2009. Illegal killing
of elephants across diverse land uses in Laikipia–
Samburu, Kenya. African Journal of Ecology 48:972–
983.
Plumptre, A., Kujirakwinja, D., Moyer, D., Driciru, M.
and Rwetsiba, A. 2010. Greater Virunga landscape:
large mammal surveys, 2010. Kampala, Uganda:
Wildlife Conservation Society. Available at: http://www.
elephantdatabase.org/population_submission/64.
Rwetsiba, A. and Wanyama, F. 2010. Aerial surveys
of medium large mammals in Kidepo Valley and
Murchison Falls Conservation Areas. Monitoring
and Research Unit, Uganda Wildlife Authority,
Kampala. Available at: http://www.elephantdatabase.
org/population_submissions/63.
87
Chomba et al.
RHINO / FIELD NOTES
Notes on black rhino mortalities in North Luangwa National
Park, Zambia
Chansa Chomba,* David Squarre and Harvey Kamboyi
Zambia Wildlife Authority, Directorate of Research, Planning, Information and Veterinary Services, PB 1 Chilanga,
Zambia
* corresponding author email: [email protected]; [email protected]
In May 2010 reintroduction of the black rhino founder
population in North Luangwa National Park (NP) was
completed with the release of 5 animals, bringing the
total to 25. The rhinos were released in a fenced rhino
sanctuary measuring 220 km2 compartmentalized
into 55 km2 and 165 km2. Between 2009 and July
2010 4 rhinos died from injuries from intraspecific
fights, failure to adapt and trypanosomiasis, reducing
the number to 21. During the same period newly
born calves increased the population to 30 rhinos,
a rate greater than the yearly rate of increase of 5%
recommended by the Southern African Development
Community for Rhino Conservation. During the first
two weeks of November 2011, 6 rhinos died from
injuries caused by intraspecific fights and disease,
which reduced the number to 24.
The records at Zambia Wildlife Authority (ZAWA)
indicate that there are no definite figures for black
rhino population density for North Luangwa NP and
surrounding Game Management Areas (Table 1).
It is generally accepted that black rhino density
should not exceed 0.1 rhinos/km2. It was for this
reason that before black rhinos were reintroduced
in Zambia, Kelvin Dunham was engaged to evaluate
areas in which to reintroduce them. Dunham (2001)
recommended a density of 0.1 rhinos/km2 as being the
most reasonable stocking rate for rhino reintroduction
in North Luangwa NP. This low figure was chosen to
eliminate any ecological danger that rhinos confined
in a fenced area might be over-stocked.
Based on the recommendations provided by
88
Dunham (2001), ZAWA in collaboration with the
Frankfurt Zoological Society (FZS) formulated a plan
to reintroduce black rhinos in North Luangwa NP. The
plan provided for the release of a founder population
of 20 animals in a fenced area. It was recommended
that the adjoining fences be removed to create a single
fenced sanctuary large enough to accommodate 20
founders and their offspring.
In 2011, despite the loss of four rhinos through
disease, failure to adapt and injury arising from intraspecific fights, the total number of rhinos increased
to 30 in the fenced area. In the interim, ZAWA and
FZS prepared a comprehensive rhino management
plan for North Luangwa NP which, among other
things, recommended a partial removal of the fence
to allow the animals to disperse over a wider area
and prevent unnecessary mortality that might arise
from intraspecific fights. By November 2011, just
before the rhino plan was approved and implemented,
6 rhino mortalities were recorded between 4 and 13
November 2011.
On 2 November 2011 the carcass was discovered
of a 6-year-old female code-named Buntungwa.
Scavengers had consumed much of the body, leaving
the head with horns and a few other parts. Eight weeks
before Buntungwa died Dr Chap Masterson of the
International Rhino Foundation had rated its body
condition as very good. The presence of horns on the
skull and the absence of any bullet marks on the skin
ruled out the possibility of poaching. Its calf, which
had still depended on it, also died.
Pachyderm No. 52 July–December 2012
Rhino / Field notes
Table 1. Black rhino population estimates in Luangwa Valley, Zambia
Author
Year
Method
Area covered
Ansell, W.F.H.
1969
Field patrol
sighting records,
other records
Luangwa Valley
Caughley, G.
1973
Aerial
North and South
Luangwa NPs
Kuper, J.H.
1975
Aerial
Luangwa Valley
0.01 for
North
Luangwa NP
Douglas–
Hamilton I.
et al.
1979
Aerial
20,000 km2 of
Luangwa Valley
0.31
LeaderWilliams, N.
1985
Dung piles,
tracks, scrapes
per km2 observed
by scouts
South Luangwa
NP
0.4
LeaderWilliams, N.
1988
Individual
recognition,
sightings by
scouts
200 km2 of South
Luangwa NP
0.39
Pachyderm No. 52 July–December 2012
0.03
Total
Remarks
12,000
Total population for
all NPs and game
management areas
2,800
Total was for South
Luangwa NP
445
Total was for North
Luangwa NP
77 (66
adults
and 11
calves)
walking and sometimes falling over. On 10 November
2011 the rhino was found dead and post-mortem was
done. Post-mortem results showed lower jaw abscess,
broken molar, gum inflammation, hydro-pericardium
(fluid around the heart), enlarged adrenal glands, worm
infestation and general paleness of the carcass. The
cause of death was recorded to be inability to browse
due to painful gum, fluids around the heart and heavy
worm burden (Fig. 2).
©Chansa Chomba
On 4 November 2011 an 18-month-old calf of
a female code-named Twatemwa was found dead.
The carcass had horns but there were extensive horn
injuries on the skin. Deep wounds were recorded in
the groin area, rib cage, right armpit, lower jaw and
front legs (Fig. 1). It was assumed that the calf was
killed by a mature male trying to mate with the mother,
Twatemwa.
On 10 November 2011 a 7-year-old female codenamed Ithala was found dead. This female originated
from Ithala Game Reserve, a tsetse-free (Glossina spp.)
area in South Africa. Upon release in North Luangwa
NP, which is a tsetse-infested area, the rhino started
showing signs of trypanosomiasis, a disease caused
by a protozoan of the genus Trypanosoma, which is
spread by blood-sucking tsetse flies. A trypanosomiasis
prophylactic, Samorin, was administered in June 2010.
In April 2011 Ithala showed loss of body condition
and supplementary feeding was initiated. On 29
August 2011 the animal was immobilized and fitted
with a VHF radio transmitter. At the time of fitting
the transmitter, the body condition rating was 3 out
of 5, which was fair. Her teeth were examined and
one of the molars had just erupted out of the gum;
this was assumed to be the cause of the fair instead
of good or very good body condition rating. On 7
November 2011 rhino monitoring staff recorded poor
body condition with clinical signs of trypanosomiasis:
observed drowsiness, drooping head, stumbling when
Density/km2
Figure 1. Twatemwa’s carcass showing injuries sustained
from fighting.
89
©Chansa Chomba
Chomba et al.
Figure 2. Post-mortem results of Ithala showing enlarged heart muscle (left) and worm infestation (right).
On 13 November 2011 a 14-year-old bull, which
was released in 2006, was found dead. This male had
always been involved in fights as was observed from
the scars on the skin. It was assumed that the animal
died from injuries from intraspecific fights.
During the same period, a calf of less than one year
old was not sighted and is assumed to be dead.
Chomba and Matandiko (2012) assert that the
reintroduction of rhinos in Zambia has been a success
and recommend securing additional financial support
and increased manpower when the rhinos are released
from the fenced sanctuary to the unfenced area of
North Luangwa NP. It is now evident that it is not
sufficient to emphasize law enforcement alone but
biological management of the species as well. Records
from observations made on the reintroduced black
rhino population in North Luangwa NP suggest
that appropriate biological management, including
measures to prevent overstocking, are critical.
All the 10 rhino mortalities recorded in the park
between January 2009 and November 2011 were
associated with biological management and not
poaching. The continued confinement of the North
Luangwa population in a fenced area may reduce the
population’s yearly rate of increase to < 5%. ZAWA
management should carefully balance its desire to
encourage population growth by spreading rhinos to
new areas outside the current fenced sanctuary while
at the same time securing the species from poaching
incursions in less secure areas.
90
References
Ansell, W.F.H. 1969. The black rhinoceros in Zambia.
Oryx 10:176–192.
Chomba, C. and Matandiko, W. 2012. Report on
population status of black and white rhinos in Zambia.
Chilanga, Zambia: Zambia Wildlife Authority.
Caughley, G. 1973. Game management. In: Naylor,
J.N., Caughley, G., Abel, N.O. and Liberg, O., eds.,
Luangwa Valley Conservation and Development
Project. Report to UNDP/FAO, Rome. pp. 50–157.
Douglas-Hamilton, I., Hillman A.K.K., Holt, P. and
Ansell, P. 1979. Luangwa Valley elephant, rhino,
and wildlife survey. Report to IUCN/WWF/NYZS.
Unpublished.
Dunham, K.M. 2001. Reintroduction of black rhino in the
Luangwa Valley, Zambia. Evaluation of areas for the
reintroduction of rhinos in Zambia. SADC Regional
Programme for Rhino Conservation.
Kuper, J.H. 1975. Elephant and black rhinoceros census
in the Luangwa Valley. Zambia Chinzombo Research
Station, Mfuwe. Unpublished.
Leader-Williams, N. 1985. Black rhino in South Luangwa
National Park: their distribution and future protection.
Oryx 19:27–33.
Leader-Williams, N. 1988. Patterns of depletion in black
rhino population in Luangwa Valley, Zambia. African
Journal of Ecology 26:181–187.
Pachyderm No. 52 July–December 2012
Rhino / Field notes
New maps representing the historical and recent distribution
of the African species of rhinoceros: Diceros bicornis,
Ceratotherium simum and Ceratotherium cottoni
Kees Rookmaaker 1* and Pierre-Olivier Antoine 2
Editor, Rhino Resource Center (www.rhinoresourcecenter.com), and Senior Research Fellow, Department of
Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
* corresponding author email: [email protected]
2
Laboratoire de Paléontologie, Institut des Sciences de l’Évolution (ISE-M, UMR-CNRS 5554), c.c. 64,
Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France
1
Abstract
The paper presents new and updated maps showing the historical and current range of the black, white and
Nile rhinoceros. Distribution of the species is based on written and iconographical records, as well as museum
specimens. The historical range reflects the situation from ad 1500 onwards (or the last part of the Holocene).
The current range is divided into original and introduced populations.
Résumé
Cet article présente de nouvelles cartes mises à jour qui montrent l’habitat historique et actuel du rhinocéros
noir, blanc et du Nil. La distribution de l’espèce est basée sur des rapports écrits et iconographiques ainsi que
sur des spécimens dans les musées. L’habitat historique reflète la situation à partir de l’année 1500 et après
(c’est-à dire la dernière partie de l’Holocène). L’habitat actuel est divisé d’après des populations originelles
et introduites.
Introduction
It is common practice in zoological encyclopaedias
or monographs to provide maps of the historical and
current distribution of a particular animal. These maps
are extremely useful to show how widely a species
ranged and to visualize the often extreme reduction
of the areas where it can be found. This procedure is a
powerful and useful conservation tool, because status
figures can only be displayed in graphs that might
need some mathematical background to be properly
understood.
