Antenna coupled Kinetic Inductance Detectors camera

Transcription

Antenna coupled Kinetic Inductance Detectors camera
Antenna coupled Kinetic Inductance Detectors camera
design and performance at IRAM 30m telescope
A. Baryshev
Contributors
A. M. Baryshev2⋆, A. Monfardini1, J. J. A. Baselmans2, R. Barends3, A. Neto9,
G. Gerini9, Y.J.Y. Lankwarden2, L. J. Swenson1, F. X. D´esert5, A. Benoit1,
A. Bideaud1, S. Doyle6, B. Klein7, M. Roesch8, C. Tucker6, S. J. C. Yates3, P. Ade6,
M. Calvo4, P. Camus1, C. Giordano4, R. Guesten7, C. Hoffmann1, S. Leclercq8,
P. Mauskopf6, L. Ferrari2, J. Kooi10,A. Endo2, K. Schuster8
1 Institut N´eel, CNRS & Universit´e Joseph Fourier, BP 166, 38042 Grenoble, France
2 SRON, Netherlands Institute for Space Research, Postbus 800, 9700 AV Groningen, The
Netherlands
3 Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft,
The Netherlands
4 Dipartimento di Fisica, Universit´a di Roma La Sapienza, p.le A. Moro 2, 00185 Roma, Italy
5 Laboratoire d’Astrophysique, Observatoire de Grenoble, BP 53, 38041 Grenoble, France
6 Cardiff School of Physics and Astronomy, Cardiff University, CF24 3AA, United Kingdom
7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 6953121 Bonn, Germany
8 Institut de RadioAstronomie Millim´etrique, 300 rue de la Piscine, 38406 Saint Martin
d’H´eres, France
9 TNO - Defence, Security and Safety , Oude Waalsdorperweg 63, 2597 AK, The Hague, The
Netherlands
10 CALTECH, USA
Grenoble NIKA, 31 Aug 2010
2
KID detector
Principle
Photons
E > 2∆
Pair breaking effect
high frequency current creates qp
excitations in superconductor
Quasiparticles
KID
Superconductor
in resonance cirquit
Readout
Resonance feature @F0
shape depends on Nqp
can be read out with 1 tone
E
∆
EF
1
2
S21 [dB]
Sky signal
δf
F0
F [Ghz]
Cooper
Pairs
Im
Re
δR
δθ
P. Day, et al., Nature 425, 817 (2003).
Grenoble NIKA, 31 Aug 2010
3
KID resonators
Capacitive Coupled Distributed resonator
Shorted end
1
CPW ¼ λ Resonator
Bare substrate
Al ground plane
Central conductor
1
L = c/4⋅F0/√εeff
Qi=ωLs/(αRs)
~ 5 mm
~ 106
2
Capacitive Coupler
sets Coupling Q
CPW Through line
100 µm
Delft 25-11-2009
2
4
KID detector
Fundamental and not so fundamental limits of KIDs
Noise
Im
Signal
 ητ qp dx 

