Science et chaussure

Transcription

Science et chaussure
Prévention des blessures en
course à pied
Rémi Bergeron, pht
Physiothérapeute et VPO, Action Sport Physio
Expert en prévention des blessures en course à pied
Conférencier pour:
www.lacliniqueducoureur.com
Conflit d’intérêt
Rémi Bergeron , les
enseignants de
La Clinique Du CoureurMC et
La Clinique Du CoureurMC
n’ont AUCUN biais
commercial !
Évolution de l’homme
Bramble et Lieberman, Department of Anthropology, Harvard University
• Notre espèce (Homo erectus) s’est
démarquée par la course d’endurance il y
a 2 millions d’années.
• La vitesse max. d’endurance de l’homme
est exceptionnellement élevée.
• Adaptations anatomiques caractéristiques
– Bras courts et jambes longues, orteils courts
et parallèles, tendon d’achille, volume des
fessiers, etc.
Problème social
60%
30 / 1440
20 000 000 000$
/an
1/2
Postulat
LE CORPS S’ADAPTE
dans la mesure où le stress appliqué
n’est pas plus grand que sa capacité
d’adaptation
Cause
des blessures de surutilisation
MALADAPTATION
Facteurs
intrinsèques
Vice biomécanique
Dysfonction musculaire
Fragilité des tissus
Stress
mécanique
Erreurs
d’entraînement
Facteurs
extrinsèques
Chaussure
Surface
Prévention
des blessures de surutilisation
MALADAPTATION
Facteurs
intrinsèques
Vice biomécanique
Dysfonction musculaire
Fragilité des tissus
Stress
mécanique
Erreurs
d’entraînement
Facteurs
extrinsèques
Chaussure
Surface
Prévention
des blessures de surutilisation
ADAPTATION
Facteurs
intrinsèques
Vice biomécanique
Dysfonction musculaire
Fragilité des tissus
Stress
mécanique
Erreurs
d’entraînement
Facteurs
extrinsèques
Chaussure
Surface
Prévention
des blessures de surutilisation
ADAPTATION
Stress mécanique
calculé
Être progressif
Prévention
des blessures de surutilisation
ADAPTATION
Facteurs
intrinsèques
Stress mécanique
calculé
Être progressif
Prévention
des blessures de surutilisation
ADAPTATION
Facteurs
intrinsèques
Corriger la biomécanique et
les dysfonctions
musculaires
Solidifier les structures
Stress mécanique
calculé
Être progressif
Prévention
des blessures de surutilisation
ADAPTATION
Facteurs
intrinsèques
Corriger la biomécanique et
les dysfonctions
musculaires
Solidifier les structures
Stress mécanique
calculé
Être progressif
Facteurs
extrinsèques
Prévention
des blessures de surutilisation
ADAPTATION
Facteurs
intrinsèques
Corriger la biomécanique et
les dysfonctions
musculaires
Solidifier les structures
Stress mécanique
calculé
Être progressif
Facteurs
extrinsèques
Chaussure appropriée
Surface adéquate
Modèle mécanique
Stress = dégénérescence
… changement de pièce…
La musculation
prédispose-t-elle à
l’atrophie et la
dégénérescence
musculaire?
Modèle biologique
Stress = remodelage
… ADAPTATION …
La course
prédispose-t-elle à
l’arthrose précoce
du genou?
Arthrose et course
(2013-Hinterwimmer) 2013-Miller, 2013-Williams, 2012-Cha, 2012-Kelly, 2012-Subburaj, 2012-Hansen, 2010-VanGinckel, 2009-Boocock, 2008(P)Lamontagne, 2008-Chakravarty, 2008-Krampla, 2008-Stahi, 2005-Kersting, 2007(L)-Price, 2007-Baumgarten, 2007-Hanna, 2006-Schmitt, 2006-O’Kane,
2006-Shakoor, 2006-Cymet, 2006-Kessler, 2006-Weidekamm, 2005-Weidekamm, 2005-Hohmann, 2004-Shrier, 2004-Eckstein, 2004-Walther, 2004Hohmann, 2003(CR)-Brosseau, 2003(SR)-Jordan, 2002-Conaghan, 2001-Krampla, 2000-Cheng, 1998-Otterness, 1997-Lequesne, 1996-Cole, 2001 et
1995-Nigg)
• L’IRM ne montre pas de lésions
anatomiques des genoux de coureur
(moyennement entraînés) post-marathon
• Il n’y a pas plus d’arthrose chez les
coureurs que chez les non-coureurs
• Un stress articulaire répété et progressif
contribue à solidifier les structures de
soutien comme le cartilage.
Postulat
LE CORPS
S’ADAPTE
dans la mesure où le stress appliqué
n’est pas plus grand que sa
capacité d’adaptation
stress
Quantification du stress
Capacité maximale
du corps à subir un stress mécanique
temps
Quantification du stress
Le sédentaire
100%
stress
(capacité maximum à subir
un stress mécanique)
temps
30 minutes
de marche
Quantification du stress
Le marathonien
100%
stress
(capacité maximum à subir
un stress mécanique)
temps
42 km de
course
Adaptation tissulaire
Zone de
désadaptation
stress
Capacité max.
à subir un stress
mécanique
Stress minimum
pour créer des
adaptations
temps
Adaptation tissulaire
Zone de
Mésadaptation
(moins de tolérance)
stress
Capacité max.
à subir un stress
mécanique
Stress minimum
pour créer des
adaptations
temps
Adaptation tissulaire
Zone
d’adaptation
Capacité max.
à subir un stress
mécanique
stress
Stress minimum
pour créer des
adaptations
temps
100%
Dépasser sa capacité maximale
d’adaptation se traduit par :
capacité max. d’adaptation
1. douleur pendant
2. douleur après
3. raideur matinale
Stress minimum pour
créer des adaptations
STRESS
Niveau de stress par
les activités de
l’individu
0%
aucun stress mécanique
TEMPS
Zone de repos
Aucun stress =
aucune adaptation!
