Planck Legacy Archive - Rencontres de Moriond

Transcription

Planck Legacy Archive - Rencontres de Moriond
Planck
nominal mission data
Planck Legacy Archive
Main references for this talk are
• Planck 2013 results. Explanatory supplement
• Planck 2013 results. I. Overview of products and results
• Planck 2013 results. XI. All-sky model of thermal dust emission
• Planck 2013 results. XII. Component separation
• Planck 2013 results. XIII. Galactic CO emission
• Planck 2013 results. XIV. Zodiacal emission
• Planck 2013 results. XV. CMB power spectra and likelihood
• Planck 2013 results. XVI. Cosmological parameters
• Planck 2013 results. XVII. Gravitational lensing by large-scale structure
• Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources
• Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources
Cécile Renault (LPSC Grenoble)
on behalf of the Planck collaboration
The instruments
The RIMO gathers performance and instrumental characteristics of both instruments
•
Focal plane database
•
Beam: solid angle, FWHM
•
Effective beam window functions B(l)
•
Band averaged spectral response
•
Noise / detector (white noise level, slope, knee freq.)
Credits : ESA- AOES medialab
The explanatory supplement contains
information which is more
“convenience” oriented than
description provided in the papers.
Cécile Renault (LPSC, Planck collaboration)
Area of the sky masked
due to Solar system
objects (143 GHz SWB)
Color depends on the
survey. Around Mars.
Rencontres de Moriond, cosmology session March 2014
Frequency maps
• frequency (LFI from 30 to 70 GHz, HFI from 100 to 857 GHz)
• which data are projected: nominal mission, survey 1 or 2, half-rings (odd or even cicles)
• with zodiacal light correction applied or not
• Nside (30 & 44 GHz @ 1024, 70 GHZ @ 1024 & 2048, 100 to 857 GHz @ 2048)
30 GHz
100 GHz
353 GHz
44 GHz
70 GHz
143 GHz
217 GHz
545 GHz
857 GHz
Cécile Renault (LPSC, Planck collaboration)
Set of maps are provided to
allow use for astrophysics,
cosmology (component
separation, noise estimation
from half-rings ...)
Rencontres de Moriond, cosmology session March 2014
PCCS: almost 25,000 sources
almost 8,000 extragalactic sources
Type of galaxy
Frequency
Emission process
Nb of sources
radio-galaxies & blazars
30-217 GHz
emission by synchrotron
effect of e- in the host galaxy
or in the jets.
few hundreds
Close galaxies, or luminous or
ultra-luminous infrared galaxies
353-857 GHz
thermal emission of the dust
few thousands
30 GHz
143 GHz
857 GHz
more than 17,000 galactic sources
bright enough to be visible
above the diffuse background
mainly cores of cold molecular
clouds
detailed study by Herschel
Catalogue provides position, flux, shape, validation flags, info on neighbours
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014
SZ catalogue
1227 clusters of galaxies
detected by SZ effect
search on 83.6 % of the sky
683 known clusters, 178
confirmed by XMM, 366
other clusters
• Results from the 3 algorithms used to detect sources by SZ
effect, union of them + valid catalogue
• SZ effect unsensitive to distance of the cluster (except
dilution in the beam) --> redshift distribution less
concentrated on low z than X-ray clusters.
Catalogue provides position, SNR, (external name, z), algo + validation information
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014
Galactic diffuse emission
The COMMANDER comp. separation method provides the maps of the diffuse galactic emissions.
• The low-frequency signal is due to synchrotron, free-free and Haze emissions. Its contribution
affects almost only LFI maps.
• The high-frequency diffuse component is due to the thermal emission of galactic dust. A set of
map is provided, with different physical content to allow a full characterization of the dust.
radiance (W/m2/sr)
optical depth @ 353 [7 10-10 - 0.025]
Cécile Renault (LPSC, Planck collaboration)
dust spectral index beta [1-2.5]
temperature (K) ~[10-60 K]
Rencontres de Moriond, cosmology session March 2014
CO lines
Dedicated component separations to extract CO velocity-integrated emission maps of the
J=1-0 (115 GHz), J=2-1 (230 GHz), J=3-2 (345 GHz) lines from 100, 217, 353 GHz maps
• Type 1: low SNR but high reliability: different
transmission in each single bolometer at a
given frequency channel allows computation of
the CO lines contribution
• Type 2: higher SNR but possible residual
contamination from other diffuse foregrounds.