A survey of the available maps of the historical
distribution of any of the six species of rhinoceros
still extant reveals discrepancies in the interpretation
of the data as well as a lack of definition of what is
meant by historical. Some would say it is the range
as it existed in 1700, or 1800, or a similar general
date, without examining in too much detail why that
particular year is chosen to be representative.
Pachyderm No. 52 July–December 2012
Our work with historical publications about the
rhinoceros for several decades makes it abundantly
obvious that the full potential of the old data has yet to
be harvested. The sources are mostly available on the
Rhino Resource Center (www.rhinoresourcecenter.
com), but it takes time and major effort to extract
all information on past distribution. The data to be
analysed of course include any mention in a published
work or unpublished report that the species was seen or
shot. Besides this, there are specimens with localities
in museums and private collections, works of art
including paintings, drawings and rock engravings,
place names referring to the animal, and an array of
other sources. If funding would ever be available, a
historical atlas of the distribution records of all species
of rhinoceros would be an incredible asset.
In this paper we present new maps of the historical
distribution of the three extant species of rhinoceros
in Africa, i.e. the black rhinoceros Diceros bicornis
(Linnaeus, 1758), the white rhinoceros Ceratotherium
91
Rookmaaker and Antoine
simum (Burchell, 1822) and the Nile rhinoceros
Ceratotherium cottoni (Lydekker, 1908). C. cottoni
was recently elevated to species rank by Groves et
al. (2010), but the maps would of course be the same
if the previous subspecific arrangement is preferred.
The subspecies of the black rhinoceros (Rookmaaker
2011) are not separated in the map of Diceros bicornis.
Sources of data
Today in conservation circles the most commonly
consulted maps are those contained in the action plan
by Emslie & Brooks (1999), which for the black rhino
is copied from Cumming et al. (1990) and for the two
then recognized subspecies of the white rhino is a
combination of maps by Cumming et al. (1990) and
Hillman-Smith et al. (1986). These historical maps are
stated to represent the situation around 1700. Previous
continent-wide maps or surveys containing a wealth
of individual data are those by Zukowsky (1965) and
Sidney (1965).
The oldest literary records available on the
rhinoceros refer to South Africa from the middle of
the 17th century. These were first comprehensively
investigated and placed in an ecological context
in the remarkable volumes by Jack Skead (1912–
2006), recently edited as Skead et al. (2007, 2011).
Rookmaaker (2001, 2002) discussed the nearextinction of the white rhino in the early 20th century.
The extinction of the species in Zimbabwe was first
highlighted by Rookmaaker (2003). All available
information on rhinos seen or shot or studied in the
period from 1795 to 1875 were studied by Rookmaaker
(2008) and the results plotted on maps covering
Botswana, Namibia, South Africa, Swaziland and
Zimbabwe.
Yalden et al. (1986) and Rookmaaker & Kraft
(2011) reviewed early records from Ethiopia and
Somalia. Kingdon (1979) produced a remarkable
historical map of distribution of rhinos in Kenya.
Schomber (1966) and Hillman-Smith et al. (1986)
studied the situation in Central Africa as regards the
Nile rhinoceros.
The relatively restricted range in countries of
West Africa was reviewed by Rookmaaker (2004).
A specimen recently discovered by Antoine &
Rookmaaker (2012) has extended the distribution of
the black rhino into northern parts of Togo.
92
Results
In our view, there is only one realistic way to portray
the historical distribution of a particular species.
Because records of even a large and prominent
mammal like a rhinoceros are often relatively few
in number, we must combine everything that might
have relevance to their range. A map of historical
distribution is therefore a representation of all records
of the existence of the species, where it is assumed that
if it is known to exist in a certain place in, say, 1850, or
1900, or 1950, or 2000, it also used to exist there at any
time before such a date. If for instance, a rhinoceros
would have been seen in 2010 in the montane forest
on the east side of Mount Kenya, it is assumed that it
is one of a population that always lived there. The map
then draws a line around all these records that have
been plotted on a map, and this we call the historical
distribution or range of that species.
There is no particular known or defined measure
as to how far back the historical range of a certain
extant mammal can be known. Most written records
of course refer to the period starting from the start
of printed records, from around 1500. In this case,
therefore, the historical element of our maps shows the
range of the various species in the past five centuries,
coinciding with the last stages of the Holocene.
There are, of course, plenty of pitfalls that make
the construction of a historical map less easy than it
seems (Skead 1962; Boshoff & Kerley 2010). Species
distributions change in time and place, and animals
move around. It is (almost) obvious that a rhinoceros
only lives in places where the habitat is favourable,
unless it is moving from one place to another. It is
(almost) obvious that a rhinoceros would not be
found close to human habitations unless it was left
undisturbed. Rhinos could potentially be found on
one side of a mountain and not on another, or on one
side of a river and not on the other. Such relatively
minor and very local distribution patterns can never be
shown on continental maps of a historical distribution
area and are therefore always ignored.
A map of historical distribution is generally
assumed to reconstruct what may be called the
original range of a species. Hence any area into which
a species of rhino was actively introduced—usually
in the period after 1960—that by chance lay outside
the known and verified range would not be shown in
this kind of map. It is therefore extremely important
Pachyderm No. 52 July–December 2012
Rhino / Field notes
to keep track of all translocations, reintroductions and
introductions, although it is likely that the existing
literature would not be adequate for this purpose.
There are clear guidelines regarding the movement of
rhino in continental Africa (Emslie et al. 2009) and it
would be advisable to ensure that a full knowledge of
historical records is part of all management policies.
Indications of the current distribution are based
on the figures and notes in Emslie & Brooks (1999)
and updated in Emslie (2008). The current data have
been separated into two sets, which are indicated on
the maps by two distinct symbols: ‘O’ for original
and ‘+’ for (re)introduced. For security reasons, these
symbols are placed randomly within the boundaries
of the countries in which the species is believed to
be present, and their placement emphatically has no
relationship to the actual range or status. O is used in
case of countries, where as far as we know the species
has always existed within the past five centuries (or
longer); + is used in case of countries—in a few cases
parts of countries—where at one time the species was
extinct, hence where all current populations have
been reintroduced, or (where applicable) introduced.
The three maps showing the historical distribution
of the black rhino, the white rhino and the Nile
rhino are presented here (Figs. 1–3). They were first
published by Antoine & Rookmaaker (2011) in a
slightly different format, without, however, providing
background into their preparation. It is envisaged to
make these maps available on the Rhino Resource
Figure 1. Historical and current distribution of the black rhinoceros Diceros bicornis (Linnaeus, 1758). The historical
range in the period after ad 1500 is shown in grey. The current range is shown by the symbols ‘O’ for remnants of
original populations and ‘+’ for introduced or reintroduced populations.
Pachyderm No. 52 July–December 2012
93
Rookmaaker and Antoine
Figure 2. Historical and current distribution of the white rhinoceros Ceratotherium simum (Burchell, 1822). The historical
range is shown in grey. The only original population remained in the early 20th century in parts of Zululand (KwaZuluNatal, South Africa), and all other specimens now found on the African continent in wild or semi-wild conditions have
been restocked from the Zululand remnants.
Center website (www.rhinoresourcecenter.com)
where users can view and download them to be used
elsewhere with proper acknowledgements.
Acknowledgements
This paper is part of the ongoing research of the
Rhino Resource Center, sponsored by SOS Rhino,
International Rhino Foundation, WWF Areas, Rhino
Carhire and Save the Rhino International.
94
References
Antoine, P.O. and Rookmaaker, L.C. 2012. The first
historical record of a rhinoceros in Togo. Mammalia,
Paris 2012. DOI: 10.1515/mammalia-2012-0049.
Boshoff, A.F. and Kerley, G.I.H. 2010. Historical mammal
distribution data: How reliable are written records?
South African Journal of Science 106(1/2):1–8.
Cumming, D., Toit, R. du and Stuart, S.N. 1990. African
elephants and rhinos: Status survey and conservation
action plan. Gland: IUCN. pp. i–iv, 1–72.
Emslie, R.H. 2008. Rhino population sizes and trends.
Pachyderm 44:88–95, tables.1–4.
Pachyderm No. 52 July–December 2012
Rhino / Field notes
Figure 3. Historical and current distribution of the Nile rhinoceros Ceratotherium cottoni (Lydekker, 1908). The historical
range is shown in grey. It is believed that by 2010 no animals remained in the wild (last seen in NE Congo).
Emslie, R.H., Amin, R. and Kock, R. 2009. Guidelines for
the in situ reintroduction and translocation of African
and Asian rhinoceros. Occasional Paper of the IUCN
Species Survival Commission no. 39: i–v, 1–115.
Emslie, R.H. and Brooks, M. 1999. African rhino:
Status survey and conservation action plan. Gland
and Cambridge: IUCN/SSC African Rhino Specialist
Group. pp. i–x, 1–92.
Groves, C.P., Fernando, P. and Robovsky, J. 2010. The
sixth rhino: A taxonomic re-assessment of the critically
endangered northern white rhinoceros. PLoS One 5(4)
e9703:1–15.
Hillman-Smith, K., Mankoto ma Oyisenzoo and Smith, F.
1986. A last chance to save the northern white rhino?
Oryx 20(1):20–26, figs. 1–3, map 1, table 1.
Pachyderm No. 52 July–December 2012
Kingdon, J. 1979. East African mammals, vol. 3, part B:
Large mammals. London: Academic Press. pp. i–iv,
1–436.
Rookmaaker, L.C. 2001. The alleged population reduction
of the southern white rhinoceros (Ceratotherium
simum simum) and the successful recovery.
Säugetierkundliche Mitteilungen 45(2):55–70, fig.1,
tables. 1–2.
Rookmaaker, L.C. 2002. Miscounted population of the
southern white rhinoceros (Ceratotherium simum
simum) in the early 20th century? Pachyderm 32:22–
28, fig. 1, tables 1–2.
Rookmaaker, L.C. 2003. The last white rhinoceroses in
Zimbabwe. Pachyderm 35:100–114, figs. 1–8.
95
Rookmaaker and Antoine
Rookmaaker, L.C. 2004. Historical distribution of the
black rhinoceros (Diceros bicornis) in West Africa.
African Zoology 39(1):63–70, figs. 1–6.
Rookmaaker, L.C. 2008. Encounters with the African
rhinoceros: A chronological survey of bibliographical
and iconographical sources on rhinoceroses in
southern Africa from 1795 to 1875. Reconstructing
views on classification and changes in distribution.
Munster, Schuling Verlag. 1–148, figs. 1–157 [68 in
colour], maps A–I [2 in colour], tables 1–47 [also:
Transactions of the Royal Society of South Africa
62(2):55–198].
Rookmaaker, L.C. 2011. A review of black rhino
systematics proposed in ungulate taxonomy by
Groves and Grubb (2011) and its implications for
rhino conservation. Pachyderm 50:72–76.
Rookmaaker, L.C. and Kraft, R. 2011. The history of the
unique type of Rhinoceros cucullatus, with remarks on
observations in Ethiopia by James Bruce and William
Cornwallis Harris (Mammalia, Rhinocerotidae).
Spixiana, Munchen 34(1):133–134, figs. 1–8.