Zone d’adaptation
Zone de travail qui augmente la
capacité du corps à supporter
du stress
Adaptation tissulaire
Santé
tissulaire
AINS
Quantifier le stress tissulaire
Progression
• Changements
– Saisons, dénivelé, type de surface
• Volume
– Max 10% de plus / sem
– Longue sortie : max 10 min de + / sem (5’ à 15’)
• Intensité (>70-85% Fc max)
– 10 à 20% / sem, max 3% de plus / sem
– Stress mécanique plus important que le volume
Performance
Blessures
Économie de course par
meilleure efficacité
biomécanique
Réduction des forces
d’impact et
alignement adéquat
Techniques inefficaces
Techniques efficaces
2011-Arellano, 2011-Storen, 2008-Tseh, 2000-DeWit, 2005-Divert, 2004-Arendse, 2005-Dallam, 1997-Milani, 1996-Hennig, 1994-Morgan
(2013-Ogueta-Alday), 2011-Storen, 2011-Heise, 2011-Halvorsen, 2010-Fletcher, 2009-Pontzer, 2008-Tseh, 2007Fletcher, 2007-Hasegawa, 2007-Romanov, 2007-Heise, 2006-Conoboy, 2005-Dallam, 2005-Divert, 2004(R)Saunders, 2004-Arendse, 2004-Saunders, 2004-Hardin, 1996-Anderson, 1994-Morgan, 1992-Martin, 1990-Kaneko,
1989-Cavanagh, 1982-Cavanagh, 1982-Power
(coût énergétique élevé)
(coût énergétique minimal)
Le patron de course
inefficace n’est retrouvé
que chez les coureurs
portant des chaussures
Le patron de course
efficace est comparable
au patron de course
pieds nus
MEC talon loin en avant du centre de gravité
• phase de freinage
• vitesse de force d’impact (VLR)
• temps de contact au sol (?)
• déplacement vertical (?)
• fréquence des pas
MEC au sol près du centre de gravité
•
Pose du pied tendance médio-pied (?)
•
 de modération d’impacte
•
 temps de contact au sol (?)
•
 du déplacement vertical (?)
•
Fréquence des pas librement choisie
autour de 180
Technique sécuritaire
Moins de vitesse
de force d’impact
blessures
Contrôle et
stabilité du
quadrant
inférieur
Technique sécuritaire
SOLUTIONS
  les sensations du
pied
 Foulée légère
  la cadence
 Renforcement
Moins de vitesse
de force d’impact
Contrôle et
stabilité du
quadrant
inférieur
Technique sécuritaire
Moins de vitesse
de force d’impact
blessures
Alignement
optimal du
quadrant
inférieur
✔ Méthode : Meta-analyse, 13 études incluses
✔ Résultats : La vitesse de force d’impact “VLR” est associée aux fractures
de stress du membre inférieur… et non la force de réaction du sol “GRF”.
✔ Même si la méta-analyse incluait toutes les fractures de stress des
membres inférieurs, les fractures de stress tibiales ont été celles qui ont
influencé les statistiques reliant les fractures au VLR.
✔ Méthode : Meta-analyse 18 études incluses
✔ Résultats: La vitesse de l’application de la charge était plus grande dans
les études qui analysaient les patients avec une histoire de fractures de
stress ET une histoire de n’importe quelle autre pathologie, comparé au
groupe contrôle.
✔ Aucune différence par contre pour les autres paramètres cinétiques (peak
active et passive)
✔ NB : Absence d’étude prospective
Ground Reaction Force
impact
0x
(poids du corps)
Force verticale
3x
propulsion
10%
40%
100%
Temps
GRF : mesurée par une plaque de force
située dans un corridor de course.
Ground Reaction Force
3x
propulsion
0
(poids du corps)
Force verticale
+0.5 x
propulsion
freinage
0x
- 0.5 x
(poids du corps)
Force horizontale
impact
0%
40%
Temps
100%
10%
40%
100%
Temps
GRF : mesurée par une plaque de force
située dans un corridor de course.
Science et chaussure
L’absorption dans les
chaussures augmente le stress
sur le squelette (autre que le pied et la
chaine postérieure)...
2015-Sinclair, 2015-Baltich, 2013-Bonacci, (2013-Olin), 2011-Rethnam, 2011-Hamill, 2010Lieberman, 2010-Bergmann, 2010-Braunstein, 2009-Kerrigan, 2006-Shakoor, 2004-Divert,
2002-Shorten, 1996-Hennig, 1995-Bergmann
… ou ne le diminue pas !
2002-Hardin, 1995-Cole, 1994-McNaire, 1987-Nigg
Science et chaussure
L’absorption dans les
chaussures diminue le stress
(peak pressure) sur le pied...
2013-Olin, 2011-Rethnam, 2010-Tessutti, 2009-Wiegering, 2008-Wegener, 2002-House,
1999-Windle, 1995-Nyska
>80% >80%
Des coureurs pieds nus
Des coureurs chaussés
Lieberman-2015, (Hatala-2012), Lieberman-2010,
Squadrone-2009
Kasmer-2014, Almeida-2014, Kasmer-2013, Bertelsen2012, Kasmer-2012, Larson-2011, Hasegawa-2007, Kerr1983, Nett-1964
Daniel E. Lieberman, Harvard University, Nature - 2010
Daniel E. Lieberman, Harvard University, Nature - 2010
Daniel E. Lieberman, Harvard University, Nature - 2010
Science et chaussure
La vitesse de la force d’impact
(vertical loading rate) est relatif à la
biomécanique et non la
chaussure… mais la chaussure
est la principale influence des
biomécaniques non protectrices.
2013-Shih: Is the foot striking pattern more important than barefoot or shod conditions in running
2015-Almeida: Biomechanical Differences of Foot Strike Patterns During Running: A Systematic Review With Meta-Analysis
Science
L’attaque mi-pied (ou avant
pied) pourrait réduire l’incidence
de certaines pathologies (?)...
(réduction du VLR vs transfert de charge
tissulaires : moins de stress sur le genou, la
hanche et le dos)
2013-Kulmala, (2012-Delgado), 2013-Enders, 2012-Goss, 2012-Giandolini, 2012-Diebal,
2012-Daoud, 2011-Cheung, 2005-Walther
Science
L’attaque mi-pied (ou avant
pied) pourrait augmenter
l’incidence de certaines
pathologies (?)...
(transfert de charge tissulaires : plus de
stress sur le pied)
2013-Rooney, 2012-Williams
✔✔Heel
Sensitive
strike heel✔strike
Acceptable foot strikes
Comportement biomécanique
de modération d’impact
✔ Genou fléchi
✔ Tibia vertical
✔ Attaque mi-pied
✔ Près du centre de gravité
2016-VanDerWorp
Déb : Intégrer de bons comportements de
(RS-n18R. All pathologies)
modération d’impact (CMI = peu de bruit).
2011-Zadpoor
1989-Bahlsen
Exp : Changement que si blessures?(RS-n13R. Stress Fracture)
(P-n131, acute injuries-6m)
2015-Davis
Gait retraining
(n249, RRI-2y)
2012-Bredeweg
(2016-Esculier, 2015-Willy,
2014-Clansey, 2014-McCarthy,
2011-Crowell, 2011-Norhen,
2010-Crowell)
(P-n210, RRI-9w)
2015-Esculier
Détecteur
de science
+++
(I-n21, PFPS-8w)
---
2005-Gerlach
(P-n87, 1y)
Force d’impact (VLR) VS Blessures
2003-Kleindienst
Déb : Minimiser l’attaque
talon pour avoir de
meilleurs CMI.
