Les nouvelles cellules nanocrystalines état actuel de la

Transcription

Les nouvelles cellules nanocrystalines état actuel de la
Les nouvelles cellules nanocrystalines
état actuel de la technologie
6e Symposium photovoltaïque national
SIG, Genève 24/25 Novembre 2005
Michael Graetzel
Swiss Federal Institute of Technology Lausanne
[email protected]
•
•
Nanocrystalline Films:
Dr. L. Cevey, Pascal Comte, Francine DuriauxArendse, Raphael Charvet, Dr.Carole Graetzel, Peter Chen
Dye Research:
Dr. M. K. Nazeeruddin, Dr. S. M. Zakeeruddin,
Dr.Cédric Klein, Dr. Nick Evans Dr. Peter Pechy, Anthony Burke
PV cells :
Dr. Peng Wang. Dr. Lukas Schmidt-Mende, Dr.P.
Liska, Dr. Seigo Ito, Takeru Bessho, Dr. Robin
Humphry-Baker, Nathalie Rossier, Dr. Henry Snaith,
Dr. Arthur J. Frank, (NREL Golden USA)
Electrochemistry: Dr. Qing Wang, Dr. Davide Dicenso, Ilkay Cesar, Shipan Zhang
Electron transfer:
Dr. Jacques-E.Moser, Bernard Wenger, Dr.
K.Kalyanasundaram
Modeling, analysis Dr. Guido Rothenberger, Dr Pierre Infelta, Dr.
François Rotzinger
DFT calculations: Filippo De Angelis, Simona Fantacci (Perugia), Annabella
Selloni (Princeton). Professor Barry Lever ,Toronto
Tandem bottom cell:
Professor Prof. A. Tiwari, ETH Zurich
•
•
•
•
We are grateful for financial support from
Swiss Naional Science Foundation, CTI,
European Joule program
Industrial partners
US Airforce (European Office of Aerospace Research and Development)
•
•
•
•
•
•
La découverte des cellules photovoltaiques
nanocrystallines date de 1991
Dye sensitized mesoscopic solar cells
hν
electron
glass substrate
SnO2 :F
working
electrode
TiO 2 + dye
load
I-→I3-+
I3-+ →IPt
glass substrate
electrolyte
counter
electrode
Schematic representation of the principle of
a dye-sensitized solar cell.
Demonstration of a dye-sensitized solar cell
produced in Prof. Kaneko’s laboratory.
(Techno-Festa in Hamamatsu, Nov. 8-9, 2003)
Le principe de fonctionnement
La cellule singe le principe de la
photosynthèse naturelle
Dye-sensitized photovoltaic cells:
η=iph Voc ff / Is
M. Graetzel, Nature, 2001, 414, 338.
COOH anchoring
groups
L’atout de la nanostructure
QuickTime™ and a
decompressor
are needed to see this picture.
Courtesy of Dr. Arthur J. Frank, NREL, USA
Undoped anatase crystal (001)surface
B. O’Regan, M. Grätzel, Nature 1991, 353, 737−740
Le rendement de conversion de
lumière incidente en courant
électrique et proche de 1
η =
ηcoll
ηabs*Φinj*
Les cellules nanocrystallines à colorant
convertissent très efficacement l’énergie
lumineuse en courant électrique
From Nikkei(日本経済新聞)
Miss Yamamoto
Master course student
Osaka University
60
Mesoscopic TiO2 film sensitized
by the N-719 dye
40
20
0
500
600
Wavelength [nm]
700
20
]
ABTO
O
O
HO
N
N
N
C
S
Ru
N
N
N
HO
800
2
400
C
Current [mA/cm
IPCE (%)
80
15
I sc = 17.73 mA/cm
Voc = 846 mV
10
2
FF = 0.745
Efficiency = 11.18
5
S
0
O
ABTO
O
0
200
400
600
Potential [mV]
800
Un large choix de couleurs ouvre la
voie à des nouvelles applications
COOH
COOH
S
HOOC
COOH
N
N
C
HOOC
N
N
N
HOOC
N
N
COOH
S
N
N
N
COOH
HOOC
N
N
COOH
N
C
S
Ru
Ru
Ru
N
N
C
HOOC
C
N
S
HOOC
N
N
COOH
C
S
Photocurrent action spectrum of different ruthenium complexes
attached to nanocrystalline TiO2 films
80
RuL'(NCS)
3
60
RuL
40
2 (NCS)
2
TiO 2
20
0
400
600
800
Wavelength [nm]
L = 4,4'-COOH-2,2'-bipyridine
L' = 4,4',4"-COOH-2,2':6',2"-terpyridine
1000
Various colours in a series-connected dye solar cell module
Courtesy Dr. Winfried Hoffman, CEO, RWE, SCHOTT Solar GmbH
Un excellent partenaire pour les
cellules tandem à très haut rendement
Two level tandem cell
0.8
Transmission
0.6
0.4
0.2
0.0
400
600
800
1000
Wavelength [nm]
1200
1400
A new paradigm the DSC/CIGS
tandem
Nanocrystalline dye-sensitized solar cell /cupper indium gallium selenide thin
film tandem showing > 15% conversion efficiency.
P.Liska a), R. Thampi a), D. Brémaud b) , D. Rudmann b), H.M. Upadhyaya
N. Tiwari b,c) and M. Grätzel a) submitted for publications
c)
, A.