J=1-0 or 2-1 only, using frequency maps and
assumption on spectral behavior of other
foregrounds.
DAME survey
Planck type2
• Type 3: sensitive finder chart for low-intensity
diffuse CO emission. Uses prior information
on CO line ratios and a multi-frequency
component separation method
Taurus region
Cécile Renault (LPSC, Planck collaboration)
J=1-0 line
Rencontres de Moriond, cosmology session March 2014
CMB maps
• CMB map (nside 256 or 2048, inpainted)
• nominal (SMICA) + 3 additionnal component separation results (NILC, SEVEM,
COMMANDER-ruler)
• Inputs are the frequency maps (30-857 or 30-353 GHz)
• Methods are linear combination in pixel or in harmonic space with weighting on the sky
or with templates (from Planck data) optimized to extract the CMB component
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014
Lensing
Map of CMB lensing potential derived by minimum-variance using
143 & 217 GHz maps on ~ 70% of the sky.
,
n
o
i
t
!
a
g
m
n
r
i
o
n
f
r
n
o
i
m
e
r
y
o
a
m
d
s
r
e
n
Fo
d
e
W
e
m
o
c
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014
Tools: masks and effective beams
A set of masks, mainly useful for cosmology studies, is provided:
•
Galaxy, LFI or HFI point source masks
•
CMB, likelihood or power spectrum masks
CMB union mask
Likelihood mask
• Effective beams per frequency are also provided:
true sky X the effective beam = observed sky
217 GHz Compact sources,
effective beams, PSFs
Cécile Renault (LPSC, Planck collaboration)
• The effective beam results from the optical+electronic response
of the detectors after deconvolution and filtering of the timelines
(4 time constants from ~ 10 ms to 2 s, Fourier filtering above ~80
Hz for CMB channels, 3-point filtering for galactic channels) +
scanning strategy + mix of detectors.
Rencontres de Moriond, cosmology session March 2014
Temperature power spectra
LFI map power spectra
•
no component separation, apodized
mask of 60 % of the sky
•
power spectra per LFI frequency
•
binning scheme provided in the
ExplSuppl
HFI map power spectra
•
no component separation, apodized
mask of 42.8% of the sky
•
Set of HFI auto & cross-power spectra
between SWB and SWB or detset @
100, 143, 217 GHz (unbinned estimated
power spectrum for allℓup to 3508)
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014
Likelihood & CMB TT power spectrum
• one low-ℓ T only likelihood (commander ℓin [2-49]
from 30– 353 GHz over 91% of the sky)
• one low-ℓ T and WMAP9 polarization likelihood
(lowlike ℓin [2-32])
• one high-ℓT only likelihood (CAMspecℓin [50-2500]
with ~ 58% of the sky @ 100 GHz, and 37% @ 143 &
217 GHz)
• lensing likelihoodℓin [40-400]
• delivered with the code to read them
6 cosmological and 11 nuisance
parameters (PS, CIB, tSZ, kSZ) from
the CAMspec likelihood
CMB power spectrum (with covar matrix) provided in FITS (+ ASCII format for spectrum only)
• Each multipole from 2 to 49, derived from the component-separation algorithm, Commander, applied to frequency maps
• Per bin of increasing size from multipoles 32 to 2479. Derived from the CAMspec likelihood by optimally combining the spectra in
the frequency range 100-217 GHz, and correcting them for unresolved foregrounds
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014
Cosmological parameters
Planck+lensing
Planck+WP
WMAP-9
Variety of models, using Planck and
combinations of Planck with other data
Parameter chains
• full grid or direct access to chains for baseline models and
several dataset
Files use the standard March 2013
CosmoMC outputs
• MCMC chain
• marginalized constraint on individual parameters
• best-fit theoretical power spectra (without foregrounds) for
each model
Ωbh2
Ωch2
ns
τ
Cécile Renault (LPSC, Planck collaboration)
ln(1010As)
ΩΛ
Rencontres de Moriond, cosmology session March 2014
Where are the data ?