2005-Walther
Exp : Changement seulement si blessures2012-Cheung
jambe
(I-n3, PFPS)
2014-Warr
antérieure, genou, hanche
etRRI)dos… et non
(Q-n1027,
Obvious-HS or Subtle-HS
2012-Goss
réponse
aux
interventions
indirectes
:
Diff. effect on impact force
(Q-n2509, RRI)
(2015-Mercer)
+ cadence,
- bruit et - chaussure.
(R-UP-n471, RRI)
(R-UP-n1203, RRI)
2012-Daoud
(R-n52, RRI)
Détecteur
de science
Talon
2012-Diebal
(I-n10 + 2, CECS)
Avant
Attaque pied au sol VS Blessures
Technique sécuritaire
Moins de vitesse
de force d’impact
blessures
Contrôle et
stabilité du
quadrant
inférieur
Technique sécuritaire
Moins de vitesse
de force d’impact
Contrôle et
stabilité du
quadrant
inférieur
Évolution de la
chaussure
Évolution de la
chaussure
Évolution de la
chaussure
Évolution de la
chaussure
Technologie de
contrôle de la
pronation
Stabilisateur
calcanéen
Talon
surélevé
Semelle spécifiquement rigidifiée
Support
d’arche
Empeigne
stabilisatrice
Semelle
absorbante
Dans quelle mesure la fabrication
«moderne» des chaussures de
course à pied (support, stabilité et
absorption) prévient-elle l’apparition
de blessures?
La nature nous a-t-elle si mal conçus ?
Nous sommes-nous si mal adaptés?
REVI EW
Running shoe recommendations
Who cares about evidence? Everything is about marketing!
1
Purpose of the study
Health professionals, coaches and retailers
provide recommendations about different
types of running shoes on a daily basis
with the aim of preventing injuries and
improving performance. To date, however,
no evidence-based guidelines exist to help
those professionals in shoe prescription.
Thus, they tend to rely on running shoes
manufacturers adverti sements, which
promote newly implemented technologies
in their products. The objective of this
research is to create evidence-based
guidelines on running shoes prescription.
Methods
A search was conducted through seven
databases (Cochrane Central Register of Controlled
Trials, Pubmed , EMBASE, CINAHL, ERIC, Current
Contents and SPORTDiscus)
up to May 2014.
Results
The literature remains scarce regarding
runni ng shoe prescri ption w ith the
purpose of injury prevention. However,
rel ati vely consi stent findi ngs about
performance enhancement were found.
I njury prevention
1. Current evidence refute prescription
strategies based on static (Wet test)1 or
dynamic (degrees of pronation) 2 foot
assessments.
2. Midsole density (soft vs. hard) in
traditional shoes may not influence the
risk of injury.3
3. Runners who are used to wear minimalist shoes may be less injured than those
used to wearing traditional footwear.4
4. Transitioning from traditional to minimalist shoes may increase the incidence of
injuries, in particular to the foot and leg.5
5. No evidence was found regarding the
effects of technol ogies like different
cushioning materials, heel to toe drop and
flexibility on injury prevention.
DUBOI S Blaise1-2 , ESCULI ER Jean-François1-2
Faculty of Medicine, Laval University, Quebec City, 2 The Running Clinic, Quebec City
Figure 2: Suggested transition time
between different types of running shoes
Low quality evidence with high risk of bias that:
- experienced minimalist shoe wearers are less injured
than experienced traditional/maximalist shoe wearers
- new minimalist shoe wearers are more injured than
experienced traditional/maximalist shoe wearers
12
Figure 1: Definition of minimalist shoes
12
0
2
9
3
No history of injury
9
6
9
0
2
3
6
12
foot or posterior l eg
9
6
12
0
2
3
6
0
2
3
Off season or
start of season
9
Same shoes f or training and racing
6
History of i njury
9
6
No change of h abits
6
History of i njury
9
0
2
During season
9
3
6
6
12
9
9
Biomechanical studies
1. Despite inconsistent findings, minimalist running shoes tend to decrease
load at the knee, hip and back and
increase load at the leg and foot while
traditional running shoes do the opposite.
6 Minimalist shoes were recently defined
by an expert consensus (figure 1).7
References
Figure 3: Prescription flowchart
100 grams of shoe weight increases
oxygen consumption by 0.7 to 1%.8
anterior leg, knee or higher
COMPETITIVE
6
BEGINNER
Objective: Performance
< 6 months of experience
RECREATIONAL
> 6 months of experience
2. Very limited evidence suggests that a
certain amount of cushioning (10mm) 9
and stiffness10 may represent the best
combination for endurance performance
enhancement.
12
Not injured
12
Injury
9
9
anterior leg,
knee or higher
-6 heel
- cushioning
0
2
3
9
6
6
Satisfied with
performance
Acute
< 6 weeks
No change of h abits
Injury
foot or posterior leg
Wish to improve
performance
Persistent
12
9
0
2
3
6
9
6
6
For training and racing
12
Less efficient
biomechanics
0
2
9
+ heel
+ stability
0
2
3
6
Injury
Plantar fasciitis or
posterior compartment
syndrome
9
+ heel
+ cushioning
+ stability
6
Muscle or t endon i njury
12
9
6
9
6
0
2
3
6
Fascia, shin or bone i njury
(high healing potential)
3
6
3
6
For training and racing
9
6
For training and racing
foot or posterior l eg
12
9
9
anterior leg, knee or higher
Injury
2
9
* running cadence < 170
* excessive wear under
running shoe heels
Tibialis posterior
tendoniti s
or shin splint
12
12
9
9
6
* running cadence > 170
* little wear under runni ng
shoe heels
Metatarsalgi a
or metatarsal
stress fracture
9
+ heel
+ cushioning
6
3
0
2
3
6
0
3
6
12
9
Efficient biomechanics
+ heel
2
12
9
> 6 weeks
Achilles
tendonitis or
calf problem
9
6
12
Based on current evidence and biological
plausibility, sound prescription guidelines
were created through graphic tools and
flowcharts so that shoes may be used
either as a tool for tissue unloading, or for
promoting adaptation by increasing load in
specific tissues. Prescription chart includes
different categories of runners, pathologies, type of footwear, and transition
time (figure 2-3).
3
6
Injured
0
2
9
Neuroma, metatarsalgiaor osteoarthritis
(moderate healing potenti al)
0
2
3
6
9
6
PECH
Pronati on control , El evated
Cushioned Heel running shoes.
0
2
3
6
(low healing potent ial)
0
12
2
9
9
9
6
light trainer
Transitional runni ng shoes
between PECH and r acer.
racer
Runni ng shoes wit h mi nimal interference and wi thout cushi oning.