Photocurrent action spectrum of CIGS & N719 cells
100
IPCE [%]
80
60
40
IPCE N719 12.55 mA
IPCE CIGS 26.05 mA
20
0
400
600
800
Wavelength [nm]
1000
In collaboration with Dr. A. Tiwari ETH Zurich
1200
-14
Current [mA/cm
2
]
-12
-10
-8
-6
-4
-2
0
0
200
400
600
800
Potential [mV]
1000
1200
1400
Two wire tandem DCS/CIGS Jsc 13.7 mA/cm2, Voc 1.45 V, ff 0.755, eff = 15%
STABILITY
Requirements for outdoor use according to
international PV standards applied to single crystal
silicon but so far not to thin film PV cells
UV plus heat (55-60 C):
1000 hours
Accelerated thermal test at 85 C: 1000 h
Humidity test and temperature cycling (sealing
issues)
SOLVENT-FREE SYSTEMS
SOLID (POLYMER)ELECTROLYTES,
SOLIDIFIED IONIC LIQUIDS
HOLE CONDUCTORS
ION-GEL Electolyte (NEDO)
Features of Ionic Liquids
Consists of only Ions
Liquid under wide temp. range
ex. -10℃ to 400℃
non volatile
Chemically stable and non combustible
High electronic conductivity
O
F3C
H3 C
N
+
N
O
S N S CF3
O
O
CH2CH3
1-Ethyl-3-methylimidazolium - Bis(trifluoromethylsulfonyl)
Amide
EMIm-TFSA
Thermal stability of ion gels
J. Am. Chem. Soc., 127, 4976-4983 (2005).
Une stabilité impressionante
K-19
Photoanode: 8+5
Decylphosphonate
ROBUST
Electrolyte
PMII: 0.8 M
I2: 0.15 M
NMBI: 0.5 M
0.1 M GSCN
MPN solvent
Efficiency: > 8.0%
80 oC evolution of device parameters in the dark
Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. Appl. Phys. Lett. 2005, 86. 123508.
60 oC evolution of device parameters under one sun soaking
I-V curves of K60 Dye stability data with Z650 Electrolyte at 60oC light
soaking , measured at 60oC
1 Day
14 Days
I-V curve
•
•
•
16
12
8
4
0
0
200
400
-4
Potential
600
800
Efficiencies
After 1 day 7.6%
After 14 Days8.13%
L’industrialisation progresse
Advantages vs. Silicon Cells
•
No feedstock supply problems, low cost and ease of production,
•
Performance insensitive to temperature
•
Bifacial configuration - advantage for diffuse light and albedo
•
Efficiency less sensitive to angle of incidence,
•
10 -30 percent higher energy output than silicon cells at equal SRC rating
•
Transparency for power windows
•
Color can be varied by selection of the dye, invisible PV-cells based on
near-IR sensitizers are feasable
•
Low energy content (for silicon this is 5 GJ/m2 !), payback time is only a
few months as compared to years for silicon.
•
Outperforms single junction amorphous Si
Production Forecast of Solar Modules Using Different
Technologies
MW
3500
3000
2010 (Forecast)
Jp
EU
US
SOA
ROW
1.200
1.000
500
500
500
Σ
3.700
GW
140
120
25%p.a.
30%p.a.
2500
2000
100
80
1500
1000
60
40
500
0
20
0
c-Si
thin film
"New Concepts"
2002
2005
2010
430
950
3340
20
50
290
2015
2020
2025
2030
70
c-Si
9
24
56
114
thin film
2
8
36
133
"New Concepts"
1
3
20
133
Courtesy Dr. Winfried Hoffman, CEO, RWE, SCHOTT Solar GmbH
c-Si
thin film
"New Concepts"
Konarka
Technologies, Inc.
Courtesy of Greatcell Solar
© Dyesol Ltd
10 m² of Dyesol DSC facade panels have been integrated to form a magenta »stripe« across the undulating wall
.
floor-roof of one of the Houses of the Future on display at the Sydney Olympic Park
Prototype production
AISIN
Search of new module design
from industrial point of view
< performance, durability,
number of parts, production time,
cost >
Light
Frame
Glass with TCO
seal
Glass with TCO
TCO
- - - - -- - - - -
Photo-electrode
with Dye
Damp-proof film
Electrolyte
Counter-electrode
Hitachi’s new dye sensitized cell achieves 9.3 percent efficiency
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
Real
Real Outdoor
Outdoor Test
Test of
of DSC
DSC Modules
Modules
Module
Module Unit
Unit
Series connected
64 DSC cells
Outdoor
Outdoor Test
Test
Kariya City at lat. 35°10’N,
Asimuthal angle: 0°
Facing due south, Tilted at 30°
I-V curves of K60 Dye stability data with Z650 Electrolyte at 60oC light
soaking , measured at 60oC
1 Day
14 Days
I-V curve
•
•
•
16
12
8
4
0
0
200
400
-4
Potential
600
800
Efficiencies
After 1 day 7.6%
After 14 Days8.13%
Generated Electricity
normalized as a 1kW Module
/ kWh
13
.J
A
N
.
7.
FE
B
.
15
.M
A
R
18 .
.A
P
R
21
.M
A
Y
6.
JU
L.
Result
Result 3
3
4.0
3.0
kWh
DSC
~20%
2.0
1.0
0.0
DATE
Si
The Toyota Dream House
DSC
made by
AISIN -SEIKI
http://www.toyota.co.jp/jp/news/04/Dec/nt04_1204.html
Studends make their own cells