JAWAHARLAL NEHRU PLANETARIUM zsÉåÃAiÀÄ : zsÉåÃAiÀÄ : D

Transcription

JAWAHARLAL NEHRU PLANETARIUM zsÉåÃAiÀÄ : zsÉåÃAiÀÄ : D
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ: D°PÉU¼
À °
À è ªÀÄgÀ¼ÀÄ «©ü£Àß UÀwUÀ¼°
À è
PɼU
À É
¸ÀÄjAiÀÄÄvÀÛzÉ
JA§ÄzÀ£ÀÄß
¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
¸ÀªÀiÁ£À
C¼ÀvA
É iÀÄ
JgÀqÀÄ
D°PÉU¼
À £
À ÀÄß vÉUz
É ÀÄPÉƽî, CªÀÅUÀ¼°
À è MAzÀgÀ
£Á¼ÀPÉÌ ¸ÀÆPÀÛ ªÁå¸ÀzÀ ¦.«.¹. PÉƼÀªA
É iÀÄ£ÀÄß
¨sz
À ÀæªÁV
eÉÆÃr¹.
£Á¼ÀzÀ
vÀ¼PÀ ÉÌ
¸ÀjºÉÆAzÀĪÀAvÉ
PÉƼÀªA
É iÀÄ°è
MAzÀÄ
vÉgª
À £
À ÀÄß ªÀiÁrPÉƽî. JgÀqÀÆ D°PÉU¼
À £
À ÀÄß
£ÉÃgÀªÁVj¹. PÁqïð MAzÀ£ÀÄß vÉg«
À £À
ªÀÄÆ®PÀ
vÀÆj¸ÀĪÀÅzÀgÉÆA¢UÉ
JgÀqÀÆ
D°PÉU¼
À °
À è vÀÄA©zÀ ªÀ¸ÀÄÛ ©Ã¼ÀzA
À vÉ
vÀqÉ»rAiÀÄĪÀ
ªÀåªÀ¸ÉÜ
ªÀiÁrPÉƽî.
D°PÉU¼
À °
À è
¸ÀªÀÄ¥ÀæªÀiÁtzÀ
ªÀÄgÀ¼£
À ÀÄß
vÀÄA©¹. PÁqïð£ÀÄß ºÉÆgÀU¼
É z
É ÀÄ ªÀÄgÀ¼£
À ÀÄß
¸ÉÆÃgÀ®Ä ©r.
«ÃQë¹:
PÉƼÀªA
É iÀÄ£ÀÄß
ºÉÆA¢¹gÀĪÀ
D°PÉAiÀÄ°èzÀÝ ªÀÄgÀ¼ÀÄ ¨ÉÃUÀ£É ¸ÉÆÃj
ºÉÆÃUÀÄvÀÛzÉ.
PÁgÀt: ªÀÄgÀ½£À PÀtUÀ¼À £ÀqÀÄªÉ ¸ÀtÚ
¥ÀæªÀiÁtzÀ UÁ½ EzÉ. ªÀÄgÀ¼ÀÄ D°PÉAiÀÄ
ªÀÄÆ®PÀ PɼU
À É ¸ÁVzÀAvÉ F UÁ½ ªÉÄîPÉÌ
ZÀ°¸ÀÄvÀÛzÉ. EzÀjAzÁV D°PÉAiÀÄ vÀÄ¢
JAzÀgÉ
PÉƼÀªÉAiÀÄ£ÀÄß
eÉÆÃr¹gÀĪÀ
eÁUÀz°
À è UÁ½AiÀÄ MvÀÛqÀ ªÉÄïÁãUQÀ ÌAvÀ ¸Àé®à
vÀUÀÄÎvÀÛz.É F vÀVÎzÀ MvÀÛqª
À ÀÅ ªÀÄgÀ½£À
PÀtUÀ¼£
À ÀÄß ºÉZÀÄÑ ªÉÃUÀªÁV PɼU
À É §gÀĪÀAvÉ
ªÀiÁqÀÄvÀÛz.É
Objective: To demonstrate the
difference in rate of flow of sand
through funnels of different lengths of
stem.
Experiment: Take two identical funnels.
Extend the stem of one of them by
attaching a PVC pipe that fits in tightly.
A slot is cut in the PVC pipe just
beneath the stem of the funnel. The
two funnels are held vertically and
equal amount of sand is poured into
both of them. A card, that is inserted in
the slot holds the sand in the two
funnels from flowing. On removing the
card, sand in the two funnels begins to
flow out at the same time.
Observation: Sand flowing through
the funnel with longer stem drains out
first.
Reason: Sand particles have a small
quantity of air in between them. As the
sand particles move down in the funnel,
this interstitial air moves up. As a result,
the air pressure near the bottom of the
funnel i.e., where the long pipe is joined
to it is slightly lower than the top. This
pressure pulls down the sand faster.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
¨ÉÃgÉ ¨ÉÃgÉ UÁvÀæzÀ vÀAwUÀ¼À ªÉÄïÉ
ªÀÄÆqÀĪÀ
¸ÁܬÄÃ
vÀgA
À UÀU¼
À £
À ÀÄß
vÉÆÃj¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
¹àÃPÀgï£À
¥Àzg
À z
À À
ªÉÄïÉ
ªÀÄÆgÀÄ
gÀAzsÀæU¼
À ÀļÀî C®Æå«Ä¤AiÀÄA PÉƼÀªA
É iÀÄ£ÀÄß
Ej¸À¯ÁVzÉ. F gÀAzsÀæU¼
À ÀÄ ªÀÄvÀÄÛ vÀĸÀÄ
zÀÆgÀz°
À è EªÀÅUÀ½UÉ ¸ÀªÀÄ£ÁzÀ JvÀÛgU
À ¼
À °
À è
C¼Àªr
À ¹gÀĪÀ PÉÆPÉÌU¼
À À ªÀÄzsÉå ªÀÄÆgÀÄ
«©ü£Àß
UÁvÀæzÀ
vÀAwUÀ¼£
À ÀÄß
©VzÀÄ
PÀlÖ¯ÁVzÉ. F vÀAwUÀ¼ÀÄ ©UÀĪÁVAiÀÄÆ
¥Àg¸
À ÀàgÀ
¸ÀªÀiÁAvÀgª
À ÁVAiÀÄÆ
EgÀ°.
DåA¦è¥A
sóÀ iÀÄgï ªÀÄÆ®PÀ ¹àÃPÀgï C£ÀÄß
D¹¯ÉÃlgï£ÉÆA¢UÉ ¸ÀA¥ÀQð¹ PÀA¥À£PÀ ÉÌ
M¼À¥r
À ¹.
«ÃQë¹:
¥Àæw vÀAwAiÀÄ®Æè ¥ÀævÉåÃPÀ vÀgA
À UÀzÀÆgÀªÀżÀî
¸ÁܬÄà vÀgA
À UÀU¼
À ÀÄ ªÀÄÆqÀÄvÀÛª.É
PÁgÀt:
vÀAwAiÀÄ ¥Àæw GzÀÝz°
À è JµÀÄÖ zÀæªÀågÁ²
EzÉ JA§ÄzÀÄ C¯ÉAiÀÄ vÀgA
À UÀzÀÆgÀª£
À ÀÄß
¤zsð
À j¸ÀÄvÀÛz.É DzÀÝjAzÀ, ¨ÉÃgÉ ¨ÉÃgÉ
vÀAwUÀ¼°
À è ¨ÉÃgÉ ¨ÉÃgÉ ¸ÁܬÄà vÀgA
À UÀU¼
À ÀÄ
ªÀÄÆqÀÄvÀÛªÉ.
vɼÀî£A
É iÀÄ
vÀAwAiÀÄ°è
vÀgA
À UÀzÀÆgÀ ºÉag
Ñ ÀÄvÀÛz.É
Objective:
To demonstrate standing waves on
strings of different thicknesses
Experiment:
Aluminium pipe with three holes is
mounted on the membrane of a
speaker. Three strings of different
thicknesses are strung between the
holes and hooks fixed at a distance
such that they are taut and parallel
to one another. The speaker is
driven at certain frequencies by
connecting it to an oscillator
through an amplifier.
Observation:
Standing waves of different
‘wavelengths’ are observed on each
of the strings.
Reason:
For a given frequency, the
wavelength of sound in a string is
inversely proportional to mass per
unit length of the string. Therefore,
wavelength will be longer in strings
of lower mass per unit length.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ: ¸Á§Æ¤£À ¥Àzg
À z
À °
À è ºÀjzÁqÀĪÀ
«£Áå¸ÀU¼
À £
À ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
Objective:
To
demonstrate
patterns in flowing soap films.
¥ÀæAiÉÆÃUÀ: f.L. ªÉÊj¤AzÀ MAzÀÄ zÉÆqÀØ
DAiÀÄvÁPÁgÀ
CxÀªÁ
µÀlÄãeÁPÁgÀzÀ
ZËPÀlÖ£ÀÄß ªÀiÁrPÉƽî. EzÀ£ÀÄß ¸Á§Æ¤£À
z羻t
À zÀ°è C¢Ý vÉUÉzÀÄ £ÉÃgÀªÁV
»rzÀÄPÉƽî.
Experiment:
A
fairly
large
rectangular or hexagonal wire
frame is made using GI wire. This is
dipped in a soap solution, taken out
and held vertically.
«ÃQë¹: ¸Á§Æ¤£À ¥ÀzÀgz
À °
À è MAzÉqÉ
¸ÀĽAiÀÄĪÀAvÀºÀ
gÀZ£
À É,
E£ÉÆßAzÉqÉ
ªÉÄîÄäRªÁV ZÀ°¸ÀĪÀ gÀZ£
À ,É »ÃUÉ
«©ü£Àß ¨sÁUÀU¼
À °
À è «©ü£Àß gÀZ£
À U
É ¼
À ÀÄ
PÀAqÀħgÀÄvÀÛª.É
Observation: We see different
patterns in the flow in different
regions of the film including some
that show vortices and some that
flow upwards.
PÁgÀt: ¸Á§Æ¤£À zÁæªt
À zÀ ªÉÄïÉäöÊ
MvÀq
Û ¢
À AzÁVAiÉÄà ¥Àzg
À À gÀÆ¥ÀÄUÉƼÀÄîvÀÛz.É
z羻t
À
¸ÀÄjzÀÄ ºÉÆÃzÀAvÉ ªÉÄïÉäöÊ
MvÀq
Û z
À À®Æè ªÀåvÀåAiÀĪÁUÀÄvÀÛz.É EzÀjAzÀ
zÀæªÀªÀÅ
ºÀjzÁqÀÄvÀÛzÉ.
«±ÉõÀªA
É zÀg,É
ªÉÄïÉäöÊ MvÀÛqÀ ªÀåvÀåAiÀÄ ºÁUÀÆ zÀæªÀzÀ
ºÀjAiÀÄÄ«PÉU¼
À À
¸ÀA§AzsÀ
¸ÀAQÃtð
jÃwAiÀÄzÀÄ.
Reason:
The soap film is formed due to the
surface tension of the soap
solution. As the soap solution
drains out, surface tension changes
at different places on the film. This
causes the fluid to flow.
Interestingly, changes in surface
tension and the fluid flow affect
one another in a complicated
manner.