Performance enhancement
1. Studies consistently conclude that shoe
weight is a key element in endurance
running performance enhancement. Every
More clinical trials are needed in order to
recommend running shoes based on solid
evidence. Nevertheless, based on current
advances in the field of running shoe
effects on biomechanics, tissue stress and
9
www.therunningclinic.com
0
minimalist
Light and cl ose-t o-the-ground
raci ng fl ats.
12
Conclusion
Flowchart bui lt according to currently available sci entific evidence. Suggested transit ion time i s conservative and can vary from one i ndividual to another.
For a personalized prescription, please consult a running specialist. Conception: Blaise Dubois. All rights reserved, The Running Cli nicTM 2012.
Narrative
0
2
3
6
9
6
Average suggest ed
t ransit ion t ime (i n mont hs)
for runners used to PECH shoes.
Age and heal t h st atus are
other f actors that can influence
the transi ti on ti me.
physiology, we have produced information charts to
be used by health professionals, coaches and
retailers.
1. Knapik JJ et al, Injury
Reduction Effectiveness of
Prescribing Running Shoes
on the Basis of Foot Arch
Height: Summary of
Military Investigations, J
Orthop Sports Phys Ther,
22 August 2014.
2. Ryan MB et al., The
effect of three different
levels of footwear stability
on pain outcomes in women
runners: a randomised
control trial, British Journal
of Sports Medicine 2011;
45(9): 715-21.
3. Theisen D et al.,
Influence of midsole
hardness of standard
cushioned shoes on
running-related injury risk,
Br J Sports Med published
online September 16, 2013.
4. Goss DL, Gross MT,
Relationships Among selfreported shoe type,
footstrike Pattern, and
injury incidence, Oct-Jan
2012, Army Medical
Department Journal.
5. Ryan et al., Examining
injury risk and pain
perception in runners using
minimalist footwear, Br J
Sports Med 2014;48:16
6. Lohman EB et al., A
comparison of the
spatiotemporal parameters,
kinematics, and
biomechanics between
shod, unshod, and
minimally supported
running as compared to
walking, Physical Therapy
in Sport 2011; 12(4):
151-163
7. Esculier JF, Dubois B,
Roy JS, Dionne CE.,
Defining and rating
minimalist shoes: A Delphi
study. Poster RS 14.
International Calgary
Running Symposium,
Calgary, Canada, 2014.
8. Squadrone R et al.,
Biomechanical and
physiological comparison of
barefoot and two shod
conditions in experienced
barefoot runners. Journal of
Sports Medicine and
Physical Fitness 2009;
49(1): 6-13.
9. Tung KD1, Franz JR,
Kram R., A test of the
metabolic cost of
cushioning hypothesis
during unshod and shod
running, Med Sci Sports
Exerc. 2014 Feb;46(2):
324-9
10. Roy, J-P. R., and D. J.
Stefanyshyn. Shoe Midsole
Longitudinal Bending
Stiffness and Running
Economy, Joint Energy, and
EMG. Med. Sci. Sports
Exerc., 2006, Vol. 38, No.
3, pp. 562–569,.
SPort I Nnovation ( SPI N) Summit 2014, Montreal. Own the Podium
Corresponding author: Blaise Dubois [email protected]
La chaussure minimaliste est une
chaussure interférant minimalement avec
les mouvements naturels du pied, de par
sa grande flexibilité, son faible dénivelé,
son faible poids, sa faible épaisseur au
talon, et l'absence de technologies de
stabilité et de contrôle du mouvement.
REVI EW
Running shoe recommendations
Who cares about evidence? Everything is about marketing!
1
Purpose of the study
Health professionals, coaches and retailers
provide recommendations about different
types of running shoes on a daily basis
with the aim of preventing injuries and
improving performance. To date, however,
no evidence-based guidelines exist to help
those professionals in shoe prescription.
Thus, they tend to rely on running shoes
manufacturers adverti sements, which
promote newly implemented technologies
in their products. The objective of this
research is to create evidence-based
guidelines on running shoes prescription.
Methods
A search was conducted through seven
databases (Cochrane Central Register of Controlled
Trials, Pubmed , EMBASE, CINAHL, ERIC, Current
Contents and SPORTDiscus)
up to May 2014.
Results
The literature remains scarce regarding
runni ng shoe prescri ption w ith the
purpose of injury prevention. However,
rel ati vely consi stent findi ngs about
performance enhancement were found.
I njury prevention
1. Current evidence refute prescription
strategies based on static (Wet test)1 or
dynamic (degrees of pronation) 2 foot
assessments.
2. Midsole density (soft vs. hard) in
traditional shoes may not influence the
risk of injury.3
3. Runners who are used to wear minimalist shoes may be less injured than those
used to wearing traditional footwear.4
4. Transitioning from traditional to minimalist shoes may increase the incidence of
injuries, in particular to the foot and leg.5
5. No evidence was found regarding the
effects of technol ogies like different
cushioning materials, heel to toe drop and
flexibility on injury prevention.
DUBOI S Blaise1-2 , ESCULI ER Jean-François1-2
Faculty of Medicine, Laval University, Quebec City, 2 The Running Clinic, Quebec City
Figure 2: Suggested transition time
between different types of running shoes
Low quality evidence with high risk of bias that:
- experienced minimalist shoe wearers are less injured
than experienced traditional/maximalist shoe wearers
- new minimalist shoe wearers are more injured than
experienced traditional/maximalist shoe wearers
12
Figure 1: Definition of minimalist shoes
12
0
2
9
3
No history of injury
9
6
9
0
2
3
6
12
foot or posterior l eg
9
6
12
0
2
3
6
0
2
3
Off season or
start of season
9
Same shoes f or training and racing
6
History of i njury
9
6
No change of h abits
6
History of i njury
9
0
2
During season
9
3
6
6
12
9
9
Biomechanical studies
1. Despite inconsistent findings, minimalist running shoes tend to decrease
load at the knee, hip and back and
increase load at the leg and foot while
traditional running shoes do the opposite.
6 Minimalist shoes were recently defined
by an expert consensus (figure 1).7
References
Figure 3: Prescription flowchart
100 grams of shoe weight increases
oxygen consumption by 0.7 to 1%.8
anterior leg, knee or higher
COMPETITIVE
6
BEGINNER
Objective: Performance
< 6 months of experience
RECREATIONAL
> 6 months of experience
2. Very limited evidence suggests that a
certain amount of cushioning (10mm) 9
and stiffness10 may represent the best
combination for endurance performance
enhancement.