Schomber, H.W. 1966. Die Verbreitung und der Bestand
des zentralafrikanischen Breitmaul-nashorns,
Ceratotherium simum cottoni (Lydekker, 1908).
96
Säugetierkundliche Mitteilungen 14:214–227, figs.
1–4, tables 1–12.
Sidney, J. 1965. The past and present distribution of some
African ungulates. Transactions of the Zoological
Society of London 30:1–397, figs. 1–39, maps 1–9.
Skead, C.J. 1962. The use of early historical references
in the study of bird and mammal distribution. Annals
of the Cape Provincial Museums 2:138–142.
Skead, C.J., Boshoff, A.F., Kerley, G.I.H. and Lloyd, P.H.
2007. Historical incidence of the larger land mammals
in the broader Eastern Cape, 2nd ed. Port Elizabeth:
Centre for African Conservation Ecology, Nelson
Mandela Metropolitan University. i, i–xiii, 1–570 pp.
Skead, C.J., Boshoff, A.F., Kerley, G.I.H. and Lloyd, P.H.
2011. Historical incidence of the larger land mammals
in the broader northern and western Cape, 2nd ed.
Port Elizabeth: Centre for African Conservation
Ecology, Nelson Mandela Metropolitan University.
i, i–xiv, 1–519 pp.
Yalden, D.W., Largen, M. and Kock, D. 1986. Catalogue
of the mammals of Ethiopia, part 6. Monitore
Zoologico Italiano 21(4):31–103.
Zukowsky, L. 1965. Die Systematik der Gattung Diceros
Gray, 1821. Zoologische Garten 30:1–178, figs. 1–8.
Pachyderm No. 52 July–December 2012
Density-dependent effect affecting elephant seed-dispersed tree recruitment
Density-dependent effect affecting elephant seed-dispersed tree
recruitment (Irvingia gabonensis) in Congo Forest
David Beaune,1,2,* Loïc Bollache, 2 Barbara Fruth,1 Gottfried Hohmann1 and François
Bretagnolle 2
Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, Germany
Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 6 bd Gabriel, 21000 Dijon, France
* corresponding author email: [email protected]
1
2
Introduction
presence at the research site at LuiKotale, pressure
on the species became evident when carcasses from
massacres were documented.
Overall, we aimed to assess the ability of the I.
gabonensis tree community at LuiKotale to reproduce
without elephant dispersal. If megafaunal trees depend
on elephants for seed dispersal, one would expect no
alternative seed dispersers and thus a high mortality
of seedlings and poles due to the density-dependent
effect (Paine et al. 2012).
Several tree species are known to be important for
local wildlife, rural communities (White & Abernethy
1997) and even the ‘Western world’. However, little
is known about the ecology of these species, and
a biodiversity crisis could change the population
survival. Among these, the bush mango (Irvingia
gabonensis), widespread in West and Central Africa, is
of major importance for rural communities (Atangana
et al. 2001; Leakey et al. 2005). Recently, the plant is
used as a slimming supplement in the Western world. Methods
Elephants are widely recognized as the most important
Study site
Irvingia seed dispersers in Africa (Theuerkauf et al.
2000; Nchanji & Plumptre 2003; Morgan & Lee The LuiKotale research site is located within
2007). In this study we focus on I. gabonensis as the the equatorial rainforest 2°47′ S–20°21′ E, at the
example to illustrate seed fate without dispersion, and south-western fringe of Salonga NP (DRC), in the
thus density-dependence effect affecting tree
recruitment.
We investigated this megafaunal tree
population’s ability to survive without
elephants in the evergreen lowland rainforest
of the Max-Planck research site, LuiKotale,
on the south-western fringe of Salonga
National Park (NP), Democratic Republic
of the Congo (DRC). In and around Salonga
NP elephants (Loxondota cyclotis) have
been severely poached for decades (Van
Krunkelsven et al. 2000; Blake et al. 2007;),
and poaching has increased with increasing
post-war availability of automatic weapons
(AK47) and ammunition. The current
nationwide elephant population is said to have
declined by as much as two-thirds to that of
the 1990s, and the remainder is said to survive
in fragmented subpopulations (Alers et al.
1992). Throughout 10 years of continuous Figure 1. Sampling area, red spots representing adult trees.
Pachyderm No. 52 July–December 2012
97
Beaune et al.
same continuous forest block (Fig. 1). This park,
classified as a World Heritage Site, is the largest
protected rainforest area in Africa and the second
largest protected rainforest in the world (33,346 km²)
(Grossmann et al. 2008). The study site is a primary
evergreen tropical lowland rainforest ancestrally
owned and used by Lompole village, 17 km away. The
site covers > 60 km² with a network trail of 76 km.
Since 2001, all exploitation within the site ceased, to
allow research (Hohmann & Fruth 2003).The climate
is equatorial with abundant rainfall (> 2000 mm/yr), a
small dry season in February and a larger one between
May and August. Mean temperature at LuiKotale
ranges between 21 °C and 28 °C, with a minimum
of 17 °C and a maximum of 38 °C (2007–2010). Five
major vegetation types were distinguished: 1) mixed
tropical forest on terra firme, 2) monodominant forest
dominated by Monopetalanthus sp., 3) monodominant
primary forest dominated by Gilbertiodendron
dewevrei, 4) temporarily inundated mixed forest, and
5) permanently inundated mixed forest. Dry habitats
(1–3) dominate site cover, with 73% heterogeneous
and 6% homogenous in composition. Wet habitats (4
+ 5) represent 17% and 4% of the cover respectively
(Mohneke & Fruth 2008).
To investigate the density-dependent effect on seed
survival of this elephant-dependent tree, we focused
on all adult trees of Irvingia gabonensis inventoried
since 2007 that produced ripe fruits during the survey
from January 2010 to June 2011. (A database of the
LuiKotale research site geo-references all feeding
trees within the observed range of bonobo, Pan
paniscus, communities.)
We counted 1) seeds 2) seedlings 3) saplings and
4) poles in the fruit-fall zone of each individual and
judged the state of each of the four stages of growth,
assessing pathogens and folivores by visual inspection
(absence/presence of traces).
Results
We investigated 54 adult trees of I. gabonensis (83.1
cm ± SE. 0.7 diameter at breast height) producing ripe
fruit. Figure 2 shows the presence and state of 1) seeds,
2) seedlings, 3) saplings, and 4) poles.
Seeds
Seeds were present within all fruit-fall zones. Seeds
revealed a loss rate of 54% ± SE 3 due to seed
predation, and among the unopened seeds 76% ± 4
were rotten or showed signs of pathogen attacks. Red
river hogs (Potamochoerus porcus) in herds of two
to six animals were found responsible for predating
on large quantities of seeds, cracking the endocarps
(Beaune et al. 2012).
density-dependent effects
Fruit production
(500-5000)
Seed predators:
cracked seeds ~54%
Pathogens:
rotten seeds ~76%
Adult producing fruits – 100%
Mean recruit
– 1.67
Mean recruit
=0
Adult recruiting pole – 0%
Folivores
Pathogens
Adult recruiting seedling – 11%
Pathogens:
infection traces – 76%
Mean recruit
– 0.02
Adult recruiting sapling – 2%
Folivores:
folivory traces – 100%
Figure 2. The density-dependent effect of Irvingia gabonensis. There was no recruitment under the parental
trees (n = 54).
98
Pachyderm No. 52 July–December 2012
Density-dependent effect affecting elephant seed-dispersed tree recruitment
Figure 3. Seedling and adult tree of Irvingia gabonensis.
Seedlings
Only 6 (11%) of the 54 trees showed seedling
recruitment. All 90 of these seedlings were infested
by pathogens or showed traces of folivory whereas
some of the other surrounding seedling species and
the Irvingia of the nursery did not (unpublished data).
Although these adult trees reproduced, no established
offspring (i.e. those producing fruit) was found beneath
the adults’ crowns. A total of 48% (n = 26) of the fruitfall zones clearly showed tracks of animals leading to
the feeding place.
Saplings
A single sapling recruit (< 2 m high) was found below
an adult crown.
Poles
No pole was found below an adult crown.
Conclusion
Our results showed a high mortality for Irvingia seeds
and recruits on all levels, with a seed loss of 54% to
predation and 76% to pathogens and seedling loss of
100% due to predation and pathogens. These results
can be explained by the density-dependent effect,
also named the Janzen-Connell effect (Janzen 1970;
Connell 1971; Burkey 1994), where the mortality
of seeds, eggs or other immobile organisms is
correlated with their density, which attracts predators
Pachyderm No. 52 July–December 2012
and pathogens. In the absence of an
endozoochoric partner such as the
elephant, this putting-all-your-eggsin-one-basket adaptation is likely to
turn out as a maladaptation, unless a
tree species has alternative dispersal
partners or mechanisms.
In the southern area of the Congo
River, bonobos, the second biggest
frugivores, are unable to replace
elephants as seed dispersers, as the
seeds are too large for them to swallow.
They may contribute in some cases
to dispersal outside the fruit-fall
zone by short distance ectozoochoric
transport, similar to what rodents
can disperse (Forget & Wall 2001).
For I. gabonensis, bonobos can be
considered as a poor disperser, dispersing over much
shorter distances than elephants and omitting passage
through their digestive tract.
The survival of I. gabonensis is compromised
without a seed-dispersal vector such as forest
elephants.
References
Alers, M.P.T., Blom, A., Kiyengo, C.S., Masunda, T. and
Barnes, R.F.W. 1992. Preliminary assessment of the
status of the forest elephant in Zaire. African Journal
of Ecology 30:279–291.
Atangana, A.R., Tchoundjeu, Z., Fondoun, J.M.,
Asaah, E., Ndoumbe, M. and Leakey, R.R.B. 2001.
Domestication of Irvingia gabonensis: 1. Phenotypic
variation in fruits and kernels in two populations from
Cameroon. Agroforestry Systems 53:55–64.
Beaune, D., Bollache, L., Fruth, B. and Bretagnolle,
F. 2012. Bush pig (Potamochoerus porcus) seed
predation of bush mango (Irvingia gabonensis) and
other plant species in Democratic Republic of Congo.
African Journal of Ecology 50(4):509–512.
Blake, S., Strindberg, S., Boudjan, P., Makombo, C.,
Bila-Isia, I., Ilambu, O., Grossmann, F., Bene-Bene,
L., de Semboli, B., Mbenzo, V., S’Hwa, D., Bayogo,
R., Williamson, L., Fay, M., Hart, J. and Maisels, F.
2007. Forest elephant crisis in the Congo Basin. PloS
Biology 5:945–953.
Burkey, T.V. 1994. Tropical tree species diversity: a test
of the Janzen-Connell model. Oecologia 97:533–540.
Connell, J.H. 1971. On the role of natural enemies in
99
Beaune et al.
preventing competitive exclusion in some marine
mammals and in rain forest trees. In: Boer, P.J.
and Gradwell, G. (eds.), Dynamics of populations,
PUDOC. pp. 298–310.
Forget, P.M. and Wall, S.B.V. 2001. Scatter-hoarding
rodents and marsupials: convergent evolution on
diverging continents. Trends in Ecology and Evolution
16:65–67.
Grossmann, F., Hart, J.A., Vosper, A. and Ilambu, O.