¸Á§Æ¤£À
¥Àzg
À PÀ ÉÌ
¸ÀA§A¢ü¹zÀ
¥ÀæAiÉÆÃUÀU½
À UÁV
¸Á§Æ¤£À
z羻t
À
vÀAiÀiÁj¸À®Ä ªÀiÁgÀÄPÀmÉÖAiÀÄ°è ®¨sÀå«gÀĪÀ
¦æ¯ï CxÀªÁ «ªÀiï qÁæ¥ï vÀgº
À Àz À
zÀæªg
À ÀÆ¥ÀzÀ
¸Á§Æ£À£ÀÄß
§¼À¸À§ºÀÄzÀÄ. 200 «Ä°AiÀĵÀÄÖ ¦æ¯ï
CxÀªÁ «ªÀiï qÁæ¥ïUÉ 15°Ã ¤ÃgÀÄ
¸ÉÃj¹zÀgÉ
GvÀÛªÀÄ
¥s°
À vÁA±À
zÉÆgÉAiÀÄÄvÀÛzÉ.
For experiments involving
soap films, one can use
commercial liquid soaps
such as Pril or Vim Drop. Mix
about 200 ml of it to about
15 litres of water for good
results.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ: ªÀiÁzsÀåªÀĪÉÇAzÀg°
À è ¨É¼PÀ ÀÄ ºÁzÀÄ
ºÉÆÃUÀĪÀ zÀÆgÀªÀÅ ZÉzÀÄjzÀ ¨É¼QÀ £À
§tÚzÀ ªÉÄÃ¯É ©ÃgÀĪÀ ¥ÀjuÁªÀĪÀ£ÀÄß
¤gÀƦ¸ÀĪÀÅzÀÄ.
Objective:
To demonstrate the effect of distance
travelled by light in a medium and the
colour of the scattered light
¥ÀæAiÉÆÃUÀ: MAzÀÄ «ÄÃlgï£ÀµÀÄÖ GzÀÝzÀ
UÁf£À vÉÆnÖAiÀÄ°è ¤ÃgÀÄ vÀÄA©¹.
MAzÉgq
À ÀÄ ºÀ¤ qÉmÁ¯ï ºÁQ PÀ®Q.
¥ÀæPÁ±ÀªÀiÁ£ÀªÁzÀ
©½AiÀÄ
¨É¼PÀ £
À ÀÄß
vÉÆnÖAiÀÄ GzÀÝPÀÆÌ ºÁzÀÄ ºÉÆÃUÀĪÀAvÉ
ªÀiÁr.
Experiment:
A glass tank, about 1m long, is filled
with water and a few drops of Dettol is
added to it and stirred well. A strong
beam of white light is shone along the
length of the tank.
«ÃQë¹: vÉÆnÖAiÉƼÀUÉ PÁtĪÀ ¨É¼ÀQ£À
§tÚªÀÅ ¨É¼QÀ £À ªÀÄÆ®PÉÌ ¸À«ÄÃ¥À«gÀĪÉqÉ
¤Ã°AiÀiÁVgÀÄvÀÛz.É
zÀÆgÀ«gÀĪÀ
PÀqÉ
PÉA¥ÁV PÁtÄvÀÛzÉ.
Observation:
The colour of light in the tank near the
light source appears bluish while at
the other end it appears reddish.
PÁgÀt: qÉmÁ¯ï «Ä²ævÀ ¤ÃgÀÄ PÀ°®
z羻t
À ªÁUÀÄvÀÛz.É CAzÀg,É qÉmÁ¯ï£À ¸ÀtÚ
¸ÀtÚ PÀtUÀ¼ÀÄ ¤Ãj£À°è PÀzr
À ºÉÆÃVgÀÄvÀÛªÉ.
F PÀtUÀ¼ÀÄ vÀªÀÄä ªÉÄÃ¯É ©zÀÝ ¨É¼PÀ £
À ÀÄß
ZÉzÀÄj¸ÀÄvÀÛªÉ. ¤Ã°AiÀÄÄ PÉA¦VAvÀ ºÉZÀÄÑ
ZÉzÀÄgÀÄvÀÛzÉ. ºÉZÀÄÑ PÀtUÀ½AzÀ ¨É¼PÀ ÀÄ
ZÉzÀÄgÀÄvÁÛ
ºÉÆÃzÀAvÉ
¤Ã°
§tÚ
PÀrªÉÄAiÀiÁUÀÄvÁÛ ºÉÆÃUÀÄvÀÛz.É
ºÁUÁV
¨É¼QÀ £À ªÀÄÆ®PÉÌ zÀÆgÀ«gÀĪÀ §¢AiÀÄ°è
PÉA¥ÀÄ
¨É¼PÀ ÀÄ
ªÀiÁvÀæªÃÉ
PÁtÄvÀÛz.É
ªÁvÁªÀgt
À zÀ°£
è À zsÀƽ£À PÀtUÀ¼ÀÆ EzÉÃ
jÃw ¤Ã° §tÚª£
À ÀÄß ZÉzÀÄj¸ÀĪÀÅzÀjAzÀ¯ÉÃ
GzÀAiÀiÁ¸ÀÛªÀiÁ£ÀzÀ ¸ÀÆAiÀÄð PÉA¥ÁV
PÁtĪÀÅzÀÄ.
Reason:
Dettol in water forms a colloid, that is,
small particles that are spread all over
the liquid. These particles scatter light
incident on them. Blue is scattered
more than red. As light interacts with
more and more particles, the intensity
of blue light diminishes. Hence we see
red light reaching the end opposite to
the light source. A similar behaviour of
dust particles in our atmosphere
causes sun to appear reddish at sunset
or sunrise times.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
ªÀļɩ®Äè
ªÀÄÆqÀĪÀ
¤gÀƦ¸ÀĪÀÅzÀÄ.
vÀvÀ骣
À ÀÄß
Objective:
To demonstrate the principle behind
the formation of a rainbow
¥ÀæAiÉÆÃUÀ:
MAzÀÄ zÉÆqÀØ UÁf£À UÉÆüÀzÀ ªÉÄïÉ
mÁZïð CxÀªÁ ¥ÉÆæePÉ ÀÖgï¤AzÀ §gÀĪÀ
¥ÀæRgÀªÁzÀ ¨É¼QÀ £À QgÀtªÀ£ÀÄß ºÁ¬Ä¹.
Experiment:
A large sphere of solid glass is
mounted on a stand. A narrow beam
of intense light from a torch or a
projector is shone on it.
«ÃQë¹:
¨É¼QÀ £À ªÀÄÆ®zÀ »A§¢UÉ ¸Àé®à zÀÆgÀz°
À è
»rzÀ
©½AiÀÄ
¥ÀgÀzA
É iÀÄ
ªÉÄïÉ
ªÀļɩ®è£ÀÄß PÁt§ºÀÄzÀÄ.
Observation:
A ‘rainbow’ can be seen on a white
screen held at some distance behind
the light source.
PÁgÀt:
UÁf£À UÉÆüÀzÀ M¼ÀPÉÌ ¸ÁUÀĪÀ ¨É¼PÀ ÀÄ
ªÀQæèsÀª£
À U
À ÉƼÀÄîvÀÛzÉ. UÉÆüÀzÀ M¼ÀUÉ CzÀÄ
¥Àæw¥s°
À ¸ÀÄvÀÛzÉ.
CzÀgÀ
¸Àé®à
¨sÁUÀ
UÉÆüÀ¢AzÀ ºÉÆgÀ§gÀĪÁUÀ ªÀÄvÉÆÛªÉÄä
ªÀQæèsÀª£
À U
À ÉƼÀÄîvÀÛzÉ. DzÀgÉ ¨ÉÃgÉ ¨ÉÃgÉ
§tÚU¼
À ÀÄ
¨ÉÃgÉ
¨ÉÃgÉ
ªÀQæèsª
À £
À À
PÉÆãÀU½
À UÉÉ ¨ÁUÀĪÀÅzÀjAzÀ ©½AiÀÄ ¨É¼PÀ ÀÄ
§tÚU¼
À ÁV
¨ÉÃ¥ÀðlÄÖ
§tÚ
§tÚzÀ
PÁªÀÄ£À©°è£A
À vÉ PÁtÄvÀÛz.É
Reason:
Some of the light entering the glass
sphere undergoes refraction. Inside
the sphere some of it gets reflected.
Again, part of this light refracts and
emerges out. The angle of refraction is
slightly different for different colours
(wavelengths). Hence, white light from
the source separates out into various
colours forming the ‘rainbow’. A
similar mechanism with water
droplets in the sky leads to a rainbow.
ªÁvÁªÀgt
À zÀ°g
è ÀĪÀ ¤Ãj£À
ºÀ¤UÀ¼°
À è EzÉà vÀgÀºÀzÀ
GAmÁUÀĪÀÅzÀjAzÀ¯ÉÃ
ªÀÄÆqÀÄvÀÛzÉ.
¸ÀtÚ ¸ÀtÚ
«zÀåªÀiÁ£À
ªÀļɩ®Äè
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
ªÉÄÃtzÀ
§wÛAiÀÄ
GjAiÀÄÄ«PÉAiÀÄ°è
¸ÀAªÀº£
À ÀzÀ ¥ÁvÀ檣
À ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
Objective:
To demonstrate the importance of
convection for a burning candle.
¥ÀÀæAiÉÆÃUÀ:
GjAiÀÄÄwÛgÀĪÀ ªÉÄÃtzÀ §wÛAiÀÄ£ÀÄß UÁf£À
ªÀÄÄA¨sÁUÀ ºÉÆA¢gÀĪÀ ¥ÉnÖUA
É iÀÄ°è Ej¹.
¥ÉnÖUA
É iÀÄ ªÉÄïÁãUz
À °
À è JgÀqÀÄ gÀAzsÀæU¼
À £
À ÀÄß
PÉÆgÉzÀÄ, MAzÀÄ gÀAzsÀæPÉÌ aªÀÄtÂAiÀÄ£ÀÄß
C¼Àªr
À ¹gÀ¨ÃÉ PÀÄ. ªÉÄÃtzÀ §wÛAiÀÄ£ÀÄß
aªÀÄtÂAiÀÄ
PɼV
À j¹.
eÁé¯A
É iÀÄÄ
¹Ügª
À ÁVgÀĪÁUÀ
aªÀÄtÂAiÀÄ£ÀÄß
PÁqïð¨ÉÆÃqïð¤AzÀ ªÀÄÄaÑ©r.
Experiment:
A burning candle is placed in a
glass-front box. The top surface of
the box has two openings – one of
which carries a chimney. The
burning candle is placed below the
chimney. Close the chimney with a
cardboard when the candle flame is
steady.
«ÃQë¹:
ªÉÄÃtzÀ §wÛAiÀÄ eÁé¯ÉAiÀÄÄ PÀæªÉÄÃt
ªÀÄAPÁV PÉ®ªÉà PÀëtUÀ¼°
À è DjºÉÆÃUÀÄvÀÛzÉ.
Observation:
The candle flame becomes dim and
puts off in a few seconds.