12
Not injured
12
Injury
9
9
anterior leg,
knee or higher
-6 heel
- cushioning
0
2
3
9
6
6
Satisfied with
performance
Acute
< 6 weeks
No change of h abits
Injury
foot or posterior leg
Wish to improve
performance
Persistent
12
9
0
2
3
6
9
6
6
For training and racing
12
Less efficient
biomechanics
0
2
9
+ heel
+ stability
0
2
3
6
Injury
Plantar fasciitis or
posterior compartment
syndrome
9
+ heel
+ cushioning
+ stability
6
Muscle or t endon i njury
12
9
6
9
6
0
2
3
6
Fascia, shin or bone i njury
(high healing potential)
3
6
3
6
For training and racing
9
6
For training and racing
foot or posterior l eg
12
9
9
anterior leg, knee or higher
Injury
2
9
* running cadence < 170
* excessive wear under
running shoe heels
Tibialis posterior
tendoniti s
or shin splint
12
12
9
9
6
* running cadence > 170
* little wear under runni ng
shoe heels
Metatarsalgi a
or metatarsal
stress fracture
9
+ heel
+ cushioning
6
3
0
2
3
6
0
3
6
12
9
Efficient biomechanics
+ heel
2
12
9
> 6 weeks
Achilles
tendonitis or
calf problem
9
6
12
Based on current evidence and biological
plausibility, sound prescription guidelines
were created through graphic tools and
flowcharts so that shoes may be used
either as a tool for tissue unloading, or for
promoting adaptation by increasing load in
specific tissues. Prescription chart includes
different categories of runners, pathologies, type of footwear, and transition
time (figure 2-3).
3
6
Injured
0
2
9
Neuroma, metatarsalgiaor osteoarthritis
(moderate healing potenti al)
0
2
3
6
9
6
PECH
Pronati on control , El evated
Cushioned Heel running shoes.
0
2
3
6
(low healing potent ial)
0
12
2
9
9
9
6
light trainer
Transitional runni ng shoes
between PECH and r acer.
racer
Runni ng shoes wit h mi nimal interference and wi thout cushi oning.
Performance enhancement
1. Studies consistently conclude that shoe
weight is a key element in endurance
running performance enhancement. Every
More clinical trials are needed in order to
recommend running shoes based on solid
evidence. Nevertheless, based on current
advances in the field of running shoe
effects on biomechanics, tissue stress and
9
www.therunningclinic.com
0
minimalist
Light and cl ose-t o-the-ground
raci ng fl ats.
12
Conclusion
Flowchart bui lt according to currently available sci entific evidence. Suggested transit ion time i s conservative and can vary from one i ndividual to another.
For a personalized prescription, please consult a running specialist. Conception: Blaise Dubois. All rights reserved, The Running Cli nicTM 2012.
Narrative
0
2
3
6
9
6
Average suggest ed
t ransit ion t ime (i n mont hs)
for runners used to PECH shoes.
Age and heal t h st atus are
other f actors that can influence
the transi ti on ti me.
physiology, we have produced information charts to
be used by health professionals, coaches and
retailers.
1. Knapik JJ et al, Injury
Reduction Effectiveness of
Prescribing Running Shoes
on the Basis of Foot Arch
Height: Summary of
Military Investigations, J
Orthop Sports Phys Ther,
22 August 2014.
2. Ryan MB et al., The
effect of three different
levels of footwear stability
on pain outcomes in women
runners: a randomised
control trial, British Journal
of Sports Medicine 2011;
45(9): 715-21.
3. Theisen D et al.,
Influence of midsole
hardness of standard
cushioned shoes on
running-related injury risk,
Br J Sports Med published
online September 16, 2013.
4. Goss DL, Gross MT,
Relationships Among selfreported shoe type,
footstrike Pattern, and
injury incidence, Oct-Jan
2012, Army Medical
Department Journal.
5. Ryan et al., Examining
injury risk and pain
perception in runners using
minimalist footwear, Br J
Sports Med 2014;48:16
6. Lohman EB et al., A
comparison of the
spatiotemporal parameters,
kinematics, and
biomechanics between
shod, unshod, and
minimally supported
running as compared to
walking, Physical Therapy
in Sport 2011; 12(4):
151-163
7. Esculier JF, Dubois B,
Roy JS, Dionne CE.,
Defining and rating
minimalist shoes: A Delphi
study. Poster RS 14.
International Calgary
Running Symposium,
Calgary, Canada, 2014.
8. Squadrone R et al.,
Biomechanical and
physiological comparison of
barefoot and two shod
conditions in experienced
barefoot runners. Journal of
Sports Medicine and
Physical Fitness 2009;
49(1): 6-13.
9. Tung KD1, Franz JR,
Kram R., A test of the
metabolic cost of
cushioning hypothesis
during unshod and shod
running, Med Sci Sports
Exerc. 2014 Feb;46(2):
324-9
10. Roy, J-P. R., and D. J.
Stefanyshyn. Shoe Midsole
Longitudinal Bending
Stiffness and Running
Economy, Joint Energy, and
EMG. Med. Sci. Sports
Exerc., 2006, Vol. 38, No.
3, pp. 562–569,.
SPort I Nnovation ( SPI N) Summit 2014, Montreal. Own the Podium
Corresponding author: Blaise Dubois [email protected]
Habitué à …
2015-Altman
(P-n201, RRI)
2013-Grier
(RE-n1332, RRI)
2014-Myer
(Q-n622, RRI-10d after race)
2012-Goss
2015-MacKenzie
(Q-n51)
Détecteur
de science
Maximaliste
(RE-n2509, RRI)
2012-Altman
(Q-n109, RRI)
2014-Rhyvniak
(Q-n509, RRI)
Pieds nus
Chaussure VS Blessure
Avec technologies (MC – Absorption) ou pas…
2013-Thiesen
(RCT-n247, Cush vs RRI-5m)
2015-Malisoux
(RCT-n372, MC vs RRI-6m)
2015-Altman
(P-n201, RRI)
2015-Knapik
(3QRCT-n7213, MC vs RRI-6 to 9w)
2013-Grier
(RE-n1332, RRI)
2011-Ryan
2014-Myer
(Q-n622, RRI-10d after race)
2012-Goss
(RCT-n81, RRI-13w)
2015-MacKenzie
(Q-n51)
Détecteur
de science
Maximaliste
(RE-n2509, RRI)
2012-Altman
(Q-n109, RRI)
2014-Rhyvniak
(Q-n509, RRI)
Pieds nus
Chaussure VS Blessure
Transition vers…
2015-Altman
2013-Thiesen
Déb : Débuter avec chaussures
minimalistes
(IM >60%).