2008. Range occupation and population estimates
of bonobos in Salonga National Park: Application
to large-scale surveys of bonobos in the Democratic
Republic of Congo. In: Furuichi, T. and Thompson, J.
(eds.), Bonobos: behavior, ecology and conservation.
New York: Springer Science+Business Media, pp.
189–216.
Hohmann, G. and Fruth, B. 2003. LuiKotal—A new site
for field research on bonobos in the Salonga National
Park. Pan Africa News 10:25–27.
Janzen, D.H. 1970. Herbivores and the number of tree
species in tropical forests. American Naturalist
104:501.
Leakey, R.R.B., Greenwell, P., Hall, M.N., Atangana,
A.R., Usoro, C., Anegbeh, P.O., Fondoun, J.M. and
Tchoundjeu, Z. 2005. Domestication of Irvingia
gabonensis: 4. Tree-to-tree variation in foodthickening properties and in fat and protein contents
of dika nut. Food Chemistry 90:365–378.
Mohneke, M. and Fruth, B. 2008. Bonobo (Pan
paniscus) density estimation in the SW Salonga
100
National Park/Democratic Republic of Congo:
Common methodology revisited. In: Furuichi, T. and
Thompson, J. (eds.), Bonobos: Behavior, ecology, and
conservation. pp. 151–166.
Morgan, B.J. and Lee, P.C. 2007. Forest elephant group
composition, frugivory and coastal use in the Reserve
de Faune du Petit Loango, Gabon. African Journal of
Ecology 45:519–526.
Nchanji, A.C. and Plumptre, A.J. 2003. Seed germination
and early seedling establishment of some elephantdispersed species in Banyang-Mbo Wildlife Sanctuary,
south-western Cameroon. Journal of Tropical Ecology
19:229–237.
Paine, C.E.T., Norden, N., Chave, J., Forget, P-M.,
Fortunel, C., Dexter, K.G. and Baraloto, C. 2012.
Phylogenetic density dependence and environmental
filtering predict seedling mortality in a tropical forest.
Ecology Letters 15:34–41.
Theuerkauf, J., Waitkuwait, W.E., Guiro, Y., Ellenberg, H.
and Porembski, S. 2000. Diet of forest elephants and
their role in seed dispersal in the Bossematie Forest
Reserve, Ivory Coast. Mammalia 64:447–459.
Van Krunkelsven, E., Bila-Isia, I. and Draulans, D. 2000.
A survey of bonobos and other large mammals in
the Salonga National Park, Democratic Republic of
Congo. Oryx 34:180–187.
White, L. and Abernethy, K. 1997. A guide to the
vegetation of the Lope Reserve, Gabon. New York:
Wildlife Conservation Society.
Pachyderm No. 52 July–December 2012
CITES-MIKE update
MIKE–ETIS UPDATES
CITES-MIKE update
Mise à jour de la CITES-MIKE
Julian Blanc
Acting Coordinator and Data Analyst, CITES-MIKE, UNEP/DELC, United Nations Compound T-36, UN Avenue
Gigiri, Nairobi
email: [email protected]
MIKE 3.0
MIKE 3.0
As reported in Pachyderm 51, the second phase of
the MIKE programme in Africa, which benefitted
from generous funding from the European
Commission since 2007, concluded at the end
of 2012. There was considerable uncertainty as
to whether funding could be secured to continue
MIKE operations beyond that date, but on 7
November 2012 the European Commission
approved a new grant under its Thematic
Programme for the Environment and Natural
Resources (ENRTP), which will allow MIKE
to continue for a further two years. The CITES
Secretariat is extremely grateful to the European
Union for its continued support to the MIKE
programme.
This new phase, dubbed MIKE 3.0, aims to
consolidate the achievements of the previous
two phases, taking advantage of key lessons
learned to ensure that the ranger-based monitoring
systems implemented at sites are consistent
with site-level capacity. MIKE 3.0 also seeks
to establish sustainable mechanisms for training
in collaboration with appropriate training
institutions. In pursuit of sustainability, MIKE 3.0
will work to ensure that monitoring systems are
relevant to conservation and adaptive management
requirements at all levels, from field sites through
national authorities to subregional institutions and
the international community at large.
As with MIKE phases 1 and 2, IUCN
Comme indiqué dans Pachyderm 51, la deuxième phase
du programme MIKE en Afrique qui a bénéficié d’un
financement généreux de la Commission Européenne
depuis 2007, a pris fin à la fin de 2012. Il y avait beaucoup
d’incertitude quant à savoir si le financement pourrait
être assuré pour poursuivre les activités de MIKE au-delà
de cette date, mais le 7 novembre 2012, la Commission
Européenne a approuvé une nouvelle subvention sous son
Programme thématique pour l’Environnement et la gestion
des Ressources Naturelles (ENRTP), qui permettra à MIKE
de continuer pendant encore deux ans. Le Secrétariat
de la CITES est extrêmement reconnaissant à l’Union
Européenne pour son soutien continu au programme MIKE.
Cette nouvelle phase, baptisée MIKE 3.0, vise à
consolider les acquis des deux premières phases, en
profitant des principales leçons apprises afin de s’assurer
que les systèmes de surveillance par les écogardes, mis
en œuvre sur les sites sont compatibles avec les capacités
au niveau du site. MIKE 3.0 cherche également à établir
des mécanismes durables de formation en collaboration
avec des institutions de formation appropriées. Dans la
poursuite de la durabilité, MIKE 3.0 va veiller à ce que les
systèmes de contrôle soient pertinents à la conservation
et aux exigences de la gestion adaptative à tous les
niveaux, à partir des sites sur le terrain en passant par
les autorités nationales aux institutions sous-régionales
et la communauté internationale dans son ensemble.
Comme pour les phases 1 et 2 de MIKE, l’UICN sera
le principal partenaire de MIKE au niveau de la mise
en œuvre sur le terrain en hébergeant les unités d’appui
Pachyderm No. 52 July–December 2012
101
Blanc
will be MIKE’s principal partner at the field
implementation level through hosting the
MIKE subregional support units. However,
and in line with the current economic climate,
funding for MIKE 3.0 is at a considerably
reduced level compared to the previous phases
of the programme. This has inevitably resulted in
some changes, including the loss of some loyal
and valuable members of the MIKE team. Sani
Massalatchi—MIKE subregional support officer
(SSO) for West Africa—left the programme on
30 October 2012, while Edison Nuwamanya—
SSO for Eastern Africa—left on 31 December.
Saying goodbye is never easy, and particularly to
colleagues who have invested a substantial part of
their professional lives to the MIKE programme.
The CITES Secretariat and its MIKE programme
are grateful to Edison and Sani for their invaluable
contributions over the years and wish them the
very best in all their future endeavours.
As a result of these changes, the previous
four sub-regional support units (SSUs) are being
consolidated into two units. The Eastern and
Southern Africa SSUs are now merged into a
single office, based in Pretoria, South Africa, and
overseen by Tapera Chimuti with administrative
support by Ditse Mduli. The Central and West
Africa office will be headed by Sébastien Luhunu
from Yaoundé, Cameroon, supported by Martha
Bechem and with administrative assistance by
Solange Soh and Edith Lompo. The MIKE Central
Coordinating Unit (CCU), which continues to
be hosted by the United Nations Environment
Programme in Nairobi, has also been downsized,
with the two professional positions that existed
in phase 2 (MIKE coordinator and data analyst)
now being merged into a single post.
Another feature of MIKE 3.0 will be the
progressive extension of monitoring activities to
other CITES-listed mammal species threatened by
trade. The deployment of the MIST software by
MIKE over the last few years, and the forthcoming
rollout of SMART (more on which below), has
enabled sites to use MIKE-promoted methods to
collect data on illegal activities affecting other
species of wildlife. As elephants are far from the
only species currently threatened by illegal killing
and trade, MIKE 3.0 will pave the way for the
development of a larger, multi-species project,
which will aim not only to monitor levels of illegal
102
sous-régionaux de MIKE. Cependant, et en accord
avec le contexte économique actuel, le financement
de MIKE 3.0 est à un niveau considérablement réduit
par rapport aux phases précédentes du programme.
Cela a inévitablement entraîné certains changements, y
compris la perte de certains membres loyaux et précieux
de l’équipe de MIKE. Sani Massalatchi, responsable
de l’appui sous-régional pour l’Afrique occidentale, a
quitté le programme le 30 octobre 2012, tandis qu’Edison
Nuwamanya, responsable de l’appui sous-régional pour
l’Afrique orientale, est parti le 31 décembre. Dire au
revoir n’est jamais facile, et surtout aux collègues qui ont
investi une partie importante de leur vie professionnelle
au programme MIKE. Le Secrétariat de la CITES et son
programme MIKE sont reconnaissants à Edison et Sani
pour leur contribution inestimable au fil des années et
nous leur souhaitons nos meilleurs vœux dans tous leurs
futurs projets.
En raison de ces changements, les quatre unités de
soutien sous-régional (USS) précédentes sont regroupées
en deux unités. Les USS d’Afrique orientale et australe
sont maintenant fusionnées en un seul bureau basé à
Pretoria, Afrique du Sud, et supervisé par Tapera
Chimuti avec le soutien administratif de Ditse Mduli.
Le bureau d’Afrique centrale et occidentale sera dirigé
par Sébastien Luhunu de Yaoundé, Cameroun, soutenu
par Martha Bechem avec l’assistance administrative
de Solange Soh et Edith Lompo. L’UCC MIKE, qui
continue à être abritée par le Programme des Nations
Unies pour l’Environnement à Nairobi, a également été
réduit, et les deux positions professionnelles qui existaient
dans la phase II (coordonnateur de MIKE et analyste de
données) sont maintenant fusionnées en un seul poste.
Une autre caractéristique de MIKE 3.0 sera l’extension
progressive des activités de surveillance à d’autres espèces
de mammifères inscrites par la CITES et menacées par le
commerce. Le déploiement du logiciel MIST par MIKE
au cours des dernières années, et le déploiement prochain
de SMART (plus de détails ci-dessous), ont permis aux
sites d’utiliser des méthodes promues par MIKE pour
collecter des données sur les activités illégales affectant
d’autres espèces de la faune. Comme les éléphants sont
loin d’être les seules espèces actuellement menacées
par le braconnage et le commerce, MIKE 3.0 va ouvrir
la voie à l’élaboration d’un plus grand projet couvrant
plusieurs espèces, qui aura pour but non seulement de
surveiller les niveaux d’abattage illégal qui affectent une
série d’espèces au niveau mondial, mais aussi de renforcer
les capacités pour une action de conservation efficace.
Pachyderm No. 52 July–December 2012
CITES-MIKE update
killing in a suite of species at a global level, but
also to build capacity for effective conservation
action.
Reports to CITES SC62 and
CoP16
The downsizing of MIKE operations comes at a
testing time for elephant populations in Africa.
At the 62nd meeting of the CITES Standing
Committee in July 2012, the MIKE programme
reported that 2011 showed the highest levels of
elephant poaching since MIKE records began 10
years earlier. MIKE data suggest that the scale of
illegal killing of elephants exceeded sustainable
levels in all four African subregions in 2011,
meaning that more elephants were killed than were
born in that year. If this trend is sustained, it could
lead to measurable declines in elephant numbers
across the continent. This pattern is matched by
the information reported by our sister programme
ETIS, with 2011 having the highest volume of
ivory seized since the 1989 ivory trade ban.