PÁgÀt:
eÁé¯A
É iÀÄ ¸ÀÄvÀÛªÀÄÄvÀÛ°£À ¥ÀæzÃÉ ±Àz°
À è£À UÁ½
ªÀÄvÀÄÛ
zÀº£
À À zÀ
GvÀà£ÀßUÀ¼ÀÄ
©¹AiÀiÁVgÀÄvÀÛª.É ¸ÀAªÀº£
À ÀªÀÅ ±ÁR ªÀÄvÀÄÛ
zÀº£
À ÀzÀ GvÀà£ÀßUÀ¼£
À ÀÄß eÁ鯬
É ÄAzÀ zÀÆgÀPÉÌ
MAiÀÄÄåvÀÛz.É
EzÀjAzÁV
DQìd£ï
M¼ÀUÉÆAqÀ vÀt£
Ú A
É iÀÄ UÁ½ D ¸ÁÜ£ª
À £
À ÀÄß
vÀÄA§ÄvÀÛz.É
zÀº£
À QÀ æAiÉÄ
ªÀÄÄAzÀĪÀgA
É iÀÄÄvÀÛzÉ.
aªÀÄtÂAiÀÄ£ÀÄß
ªÀÄÄZÀĪ
Ñ ÀÅzÀjAzÀ ¸ÀAªÀº£
À À ¸ÀÜVvÀUÉƼÀÄîvÀÛz.É
vÀ£ÀÆä®PÀ
DQìd£ï£À
¥ÀÆgÉÊPÉAiÀÄÆ
¸ÀÜVvÀUÉƼÀĪ
î ÀÅzÀjAzÀ
eÁé¯A
É iÀÄÄ
£ÀA¢ºÉÆÃUÀÄvÀÛz.É
Reason:
The region surrounding the flame is
hot and heats up air and
combustion products. Convection
transports heat as well as
combustion products away from
the flame. This causes cooler air
with oxygen to replace it which
supports combustion and keeps the
flame steady. Closing the chimney
stops convection and thereby the
oxygen supply. As a result of this
the flames puts off.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
mÁ£ÁðqÉÆ
gÀZ£
À A
É iÀÄ°è
UÀÄgÀÄvÀz
é À
¤gÀƦ¸ÀĪÀÅzÀÄ.
(¸ÀĽUÁ½)
¥ÁvÀ檣
À ÀÄß
¥ÀÀæAiÉÆÃUÀ: MAzÀÄ ¥ÁgÀzÀ±ð
À PÀ ¹Ã¸ÀA
É iÀÄ°è
¤ÃgÀÄ vÀÄA©¹ gÀAzsÀæ«gÀĪÀ ªÀÄÄZÀ¼
Ñ À ºÁQ.
¹Ã¸ÀA
É iÀÄ£ÉÆߪÉÄä VgÀQ ºÉÆqɹ vÀ¯ÉP¼
É U
À ÁV
ªÀiÁr.
gÀAzsÀæzÀ
ªÀÄÆ®PÀ
¤ÃgÀÄ
¸ÉÆÃgÀÄvÀÛzÉ.
¨Ál°AiÀÄ
M¼ÀUÉ
¸ÀĽUÁ½AiÀÄAvÀºÀ gÀZ£
À É ªÀÄÆqÀÄvÀÛz.É ErÃ
¥ÀæAiÉÆÃUÀª£
À ÀÄß ¥ÀÄ£ÀgÁªÀwð¹, eÉÆvÉUÉ
¸Àé®à JvÀÛg¢
À AzÀ PɼU
À É ©Ã¼À®Ä ©r.
«ÃQë¹: PɼU
À É ©Ã¼ÀĪÁUÀ ¸ÀĽUÁ½AiÀÄAvÀºÀ
gÀZ£
À É PÀtägA
É iÀiÁUÀÄvÀÛz.É
PÁgÀt: JvÀÛgz
À ÉÆA¢UÉ MvÀÛqz
À À°è PÀæªÉÄÃt
§zÀ¯ÁªÀuÉ
DUÀĪÀÅzÀjAzÀ¯ÉÃ
¹Ã¸ÀA
É iÀįÁèU°
À à CxÀªÁ ¥ÀæPÀÈwAiÀįÁèU°
À Ã
¸ÀĽUÁ½AiÀÄ
gÀZ£
À A
É iÀiÁUÀĪÀÅzÀÄ.
E°è
MvÀq
Û ª
À ÀÅ
UÀÄgÀÄvÀé
CxÀªÁ
¨Ál°AiÉƼÀVgÀĪÀ ¤Ãj£À vÀÆPÀzÀ ªÉÄïÉ
CªÀ®A©vÀªÁVzÉ.
ªÀÄÄPÀÛªÁV ¥Àv£
À U
À ÉƼÀÄîªÁUÀ ¹Ã¸ÀÉ ªÀÄvÀÄÛ
CzÀgÉƼÀV£À
¤ÃgÀÄ
MAzÉÃ
ªÉÃUÉÆÃvÀ̵ð
À zÉÆA¢UÉ
©Ã¼ÀÄvÀÛª.É
¥ÀjuÁªÀÄ,
¤ÃgÀÄ
vÀÆPÀg»
À vÀ
¹ÜwAiÀÄ°ègÀÄvÀÛz.É
UÀÄgÀÄvÀézÀ
¥Àæ¨sÁªÀªÉÃ
±ÀÆ£ÀåªÁ¬ÄvÉA§AvÉ DUÀÄvÀÛz.É ºÁUÁV
¹Ã¸ÀA
É iÀÄ M¼ÀUÉ MvÀÛqz
À À°è ªÀåvÀåAiÀÄ«®èzÉÃ
¸ÀĽUÁ½AiÀÄAvÀºÀ gÀZ£
À É ¸ÁzsÀåªÁUÀĪÀÅ¢®è.
Objective: To demonstrate the
effect of gravity on tornado
Experiment: A clear transparent
plastic bottle is fitted with a cap
with a hole. The bottle is filled up
with water, swirled and inverted so
that water flows out through the
hole. A tornado-like structure sets
up in the bottle. Now, drop the
bottle from a height.
Observation:
During the free-fall, the tornadolike structure disappears.
Reason:
The formation of the tornado-like
structure in the bottle as well as
the tornado in nature is due to
gradual change in pressure from
the top of the bottle to its bottom.
The pressure depends on gravity or
weight of the water column in the
bottle. When dropped freely, the
bottle and the water in it fall at the
same rate and effectively, the
weight of water becomes zero. It is
as though gravitational influence is
absent. So, there will be no
pressure differences in the bottle,
hence no tornado-like structure.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
mÁæ£ïì¥sóÁªÀÄðgï£À
PÁAiÀÄð¤ªÀðºÀuA
É iÀÄ°è CzÀgÀ ªÀÄzsÀåzÀ
¸Àg½
À £À ªÉÄïÉäöÊ «¹ÛÃtðzÀ ¥ÁvÀ檣
À ÀÄß
¤gÀƦ¸ÀĪÀÅzÀÄ.
Objective: To demonstrate the
effect of surface area of the core on
transformer action
¥ÀÀæAiÉÆÃUÀ: MAzÀÄ ¥Áè¹ÖPï ¨Á©£ï£À ¸ÀÄvÀÛ
20£Éà ¸ÀASÉåAiÀÄ ªÉÊgÀ£ÀÄß 2000 ¨Áj
¸ÀÄwÛ. EzÀÄ ¥ÉæöʪÀÄj ¸ÀÄgÀĽ. 15 ¸É.«ÄÃ.
GzÀÝzÀ ¦.«.¹. ¥ÉÊ¥À£ÀÄß ¨Á©£ï£À
ªÀÄzsÀå¨sÁUÀPÉÌ vÀÆj¹. E£ÉÆßAzÀÄ aPÀÌ
¨Á©£ï ¸ÀÄvÀÛ CzÉà ªÉÊgÀ£ÀÄß 100 ¨Áj
¸ÀÄwÛ, ªÉÊgï£À vÀÄ¢UÀ¼À £ÀqÀÄªÉ 6v §®â£ÀÄß
¸ÀA¥Àqð¹. ¦.«.¹. ¥ÉÊ¥À£ÀÄß EzÀgÀ
ªÀÄÆ®PÀªÀÇ
vÀÆj¹.
¥ÉæöʪÀÄj
¸ÀÄgÀĽAiÀÄ£ÀÄß 220v J.¹. ªÉÄÊ£ïì£ÉÆA¢UÉ
¸ÀA¥ÀQð¹. ªÉÆzÀ°UÉ MAzÀÄ zÀ¥ÀàªÁzÀ
PÀ©âtzÀ ¸À¯ÁPÉAiÀÄ£ÀÄß ¥ÉÊ¥ï£À ªÀÄÆ®PÀ
vÀÆj¹. §¯ïâ£À ¥ÀæRgÀvA
É iÀÄ£ÀÄß UÀªÀĤ¹.
zÀ¥ÀàªÁzÀ MAzÀÄ ¸À¯ÁPÉAiÀÄ §zÀ°UÉ
ºÀ®ªÁgÀÄ ¸ÀtÚ ¸À¯ÁPÉU¼
À £
À ÀÄß Ej¹. FUÀ
§®â£ÀÄß UÀªÀĤ¹.
Experiment: A coil of 2000 turns of
#20 copper wire is wound on a
plastic bobbin. This is the Primary
coil. Insert a PVC pipe of about 15
cm in length into the centre of the
bobbin. Make another coil of 100
turns on another bobbin of a
slightly smaller size. Connect a 6v
bulb to the 100-turns coil. Insert it
into the PVC pipe. Connect the
primary coil to 220 V AC Mains.
Now, first, insert a solid rod of iron
into the PVC pipe and observe the
brightness of the bulb. Remove the
iron rod and fill the PVC pipe with a
number of iron rods of smaller
diameter. Again observe the
brightness of the bulb.
«ÃQë¹: JgÀq£
À A
É iÀÄ ¸ÀAzÀ¨ð
sÀ zÀ°è §°â£À
¥ÀæRgÀvÉ ªÉÆzÀ°VAvÀ®Æ ºÉZÁÑVgÀÄvÀz
Û .É
Observation: The bulb
brighter in the second case.
PÁgÀt:
¸ÀtÚ ¸À¯ÁPÉU¼
À À §¼ÀPɬÄAzÀ ªÀÄzsÀåzÀ
¸Àg¼
À ÀÄUÀ¼À «¹ÛÃtð ºÉZÁѬÄvÀÄ. 100
¸ÀÄwÛ£À ¸ÀÄgÀĽAiÀÄ°è ¥ÉæÃjvÀ ªÉÇïÉÖÃeï
ºÉZÁÑV §®Äâ ¥ÀæRgÀªÁV ¨É¼V
À vÀÄ.
burns
Reason: The area of cross section is
more when smaller diameter rods
are used. This improves the
induced voltage in the 100-turns
coils causing the bulb to glow
brightly.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
¥ÉÊgÉÆðnPï UÁ¥sóÉÊmï£À qÀAiÀiÁPÁAwÃAiÀÄ
UÀÄtªÀ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀÀæAiÉÆÃUÀ:
¥ÉÊgÉÆðnPï
UÁæ¥sóÉÊmï
JA§ÄzÀÄ
EAUÁ®ªÀ£ÀÄß
¥Àzg
À ÀÄ
¥Àzg
À U
À ¼
À ÁV
gÀÆ¥ÀÄUÉƼÀÄîªA
À vÉ ªÀiÁr, vÀAiÀiÁj¹zÀ
ªÀ¸ÀÄÛ. ±ÁR ªÀÄvÀÄÛ «zÀÄåvïUÀ¼À GvÀÛªÀÄ
ªÁºÀPª
À ÁzÀ
EzÀÄ
qÀAiÀiÁPÁAwÃAiÀÄ
ªÀ¸ÀÄÛ«UÉ
GvÀÛªÀÄ
GzÁºÀgu
À .É
¥sg
óÉ ÉÆÃPÁAwÃAiÀÄ ªÀ¸ÀÄÛU¼
À ÀÄ PÁAvÀzq
É É
DPÀ¶ð¸À®àqÀÄvÀª
Û É. DzÀg,É qÀAiÀiÁPÁAwÃAiÀÄ
ªÀ¸ÀÄÛU¼
À ÀÄ
«PÀ¶ð¸À®àqÀÄvÀÛªÉ.