(P-n201, RRI)
(RCT-n247, Cush vs RRI-5m)
Exp : Pas
de changement si2015-Knapik
pas de blessures et pas
2015-Malisoux
(RCT-n372, MC vs RRI-6m)
de performance désirée. (3QRCT-n7213, MC vs RRI-6 to 9w) 2014-Myer
2013-Grier
2013-Ryan
after race)
Ble : Maximalisme pour
protection
du(Q-n622,
piedRRI-10d
sur du
(RE-n1332,
RRI)
2011-Ryan
(RCT-n103, RRI-12w)
2012-Goss
court terme.
(RCT-n81, RRI-13w)
2014-Ridge
(C-n36, Foot bone, 10w)
2011-Giuliani
(SC-n2)
2013-Cauthon
(SC-n3)
2012-Salzler
(SC-n10)
Maximaliste
2015-MacKenzie
(Q-n51)
Détecteur
de science
(RE-n2509, RRI)
2012-Altman
(Q-n109, RRI)
2014-Rhyvniak
(Q-n509, RRI)
Pieds nus
Chaussure VS Blessure
REVI EW
Running shoe recommendations
Who cares about evidence? Everything is about marketing!
1
Purpose of the study
Health professionals, coaches and retailers
provide recommendations about different
types of running shoes on a daily basis
with the aim of preventing injuries and
improving performance. To date, however,
no evidence-based guidelines exist to help
those professionals in shoe prescription.
Thus, they tend to rely on running shoes
manufacturers adverti sements, which
promote newly implemented technologies
in their products. The objective of this
research is to create evidence-based
guidelines on running shoes prescription.
Methods
A search was conducted through seven
databases (Cochrane Central Register of Controlled
Trials, Pubmed , EMBASE, CINAHL, ERIC, Current
Contents and SPORTDiscus)
up to May 2014.
Results
The literature remains scarce regarding
runni ng shoe prescri ption w ith the
purpose of injury prevention. However,
rel ati vely consi stent findi ngs about
performance enhancement were found.
I njury prevention
1. Current evidence refute prescription
strategies based on static (Wet test)1 or
dynamic (degrees of pronation) 2 foot
assessments.
2. Midsole density (soft vs. hard) in
traditional shoes may not influence the
risk of injury.3
3. Runners who are used to wear minimalist shoes may be less injured than those
used to wearing traditional footwear.4
4. Transitioning from traditional to minimalist shoes may increase the incidence of
injuries, in particular to the foot and leg.5
5. No evidence was found regarding the
effects of technol ogies like different
cushioning materials, heel to toe drop and
flexibility on injury prevention.
DUBOI S Blaise1-2 , ESCULI ER Jean-François1-2
Faculty of Medicine, Laval University, Quebec City, 2 The Running Clinic, Quebec City
Figure 2: Suggested transition time
between different types of running shoes
Low quality evidence with high risk of bias that:
- experienced minimalist shoe wearers are less injured
than experienced traditional/maximalist shoe wearers
- new minimalist shoe wearers are more injured than
experienced traditional/maximalist shoe wearers
12
Figure 1: Definition of minimalist shoes
12
0
2
9
3
No history of injury
9
6
9
0
2
9
3
12
foot or posterior l eg
9
6
2
Off season or
start of season
9
Same shoes f or training and racing
6
History of i njury
9
6
0
2
3
6
0
3
No change of h abits
6
History of i njury
9
6
12
0
2
During season
9
3
6
6
12
9
Biomechanical studies
1. Despite inconsistent findings, minimalist running shoes tend to decrease
load at the knee, hip and back and
increase load at the leg and foot while
traditional running shoes do the opposite.
6 Minimalist shoes were recently defined
by an expert consensus (figure 1).7
References
Figure 3: Prescription flowchart
100 grams of shoe weight increases
oxygen consumption by 0.7 to 1%.8
anterior leg, knee or higher
COMPETITIVE
6
BEGINNER
Objective: Performance
< 6 months of experience
RECREATIONAL
> 6 months of experience
2. Very limited evidence suggests that a
certain amount of cushioning (10mm) 9
and stiffness10 may represent the best
combination for endurance performance
enhancement.
12
Not injured
12
Injury
9
9
anterior leg,
knee or higher
-6 heel
- cushioning
0
2
3
9
6
6
Satisfied with
performance
Acute
< 6 weeks
No change of h abits
Injury
foot or posterior leg
Wish to improve
performance
Persistent
12
9
0
2
3
6
9
0
9
9
6
For training and racing
12
Less efficient
biomechanics
0
3
6
+ heel
+ stability
0
2
3
6
Injury
Plantar fasciitis or
posterior compartment
syndrome
9
+ heel
+ cushioning
+ stability
6
Muscle or t endon i njury
12
9
6
9
6
0
2
3
6
Fascia, shin or bone i njury
(high healing potential)
3
6
3
6
For training and racing
9
6
For training and racing
foot or posterior l eg
12
9
9
anterior leg, knee or higher
Injury
2
9
* running cadence < 170
* excessive wear under
running shoe heels
Tibialis posterior
tendoniti s
or shin splint
12
12
9
9
6
* running cadence > 170
* little wear under runni ng
shoe heels
Metatarsalgi a
or metatarsal
stress fracture
9
+ heel
+ cushioning
2
0
2
3
6
2
6
12
12
9
Efficient biomechanics
+ heel
3
6
> 6 weeks
Achilles
tendonitis or
calf problem
9
6
12
Based on current evidence and biological
plausibility, sound prescription guidelines
were created through graphic tools and
flowcharts so that shoes may be used
either as a tool for tissue unloading, or for
promoting adaptation by increasing load in
specific tissues. Prescription chart includes
different categories of runners, pathologies, type of footwear, and transition
time (figure 2-3).
3
6
Injured
0
2
9
Neuroma, metatarsalgiaor osteoarthritis
(moderate healing potenti al)
0
2
3
6
9
6
PECH
Pronati on control , El evated
Cushioned Heel running shoes.
0
2
3
6
(low healing potent ial)
0
12
2
9
9
9
6
light trainer
Transitional runni ng shoes
between PECH and r acer.
racer
Performance enhancement
1. Studies consistently conclude that shoe
weight is a key element in endurance
running performance enhancement. Every
More clinical trials are needed in order to
recommend running shoes based on solid
evidence. Nevertheless, based on current
advances in the field of running shoe
effects on biomechanics, tissue stress and
0
minimalist
Light and cl ose-t o-the-ground
raci ng fl ats.
Runni ng shoes wit h mi nimal interference and wi thout cushi oning.
12
Conclusion
9
www.therunningclinic.com
Flowchart bui lt according to currently available sci entific evidence. Suggested transit ion time i s conservative and can vary from one i ndividual to another.
For a personalized prescription, please consult a running specialist. Conception: Blaise Dubois. All rights reserved, The Running Cli nicTM 2012.