The reports prepared by MIKE and ETIS for
SC62 were integrated in a joint report that also
included information on the status of elephant
populations provided by the African and
Asian Elephant Specialist Groups; details on
enforcement actions undertaken to curb the illegal
trade in ivory provided by the CITES Secretariat;
information on the status of the African Elephant
Fund, provided by South Africa on behalf of the
African elephant range States; and data on the
legal trade in ivory supplied by UNEP-WCMC.
The joint report, which is available from http://
cites.org/eng/com/SC/62/E62-46-01.pdf, was
very well received by the Standing Committee.
In response to the report, the Committee adopted
a suite of decisions, including a request to the
eight countries identified as being most heavily
involved in the illegal ivory trade chain to submit
written reports to the Secretariat by the end of
2012 on actions taken to stem the flow of illegal
ivory through their territories.
These results of the joint report were also
presented at a meeting convened and chaired by
the CITES Secretary General, Mr John Scanlon,
in Brussels, Belgium, in November 2012. The
meeting included presentations by Holly Dublin,
Chair of AfESG and Steve Broad, Executive
Pachyderm No. 52 July–December 2012
Rapports au CP62 de la CITES et à la
CdP 16
La réduction des activités de MIKE intervient à un
moment éprouvant pour les populations d’éléphants en
Afrique. Lors de la 62ème réunion du Comité permanent
de la CITES, le programme MIKE a indiqué que 2011 a
vu les niveaux les plus élevés de braconnage d’éléphants
depuis que les données de MIKE ont commencé il y a
10 ans. Les données de MIKE suggèrent que l’ampleur
de l’abattage illégal des éléphants a dépassé les niveaux
viables dans les quatre sous-régions d’Afrique en 2011,
ce qui signifie qu’on a tué plus d’éléphants que ceux qui
sont nés au cours de cette année-là. Si cette tendance se
maintient, elle pourrait conduire à des baisses notables
dans le nombre d’éléphants à travers le continent. Cette
tendance va de pair avec les informations rapportées par
notre programme sœur ETIS, selon lesquelles 2011 a vu
le plus grand volume d’ivoire saisi depuis l’interdiction
du commerce de l’ivoire en 1989.
Les rapports établis par MIKE et ETIS pour le CP62
ont été intégrés dans un rapport conjoint qui comprenait
également des informations sur l’état des populations
d’éléphants fournis par les groupes de spécialistes des
éléphants d’Afrique et d’Asie, les détails sur les mesures
prises pour lutter contre le commerce illégal de l’ivoire
fournis par le Secrétariat de la CITES, les informations
sur la situation du Fonds pour l’Eléphant d’Afrique
fournies par l’Afrique du Sud au nom des Etats de l’aire
de distribution des éléphants d’Afrique, et les données
sur le commerce légal de l’ivoire fournies par le PNUEWCMC. Le rapport conjoint, qui est disponible sur le site
http://cites.org/eng/com/SC/62/E62-46-01.pdf, a été très
bien accueilli par le Comité permanent. En réponse à ce
rapport, le Comité a adopté un ensemble de décisions,
y compris une demande aux huit pays identifiés comme
étant les plus fortement impliqués dans la chaîne du
commerce illégal de l’ivoire de soumettre des rapports
écrits au Secrétariat avant la fin de 2012 sur les mesures
prises pour endiguer le flux d’ivoire illégal sur leur
territoire.
Les résultats du rapport conjoint ont également été
présentés lors d’une réunion convoquée et présidée par
le Secrétaire général de la CITES, M. John Scanlon,
à Bruxelles, Belgique, en novembre 2012. La réunion
comportait des présentations par Holly Dublin,
Présidente du GSEAf et Steve Broad, Directeur exécutif
de TRAFFIC International, ainsi que par le programme
MIKE. Ont participé à la réunion une délégation des
103
Blanc
Director of TRAFFIC International, as well as
from the MIKE programme. The meeting was
attended by a delegation of African elephant range
State wildlife authorities (Botswana, Cameroon
and Kenya), the Secretariat of the African,
Caribbean and Pacific Group of States (ACP), the
European Commission, the European Parliament,
and representatives of the governments of several
European Union member States. In a productive
discussion, participants highlighted the important
role that the monitoring and joint reporting that
MIKE, ETIS and the specialist groups plays in
gaining a better understanding of the dynamics of
the illegal ivory trade and in elephant conservation
in general.
The report submitted by the MIKE programme
for consideration at the 16th meeting of the
Conference of Parties (Bangkok, Thailand,
3–14 March 2013) is largely based on the report
submitted to SC62. A large amount of carcass
data from Africa and Asia has been received for
the first half of 2012 and is still being collated.
These data will be used to produce an updated
analysis of trends in the illegal killing of elephants
and will be incorporated into the MIKE report to
CoP 16. The CoP16 report, available from http://
www.cites.org/eng/cop/16/doc/E-CoP16-53-01.
pdf, also highlights achievements made in the
course of MIKE implementation in the course of
its second phase.
SMART: A new-generation site
conservation tool
Much of the progress made in MIKE
implementation in recent years is a direct
consequence of the deployment by MIKE of
flexible and user-friendly ranger-based monitoring
systems designed to meet first and foremost the
monitoring needs of conservation areas. Such
systems, which are also able to capture and
manage the data needed by MIKE, are not seen
by site managers as an external imposition or a
reporting burden, but as a genuinely useful tool
to aid in site management. This has resulted in
encouraging levels of uptake, with no fewer than
16 range States deciding in recent years to adopt
such systems beyond their MIKE sites and across
their protected area networks.
As reported in Pachyderm 49, the MIKE
104
autorités de la faune des états de l’aire de répartition de
l’éléphant d’Afrique (le Botswana, le Cameroun et le
Kenya), le Secrétariat du Groupe des Etats d’Afrique,
des Caraïbes et du Pacifique (ACP), la Commission
Européenne, le Parlement européen et les représentants
des gouvernements de plusieurs Etats membres de l’Union
européenne. Au cours d’une discussion productive,
les participants ont souligné le rôle important que la
surveillance et les rapports conjoints que MIKE, ETIS et
les groupes de spécialistes jouent pour promouvoir une
meilleure compréhension de la dynamique du commerce
illégal de l’ivoire et la conservation des éléphants en
général.
Le rapport présenté par le programme MIKE pour
examen à la 16ème réunion de la Conférence des Parties
(Bangkok, Thaïlande, du 3 au 14 mars 2013) repose
en grande partie sur le rapport présenté au Cp62. On a
reçu une grande quantité de données sur les carcasses en
provenance d’Afrique et d’Asie pour le premier semestre
de 2012 et on continue toujours à les rassembler. Ces
données seront utilisées pour produire une analyse
actualisée des tendances de l’abattage illégal des éléphants
et seront incorporées dans le rapport de MIKE présenté à
la CdP 16. Le rapport CdP16, disponible sur le site http://
www.cites.org/eng/cop/16/doc/E-CoP16-53-01.pdf, met
également en lumière les réalisations effectuées dans
le cadre de la mise en œuvre de MIKE au cours de sa
deuxième phase.
SMART: Un outil de la nouvelle
génération pour la conservation sur
site
Une grande partie des progrès réalisés dans la mise en
œuvre de MIKE ces dernières années est une conséquence
directe de la mise en place par MIKE des systèmes de
surveillance flexibles et faciles à utiliser basés sur les
écogardes conçus pour répondre avant tout aux besoins
de la surveillance des aires de conservation. Ces systèmes,
qui sont également en mesure de saisir et de gérer les
données requises par MIKE, ne sont pas considérés par
les gestionnaires des sites comme imposés de l’extérieur
ou un fardeau de rapport, mais comme un outil vraiment
utile pour aider à la gestion du site. Il en a résulté des
niveaux d’adoption très encourageants, avec pas moins de
16 Etats de l’aire de distribution qui ont décidé d’adopter
ces dernières années de tels systèmes au-delà de leurs
sites MIKE et à travers leurs réseaux d’aires protégées.
Comme indiqué dans Pachyderm 49, depuis quelques
années le programme MIKE a été étroitement impliqué
Pachyderm No. 52 July–December 2012
CITES-MIKE update
programme has for the last few years been
closely involved in the SMART partnership, a
consortium of conservation agencies that aims to
develop a new and improved tool for measuring,
evaluating and improving the effectiveness of
wildlife law-enforcement patrols and site-based
conservation activities. At the core of SMART is
a cross-platform, free and open source software
application to collect, manage and analyse spatial
data relevant to conservation area management
and protection. Building on the strengths of
existing systems, SMART is extensible and plugins can be developed for specific applications,
such as ecological monitoring, patrol planning and
intelligence, human–wildlife conflict monitoring
and mitigation, and virtually any other site-level
conservation activity that involves events in time
and space.
SMART aims to be much more than a data
management tool—it is a suite of best practices
developed by the people who use them and
designed to help protected area and wildlife
managers better plan, evaluate and implement
their activities and to promote good governance.
SMART includes a desktop application, training
and implementation manuals, web-based training
materials, standardized protocols and an active
and growing community of users and conservation
practitioners who can share experiences and have
a say in improving and sustaining SMART over
the long term.
A beta version of the SMART software was
released in August 2012 and the full public launch
of SMART v.1.0 is scheduled for early 2013. For
more details and to download the software and
training materials, visit the SMART website at
http://www.smartconservationsoftware.org.
Pachyderm No. 52 July–December 2012
dans le partenariat SMART, un consortium d’organismes
de conservation qui vise à développer un nouvel outil
amélioré pour mesurer, évaluer et améliorer l’efficacité
des patrouilles de mise en application de la loi sur la
faune et les activités de conservation basées sur le site.
Au cœur de SMART, il y a une application logicielle de
plusieurs plateformes, gratuit et aux sources ouvertes pour
recueillir, gérer et analyser les données spatiales relatives
à la gestion des aires de conservation et de protection.
En s’appuyant sur les points forts des systèmes existants,
SMART est extensible et on peut développer des modules
complémentaires pour des applications spécifiques, telles
que le suivi écologique, la planification des patrouilles et
la collecte des renseignements, le suivi du conflit hommefaune et son atténuation, et pratiquement toute autre
activité de conservation au niveau du site qui implique
des événements dans le temps et dans l’espace.
SMART vise à être beaucoup plus qu’un outil
de gestion des données. Il s’agit d’un ensemble de
meilleures pratiques développées par les personnes qui
les utilisent, conçues pour aider les gestionnaires des
aires protégées et de la faune à mieux planifier, évaluer
et mettre en œuvre leurs activités et promouvoir la bonne
gouvernance. SMART comprend une application assistée
par ordinateur, des manuels de formation et de mise en
œuvre, un matériel de formation en ligne, des protocoles
standardisés et une communauté active et croissante des
utilisateurs et des professionnels de la conservation qui
peuvent partager leurs expériences et qui ont leur mot à
dire dans l’amélioration et le maintien à long terme de
SMART.
Une version bêta du logiciel SMART a été publiée
en août 2012 et le lancement public complet de
SMART v.1.0 est prévu pour début 2013. Pour plus de
détails et pour télécharger le logiciel et le matériel de
formation, visitez le site Web de SMART sur http://www.
smartconservationsoftware.org.