F
¥ÀæAiÉÆÃUÀzÀ°è JgÀqÀÄ UÁæ¥sóÉÊmï ºÁ¼ÉU¼
À À
£ÀqÀÄªÉ MAzÀÄ PÁAvÀ«zÉ. ªÉÄïÁãUz
À À
UÁæ¥sóÉÊmï ºÁ¼ÉVAvÀ ¸Àé®àªÃÉ
JvÀÛgz
À À °è
ªÀÄvÉÆÛAzÀÄ PÁAvÀ«zÉ. EªÀÅUÀ¼À £ÀqÀÄ«£À
CAvÀgª
À £
À ÀÄß
¸ÀÆPÀÛªÁV
CtÂUÉƽ¹
UÁæ¥sóÉÊmï
ºÁ¼ÉU¼
À À
£ÀqÀÄ«gÀĪÀ
¥ÉÊgÉÆðnPï
UÁ¥sóÉÊmï
PÁAvÀª£
À ÀÄß
vÉîĪÀAvÉ ªÀiÁqÀ§ºÀÄzÀÄ.
PÁgÀt:
UÁæ¥sóÉÊmï ºÁ¼ÉAiÀÄ ªÉÄðgÀĪÀ PÁAvÀ
ºÁ¼ÉU¼
À À
£ÀqÀÄ«gÀĪÀ
PÁAvÀª£
À ÀÄß
DPÀ¶ð¸ÀÄvÀÛzÉ
E®èªÉÃ
«PÀ¶ð¸ÀÄvÀÛzÉ.
£ÀqÀÄ«gÀĪÀ PÁAvÀ ªÉÄÃ¯É §AzÀgÀÆ PɼU
À É
ºÉÆÃzÀgÀÆ
UÁæ¥sóÉÊmï
ºÁ¼É¬ÄAzÀ
«PÀ¶ð¸À®àqÀÄvÀz
Û À.É ºÁUÁV CzÀÄ CªÉgq
À g
À À
£ÀqÀÄªÉ vÉîÄvÀÛz.É
Objective: To demonstrate the
diamagnetism in Pyrolytic Graphite.
Experiment: Pyrolytic Graphite is
an artificially produced material by
carefully depositing carbon to form
layers. It has very high thermal and
electrical
conductivity
and
substantial diamagnetism.
A
diamagnetic substance is always
repelled by strong magnets.
Ferromagnets are always attracted
by magnets. In this experiment, we
have pyrolytic graphite sheets
separated by a small distance. A
strong magnet is placed between
them. Another strong magnet is
placed a little above the top layer
of pyrolytic graphite. When the
distances between magnets and
between the graphite layers are
properly adjusted, the magnet
between the layers levitates!
Reason: The magnet at the top
attracts or repels the lower one. As
the lower magnet moves up or
down towards one of the graphite
layers, it is repelled by both layers.
Therefore, it levitates.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
¸Á§Æ¤£À ¥Àzg
À z
À À ªÉÄïÉ
vÀgA
À UÀU¼
À £
À ÀÄß vÉÆÃj¸ÀĪÀÅzÀÄ.
¸ÁܬÄÃ
Objective:
To
demonstrate
standing waves on a soap film
¥ÀæAiÉÆÃUÀ:
f.L. ªÉÊj¤AzÀ ¸ÀĪÀiÁgÀÄ 10 ¸É.«Äà X
25 ¸É.«ÄÃ. C¼ÀvA
É iÀÄ DAiÀÄvÁPÁgÀzÀ
ZËPÀlÖ£ÀÄß
ªÀiÁrPÉƽî.
zÀæªg
À ÀÆ¥ÀzÀ
¸Á§Æ¤£À zÁæªt
À zÀ°è EzÀ£ÀÄß C¢Ý
JwÛzg
À É ¸Á§Æ¤£À ¥Àgz
À É gÀÆ¥ÀÄUÉƼÀÄîvÀÛz.É
F
ZËPÀlÖ£ÀÄß
CqÀدÁVj¹,
CzÀgÀ
¸ÀªÀÄvÀ®PÉÌ ®A§ªÁVgÀĪÀAvÉ ºÀUÀÄgÀªÁV
DAzÉÆî£ÀPÉÌ M¼À¥r
À ¹.
Experiment: A rectangular wire
frame of a convenient size, say
10cm X 25 cm, is made out of thick
GI wire. It is dipped in a soap
solution made using commercially
available liquid soap with water. A
soap film will formed by the
wireframe. Hold the wireframe in a
horizontal position and oscillate the
frame in a vertical plane gently.
«ÃQë¹:
¨ÉÃgÉ ¨ÉÃgÉ PÀA¥À£ÁAPÀU¼
À °
À è Czsð
À vÀgA
À UÀ,
¥ÀÆtð vÀgA
À UÀ CxÀªÁ MAzÀƪÀgÉ
vÀgA
À UÀ ªÀÄÆqÀĪÀÅzÀ£ÀÄß PÁt§ºÀÄzÀÄ.
Observation: We see a half wave, a
full wave or one-and-a-half waves
on the soap film at various
frequencies,
PÁgÀt:
¸Á§Æ¤£À ¥Àzg
À z
À À ¨ÉÃgÉ ¨ÉÃgÉ ¨sÁUÀU¼
À ÀÄ
¸ÁÜ£À ¥À®èlzÀ°è ¸Àé®àªÃÉ
¸ÀªÀÄAiÀÄzÀ
CAvÀg«
À zÉ.
EzÀjAzÁV
vÀgA
À UÀ
gÀÆ¥ÀÄUÉƼÀÄîvÀÛz.É
«gÀÄzÀÞ
¢QÌ£°
À è
¥À¸j
À ¸ÀÀĪÀ vÀgA
À UÀU¼
À ÀÄ ªÀåwPÀgt
À UÉÆAqÀÄ
¸ÁܬÄà vÀgA
À UÀU¼
À ÀÄ ªÀÄÆqÀÄvÀÛª.É
Reason: Different parts of the film
get displaced in the vertical
direction at slightly different time.
This constitutes a wave. As we
oscillate the frame at a constant
frequency, a standing wave is
created due to interference of
waves that propagate in opposite
directions.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
¨É¼QÀ £À ªÀåwPÀgt
À ªÀ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀÀæAiÉÆÃUÀ:
¨ÉÃgÉ ¨ÉÃgÉ wædå«gÀĪÀ JgÀqÀÄ ¦Ã£À
ªÉÄïÉäöÊUÀ¼£
À ÀÄß MAzÀgÀ ªÉÄïÉÆA¢j¹,
CªÀÅUÀ¼À ªÀÄzsÀå ©AzÀÄ«¤AzÀ ¸Àé®à ¥ÀPÀÌPÉÌ
¯ÉøÀgï QgÀtUÀ¼£
À ÀÄß ºÁ¬Ä¹. ºÀ®ªÁgÀÄ
¨Áj
¥ÀæAiÀÄwß¹zÀ
ªÉÄïÉ
¤jÃQëvÀ
¥s°
À vÁA±À zÉÆgÉAiÀÄÄvÀÛz.É
«ÃQë¹:
¯ÉøÀgï QgÀt ¤UÀ¢AiÀiÁzÀ ¸ÁÜ£z
À À ªÉÄïÉ
¥Àv£
À U
À ÉÆAqÁUÀ, ¥Àæw¥s°
À vÀ ¨É¼QÀ £À ¥Àxz
À À °è
Ej¹zÀ ¥Àgz
À A
É iÀÄ ªÉÄÃ¯É PÀ¥ÀÄà ªÀÄvÀÄÛ
§tÚzÀ GAUÀÄgÀU¼
À ÀÄ ªÀÄÆqÀÄvÀÛª.É
PÁgÀt:
D¥ÁvÀ ¨É¼PÀ ÀÄ JgÀqÀÄ
¦Ã£À ªÉÄïÉäöÊUÀ½AzÀ
¥Àæw¥s°
À vÀUÉƼÀÄîvÀÛz.É
D ªÉÄïÉäöÊUÀ¼À
£ÀqÀÄ«£À CAvÀgÀ
¸Àj¸ÀĪÀiÁgÀÄ ¨É¼QÀ £À
vÀgA
À UÀzÀÆgÀzÀ¶ÖzÁÝU,À
¥Àgz
À A
É iÀÄ ªÉÄïÉ
»ÃUÉ C£ÀÄPÀæªÀĪÁV
PÀ¥ÀÄà ªÀÄvÀÄÛ §tÚzÀ
GAUÀÄgÀU¼
À £
À ÀÄß
PÁtÄvÉÛêÉ.
«zsÁAiÀÄPÀ ªÀåwPÀgt
À zÀ
¸ÀܼU
À ¼
À ÀÄ
§tÚªÁV,
«zÀéA¸ÀPÀ ªÀåwPÀgt
À zÀ
¸ÀܼU
À ¼
À ÀÄ
PÀ¥ÁàV
EgÀÄvÀÛªÉ.
Objective:
To
interference of light
demonstrate
Experiment: Two convex surfaces
of slightly different radii of
curvatures are placed one above
the other. Shine light from a Laser
pointer at a point close to centre
but slightly away from it. You may
have to get the desired result by
trial-and-error method to begin
with.
Observation: When position of the
light beam striking the two curved
surfaces if just right, one can see
concentric rings of light and dark
region on a screen placed in the
path of the reflected light.
Reason: The incident light is
actually reflected by two convex
surfaces. Where the gap between
the two surfaces is comparable
wavelength of light used, we see a
series of dark and light regions
alternating on the screen. The
bright regions correspond to
positions
of
constructive
interference and those of dark
regions to destructive interference.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ: «zÀÄåvÁÌAwÃAiÀÄ ¥ÉæÃgÀuU
É É ¸ÀÄgÀĽ
ªÀÄvÀÄÛ PÁAvÀzÀ £ÀqÀÄ«£À ¸Á¥ÉÃPÀë ZÀ®£É
CªÀ±ÀåPÀ JA§ÄzÀ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ: ¥Áè¹ÖPï ¨Á©£ï£À ¸ÀävÀÛ 20£ÉÃ
UÉÃeï ¸ÀASÉåAiÀÄ vÁªÀÄæzÀ vÀAwAiÀÄ£ÀÄß 150
¨Áj ¸ÀÄwÛ. F ¸ÀÄgÀĽAiÀÄ£ÀÄß UÁå®é£ÉÆÃ
«ÄÃlgï£ÉÆA¢UÉ ¸ÀA¥ÀQð¹. ¸ÀÄgÀĽAiÀÄ£ÀÄß
¹Ügª
À ÁVj¹, PÁAvÀª£
À ÀÄß EzÀgÀ ªÀÄÆ®PÀ
ºÁzÀĺÉÆÃUÀĪÀAvÉ
ªÀiÁr.