Narrative
0
2
3
6
9
6
Average suggest ed
t ransit ion t ime (i n mont hs)
for runners used to PECH shoes.
Age and heal t h st atus are
other f actors that can influence
the transi ti on ti me.
physiology, we have produced information charts to
be used by health professionals, coaches and
retailers.
1. Knapik JJ et al, Injury
Reduction Effectiveness of
Prescribing Running Shoes
on the Basis of Foot Arch
Height: Summary of
Military Investigations, J
Orthop Sports Phys Ther,
22 August 2014.
2. Ryan MB et al., The
effect of three different
levels of footwear stability
on pain outcomes in women
runners: a randomised
control trial, British Journal
of Sports Medicine 2011;
45(9): 715-21.
3. Theisen D et al.,
Influence of midsole
hardness of standard
cushioned shoes on
running-related injury risk,
Br J Sports Med published
online September 16, 2013.
4. Goss DL, Gross MT,
Relationships Among selfreported shoe type,
footstrike Pattern, and
injury incidence, Oct-Jan
2012, Army Medical
Department Journal.
5. Ryan et al., Examining
injury risk and pain
perception in runners using
minimalist footwear, Br J
Sports Med 2014;48:16
6. Lohman EB et al., A
comparison of the
spatiotemporal parameters,
kinematics, and
biomechanics between
shod, unshod, and
minimally supported
running as compared to
walking, Physical Therapy
in Sport 2011; 12(4):
151-163
7. Esculier JF, Dubois B,
Roy JS, Dionne CE.,
Defining and rating
minimalist shoes: A Delphi
study. Poster RS 14.
International Calgary
Running Symposium,
Calgary, Canada, 2014.
8. Squadrone R et al.,
Biomechanical and
physiological comparison of
barefoot and two shod
conditions in experienced
barefoot runners. Journal of
Sports Medicine and
Physical Fitness 2009;
49(1): 6-13.
9. Tung KD1, Franz JR,
Kram R., A test of the
metabolic cost of
cushioning hypothesis
during unshod and shod
running, Med Sci Sports
Exerc. 2014 Feb;46(2):
324-9
10. Roy, J-P. R., and D. J.
Stefanyshyn. Shoe Midsole
Longitudinal Bending
Stiffness and Running
Economy, Joint Energy, and
EMG. Med. Sci. Sports
Exerc., 2006, Vol. 38, No.
3, pp. 562–569,.
SPort I Nnovation ( SPI N) Summit 2014, Montreal. Own the Podium
Corresponding author: Blaise Dubois [email protected]
Science et chaussure
Les nouvelles technologies
présentées annuellement par les
compagnies de chaussures sont
sans AUCUN fondement
scientifique solide
2012-Schelde, Richards 2008(SR)
Science et chaussure
Les chaussures changent la
biomécanique naturelle.
* Promotion de l’attaque talon
2016-Tam, 2015-Hollander, 2015-Fredericks, 2013-Hall(SR), (2013-Chambon), 2013Delattre(P), 2013-Mullen, 2012-Bertelsen, 2012-Williams, 2011-Lohman(RS), 2011Vincent, Wegener 2011, Jenkins(R)-2011, Hamill 2011, Jungle 2010, Chen 2010, Jungers
2010, Lieberman 2010, Squadrone 2009, Kurz 2004, Bishop 2006, Divert 2004, Aguinaldo
2003, Dewit 2000
Science et chaussure
Les chaussures changent la
biomécanique naturelle.
* Perte de l’alignement du
genou
2013-Hall(SR), 2013-Teoh, Radzimski(RS) 2011, Chen 2010, Kerrigan 2009, Burkett 1985,
Chen 2010
Science et chaussure
Les chaussures changent la
biomécanique naturelle.
* Ralentissement de la
cadence
2013-Hall(SR), 2011-Vincent, 2009-Squadrone, 2008-Divert
Science et chaussure
Les technologies « antipronateurs » intégrées dans la
chaussure ne contrôlent pas la
pronation et la biomécanique
du quadrant inférieur. (?)
(2015-Hoffman), (2012-Lilley), (Cheung (SR) 2011), Rose 2011, MacLean 2009, Stacoff
2000, Gheluwe 1999
Les chaussures maximalistes
…augmente la charge sur
Les chaussures minimalistes
…augmentent la charge sur
Science et chaussure
La chaussure fragilise les tissus
du pied, affaiblit la musculature,
affaisse les arches
(le minimalisme  force et volume musculaire)
2015-Johnson, Sachithanandam 1995, Rao 1992, Robbins 1987, Bruggemann 2005 (UP),
Bruggemann 2004 (P), Potthast 2005
Science et chaussure
Un transfert vers le
minimalisme augmente
l’incidence des blessures si
transition trop rapide.
(Protection et diminution du stress = fragilité tissulaire)
2013-RyanA, 2013-RyanB, 2013-Cauthon, 2013-Ridge, 2012(P)-Allison, 2012-Salzler,
2011-Giuliani, Dicharry 2011 (UP), Leong-2010 (UP)
 Stress = fragilité
= blessure

++
Stress
Douleur mollet
Tendinite
d’Achille
Tendinite tibial
post.
Fasciite
plantaire
Métatarsalgie
Transition au minimalisme
La règle du 1min de +/ entrainement
1 mois pour chaque 10-20% d’IM
Science et chaussure
La chaussure change les
séquences d’activation
musculaire, la proprioception,
et l’équilibre.
2012-Scott, Squadrone 2011, Murley 2009, Wakeling 2002, Sekizawa 2001, Ogon 2000,
Robbins 1998, Robbins 1997, Waked 1997, Robbins 1995, Robbins 1994
Science et chaussure
La chaussure cause certaines
déformations du pied (hallux
valgus, orteils marteau, callosité,…)
D’Août 2009, Zipfel 2007, Mafart 2007, Mays 2005, Sachithanandam 1995
Plus de lésions pathologiques du pied dans les
groupes chaussés (ex : hallux valgus)
Pieds nus
Five Fingers
Chaussures
de ville
Science et chaussure
La chaussure devrait être
changée lorsqu’elle devient un
facteur d’exacerbation d’un
vice biomécanique.
(déformation et usure de la semelle)
Science et chaussure
L’absorption et les « antipronateurs » intégrés dans la
chaussure n’augmentent pas le
confort perçu.
2010-Kong, 2007-Clinghan, 2000-Miller
Science et chaussure
Les chaussures à prix plus
élevé ne sont pas plus
confortables
2007-Clinghan
Science et chaussure
Les chaussures à prix plus
élevé ne diminuent pas
l’incidence des blessures
Marti 1984, Gardner 1988
REVI EW
Running shoe recommendations
Who cares about evidence? Everything is about marketing!