105
Milliken and Sangalakula
Progress in implementing the Elephant Trade Information
System (ETIS)
Avancement dans la mise en œuvre du Système d’Information
sur le Trafic des Eléphants (ETIS)
Tom Milliken1 and Louisa Sangalakula2
Elephant & Rhino Programme Coordinator, TRAFFIC, PO Box CY 1409, Causeway, Harare, Zimbawe
email: [email protected]
2
TRAFFIC East/Southern Africa, PO Box CY 1409, Causeway, Harare, Zimbabwe
1
The last six months have been a busy time for
ETIS. With the 16th meeting of the CITES Conference of Parties (CoP16) rapidly approaching,
the fifth comprehensive analysis of the ETIS data
has been completed and is now available on the
CITES website (http://www.cites.org/eng/cop/16/
doc/E-CoP16-53-02-02.pdf). The ETIS data represent the largest collection of seizure records on
elephant product trade in the world. As of 26 June
2012 the data comprised 18,302 elephant product
seizure records from 89 countries or territories,
compiled since 1989. Since the ETIS analysis to
CoP15 in 2009, nearly 4,000 additional elephant
product seizure records have been added to the
database, but 2012—with only 129 seizure records—remained data deficient. Thus, the CoP16
analysis was restricted to the 16-year period 1996
through 2011.
This analysis breaks new ground and
introduces a number of refinements thanks to a
Darwin Initiative grant from the UK government
with the University of Reading that allowed
statisticians Dr Fiona Underwood and Robert
W. Burn to develop a new analytical framework
for the ETIS data. While the basic conceptual
design previously used for all ETIS analyses
since CoP12 still underpins this assessment, using
Bayesian hierarchical modelling, a set of new or
improved features now characterize the refined
methodological approach. These include:
• superior bias-adjustment methods to account
for varying seizure and reporting rates by
individual countries in each year
• better smoothing techniques to reduce anomalies
that are not indicative of underlying patterns of
106
Pendant les six derniers mois, ETIS était très occupé. Avec
l’approche rapide de la 16ème réunion de la Conférence
des Parties de la CITES (CdP16), la cinquième analyse
complète des données d’ETIS a été achevée et elle est
maintenant disponible sur le site Web de la CITES (http://
www.cites.org/eng/cop/16/doc/E-CoP16-53-02-02.pdf).
Les données d’ETIS représentent la plus grande collection
de données de saisie sur le commerce des produits issus
des éléphants dans le monde, et au 26 juin 2012 elles
comprenaient 18 302 dossiers de saisies de produits issus
des éléphants provenant de 89 pays ou territoires depuis
1989. Depuis l’analyse ETIS à la CdP15 en 2009, près de
4000 dossiers supplémentaires sur la saisie des produits
issus des éléphants ont été ajoutés à la base de données,
mais l’année 2012 qui a enregistré seulement 129 dossiers de saisie est restée une année ayant des données
insuffisantes. Ainsi, l’analyse de la CdP16 a été limitée
à la période de 16 ans, de 1996 à 2011.
Cette analyse fait des innovations et introduit un
certain nombre d’améliorations grâce à une subvention
de l’Initiative Darwin du Gouvernement britannique à
l’Université de Reading qui a permis aux statisticiens Dr.
Fiona Underwood et Robert W Burn d’élaborer un nouveau
cadre analytique pour les données d’ETIS. Bien que la
conception de base précédemment utilisée pour toutes
les analyses d’ETIS depuis la CdP12 sous-tende encore
cette évaluation, en utilisant la modélisation hiérarchique
bayésienne, un ensemble de fonctionnalités nouvelles
ou améliorées caractérisent désormais l’approche
méthodologique peaufinée. Il s’agit notamment:
• Des méthodes supérieures d’ajustement de biais pour
rendre compte des différents taux de saisies et des
rapports par les différents pays pour chaque année
• De meilleures techniques de lissage pour réduire les
anomalies qui ne sont pas indicatives des tendances du
commerce sous-jacentes dans les données
Pachyderm No. 52 July–December 2012
ETIS update
worked / travaillé 100 kg+
worked / travaillé 10–100 kg
worked / travaillé < 10 kg
raw / brut 100 kg+
raw / brut 10–100 kg
raw / brut <10 kg
Relative weight / poid
1500
1000
500
0
1996
1998
2000
2002
2004
2006
2008
2010
Figure 1. Trend showing relative weight of ivory in illegal trade by weight class and ivory type, 1996–2011 (ETIS, 26 June
2012).
Tendance montrant le poids relatif de l’ivoire dans le commerce illégal par catégorie de poids et type d’ivoire, 1996-2011
(ETIS 26 juin 2012)
trade in the data
• refinements in the assessment of the ivory
seizure data so that raw and worked ivory are
considered separately in three weight classes
(< 10 kg, 10 kg to < 100 kg, and equal to or
> 100 kg) in recognition of the fact that ivory
trade dynamics vary considerably by ivory type
and the scale of the transaction
• the production of a Transactions Index to
produce relative smoothed trends of illegal
ivory trade activity, and
• the production of a Weight Index to establish
relative, smoothed trends of the weight of
illegal ivory over time.
In terms of results, bias adjusted and smoothed
data show a sharp escalation in the illicit trade
in ivory. Indeed, from 2007 onwards, illegal
trade in ivory has surged in each successive year
reaching the highest level in at least 16 years in
2011 (Figure 1). The weight of ivory involved
in illegal ivory trade is now roughly three times
greater than what was occurring in 1998. When
these findings from ETIS are viewed together with
the results of the CITES MIKE programme, it is
Pachyderm No. 52 July–December 2012
• Améliorations dans l’analyse des données sur les saisies
d’ivoire de sorte que l’ivoire brut et travaillé soient
considérés séparément dans trois catégories de poids
(<10 kg, de 10 kg à <100 kg et égal ou >100 kg), en
reconnaissance du fait que la dynamique du commerce
de l’ivoire varie considérablement selon le type d’ivoire
et l’ampleur de la transaction
• La production d’un indice de transactions afin de
produire des tendances lissées relatives à l’activité du
commerce illégal de l’ivoire, et
• La production d’un indice de pondération pour établir
les tendances relatives lissées du poids de l’ivoire illégal
au fil du temps.
En termes de résultats, les données de biais ajustées et
lissées montrent une intensification brusque du commerce
illicite de l’ivoire. En effet, à partir de 2007, l’on a vu
une montée du commerce illégal de l’ivoire dans chaque
année successive qui a atteint en 2011 son plus haut
niveau depuis au moins 16 ans (figure 1). Le poids de
l’ivoire impliqué dans le commerce illégal est maintenant
à peu près trois fois plus élevé qu’en 1998. Lorsque ces
conclusions d’ETIS sont considérées conjointement avec
les résultats du programme MIKE de la CITES, il est de
plus en plus évident que les éléphants sont confrontés à
107
Milliken and Sangalakula
increasingly evident that elephants are facing the
most serious conservation crisis since the 1989
trade ban was imposed under the convention. It
is hoped that these worrying results will spur the
CITES parties to take decisive action to curtail
illegal trade in ivory.
The sharp upward trend is being driven by
a major increase in large-scale movements of
ivory, (which is reflected in Figure 1 in the 100+
kg weight class for raw ivory). The largest of
these are ivory seizures that involve 800 kg
or more in a single consignment; there were
8 such seizures in 2009, 9 in 2010 and 17 in
2011, totalling nearly 61 tonnes of ivory. The
increasing pattern of large movements of ivory
is the telltale work of sophisticated international
criminal syndicates that link Africa with Asia.
Currently, the lack of forensic examination to
source ivory, the absence of itemized inventory
lists concerning the composition of such seizures,
and the general failure to conduct dedicated, longterm investigations along the entire trade chain
stand as serious impediments to effective law
enforcement. It is disappointing to note that few
if any arrests occur with respect to most largescale ivory seizure cases. Failing to prosecute and
convict the criminals behind serious ivory trade
crime is a key reason that it continues. For this
reason, investigation of large-scale ivory seizures
should be recognized by the CITES parties as the
single most important ivory trade infraction for
focused follow-up attention.
In the period 2009 through 2011, the
predominant trade pattern typically involves
Kenya, Tanzania and South Africa as the
primary exit points for ivory from the African
continent, which then moves through Hong Kong
SAR, Malaysia, Philippines or Viet Nam as the
principal transit countries or territories before
reaching China and Thailand, the greatest enduse destinations driving the trade. These nine
countries and territories, in varying combinations,
comprise the paramount trade chain through
which the greatest volume of ivory is flowing at
the present time.
Another 10 countries and territories—
Cameroon, Congo, Democratic Republic of the
Congo, Egypt, Ethiopia, Gabon, Mozambique,
Nigeria, Taiwan and Uganda—represent a
secondary level of concern as they repeatedly
108
la crise de conservation la plus grave depuis l’interdiction
du commerce en 1989 en vertu de la Convention. Il est
à espérer que ces résultats inquiétants stimuleront les
Parties à la CITES à prendre des mesures décisives pour
réduire le commerce illégal de l’ivoire.
La forte tendance à la hausse est causée par une
augmentation importante des grands mouvements de
l’ivoire (reflétés dans la figure 1 dans la classe 100 + kg
d’ivoire brut). Les plus importants sont les saisies d’ivoire
de 800 kg ou plus dans un même envoi: il y avait 8, 9 et
17 de telles saisies en 2009, 2010 et 2011 respectivement,
pour un total de près de 61 tonnes d’ivoire. La tendance
croissante des grands mouvements d’ivoire révèle
l’existence d’organisations criminelles internationales
sophistiquées qui relient l’Afrique à l’Asie. Actuellement,
le manque d’expertise médico-légale pour déterminer
la source de l’ivoire, l’absence de listes d’inventaires
détaillés concernant la composition de ces saisies, ainsi
que l’absence d’enquêtes spéciales à long terme sur toute
la chaîne commerciale demeurent des obstacles sérieux à
l’application efficace de la loi. Il est décevant de constater
que peu d’arrestations, s’il y en a, se produisent à l’égard
de la plupart des grandes saisies d’ivoire. Le fait que
les criminels derrière le crime grave du commerce de
l’ivoire ne sont pas poursuivis et condamnés est l’une des
principales raisons que cela continue. Pour cette raison,
l’enquête sur les saisies d’ivoire à grande échelle doit
être reconnue par les Parties à la CITES comme la plus
importante infraction du commerce de l’ivoire nécessitant
une attention de suivi ciblée.
Au cours de la période 2009 à 2011, le circuit
prédominant du commerce implique généralement le
Kenya, la Tanzanie et l’Afrique du Sud comme les
principaux points de sortie de l’ivoire en provenance du
continent africain, qui passe ensuite par Hong Kong, la
Malaisie, les Philippines et/ou le Viet Nam en tant que
principaux pays ou territoires de transit avant d’atteindre
la Chine et la Thaïlande, qui sont les plus grandes
destinations d’utilisation finale régissant le commerce.
Ces neuf pays et territoires, dans des combinaisons
variables, constituent la principale chaîne commerciale
à travers laquelle le plus grand volume d’ivoire circule
à l’heure actuelle.