£ÀAvÀgÀ
PÁAvÀª£
À ÀÄß ¹Ügª
À ÁVj¹, ¸ÀÄgÀĽAiÀÄ£ÀÄß
ZÀ°¹. (¨Á©£ï£À ªÀÄzsÀå ¨sÁUÀPÉÌ PÁAvÀªÀÅ
§AzÀÄ ºÉÆÃUÀĪÀAvÁUÀ¨ÉÃPÀÄ). ªÀÄÆgÀ£A
É iÀÄ
¨Áj, ¸ÀÄgÀĽAiÀÄ M¼ÀUÃÉ PÁAvÀª£
À ÀÄß Ej¹,
JgÀq£
À ÀÆß MnÖUÉ PɼU
À É ©r.
«ÃQë¹: ªÉÆzÀ¯g
É q
À ÀÄ ¸ÀAzÀ¨ð
sÀ zÀ°è ¥ÉæÃjvÀ
«zÀÄåvï£À
¸ÀÆZÀPª
À ÁV
UÁå®é£ÉÆÃ
«ÄÃlgï£À°è
«PÉëÃ¥Àt
GAmÁUÀÄvÀÛzÉ.
ªÀÄÆgÀ£A
É iÀÄ
¸ÀAzÀ¨ð
sÀ zÀ°è
CzÀÄ
GAmÁUÀĪÀÅ¢®è.
PÁgÀt:
¸ÀÄgÀĽAiÀÄ ªÀÄÆ®PÀ ºÁAiÀÄĪÀ
PÁAwÃAiÀÄ
C©üªÁºÀz°
À è
(flux)
§zÀ¯ÁªÀuA
É iÀiÁzÁUÀ
ªÀiÁvÀæªÉÃ
¸ÀÄgÀĽAiÀÄ°è ¥ÉæÃjvÀ «zÀÄåvï GAmÁUÀ®Ä
¸ÁzsÀå. F §zÀ¯ÁªÀuU
É É ¸ÀÄgÀĽ ªÀÄvÀÄÛ
PÁAvÀzÀ £ÀqÀÄªÉ ¸Á¥ÉÃPÀë ZÀ®£É Cw CªÀ±Àå.
Objective:
To demonstrate that relative motion
between a coil and a magnet is
necessary
for
electromagnetic
induction.
Experiment:
A coil of about 150 turns is made by
winding a #20 copper wire. The coil is
connected to a galvanometer. First, a
strong magnet is dropped through the
stationary coil. Next we keep the
magnet stationary and drop the coil
such that the central gap in the bobbin
moves with the stationary magnet at
the centre. Thirdly, we hold the
magnet at the top end of the coil and
drop both simultaneously.
Observation:
The galvanometer shows deflection,
indicating a current induced in the coil
in the first two cases but no deflection
in the third.
Reason:
Current is induced in the coil when the
magnetic flux (‘lines of force’) changes
with respect to the coil. This happens
only if there is a relative motion
between the coil and the magnet.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
MAzÀÄ vÀmÉÖAiÀÄ ªÉÄÃ¯É ªÀÄÆqÀĪÀ ¸ÁܬÄÃ
vÀgA
À UÀU¼
À £
À ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
MAzÀÄ
ZËPÁPÁgÀzÀ
C®Æå«Ä¤AiÀÄA
vÀmÉÖAiÀÄ
ªÀÄzsÀå¨sÁUÀPÉÌ
®A§ªÁV
D¸ÀgU
É ÉÆî£ÀÄß
Ej¸À¯ÁVzÉ.
vÀmA
ÉÖ iÀÄ
ªÉÄÃ¯É ªÀÄgÀ¼£
À ÀÄß ZÀĪÀÄÄQ¹, CAZÀ£ÀÄß
ªÀAiÉÆð£ï£À
PÀªÀiÁ¤¤AzÀ
GfÓ
vÀmÉÖAiÀÄ£ÀÄß
PÀA¦¸ÀĪÀAvÉ
ªÀiÁr.
C¸ÀÛªÀå¸ÀÛªÁV
ºÀgr
À PÉÆArzÀÝ
ªÀÄgÀ¼ÀÄ
¸ÀÄAzÀgÀ
«£Áå¸ÀªÁV
ªÀiÁ¥ÀðqÀÄvÀÛzÉ.
PÁèr¤
JA§
«eÁÕ¤AiÀÄÄ
EAvÀºÀ
«£Áå¸ÀU¼
À À CzsÀåAiÀÄ£À ªÀiÁrzÀ ªÉÆzÀ°UÀ.
ºÁUÁV, EªÀÅUÀ½UÉ PÁèr¤ avÀæU¼
À ÀÄ JAzÀÄ
ºÉ¸g
À ÀÄ.
PÁgÀt:
PÀªÀiÁ¤¤AzÀ
GfÓzÁUÀ
vÀmA
ÉÖ iÀÄÄ
PÀA¦¸ÀÄvÀz
Û É. DzÀg,É vÀmÉÖAiÀÄ ¨ÉÃgÉ ¨ÉÃgÉ
¨sÁUÀU¼
À °
À è ¥ÁgÀ ¨ÉÃgÉ ¨ÉÃgÉAiÀiÁVgÀÄvÀÛz.É
¥ÁgÀªÀÅ ±ÀÆ£Àå«gÀĪÀ ¸ÁÜ£U
À ¼
À °
À è ªÀÄgÀ½£À
PÀtUÀ¼ÀÄ ±ÉÃRgÀUÉƼÀÄîvÀÛªÉ. vÀmÉÖAiÀÄ DPÁgÀ,
ªÀ¸ÀÄÛ«£À ¸ÁAzÀævÉ ªÀÄvÀÄÛ PÀªÀiÁ¤¤AzÀ
GAmÁzÀ
PÀA¥À£U
À ¼
À ÀÄ
±ÀÆ£Àå¥ÁgÀzÀ
¸ÁÜ£U
À ¼
À £
À ÀÄß ¤zsð
À j¸ÀÄvÀÛª.É
Objective:
To
demonstrate
standing waves in a plate
Experiment: The centre of a square
aluminium plate is fixed to a stand
such that the plate is horizontal.
Sprinkle some fine sand on the
plate. Excite the plate by bowing
one of the edges with a violin Bow.
The randomly sprinkled particles of
sand arrange into beautiful
patterns known as Chladni Figures,
after the person who studied them.
Reason: Bowing the plate sets the
plate into vibration. The amplitude
of vibration is not the same
everywhere on the plate. Sand
particles collect in regions of zero
amplitude, that is, where there are
no vibrations. The regions of zero
amplitude depend on factors such
as the shape of the plate, frequency
of vibration and density of the
material of the plate.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
DgÀA¨sÀ ªÉÃUÀªÃÉ ¥ÀæPÃÉë ¥ÀåzÀ ªÁå¦ÛAiÀÄ£ÀÄß
¤zsð
À j¸ÀÄvÀÛzÉ JA§ÄzÀ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
bÁAiÀiÁavÀæz°
À è
PÁtĪÀAvÉ
¥Áè¹ÖPï
PÉùAUï ¥ÀnÖAiÀÄ£ÀÄß ºÀ®UÉAiÉÆAzÀgÀ ªÉÄïÉ
®UÀwÛ¸¯
À ÁVzÉ. ¹Öïï UÉÆüÀªÉÇAzÀ£ÀÄß
¥ÀnÖAiÀÄ ªÉÄÃ¯É MAzÀÄ ¤¢ðµÀÖ ¸ÁÜ£¢
À AzÀ
JµÉÖà ¨Áj GgÀĽ¹zÀgÀÆ CzÀÄ ºÀ®UÉAiÀÄ
vÀ¼z
À °
À ègÀĪÀ MAzÀÄ gÀAzsÀæzÉƼÀPÉÌà §AzÀÄ
©Ã¼ÀÄvÀz
Û .É
PÁgÀt:
¥ÀæPÉëævÀ
ªÀ¸ÀÄÛ
PÀæ«Ä¸ÀĪÀ
¸ÀªÀÄvÀ®
zÀÆgÀª£
À ÀÄß
CzÀgÀ
ªÁå¦Û
JAzÀÄ
PÀgA
É iÀÄÄvÉÛêÉ. EzÀÄ DgÀA¨s¢
À AzÀ £É®
ªÀÄÄlÖ®Ä ¨ÉÃPÁUÀĪÀ ¸ÀªÀÄAiÀÄ ªÀÄvÀÄÛ
¸ÀªÀÄvÀ®zÀ ¢QÌ£°
À ègÀĪÀ ªÉÃUÀzÀ ¨sÁUÀzÀ
UÀÄt®§Þ. £ÀªÀÄä ¥ÀæzÀ²ðPÉAiÀÄ°è UÉÆüÀªÀÅ
UÁ½AiÀÄ°è PÀæ«Ä¸ÀĪÀ ¸ÀªÀÄAiÀÄ ¤²Ñvª
À ÁVzÉ.
DzÀÝjAzÀ,
ªÁå¦ÛAiÀÄ°è
ªÀåvÁå¸À
§gÀ¨ÉÃPÉAzÀgÉ CzÀÄ ªÉÃUÀzÀ ¸ÀªÀÄvÀ®
¨sÁUÀ¢AzÀ¯ÃÉ
DVgÀ¨ÉÃPÀÄ. UÉÆüÀª£
À ÀÄß
AiÀiÁªÀ ¸ÁÜ£¢
À AzÀ GgÀļÀ®Ä ©qÀÄvÉÛêÉ
JA§ÄzÀÄ CzÀgÀ ªÉÃUÀª£
À ÀÄß ¤zsð
À j¸ÀÄvÀÛzÉ.
E°è
MAzÉÃ
¸Àܼ¢
À AzÀ
GgÀļÀ®Ä
©qÀĪÀÅzÀjAzÀ
CzÀgÀ
ªÁå¦ÛAiÀÄÄ
¤²ÑvÀªÁVzÉ.
Objective:
To demonstrate that the range of a
projectile depends on the velocity
of launch
Experiment:
A smooth ramp is made out of a
plastic casing pipe and fixed to a
vertical board as shown in the
photograph. A steel sphere
repeatedly rolled from a fixed point
on the ramp always passes through
the hole at the bottom of the
board.
Reason:
Range is the horizontal distance
that a projectile covers. It is the
product of horizontal component of
velocity and the time for which the
projectile stays in flight. The
position of release of the steel
sphere decides the velocity. Since
the time for which the sphere stays
in air is constant in our set up, the
difference in range covered is due
to difference in velocity.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
J¯ÉPÁÖ礣À
vÀgA
À UÀ
¸Àé¨sÁªÀª£
À ÀÄß
¸ÁzÀȱÀvA
É iÀÄ ªÀÄÆ®PÀ ¤gÀƦ¸ÀĪÀÅzÀÄ.
Objective:
To demonstrate the wave nature of
electrons through analogy.
¥ÀæAiÉÆÃUÀ:
MAzÀÄ vɼÀîV£À vÀAwAiÀÄ£ÀÄß ªÀÈvÁÛPÁgÀPÉÌ
¨ÁV¹, ¹àÃPÀgï£À ªÉÄÃ¯É ¤°è¹. F
¹àÃPÀgïC£ÀÄß
DA¥Àè¥A
sóÀ iÀÄgï£À
ªÀÄÆ®PÀ
D¹¯Éãlgï£ÉÆA¢UÉ ¸ÀA¥ÀQð¹. vÀAw¬ÄAzÀ
ªÀiÁrzÀ ªÀÈvÀÛª£
À ÀÄß PÀA¥À£PÀ ÉÌ M¼À¥r
À ¹.