!"#$%&'()*#%+',-%./0)
.11234455567%/8276)7#6/$14/$9):62.2;2-8<)%1=2"#$%&>2#666
ESA webpage (PLA Planck in google) & LAMBDA webpage (updated after peculiar requests)
!"#"$%&'()(*&+",&"(-./"
!"#$%&'()*$+,'$")-,
0#1%.2'3#+&#(4+##+.,#
"*)./,*0$%12-3(
$$$$
%(34*5$%&'()*$+,'$")-,
%(34,-326$!78(123-)14$9)::)14:
"1(32$/,22,:-2)3($"*),4*,$9)::)14:
;&4<3=,4-3($%06:)*:$9)::)14:
%(34*5$"*)./,*0$%12-3(
"*),4*,$;3*&(-6
>>.932*0.?@>A$>BCDEC>B
F1=,
56$,&7(8"9$&3(0%&'+:"(;580<(
/0,$%(34*5$G,H3*6$#2*0)I,$J%G#K$*14-3)4:$3(($8&'()*$821<&*-:$12)H)43-)4H$L21=$-0,$%(34*5$=)::)14M$#:$1L$932*0$?> :-$$?@>DN$-0,$%G#$821I)<,:$8&'()*$<3-3$821<&*-:$L21=$-0,$L)2:-$>OMO$=14-0:$1L$%(34*5$18,23-)14:M$P-$41-3'(6$)4*(&<,:$L&((.:56$)4-,4:)-6$=38:$$3-$3(($4)4,$%(34*5$L2,Q&,4*),:N
=38:$1L$L12,H21&4<:$*1=814,4-:$3-$0)H0$2,:1(&-)14N$34<$-0,$R1:=)*$9)*21S3I,$T3*5H21&4<$L(&*-&3-)14:$$3-$&482,*,<,4-,<$:,4:)-)I)-6$34<$34H&(32$2,:1(&-)14M$#4H&(32$81S,2$:8,*-23$34<$*1:=1(1H)*3($8323=,-,2$H2)<:$32,$3(:1$821I)<,<N$3:$$S,(($3:$-0,$%(34*5$R3-3(1H&,$1L$R1=83*"1&2*,:$34<$-0,$%(34*5$"&463,I.U,(V<1I)*0$*(&:-,2:$*3-3(1H&,M$9346$3<<)-)143($<3-3$$:,-:$32,$821I)<,<$3:$S,((M
/02,,$=,*034):=:$32,$821I)<,<$-1$3**,::$-0,:,$821<&*-:C$J3K$3$:)=8(,$S,'$)4-,2L3*,$-03-$():-:$3I3)(3'(,$821<&*-:$34<$3((1S:$L12$$<)2,*-$<1S4(13<W$J'K$3$X3I3$=1<&(,$S0)*0$3((1S:$-1$'21S:,N$:,32*0N$)4:8,*-N$:,(,*-N$34<$<1S4(13<$-0,$821<&*-:W$34<$J*K$<1S4(13<$$()45:$,=',<<,<$)4$-0,
,78(343-126$<1*&=,4-3-)14M$#(($-02,,$*34$',$3**,::,<$I)3$-0,$()45:$',(1SM$#<<)-)143($83H,:$<,:*2)',$-0,$0):-126$$1L$&8<3-,:$-1$-0,$%G#N$34<$01S$-0,$&:,$1L$%(34*5$<3-3$:01&(<$',$3*541S(,<H,<M
0&&"##(1.(580$$
#$S,'$)4-,2L3*,$-1$L2,Q&,4-(6$2,Q&,:-,<$821<&*-:$):$L2,,(6$3**,::)'(,$I)3$-0,
JAVA script
More convenient for
multiple requests.
Contains effective
beams.