Dix autres pays et territoires, le Cameroun, le Congo,
la République Démocratique du Congo, l’Egypte,
l’Ethiopie, le Gabon, le Mozambique, le Nigéria, Taiwan
et l’Ouganda, représentent un niveau secondaire de
préoccupation, car ils ne cessent de jouer un rôle important
de soutien au commerce illicite de l’ivoire. A l’exception
de l’Egypte et de Taiwan, qui n’ont pas de populations
Pachyderm No. 52 July–December 2012
ETIS update
play important supporting roles in the illicit
ivory trade. Except for Egypt and Taiwan, which
have no native elephant populations, all of these
players are continual sources of illegal ivory,
and some also function as entrepôt or transit
countries and on occasion as exit points for
ivory leaving the African continent. Taiwan is
a potential transit link for ivory moving through
Asia, while Egypt harbours a major unregulated
domestic ivory market. Overall, the 9 priority and
10 secondary countries and territories of concern
collectively account for two-thirds of all illicit
ivory trade activity since CoP15, according to
the ETIS analysis. The presence of organized
crime syndicates is an increasingly entrenched
feature behind this illicit trade, and governance
shortcomings seriously undermine effective law
enforcement along the entire trade chain.
The ETIS analysis does not establish a
correlation between the first conditional oneoff ivory sale under CITES in June 1999 and
subsequent illicit trade in ivory. Following that
event, the bias-adjusted and smoothed trend shows
some incremental increase but remains generally
flat overall. On the other hand, the second one-off
ivory sale under CITES in October/November
2008 preceded a sharp increase in illicit ivory
trade. However, the correlation between this oneoff sale and the increase in illegal ivory trade in
subsequent years does not establish causality.
Although China and Japan were beneficiaries
of the second one-off sale, these countries exhibit
completely contrary patterns in the data. In China,
involvement in illicit ivory trade has been growing
incrementally every year since 1996, with the
general annual rate of increase continuing without
interruption after the one-off sale, to account for
about 40% of all illegal ivory trade transactions in
2011. For Japan, involvement in illicit ivory trade
has continued to decrease following the one-off
sale and is considerably less than 1% in 2011.
This strongly suggests that in both countries, other
factors are operative that either exacerbate or
mitigate ivory consumption beyond the impact
of CITES one-off events.
Some of these factors are evident from the
correlations that have been established through
ETIS and MIKE research—for example, the
degree of law enforcement, governance factors,
consumer spending in end-use countries and so
Pachyderm No. 52 July–December 2012
d’éléphants natifs, tous ces acteurs sont des sources
constantes d’ivoire illégal, et certains fonctionnent aussi
comme un entrepôt ou un pays de transit et, à l’occasion,
des points de sortie de l’ivoire qui quitte le continent
africain. Taiwan est un lien potentiel du transit de l’ivoire
qui passe à travers l’Asie, alors que l’Egypte abrite un
grand marché intérieur d’ivoire non réglementé. Dans
l’ensemble, les 9 pays et territoires prioritaires et les
10 pays et territoires secondaires de préoccupation sont
collectivement responsables de deux tiers de toutes les
activités du commerce illicite d’ivoire depuis la CdP15,
selon l’analyse ETIS. La présence d’organisations du
crime organisé est une caractéristique de mieux en mieux
établie soutenant ce commerce illicite, et les lacunes de
gouvernance portent gravement atteinte à l’application
efficace de la loi tout au long de la chaîne commerciale.
L’analyse d’ETIS n’établit pas de corrélation entre
la première vente d’ivoire exceptionnelle sous la CITES
en juin 1999 et le commerce illicite ultérieur de l’ivoire.
Après cet événement, la tendance de biais ajustée et
lissée montre une augmentation progressive mais reste
généralement plat dans son ensemble. Par contre, la
seconde vente d’ivoire de la CITES en octobre/novembre
2008 a précédé une forte augmentation du commerce
illicite de l’ivoire. Cependant, la corrélation entre cette
vente exceptionnelle et l’augmentation du commerce
illégal de l’ivoire dans les années suivantes n’établit pas
de lien de causalité. Même si la Chine et le Japon ont été
les bénéficiaires de la deuxième vente exceptionnelle, ces
pays présentent des tendances totalement contraires dans
les données. En Chine, l’implication dans le commerce
illicite de l’ivoire a progressivement augmenté chaque
année depuis 1996, et le taux général de croissance
annuelle continue sans interruption après la vente
exceptionnelle, pour constituer environ 40% de toutes
les transactions du commerce illicite de l’ivoire en
2011. Pour le Japon, l’implication dans le commerce
illicite de l’ivoire a continué à diminuer suite à la vente
exceptionnelle et elle était nettement inférieure à 1% en
2011. Cela suggère fortement que, dans les deux pays,
d’autres facteurs accentuent la consommation d’ivoire ou
l’atténuent au-delà de l’impact des événements ponctuels
de la CITES. Certains de ces facteurs sont évidents à
partir des corrélations qui ont été établies par la recherche
d’ETIS et de MIKE, par exemple, le degré d’application
de la loi, les facteurs de gouvernance, les dépenses de
consommation dans les pays d’utilisation finale etc., mais
une évaluation exhaustive et une modélisation de tous les
facteurs à l’origine de l’abattage illégal des éléphants et le
commerce de l’ivoire est nécessaire pour établir les causes
109
Milliken and Sangalakula
on—but an exhaustive assessment and modelling
of all drivers behind the illegal killing of elephants
and trade in ivory is required to establish the
causes or group of causes behind the increase.
Such analysis constitutes a major undertaking
that is beyond the scope of the ETIS and MIKE
programmes at the present time.
At the same time, the ETIS report notes that
in view of the escalating trend, there is little to
suggest that implementation of the CITES action
plan for the control of trade in African elephant
ivory, adopted in 2005, has had measurable impact
in curtailing illicit trade in ivory. Sanctions are
overtly mentioned in the action plan of Decision
13.26, but they are almost never invoked, even
against countries that are, as specified in the
Decision, ‘found not to implement this action
plan, or where significant quantities of ivory are
found to be illegally sold’. Trade restrictions
are also specified for lack of compliance with
provisions for control of internal trade in
Resolution Conf. 10.10 (Rev. CoP15). However,
the only occasion in which sanctions were
imposed was in 2008 against 13 elephant range
States for an administrative infraction: failing to
submit responses to the CITES Secretariat for
an ivory trade questionnaire agreed at CITES
CoP14. Countries that exhibit chronic failure to
implement the long-standing requirements for
internal trade in ivory as articulated in Resolution
Conf. 10.10 (Rev. CoP15) or other actions called
for in the annex to Decision 13.26 should be held
accountable. Regrettably, the ETIS analyses seem
to chronicle the same offenders time and time
again. With a full-blown elephant crisis upon us,
CoP16 provides the ideal opportunity for CITES
parties to agree to stronger action.
TRAFFIC was able to present the ETIS
analysis for CoP16 to government representatives
from Asian elephant range States that attended
the MIKE Sub-regional Steering Committee
meeting for Southeast Asia held in Hanoi, Viet
Nam, 3–4 December 2012. This meeting afforded
an opportunity to review participation in ETIS
and discuss ivory trade issues with a key Asian
constituency, including representatives from
Cambodia, China, Indonesia, Laos, Malaysia,
Myanmar, Thailand and Viet Nam.
In other news, the three-year Darwin Initiative
grant ‘Enhancing the Elephant Trade Information
110
ou groupes de causes à l’origine de l’augmentation. Une
telle analyse constitue une entreprise majeure qui est audelà de la portée des programmes d’ETIS et de MIKE à
l’heure actuelle.
Dans le même temps, le rapport ETIS constate que,
compte tenu de la tendance croissante, il y a peu de choses
pour suggérer que la mise en œuvre de ce qu’on appelle «
le plan d’action de la CITES pour le contrôle du commerce
de l’ivoire de l’éléphant d’Afrique » adopté en 2005 a eu
des impacts mesurables sur l’élimination du commerce
illicite de l’ivoire. Des sanctions sont ouvertement
mentionnées dans le « plan d’action » de la décision
13.26, mais elles ne sont presque jamais invoquées même
contre des pays qui ne mettent pas en œuvre ce plan
d’action, comme spécifié dans la décision, ou lorsqu’on
trouve que des quantités importantes d’ivoire ont été
vendues illégalement. Les restrictions au commerce sont
également précisées pour manque de conformité avec
les dispositions de contrôle du commerce intérieur dans
la résolution Conf. 10.10 (Rev. CdP15). Cependant, la
seule occasion où des sanctions ont été imposées était
en 2008 contre 13 Etats de l’aire de distribution des
éléphants pour une infraction administrative: d’avoir
omis de soumettre leurs réponses au Secrétariat de la
CITES pour un questionnaire sur le commerce de l’ivoire
convenu à la CdP14. On devrait tenir responsables les
pays qui présentent une incapacité chronique à mettre en
œuvre les exigences de longue date pour le commerce
international de l’ivoire comme stipulé dans la résolution
Conf. 10.10 (Rev. CoP15) ou d’autres actions préconisées
dans l’annexe à la décision 13.26. Malheureusement, les
analyses d’ETIS semblent faire des rapports détaillés à
maintes reprises sur les récidivistes. Etant donné la crise
grave actuelle à laquelle les éléphants font face, la CdP16
offre une occasion idéale à la CITES de se mettre d’accord
sur les mesures plus énergiques.
TRAFFIC a pu présenter l’analyse ETIS pour la CdP16
aux représentants des gouvernements des Etats de l’aire
de distribution des éléphants d’Asie qui ont participé
à la réunion du Comité directeur sous-régional pour
l’Asie du Sud-Est qui s’est tenue à Hanoï au Viet Nam
du 3 au 4 décembre 2012. Cette réunion était l’occasion
d’examiner la participation à ETIS et de discuter les
questions relatives au commerce de l’ivoire avec un
groupe important d’Asie, y compris des représentants
du Cambodge, de la Chine, de l’Indonésie, du Laos, de la
Malaisie, de Myanmar, de la Thaïlande et du Viet Nam.
Concernant d’autres nouvelles, la subvention sur trois
ans de l’Initiative de Darwin « Renforcement du Système
d’Information sur le Trafic des Eléphants pour guider
Pachyderm No. 52 July–December 2012
ETIS update
System to guide CITES policy’ has now officially
come to an end. This seminal project with the
University of Reading places ETIS on the
threshold of a promising new era through the
delivery of a new ETIS online database system.
As soon as a French version of the website is
operational, the CITES Parties will have secure
online access to all ivory seizure records that
relate to their country at any time. Following
a validation process under the auspices of the
CITES Secretariat, designated representatives
of each CITES party will be able to create new
seizure records online, review and download
their data, and access training materials and other
resources whenever required. The online ETIS
system is restricted to government data providers.
As soon as both anglophone and francophone
elephant range States can be equally serviced on
the website, it will be launched with the CITES
Parties. We expect to have this system up and
running before the 16th meeting of the CITES
Conference of Parties (CoP16) in early March
2013.
To support the long-term operational
sustainability of ETIS, which has been dependent
upon a core group of individuals since its inception,
an ETIS Standard Operating Procedures Manual
(SOP) has also been produced through the Darwin
Initiative so that all of the procedures that relate
to data collection, storage, retrieval, analysis and
security are documented and institutionalized to
ensure continuity into the future. While production
of a SOP fills a major gap, we fully recognize that
the manual is a living, iterative piece of work that
will periodically be updated and augmented with
further material as we move forward.