Experiment:
A thin circular loop of thin wire is
mounted on a speaker. The speaker
is driven by an oscillator through an
amplifier. The loop of wire is set
into vibration using the oscillator.
«ÃQë¹:
ªÀÈvÁÛPÁgÀzÀ vÀAwAiÀÄ°è ¸ÁܬÄà vÀgA
À UÀU¼
À ÀÄ
ªÀÄÆqÀĪÀÅzÀjAzÀ £ÉÆÃqïUÀ¼ÀÄ (¸ÁܬÄ
©AzÀÄUÀ¼ÀÄ)
ªÀÄvÀÄÛ
DAn£ÉÆÃqïUÀ¼ÀÄ
gÀÆ¥ÀÄUÉƼÀÄîvÀÛª.É
Observation:
We observe a standing wave
pattern with nodes (points of zero
displacement) and antinodes along
the circumference of the loop.
¸ÁzÀȱÀv:É
MAzÀÄ ¤¢ðµÀÖ wædåzÀ ªÀÈvÀÛz°
À è ªÀÄÆqÀĪÀ
¸ÁܬÄà vÀgA
À UÀU¼
À °
À è 1, 2, 3..................
F jÃw ¸ÀA¥ÀÆtð vÀgA
À UÀU¼
À ÀÄ ªÀiÁvÀæ
ªÀÄÆqÀ®Ä ¸ÁzsÀå. J¯ÉPÁÖç£ï£À ZÉÊvÀ£Àå, CzÀgÀ
vÀgA
À UÀzÀÆgÀzÀ
ªÉÄïÉ
Dzsj
À ¹zÉ.
vÀgA
À UÀzÀÆgÀU¼
À ÀÄ
«ªÀPÀÛ
(descrete)
ªÁzÀÄzÀjAzÀ, ZÉÊvÀ£ÀåUÀ¼ÀÆ «ªÀPÀÛªÁVªÀ.É
CAvÉAiÉÄà F ¥Àæz²
À ðPÉAiÀÄ°è 2, 3,
4.......... F jÃwUÀ¼À ¸ÁÜ¬Ä ©AzÀÄUÀ¼ÀÄ
gÀÆ¥ÀÄUÉƼÀÄîvÀÛª.É
Analogy:
For a standing wave to form in a
circle of a given radius, only integral
number of wavelengths is possible.
Because the electron energies
depend on their wavelengths and
the wavelengths are discrete, the
allowed energies must also be
discrete. In this model we see two
nodes, three nodes, four nodes and
so on….
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ: J.¹. ªÉÇïïÖ«ÄãlgïUÀ¼ÀÄ K£À£ÀÄß
C¼ÉAiÀÄÄvÀÛªÉ JA§ÄzÀ£ÀÄß CxÉÊð¹PÉƼÀÄîªÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
20£Éà UÉÃeï ¸ÀASÉåAiÀÄ vÁªÀÄæzÀ vÀAwAiÀÄ£ÀÄß
¥Áè¹ÖPï PÉƼÀªÉAiÀÄ ¸ÀÄvÀÛ 1000 ¸ÀÄvÀÄÛ ¸ÀÄwÛ
PÉƼÀªA
É iÀÄ M¼ÀUÉ ±ÀÄzÀÞ PÀ©âtzÀ ¸Àg¼
À £
À ÀÄß
vÀÆj¹.
1KΩ£À
2
gÉÆÃzsPÀ U
À ¼
À £
À ÀÄß
¸ÀªÀiÁAvÀgª
À ÁV ¸ÀA¥ÀQð¹ ¸ÉƯɣÁAiÀiïØ£À ¸ÀÄvÀÛ
GAUÀÄgÀzA
À vÉ zÀÈqsÀªÁV PÀÆj¹. ¸ÀÄgÀĽAiÀÄ£ÀÄß
220V
J.¹.
ªÉÄÊ£ïìUÉ
¸ÀA¥ÀQð¹.
gÉÆÃzsÀPU
À ¼
À £
À ÀÄß
¸ÀA¥ÀQð¹gÀĪÀ
©AzÀÄUÀ¼À
£ÀqÀÄ«£À «¨sª
À À ª£
À ÀÄß J.¹. ªÉÇïïÖ«ÄÃlgï£À°è
C¼É¬Äj. F ¸ÀAzÀ¨ð
sÀ zÀ°è ªÉÇïïÖ«ÄÃlgÀ£ÀÄß
D¸ÀÄ¥Á¹£À ¨ÉÃgÉ ¨ÉÃgÉ ¸ÁÜ£U
À ¼
À °
À èlÖgÉ CzÀÄ
vÉÆgÀĪÀ ªÉÇïÉÖÃeï ¸ÀºÀ §zÀ¯ÁUÀÄvÀÛz!É !
PÁgÀt:
ªÉÇïïÖ «ÄÃlgïUÀ¼ÀÄ ¥ÉÆæèïUÀ¼£
À ÉÆß¼ÀUÉÆAqÀ
¸ÀQðmï£ÀÀ ¥ÀxÀz°
À ègÀĪÀ E.JªÀiï.J¥sóï. C£ÀÄß
C¼ÉAiÀÄÄvÀÛªA
É iÉÄÃ
ºÉÆgÀvÀÄ
«zÀÄåvï
«¨sÀªª
À £
À Àß®è. «zÀÄåvï PÉëÃvÀæz°
À è §zÀ¯ÁªÀuÉ
E®èzÀ
r¹
«zÀÄåvï
¥ÀæªÀ»¸ÀÄwÛgÀĪÀ
¸ÀAzÀ¨sð
À zÀ°è EzÉà «zÀÄåvï «¨sª
À ª
À £
À ÀÄß
¤ÃqÀÄvÀÛzÉ. E°ègÀĪÀ gÉÆÃzsPÀ U
À ¼
À °
À è «ÄÃlgï£À
¥ÉÆæèïUÀ¼ÀÆ ¸ÉÃjªÉ. CªÀÅ ¸ÉƯɣÁAiÀiïØ£À
§zÀ¯ÁUÀÄwÛgÀĪÀ «zÀÄåvÁÌAwÃAiÀÄ PÉëÃvÀæz°
À èª.É
E°è ¨ÉÃgÉ ¨ÉÃgÉ ¸ÁÜ£U
À ¼
À °
À è ¨ÉÃgÉ ¨ÉÃgÉ
«zÀÄåvï
PÉëÃvÀæ«zÉ
JAzÀÄ vÉÆÃj¸ÀÄwÛz.É
Objective:
To understand what the AC Voltmeters
measure.
Experiment:
Make a solenoid of 1000 turns of #20
copper wire on a plastic pipe. The pipe
is filled with a soft iron core. Two
resistors of, say 1kΩ, are connected in
parallel to form a ring that tightly fit
around the solenoid, as shown. The
coil is connected to 220V AC. The
potential difference between the
points of contact of the two resistors is
measured with an AC voltmeter. The
measurement is carried out between
the same two points but the voltmeter
is moved to a new position. Now, the
voltmeter reading will be different!!!
Reason:
The resistors have been placed in a
changing electromagnetic field around
the solenoid. What the voltmeters
measure is not the potential difference
but the EMF along the path of the
circuit which includes the probes. In an
unchanging electric field, as in DC, this
measurement
corresponds
to
potential
difference
itself.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
¤Ã¼À
C¯ÉAiÀÄ
¸ÀAZÁgÀuA
É iÀÄ£ÀÄß
¸ÁzÀȱÀvA
É iÀÄ ªÀÄÆ®PÀ ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
¸ÀĪÀiÁgÀÄ
20
qÉÆãÀmï
DPÁgÀzÀ
¸ÉgÁ«ÄPï PÁAvÀU¼
À £
À ÀÄß PÀAZÀÄ CxÀªÁ
¥Áè¹ÖPï PÀA©AiÀÄ ªÀÄÆ®PÀ vÀÆj¹.
PÁAvÀU¼
À ÀÄ
MAzÀPÉÆÌAzÀÄ
«PÀ¶ð¸ÀĪÀAwgÀ¨ÉÃPÀÄ. D PÀA©AiÀÄ£ÀÄß
CqÀدÁV
»rzÀÄ
¤zsÁ£ÀªÁV
PÉÆ£ÉAiÀÄ°ègÀĪÀ MAzÀÄ PÁAvÀª£
À ÀÄß ¸Àé®àªÉÃ
dgÀÄV¹.
«ÃQë¹:
ªÀÄvÉÆÛAzÀÄ vÀÄ¢AiÀĪÀgU
É ÀÆ EgÀĪÀ «ÄPÉ̯Áè
PÁAvÀU¼
À ÀÆ
MAzÁzÀ
ªÉÄïÉÆAzÀÄ
dgÀÄUÀÄvÀÛª.É
¸ÁzÀȱÀv:É
MAzÀÄ vÀÄ¢AiÀÄ°è PÁAvÀªÀ£ÀÄß dgÀÄV¸ÀĪÀ
ªÀÄÆ®PÀ GAlĪÀiÁrzÀ ªÀåvÀåAiÀÄ CzÉÃ
¢QÌ£À°è ¸ÁV E£ÉÆßAzÀÄ vÀÄ¢AiÀÄ£ÀÄß
vÀ®Ä¥ÀÄvÀÛzÉ. E°è ¥ÀæwAiÉÆAzÀÄ PÁAvÀªÀÇ
ZÉÊvÀ£ÀåªÀ£ÀÄß
vˣ˧
¥ÀPÀÌz°
À ègÀĪÀÅzÀPÉÌ
ªÀUð
À ªÀiÁr vÀ£ÀÆä®PÀ vÀgA
À UÀzÀ ¸ÀAZÀgu
À U
É É
PÁgÀtªÁUÀĪÀ PÀtzÀAvÉ ªÀwð¸ÀÄvÀÛz.É zsÀé¤
vÀgA
À UÀU¼
À £
À ÀÄß UÁ½AiÀÄ PÀtUÀ¼ÀÄ »ÃUÉAiÉÄÃ
ªÀUÁð¬Ä¸ÀÄvÀÛª.É
Objective:
To provide an analogy to the
propagation of longitudinal waves.
Experiment:
Place about 20 circular, ceramic
magnets with a hole along a nonmagnetic rod such as brass or
plastic. Each magnet must repel the
neighbouring two magnets. Holding
the non-magnetic rod horizontally,
gently displace the extreme
magnet.
Observation: Successively, each
magnet
shows
a
small
displacement – all the way to the
other end of the rod.