56$,&7(8"9$&3(0%&'+:"(=,1"%.2"%$>+6+13(*3#1"/
Easy access to
most products
/0,$L&(($<3-3:,-$*34$',$:,32*0,<N$:,(,*-,<$J)4*(&<)4H$,MHM$:,(,*-)14$1L$=38$12$*3-3(1H&,$:&':,-:K$34<$<1S4(13<,<$I)3$-0,
56$,&7(8"9$&3(0%&'+:"(?$:$(=,1"%@$&"
AB26$,$1.%3(#C226"/",1
56$,&7((2C>6+&$1+.,#
D#"(.@(56$,&7(E$1$
AB1"%,$6(E$1$($,E(#.@1F$%"
56$,&7(#&+",&"(1"$/('./"
580(,"F#()(C2E$1"#
/0,$%G#$)4-,2L3*,$3(:1$)4-,2.18,23-,:$S)-0$-0,$3:-2141=)*3($*3-3(1H&,:$:,2I,<$'6$-0,$R,4-2,$<,$Y144,,:$<,$$"-23:'1&2H$JRY"KN$I)3$-0,$)4-,23*-)I,$:1L-S32,$#(3<)4M$Y3-3$*34$',$-234:L,22,<$:,3=(,::(6$L21=$-0,$%G#$-1$#(3<)4M$#<<)-)143($-3'&(32$<3-3$=34)8&(3-)14$$L&4*-)143()-6$):
3I3)(3'(,$I)3$-0,$/18*3-$-11(M$%(,3:,$41-,$-03-$&:,2:$<1$41-$$4,,<$-1$)4:-3(($#(3<)4$34<$/18*3-$3.82)12)$)4$12<,2$-1$&:,$-0,=W$-0,6$S)(($',$*3((,<$&8$3&-1=3-)*3((6$'6$-0,$%G#$)4-,2L3*,$S0,4$$)4I15,<M
;12$3<I34*,<$&:,2:C$-0,$%G#$P4-,2.Z8,23')()-6$:&':6:-,=$J%G#PZK$):$$3$=3*0)4,$)4-,2L3*,$3((1S)4H$&:,2:$-1$03I,$<)2,*-$3**,::$-1$-0,$*14-,4-:$1L$-0,$%G#$S)-01&-$)4I15)4H$-0,$X3I3$*(),4-M
Planck_2013_results_explanatory_supplement
(pdf or on-line) contains details on all Planck products
PL$61&$,78,2),4*,$2%.>6"/#$&:)4H$-0,$32*0)I,$)4-,2L3*,N$L)2:-$*14:&(-$1&2$/21&'(,$:011-)4H$83H,M$PL$61&$*3441-$:1(I,$34$)::&,$61&2:,(L$12$03I,$$Q&,:-)14:$2,(3-,<$-1$%(34*5$821<&*-:N$8(,3:,$:&'=)-$3$2,Q&,:-$I)3$1&2$0,(8<,:5$3-$0--8C[[SSSM:*)18:M,:3M)4-[0,(8<,:5\8)3M
G1'"%(%"#.C%&"#H(=50I(56$,&7(-./"(5$9"J
$
$$$R1862)H0-$]$?@>A$!&218,34$"83*,$#H,4*6M$#(($2)H0-:$2,:,2I,<M
2014 release will include polarization
,.=3)($-0,$S,'=3:-,2$$$$
/0):$83H,$S3:$L)2:-$*2,3-,<$14$KL(M"&"/>"%N(KLOL(34<$S3:$(3:-$&8<3-,<$14$KP(?$,C$%3N(KLOQM
•
content of the FITS file, informations in the Header
•
information on how these data have been obtained
•
information on codes which have to be used to use the product
Cécile Renault (LPSC, Planck collaboration)
•
I, Q , U maps per frequency, time period,
detector, detector set ...
•
TT, TE, EE, EB, BB power spectra
2014 release will include timelines
Rencontres de Moriond, cosmology session March 2014
The Universe seen by Planck
From our galactic environment
up to the last scattering surface,
Planck provides maps of the sky.
Enjoy !
*
* simulations of the
reionization
Cécile Renault (LPSC, Planck collaboration)
Rencontres de Moriond, cosmology session March 2014