Another aspect of the Darwin Initiative
project was to enhance the capabilities of
national CITES management authorities to
track and report elephant product seizure cases
to ETIS. Toward that end, Jared Crawford has
produced a new training module explaining the
features and the functionality of the new online
ETIS system to government data providers. This
training programme will be available on the
ETIS website for downloading and use as a selftutorial whenever needed. With a series of detailed
explanatory notes, we hope this offering will be a
useful tool for assisting government authorities to
make full use of the online ETIS facility.
Pachyderm No. 52 July–December 2012
la politique de la CITES » a officiellement pris fin. Ce
projet clé fait avec l’Université de Reading place ETIS
sur le seuil d’une nouvelle ère prometteuse grâce au un
nouveau système de base de données d’ETIS en ligne.
Dès qu’une version française du site sera opérationnelle,
les Parties à la CITES auront un accès en ligne sécurisée
à toutes les saisies d’ivoire qui se rapportent à leur pays
à tout moment. Suite à un processus de validation sous
les auspices du Secrétariat de la CITES, les représentants
désignés de chaque Partie à la CITES seront en mesure
de créer de nouveaux enregistrements de saisie en ligne,
consulter et télécharger leurs données, et avoir accès
au matériel de formation et d’autres ressources en cas
de besoin. Le système en ligne d’ETIS est limité aux
fournisseurs de données gouvernementales. Dès qu’on
pourra servir de la même façon les Etats anglophones
et francophones de l’aire de distribution des éléphants
sur le site, on le lancera avec les Parties à la CITES.
Nous nous attendons à ce que ce système soit en place
et fonctionne avant la 16ème réunion de la Conférence
des Parties de la CITES (CdP16) au début de mars 2013.
Pour assurer la viabilité opérationnelle à long terme
d’ETIS, qui dépend d’un petit groupe de personnes
depuis sa création, un Manuel Standard des Procédures de
Fonctionnement d’ETIS (MSPF) a également été réalisé
grâce à l’Initiative Darwin pour que toutes les procédures
qui se rapportent à la collecte de données, au stockage, à
l’extraction, à l’analyse et à la sécurité soient documentés
et institutionnalisés pour assurer la continuité dans le
futur. Alors que la production d’un MSPF comble une
lacune importante, nous sommes pleinement conscients
que le manuel est un « ouvrage itératif vivant », qui
sera régulièrement mis à jour et augmenté par d’autres
documents au fur et à mesure que nous avançons.
Un autre aspect du projet de l’Initiative de Darwin était
le renforcement des capacités des autorités nationales de
gestion de la CITES de suivre et signaler les cas de saisies
des produits issus de l’éléphant à ETIS. A cette fin, Jared
Crawford a produit un nouveau module de formation
expliquant les caractéristiques et la fonctionnalité du
nouveau système en ligne d’ETIS aux fournisseurs
de données gouvernementales. Ce programme de
formation sera disponible sur le site Web d’ETIS pour le
téléchargement et l’utilisation comme un support d’autoapprentissage en cas de besoin. Avec une série de notes
explicatives détaillées, nous espérons que cette offre
sera un outil utile pour aider les pouvoirs publics à faire
pleinement usage de la facilité en ligne d’ETIS.
Pour tester ce matériel et démontrer le fonctionnement
du nouveau système en ligne, TRAFFIC a sponsorisé
111
Milliken and Sangalakula
To test these materials and demonstrate the
new online system, under the Darwin Initiative
grant TRAFFIC sponsored a two-day training
workshop in Johannesburg, South Africa, on
17 and 18 September 2012 for 13 government
authorities from Botswana, Ethiopia, Kenya,
Malawi, Mozambique, Namibia, South Africa,
Tanzania, Uganda, Zambia and Zimbabwe. All
participants were given computers and internet
access to develop the necessary skills for accessing
and using the new online ETIS facility. Feedback
from the event was overwhelmingly positive and
participants were enthusiastic about the potential
of accessing and using their ETIS data directly
from the internet.
112
un atelier de formation de deux jours à Johannesburg,
en Afrique du Sud les 17 et 18 septembre 2012,
subventionné par l’Initiative Darwin, pour 13 autorités
gouvernementales en provenance du Botswana, de
l’Ethiopie, du Kenya, du Malawi, du Mozambique, de
la Namibie, de l’Afrique du Sud, de la Tanzanie, de
l’Ouganda, de la Zambie et du Zimbabwe. Tous les
participants ont reçu des ordinateurs et un accès à l’Internet
pour développer les compétences nécessaires pour
accéder à et utiliser la nouvelle facilité en ligne d’ETIS.
Des commentaires de l’événement étaient extrêmement
positifs et les participants étaient enthousiastes
concernant le potentiel de l’accès à et l’utilisation de
leurs données d’ETIS directement à partir de l’Internet.
Pachyderm No. 52 July–December 2012
Guidelines for Contributors
GUIDELINES FOR CONTRIBUTORS
Aim and scope
Pachyderm publishes papers and notes concerning
all aspects of the African elephant, the African rhino
and the Asian rhino with a focus on the conservation
and management of these species in the wild. At the
same time, the journal is a platform for disseminating
information concerning the activities of the African
Elephant, the African Rhino, and the Asian Rhino
Specialist Groups of the IUCN Species Survival
Commission.
Submission of manuscripts
All manuscripts should be submitted online at:
http://pachydermjournal.org
If there are any questions or concerns regarding the
submission process, please send an email to:
[email protected] or otherwise contact by post/
telephone:
The Editor, Pachyderm
IUCN/SSC AfESG
PO Box 68200 – 00200
Nairobi, Kenya
telephone: +254 20 249 3561/65
fax: +254 20 2493570
Manuscripts are accepted in both the English and
French languages. Where possible, the abstract should
be provided in both languages.
Pachyderm’s Editorial Board categorizes material
received into the following sections:
methods, Results, Discussion, but not detailed results),
3) additional key words (if any), not appearing in the
title, 4) Introduction, 5) Materials and methods, 6)
Results, 7) Discussion, 8) Conclusions, if appropriate,
9) Acknowledgements (optional, brief), 10) References
(no more than 25), 11) Tables, 12) Figure and photo
captions, 13) Figures and photos.
Papers may be reports of original biology research
or they may focus more on the socio-economic aspects
of conservation, including market surveys.
Field notes
The journal welcomes notes from the field. They may
contain figures and tables but should be < 2,500 words.
Review papers
Review papers, which are unbiased reviews of all the
existing knowledge on a specific topic, are welcomed.
Length should be < 6,000 words
Book reviews
Pachyderm invites reviews of newly published books,
which should be < 1500 words.
Letters to the editor
Letters should be addressed to the relevant Specialist
Group Chair, and should be < 1,000 words. Letters
are welcome that comment on articles published in
Pachyderm or on any other issue relating to elephant
and rhino conservation in the wild.
Preparation of manuscripts
Research and management papers
Images, figures and maps
These should be not more than 5,000 words and
be structures as follows: 1) Title, 2) Abstract of not
more than 250 words (informative type, outlining
information from the Introduction, Materials and
Preferably provide figures and maps in their original
form, for example, charts and data in Excel files, maps
as EPS and images in the highest quality possible, such
as TIF (600 dpi). Indicate clearly the author or source
of figures, maps and photographs.
Pachyderm No. 52 July–December 2012
113
Guidelines for contributors
Title and authors
The title should contain as many of the key words
as possible but should not be more than 25 words
long. Follow with the name(s) of the author(s) with
institutional affiliation and full postal and email address
of the corresponding author, to whom proofs and
editorial comments will be sent.
Journal conventions
Nomenclature
Use common names of animals and plants, giving
scientific names in italics on first mention. Generally
refer to animals in the plural form (i.e. rhinos,
elephants).
Spelling
Use British spelling, following the latest edition
of the Concise Oxford dictionary or the Oxford
English Dictionary, using ‘z’ instead of ‘s’ in words
like ‘recognize’, ‘organization’, ‘immobilized’; but
‘analyse’, ‘paralyse’. The dictionary is available online
at http://oed.com.
Numbers
Use the International System of Units for measurement
(m, km, g, ha, h) with a space between the numeral
and the unit of measurement. Give measurements in
figures, for example 12 mm, 1 km, 3 ha, except at the
beginning of a sentence.
Spell out numbers under 10 if not a unit of measurement unless the number is part of a series containing numbers 10 or over, for example: 14 adult males,
23 adult females and 3 juveniles.
In the text, use a comma as the separator for figures
four digits or more: 1,750 and 11,750. The separator
will be a full stop in French papers.
Numbers
References
We use the name-year method of citing and listing
references. As of the next issue, the punctuation and
typographic style we will use are as advocated by
the internationally recognized Council of Science
Editors in its Scientific style and format, 7th edition.
114
In the text, cite a single author: ‘(X 2005) or ‘X
(2005; cite two authors: ‘(X and Y 2005)’ or ‘X
and Y (2005)’; cite more than two authors ‘(X et
al. 2007)’ or ‘X et al. (2007)’. Note that there is
no comma between the author(s) and the year. If
multiple works are being cited, separate them by a
semi-colon, listing them in chronological order: (X
et al. 1998; B 2002; Z 2010).
In the reference list, punctuation is minimized.
Examples are drawn from previous issues of
Pachyderm:
Article in a journal or periodical
Barnes RFW, Barnes KI, Alers MPT, Blom A. 1991.
Man determines the distribution of elephants in the
rain forests of northeastern Gabon. African Journal
of Ecology 29:54–63.
Book
White I, Edwards A, eds. 2000. Conservation research
in the African rain forests: a technical handbook.
Wildlife Conservation Society, New York.
Smithers RHN.1983. Mammals of the southern African
sub-region. 2nd ed. Pretoria University, Pretoria.
Chapter in a book
Barnes RFW. 1996. Estimating forest elephant
abundance by dung counts. In: Kangwana K, ed.
Studying elephants. AWF Technical Handbook no.
7. African Wildlife Foundation, Nairobi. p. 33–48.
Unpublished material
Adcock K. 2006. Estimates of black rhino carrying
capacity at Ol Pejeta’s new rhino area. Kenya
Wildlife Service, Nairobi. Unpublished.
Blake S 2002. The ecology of forest elephant
distribution and its implications for conservation.
PhD thesis. Institute of Cell, Animal and Population
Biology, University of Edinburgh, Edinburgh.
Electronic site
Elephants of Cameroon. 2000. Saving Africa’s
vanishing giants, the elephants of Cameroon.
Pachyderm No. 52 July–December 2012
Guidelines for Contributors
http://www.nczooeletrack.org/project/index.htm.
Accessed 25 February 2000.
[AfESG] African Elephant Specialist Group. 2000.
Fencing and other barriers against problem
elephants. AfESG Technical Brief Series. IUCN
African Elephant Specialist Group, Human–
Elephant Conflict Working Group (author: Richard
Hoare). Available at: http://www.african-elephant.
org/hec/pdfs/hecfencen.pdf.
Pachyderm No. 52 July–December 2012
115

Documents pareils