Analogy:
The
disturbance caused by
displacing the magnet at one end
travels in the direction of the
disturbance. Here each magnet
behaves like a particle that
transfers energy to the immediate
neighbour
resulting
in
the
propagation of a pulse or wave.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
PÉmÁ°¸ïÖU¼
À À §¼ÀPɬÄAzÀ gÁ¸ÁAiÀĤPÀ
QæAiÉÄAiÀÄ
ªÉÃUÀª£
À ÀÄß
§zÀ°¸À§ºÀÄzÀÄ
JA§ÄzÀ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ:
¸ÁzsÁgÀt vÁ¥ÀªÀiÁ£À ªÀÄvÀÄÛ MvÀÛqz
À °
À è
ºÉÊqÉÆæÃd£ï
¥ÀgÁPÉìöÊqï
JA§
gÁ¸ÁAiÀĤPÀªÀÅ §ºÀ¼À ¤zsÁ£ÀªÁV ¤ÃgÀÄ
ªÀÄvÀÄÛ DQìd£ï DV «¨sd
À £ÉUÉƼÀÄîvÀÛz.É
anPÉAiÀĵÀÄÖ ¯Éqï DPÉìöÊqÀ£ÀÄß ¸ÉÃj¹zÀgÉ F
«¨sÀd£ÉAiÀÄ UÀwAiÀÄÄ ºÉZÁÑUÀÄvÀÛz.É
Objective: To demonstrate that the
rate of a chemical reaction can be
altered by catalysts
Experiment: Hydrogen peroxide
decomposes into water and oxygen
under normal temperature and
pressure. This is a very slow
reaction. Adding a pinch of lead
oxide increases the rate of the
reaction.
«ÃQë¹:
¯Éqï DPÉìöÊqï ºÁPÀÄwÛzÀÝAvÉAiÉÄà ªÉÃUÀªÁV
£ÉÆgÉ §gÀÄvÀÛz.É F gÁ¸ÁAiÀĤPÀ QæAiÉÄ
£ÀqA
É iÀÄÄwÛgÀĪÀ
¥ÀætÁ®zÀ
ªÉÄïÉ
QrUÀrØAiÀÄ£ÀÄß »rzÀgÉ CzÀÄ ºÉZÀÄÑ
¥ÀæPÁ±ÀªÀiÁ£ÀªÁV GjAiÀÄÄvÀz
Û .É
Observation: Bubbles are quickly
formed after adding lead oxide. A
burning splinter held in the boiling
tube in which the reaction is taking
place burns brighter.
PÁgÀt:
«¨sÀd£ÉAiÀÄ
GvÀà£ÀßUÀ¼ÃÉ
£ÉÆgÀA
É iÀiÁV
§gÀÄwÛgÀÄvÀÛª.É CzÀg°
À è MAzÁzÀ DQìd£ï
zÀº£
À À QæAiÉÄAiÀÄ GvÉÃÛ dPÀ.
Reason: The bubbles are the
products of decomposition. The
splinter burns brightly because one
of the products, oxygen, is a
supporter of combustion.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
PÁå¯ÉìöÊmï ºÀg½
À £À¯ÁèUÀĪÀ
QæAiÉÄAiÀÄ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¢éªQÀ æèsª
À À£ À
¥ÀæAiÉÆÃUÀ:
¥ÁgÀz±
À ð
À PÀ PÁå¯ÉìöÊmï ºÀgÀ¼£
À ÀÄß ¤«ÄµÀPÉÌ 5
¨Áj DªÀwð¸ÀĪÀ ªÉÆÃmÁgï£À ªÉÄïÉ
PÀÆj¸À¯ÁVzÉ.
EzÀ£ÀÄß
UÁf£À
ªÀÄÄA¨sÁUÀªÀżÀî
¥ÉnÖUA
É iÀÄ°è
Ej¹zÉ.
¥ÉnÖUA
É iÉƼÀPÉÌ ¸Àé®à ºÉÆUÉ vÀÄA©¹, CzÀ£ÀÄß
ªÀÄÄaÑ ©r, §¢AiÉÆAzÀg°
À è PÉÆgÉ¢gÀĪÀ
¸ÀtÚ gÀAzsÀæzÀ ªÀÄÆ®PÀ ºÀg½
À £À ªÉÄïÉ
¯ÉøÀgï ¨É¼PÀ £
À ÀÄß ºÁ¬Ä¹.
«ÃQë¹:
ºÀg½
À £À ªÉÄÃ¯É ©Ã¼ÀÄwÛgÀĪÀÅzÀÄ MAzÉÃ
¯ÉøÀgï
QgÀtªÁzÀgÀÆ
ºÀg½
À ¤AzÀ
ºÉÆgÀ§gÀĪÀÅzÀÄ
JgÀqÀÄ
QgÀtUÀ¼ÀÄ.
ºÀg¼
À £
À ÀÄß DªÀwð¹zÀgÉ MAzÀÄ QgÀtzÀ
¢PÀÄÌ
§zÀ¯ÁUÀĪÀÅ¢®è,
DzÀgÉ
ªÀÄvÉÆÛAzÀgz
À ÀÄ §zÀ¯ÁUÀÄvÀÛz.É
PÁgÀt:
PÁå¯ÉìöÊmï ºÀg½
À £À°è ¨ÉÃgÉ ¨ÉÃgÉ ¢PÀÄÌU¼
À °
À è
¨É¼QÀ £À ªÉÃUÀªÀÅ ¨ÉÃgÉ ¨ÉÃgÉAiÀiÁUÀĪÀAvÀºÀ
gÀZ£
À É EzÉ. JAzÀgÉ ¨ÉÃgÉ ¨ÉÃgÉ ¢QÌ£À°è
CzÀgÀ ªÀQæèsª
À £
À ÁAPÀ ¨ÉÃgÉ ¨ÉÃgÉ EgÀÄvÀÛzÉ.
¢PÀÄÌ §zÀ°¸ÀzÀ QgÀtªÀ£ÀÄß ¸ÁªÀiÁ£Àå
QgÀtªÉAzÀÆ ¢PÀÄÌ §zÀ°¸ÀĪÀ QgÀtªÀ£ÀÄß
C¸ÁªÀiÁ£Àå QgÀtªÉAzÀÆ PÀgA
É iÀÄÄvÉÛêÉ.
Objective:
To
demonstrate
birefringence or Double Refraction
in Calcite Crystal
Experiment:
A transparent crystal of calcite is
mounted on a 5 rpm motor. This is
placed in a wooden box with a glass
front. The box is closed and filled
with a small quantity of smoke that
enables us to see the path of light.
A narrow beam of light from a laser
pointer is shone on the crystal
through an small opening in the
box.
Observation: A single beam of light
enters the crystal but two beams
emerge out of it. One of the beams
has a fixed direction as the crystal
rotates about a vertical axis. The
other beam, however, rotates
along with the crystal.
Reason: Calcite has a structure that
affects the speed of light differently
along different directions – that is,
different refractive indices. The
beam that remains fixed in
direction is called the Ordinary Ray
and the other 'Extraordinary Ray'.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
JgÀqÀÄ ªÁºÀPU
À ¼
À °
À è ¥ÀæªÀ»¸ÀĪÀ «zÀÄåvï
MAzÉÃ
¢QÌ£À°èzÀÝg,É
GAmÁUÀĪÀ
¥ÀjuÁªÀĪÀ£ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
Objective:
To demonstrate the effect of parallel
currents in conductors.
¥ÀæAiÉÆÃUÀ:
20£Éà UÉÃeï ¸ÀASÉåAiÀÄ vÁªÀÄæzÀ vÀAw¬ÄAzÀ
2000 ¸ÀÄwÛ£À ¸ÀÄgÀĽAiÀÄ£ÀÄß ªÀiÁrPÉƽî.
¸ÀÄgÀĽAiÀĵÉÖà JvÀÛg«
À gÀĪÀ ±ÀÄzÀÞ PÀ©âtzÀ
¸ÀtÚ ¸À¯ÁPÉU¼
À £
À ÀÄß ¸ÀÄgÀĽAiÀÄ PÉÃAzÀæPÉÌ
vÀÆj¹.
¸ÀÄgÀĽVAvÀ
2
¸É.«ÄÃ.
JvÀÛgz
À °
À ègÀĪÀAvÉ
vÁªÀÄæzÀ
vÀmÉÖAiÀÄ£ÀÄß
wgÀÄUÀ®Ä
¸ÁzsÀåªÁUÀĪÀAvÉ
vÀÆV©r.
EªÉgÀqg
À À £ÀqÀÄªÉ Czsð
À zÀªÀgU
É ÀÆ E£ÉÆßAzÀÄ
vÀmÉÖAiÀÄ£ÀÄß vÀÆj¹. ¸ÀÄgÀĽAiÀÄ£ÀÄß 220V
J.¹. ªÉÄÊ£ïì£ÉÆA¢UÉ ¸ÀA¥ÀQð¹.
Experiment:
Make a 2000-turn #20 copper wire
coil. Use thin, soft iron rods as the
core. Let the core not extend
beyond the height of the coil.
Suspend a copper disc right above
the coil separated by about 2 cm so
that it is free to rotate. Now insert
half way, a copper plate in the gap
and connect the coil to 220V AC
supply.
«ÃQë¹:
vÀÆV©lÖ vÀmÉÖ DªÀwð¸ÀÄvÀÛz.É
Observation:
The suspended disc rotates.
PÁgÀt:
¸ÀÄgÀĽAiÀÄ°è ¥ÀæªÀ»¸ÀÄwÛgª
À À J¹ «zÀÄåvï
JgÀqÀÆ
vÀmÉÖU¼
À ®
À Æè
§zÀ¯ÁUÀÄwÛgÀĪÀ
«zÀÄåvï C£ÀÄß ¥ÉæÃgÉæ¸ÀÄvÀÛz.É EzÀjAzÁV
GAmÁUÀĪÀ
¨sÁæªÀÄPÀ(torque)¢AzÀ
vÀÆV©lÖ vÀmÉÖ DªÀwð¸ÀÄvÀÛz.É
Reason:
Alternating current in the coil
induces a changing currents in the
copper plate and the disc. This gives
rise to a torque on the suspended
disc that rotates it.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
PÉÆäÃAiÀÄ
¸ÀAªÉÃUÀzÀ
¤gÀƦ¸ÀĪÀÅzÀÄ.
¸ÀAgÀPÀëuA
É iÀÄ£ÀÄß
¥ÀæAiÉÆÃUÀ:
PÉÃAzÀæzÀ°è ¸À¯ÁPɬÄgÀĪÀ ¸ÉÊPÀ¯ï ZÀPÀæ
CxÀªÁ wgÀÄUÀ§®è AiÀiÁªÀÅzÉà ZÀPÀæ –
EzÀĪÉà eÉÊgÉÆøÉÆÌÃ¥ï. wgÀÄUÀÄ PÀÄaðAiÀÄ
ªÉÄÃ¯É PÀĽvÀÄ, ¸ÉÊPÀ¯ï ZÀPÀ檣
À ÄÀ ß avÀæz°
À è
vÉÆÃj¹gÀĪÀAvÉ JgÀqÀÆ PÉÊUÀ½AzÀ »rzÀÄ
ªÉÃUÀªÁV wgÀÄV¹. FUÀ ZÀPÀ檣
À ÀÄß MAzÀÄ
PÀqU
É É ªÁ°¹zÀg,É PÀÄaðAiÀÄÄ «gÀÄzÀÞ ¢QÌUÉ
wgÀÄUÀÄvÀÛz.É
PÁgÀt:
DgÀA¨sz
À °
À è ZÀPÀæ, ¤ÃªÀÅ ªÀÄvÀÄÛ PÀÄað
J®èzj
À AzÁV §gÀĪÀ ¤ªÀé¼À PÉÆäÃAiÀÄ
¸ÀAªÉÃUÀªÀÅ ±ÀÆ£ÀåªÁVgÀÄvÀÛz.É wgÀÄUÀÄwÛgÀĪÀ
ZÀPÀ檣
À ÀÄß ªÁ°¹zÀgÉ PÉÆäÃAiÀÄ ¸ÀAªÉÃUÀªÀÅ
§zÀ¯ÁUÀÄvÀÛz.É ºÁUÁV, PÀÄað «gÀÄzÀÞ
¢QÌ£À°è
wgÀÄUÀĪÀ
ªÀÄÆ®PÀ
¤ªÀé¼À
PÉÆäÃAiÀÄ ¸ÀAªÉÃUÀªÀÅ ±ÀÆ£ÀåªÁUÀĪÀAvÉ
ªÀiÁqÀÄvÀÛz.É
Objective:
To
demonstrate
conservation angular momentum
Experiment: A bicycle wheel with
axle forms what is known as a
gyroscope – essentially a rotating
wheel. Sit on the rotating chair and
hold the axle of the bicycle wheel
with two hands, as shown, and
rotate the wheel as fast as you can.