NEPx = S x (ω) ⋅ 
 ∆ dN 
qp 

−1
Re
δR
δθ
θ or R
NEP
1E-13 τ
NEP [W/√Hz]
1E-15
Fundamental limit
6 GHz, 3μm wide CPW resonator
1
0.1
1E-16
0.01
1E-17
1E-3
1E-18
1E-4
1E-19
1E-5
1E-20
1E-6
1E-21
1E-7
τ [sec]
1E-14
10
1E-8
1E-22
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
T/Tc
Grenoble NIKA, 31 Aug 2010
5
Array to NIKA
•
•
42 pixel antenna coupled array, Nyquist sampled
home made Sapphire spherical lenses
Grenoble NIKA, 31 Aug 2010
6
73
Array to NIKA
Design
72
5
0
0
-5
-5
-10
-10
-15
-15
-20
-20
-25
-25
-30
-30
-35
-35
no wire bonds
-40
150 GHz antenna
5.45
5.5
5.55
5.6
5.65
5.7
-40
5.75
-45
5.45
with wire bonds
5.5
5.55
5.6
5.65
5.7
5.75
5.8
wire bonds
to suppress CPW odd mode
KID 5 GHz
1 through line
Delft 25-11-2009
7
Array to NIKA
Q Design
Qdesign = 80.000 matched to expected sky load
Qi decreases with power loading
• S21,min =Q/Qi
•
•
Dark measurement without any light
= 3.7E6
Qi
S21 = -25 dB
Looking to the sky
= 0.13E6
Qi
S21 = -9.5 dB
43
Calibrated magnitude (Normalized magnitude - fit)
0
0
-5
-5
Calibrated Magnitude (dBm
-10
-15
-20
-10
-15
-20
-25
-25
-30
-30
-35
4850
4.85
4.9
4.95
5
5.05
4900
4950
5000
Frequency (MHz)
5050
Delft 25-11-2009
5100
8
Array to NIKA
Testing sensitivity
•
•
•
Sky loading simulated by temperature increase in dark environment
NEP = NEP ~ 2⋅10-16 W/√Hz for 100% radiation coupling (0.25K data)
Expected sky NEP= 6⋅10-15 W/√Hz per pixel
•
•
10% pixel efficiency
30% instrument efficiency
Grenoble NIKA, 31 Aug 2010
9
Array to NIKA
Finding the pixels in the focal plane
Grenoble NIKA, 31 Aug 2010
10
Delft 25-11-2009
11
First Light
Grenoble NIKA, 31 Aug 2010
12
Constructing an image
•
Use sky noise to calculate individual pixel gain
Grenoble NIKA, 31 Aug 2010
13
NET of the system
from Mars data
•NETsys,pixel
= 27mK/√Hz
•NEPsys,pixel = 1.6 ⋅ 10-14 W/√Hz
•NEParray,pixel = ~3 ⋅ 10-15 W/√Hz
SNR = 330/√Hz @ 1 Hz
NET=Tsource/SNR
Tsource=9K per pixel
•
•
•
0
PSD data, phase scaled
Mars, beam 14.8arcsec
10
4
3
scaled
phase/√Hz
Phase scaled
(deg)
3.5
~0.01 degree ~1 Hz
-1
10
3
2.5
2.5
2
2
1.5
1.5
-2
10
1
1
0.5
0.5
0
-3
10
0
-1
0
10
10
f (Hz)
-0.5
-20
0
20
∆ Azimuth (arcsec)
40
-20 0 20 40
∆ Elevation (arcsec)
Grenoble NIKA, 31 Aug 2010
14
6.3 J
1.55 J
NEP 1E-14 sky, 3..5E-15 W/Hz0.5
Grenoble NIKA, 31 Aug 2010
15
Magnetic Field effect
•
•
•
Only marginal shielding
Clearly visible on telescope slew, max 10° phase shift/80 degree azimuth
within instrument noise during raster scans
will cause drift << sky 1/f noise during long integrations (earth rotation)
0.05
0
Phase (rad)
•
10µT
1/3 earth field
-0.05
-0.1
-0.15
-0.2
80
100
120
140
160
Azimuth (deg)
180
200
220
Grenoble NIKA, 31 Aug 2010
16
Larger arrays
S21 [dB]
0
-10
-20
4.9
F [GHz]
5.6
6.3
Grenoble NIKA, 31 Aug 2010
17
This Run
•
•
•
•
•
256 central core pixels (16x16) 324 total pixels (18x18)
+- Spiral core distriution, 4MHz spacing 1 GHz BW (1.2 GHz for 324 pixels)
Optical coupling: optimized double slot antenna with Si lens array
Hybrid NbTiN-Al technology
Air bridges
Grenoble NIKA, 31 Aug 2010
18
Batch H8 test results at 350 GHz (not optimal system)
With Bridges
Optical NEP 3E-15
KID NEP – 3E-17
Preliminary
Grenoble NIKA, 31 Aug 2010
19
NIKA holder with Si-lens array
Grenoble NIKA, 31 Aug 2010
20
F Spacing (J. Kooi)
Cross talk on surface, keep > 250um apart
Si Surface with 24um air bridges
Keep KID at >250um distance
76um below Si Surface with air bridges
Si Surface with 24um air bridges
Kids talk below surface at -50dB level when excit
76um below Si Surface with air bridges
Si Surface with 24um NO air bridges
Si Surface with 24um NO air bridges
76um below Si Surface with NO air bridges
76um below Si Surface with NO air bridges
F Spacing (J. Kooi)
E-field Top Si
H-field Top Si
Readout
Euvis generator
2 GHz BW I-Q
50dB SSB
upconvertor
Dual channel
FFTS, 8k
channels
1.5 GHz bw
Grenoble NIKA, 31 Aug 2010
23
Next steps
•
•
•
•
•
•
Several batches with bridges, optimizing coupling, KID volume, Qs, etc (this
run)
AR-coat lens array (this run)
F-spacing, M-strip central line and symmetrical M-strip-CPW coupling
Alternative optics coupling schemes (in progress)
TiN (in progress)
Readout
I.M.C. Millimetron Science Workshop, Palermo, Sicily, 2010
24