Now, slightly tilt the rotating wheel
to one side, say, to your left. The
chair rotates to your right.
Reason: To start with, the rotating
wheel, you and the chair have a total
angular momentum equal to zero.
By tilting the rotating wheel, the
angular
momentum
changes.
Consequently, the chair rotates in
the opposite direction which will
have an equal angular momentum in
the opposite direction. Thus, the
total angular momentum is still zero.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
zsÉåÃAiÀÄ:
ªÉÄÃtzÀ §wÛ GjAiÀÄĪÀ°è CzÀgÀ D«AiÀÄ
¥ÁvÀ檣
À ÀÄß ¤gÀƦ¸ÀĪÀÅzÀÄ.
¥ÀæAiÉÆÃUÀ
ÆÃUÀ:
10 ¸ÉA.«Äà X 10 ¸ÉA.«Äà C¼ÀvA
É iÀÄ
C®Æå«Ä¤AiÀÄA
ºÁ¼ÉAiÀÄ°è
ªÉÄÃtzÀ
§wÛAiÀÄ°ègÀĪÀ §wÛAiÀÄ UÁvÀæPÉÌ vÀPÀÌ gÀAzsÀ檣
À ÀÄß
ªÀiÁr.
ªÉÄÃtzÀ
§wÛAiÀÄÄ
¹Ügª
À ÁV
GjAiÀÄÄwÛgÀĪÁUÀ
eÁé¯ÉAiÀÄÄ
DgÀzA
À vÉ
eÉÆÃ¥Á£ÀªÁV §wÛAiÀÄÄ gÀAzsæz
À À ªÀÄÆ®PÀ
vÀÆgÀÀĪÀAvÉ ºÁ¼ÉAiÀÄ£ÀÄß Ej¹.
«ÃQë¹:
PÉ®ªÉà PÀëtUÀ¼°
À è eÁé¯É £ÀA¢ºÉÆÃUÀÄvÀÛz.É
PÁgÀt:
ªÉÄÃtzÀ §wÛAiÀÄÄ GjAiÀÄÄwÛgÀĪÀAvÉ ¸Àé®à
¥ÀæªÀiÁtzÀ ªÉÄÃt PÀgV
À
§lÖ°£ÀAvÀºÀ
gÀZ£
À A
É iÀiÁUÀÄvÀÛzÉ zÀæªg
À ÀÆ¥ÀzÀ ªÉÄÃt Pɦ®j
§®¢AzÀ §wÛAiÀÄ ªÀÄÆ®PÀ ªÉÄïÉÃgÀÄvÀÛzÉ.
§wÛAiÀÄ
vÀÄ¢AiÀÄ°èAiÀÄ
vÁ¥À¢AzÀ
zÀæªg
À ÀÆ¥ÀzÀ ªÉÄÃtªÀÅ D«AiÀiÁV vÀPÀëtªÉÃ
¸ÀÄ®¨sª
À ÁV
ºÉÆwÛPÉƼÀÄîvÀÛz.ÀÉ
DzÀg,É
C®Æå«ÄAiÀÄA
ºÁ¼É
GvÀÛªÀÄ
ªÁºÀPª
À ÁzÀÝjAzÀ ªÉÄÃt D«AiÀiÁUÀĪÀÅzÀPÉÌ
CªÀPÁ±À«®èzA
À vÉ vÁ¥Àª£
À ÀÄß »ÃjPÉƼÀÄîvÀÛzÉ.
ºÁUÁV eÁé¯É £ÀA¢ºÉÆÃUÀÄvÀÛz.É
Objective:
To demonstrate the role of wax
vapours in the burning of a candle.
Experiment:
Take a sheet of aluminium foil, say,
10 cm X 10 cm. Make a small hole at
the centre of the foil – just big
enough to slide through the wick of
the candle. Light up the candle.
When the flame is steady, carefully
and gently insert the foil through the
wick.
Observation:
The candle flame puts off in a few
seconds
Reason:
The burning candle works by melting
a little of the candle wax at the base
of the wick. A cup-like structure
holds the molten wax. This rises up
the wick by capillary action. The heat
at the tip vapourizes the wax which
ignites easily. The aluminium foil
conducts away heat even before
wax vapours are formed. Hence,
burning ceases.
JAWAHARLAL NEHRU PLANETARIUM
Science-in-Action (August 22-24, 2014)
¨ÉÃPÁUÀĪÀ ¸ÁªÀÄVæU¼
À ÀÄ:
KtÄUÀ½gÀĪÀ PÉƼÀªÉ, ¤ÃgÀÄ, 2 §PÉmïUÀ¼ÀÄ (MAzÀÄ
E£ÉÆßAzÀQÌAvÀ zÀÉÆqÀØzÁVgÀ¨ÉÃPÀÄ)
«zsÁ£À:
• aPÀÌ §PÉmï£À vÀ¼Àz°
À è gÀAzsÀæ ªÀiÁr KtÄUÀ½gÀĪÀ
PÉƼÀªA
É iÀÄ£ÀÄß CzÀgÉƼÀUÉ vÀÆj¹. FUÀ F
§PÉlÖ£ÀÄß ¤ÃjgÀĪÀ zÉÆqÀØ §PÉmï£À ªÉÄïÉ
vÀ¯PÉ ¼
É U
À ÁV Ej¹ PɼPÀ ÉÌ vÀ½îzÁUÀ ªÀÄvÀÄÛ ªÉÄîPÉÌ
JwÛzÁUÀ £ÁzÀ ºÉƪÀÄÄävÀÛzÉ.
• §PÉlÖ£ÀÄß ¤Ãj£ÉƼÀUÉ vÀ½îzÁUÀ, CzÀgÉƼÀVgÀĪÀ
UÁ½AiÀÄ UÁvÀæ PÀrªÉÄAiÀiÁUÀÄvÀÛzÉ ªÀÄvÀÄÛ MvÀÛqÀ
ºÉZÁÑUÀÄvÀÛzÉ. PÉƼÀªA
É iÀÄ ºÉÆgÀ vÀÄ¢AiÀÄ §½ EgÀĪÀ
MvÀÛqQÀ ÌAvÀ®Æ M¼À vÀÄ¢AiÀÄ §½ EgÀĪÀ MvÀÛqÀ
ºÉZÁÑUÀÄvÀÛzÉ.
ºÁUÁV
UÁ½
M¼ÀvÀÄ¢¬ÄAzÀ
ºÉÆgÀvÀÄ¢AiÉÄqÉUÉ zsÁ«¸ÀÄvÀÛz.É UÁ½AiÀÄ CtÄUÀ¼ÀÄ
MAzÀPÉÆÌAzÀÄ
C¥ÀླྀÀĪÀÅzÀjAzÀ
GAmÁUÀĪÀ
PÀA¥À£U
À ¼
À ÀÄ ±À§Ý §gÀ®Ä ªÀÄÆ®PÁgÀt.
• §PÉlÖ£ÀÄß ¤Ãj¤AzÀ ºÉÆgÀvU
É A
É iÀÄĪÁUÀ, §PÉnÖ£À
M¼ÀUÉ MvÀÛqÀ PÀrªÉÄAiÀiÁUÀÄvÀÛz.É ºÉÆgÀvÀÄ¢¬ÄAzÀ
M¼ÀvÀÄ¢AiÉÄqÉUÉ §gÀĪÀ UÁ½AiÀÄ CtÄUÀ½AzÁV ±À§Ý
§gÀÄvÀz
Û É.
Apparatus Required: A corrugated tube,
water, 2 buckets (one much larger than the
other)
Procedure:
One end of a corrugated tube is fit properly
into a hole made at the bottom of the
smaller bucket. This is now kept inverted
over a much larger bucket with water. We
hear musical sounds as we press the small
bucket into the water or pull it.
As the inverted bucket is pressed down into
the water, the volume for air molecules
inside it is reduced. The pressure at the
inner end of the tube is higher than that at
the outer end. Therefore the air molecules
inside the bucket rush to move out through
the tube.
They collide with each other setting up
vibrations producing sound.
When the bucket is pulled out, there is a
low pressure inside the bucket. Now the air
moving into it produces
the sound.

Documents pareils

Five Chinese Brothers

Five Chinese Brothers strange pebbles, extraordinary shells and fantastic £ÀÄgÀÄdÄUÀ®ÄèUÀ¼À£ÀÄß, C¥ÀgÀÆ¥ÀzÀ a¥ÀÅöàUÀ¼À£ÀÄß, ¸ÀÄAzÀgÀªÁzÀ ¥ÀZÀѤðAiÀÄ QgÀĸÀ¸ÀåUÀ¼À£ÀÄß vÀ£Àß eÉé£À°è vÀÄA©PÉƼÀÄîªÀÅzÀgÀ°è ¤gÀvÀ£ÁzÀ. alg...

Plus en détail

AVOPA ADD

AVOPA ADD ¢£ÁAPÀ : 21.06.2015£Éà ¨sÁ£ÀĪÁgÀzÀAzÀÄ ¨ÉAUÀ¼ÀÆgÀÄ CªÉÇÃ¥À ªÀw¬ÄAzÀ 5£Éà ªÀzsÀÄ-ªÀgÀgÀ ¸ÀAzÀ±Àð£ÀªÀ£ÀÄß ¨ÉAUÀ¼ÀÆgÀÄ «±ÉéñÀégÀ¥ÀÄgÀA£À ªÁ¸À« PÀ£ÉéA±À£ï ºÁ¯ï £À°è K¥Àðr¸À¯ÁVzÉ. CªÉÇÃ¥À¢AzÀ FUÁUÀ¯ÉÃ...

Plus en détail

The Girl Who Hated Books

The Girl Who Hated Books ¥ÀŸÀÛPÀªÀ£ÀÄß NzÀĪÀ¼Éà JAzÉãÁzÀgÀÆ PÉýzÀgÉ CªÀ¼ÀÄ £É®zÀ ªÉÄÃ¯É vÀ£Àß PÁ®£ÀÄß §rAiÀÄÄvÁÛ “£À£ÀUÉ ¥ÀŸÀÛPÀUÀ¼ÉAzÀgÉ EµÀÖ«®è” JAzÀÄ QjaPÉƼÀÄîwÛzÀݼÀÄ. ªÀÄvÉÛ AiÀiÁªÁUÀ¯ÁzÀgÀÆ CªÀ¼À vÁ¬Ä vÀAzÉAiÀ...

Plus en détail