1
Purpose of the study
Health professionals, coaches and retailers
provide recommendations about different
types of running shoes on a daily basis
with the aim of preventing injuries and
improving performance. To date, however,
no evidence-based guidelines exist to help
those professionals in shoe prescription.
Thus, they tend to rely on running shoes
manufacturers adverti sements, which
promote newly implemented technologies
in their products. The objective of this
research is to create evidence-based
guidelines on running shoes prescription.
Methods
A search was conducted through seven
databases (Cochrane Central Register of Controlled
Trials, Pubmed , EMBASE, CINAHL, ERIC, Current
Contents and SPORTDiscus)
up to May 2014.
Results
The literature remains scarce regarding
runni ng shoe prescri ption w ith the
purpose of injury prevention. However,
rel ati vely consi stent findi ngs about
performance enhancement were found.
I njury prevention
1. Current evidence refute prescription
strategies based on static (Wet test)1 or
dynamic (degrees of pronation) 2 foot
assessments.
2. Midsole density (soft vs. hard) in
traditional shoes may not influence the
risk of injury.3
3. Runners who are used to wear minimalist shoes may be less injured than those
used to wearing traditional footwear.4
4. Transitioning from traditional to minimalist shoes may increase the incidence of
injuries, in particular to the foot and leg.5
5. No evidence was found regarding the
effects of technol ogies like different
cushioning materials, heel to toe drop and
flexibility on injury prevention.
DUBOI S Blaise1-2 , ESCULI ER Jean-François1-2
Faculty of Medicine, Laval University, Quebec City, 2 The Running Clinic, Quebec City
Figure 2: Suggested transition time
between different types of running shoes
Low quality evidence with high risk of bias that:
- experienced minimalist shoe wearers are less injured
than experienced traditional/maximalist shoe wearers
- new minimalist shoe wearers are more injured than
experienced traditional/maximalist shoe wearers
12
Figure 1: Definition of minimalist shoes
12
0
2
9
3
No history of injury
9
6
9
0
2
3
6
12
foot or posterior l eg
9
6
12
0
2
3
6
0
2
3
Off season or
start of season
9
Same shoes f or training and racing
6
History of i njury
9
6
No change of h abits
6
History of i njury
9
0
2
During season
9
3
6
6
12
9
9
Biomechanical studies
1. Despite inconsistent findings, minimalist running shoes tend to decrease
load at the knee, hip and back and
increase load at the leg and foot while
traditional running shoes do the opposite.
6 Minimalist shoes were recently defined
by an expert consensus (figure 1).7
References
Figure 3: Prescription flowchart
100 grams of shoe weight increases
oxygen consumption by 0.7 to 1%.8
anterior leg, knee or higher
COMPETITIVE
6
BEGINNER
Objective: Performance
< 6 months of experience
RECREATIONAL
> 6 months of experience
2. Very limited evidence suggests that a
certain amount of cushioning (10mm) 9
and stiffness10 may represent the best
combination for endurance performance
enhancement.
12
Not injured
12
Injury
9
9
anterior leg,
knee or higher
-6 heel
- cushioning
0
2
3
9
6
6
Satisfied with
performance
Acute
< 6 weeks
No change of h abits
Injury
foot or posterior leg
Wish to improve
performance
Persistent
12
9
0
2
3
6
9
6
6
For training and racing
12
Less efficient
biomechanics
0
2
9
+ heel
+ stability
0
2
3
6
Injury
Plantar fasciitis or
posterior compartment
syndrome
9
+ heel
+ cushioning
+ stability
6
Muscle or t endon i njury
12
9
6
9
6
0
2
3
6
Fascia, shin or bone i njury
(high healing potential)
3
6
3
6
For training and racing
9
6
For training and racing
foot or posterior l eg
12
9
9
anterior leg, knee or higher
Injury
2
9
* running cadence < 170
* excessive wear under
running shoe heels
Tibialis posterior
tendoniti s
or shin splint
12
12
9
9
6
* running cadence > 170
* little wear under runni ng
shoe heels
Metatarsalgi a
or metatarsal
stress fracture
9
+ heel
+ cushioning
6
3
0
2
3
6
0
3
6
12
9
Efficient biomechanics
+ heel
2
12
9
> 6 weeks
Achilles
tendonitis or
calf problem
9
6
12
Based on current evidence and biological
plausibility, sound prescription guidelines
were created through graphic tools and
flowcharts so that shoes may be used
either as a tool for tissue unloading, or for
promoting adaptation by increasing load in
specific tissues. Prescription chart includes
different categories of runners, pathologies, type of footwear, and transition
time (figure 2-3).
3
6
Injured
0
2
9
Neuroma, metatarsalgiaor osteoarthritis
(moderate healing potenti al)
0
2
3
6
9
6
PECH
Pronati on control , El evated
Cushioned Heel running shoes.
0
2
3
6
(low healing potent ial)
0
12
2
9
9
9
6
light trainer
Transitional runni ng shoes
between PECH and r acer.
racer
Runni ng shoes wit h mi nimal interference and wi thout cushi oning.
Performance enhancement
1. Studies consistently conclude that shoe
weight is a key element in endurance
running performance enhancement. Every
More clinical trials are needed in order to
recommend running shoes based on solid
evidence. Nevertheless, based on current
advances in the field of running shoe
effects on biomechanics, tissue stress and
9
www.therunningclinic.com
0
minimalist
Light and cl ose-t o-the-ground
raci ng fl ats.
12
Conclusion
Flowchart bui lt according to currently available sci entific evidence. Suggested transit ion time i s conservative and can vary from one i ndividual to another.
For a personalized prescription, please consult a running specialist. Conception: Blaise Dubois. All rights reserved, The Running Cli nicTM 2012.
Narrative
0
2
3
6
9
6
Average suggest ed
t ransit ion t ime (i n mont hs)
for runners used to PECH shoes.
Age and heal t h st atus are
other f actors that can influence
the transi ti on ti me.
physiology, we have produced information charts to
be used by health professionals, coaches and
retailers.
1. Knapik JJ et al, Injury
Reduction Effectiveness of
Prescribing Running Shoes
on the Basis of Foot Arch
Height: Summary of
Military Investigations, J
Orthop Sports Phys Ther,
22 August 2014.
2. Ryan MB et al., The
effect of three different
levels of footwear stability
on pain outcomes in women
runners: a randomised
control trial, British Journal
of Sports Medicine 2011;
45(9): 715-21.
3. Theisen D et al.,
Influence of midsole
hardness of standard
cushioned shoes on
running-related injury risk,
Br J Sports Med published
online September 16, 2013.
4. Goss DL, Gross MT,
Relationships Among selfreported shoe type,
footstrike Pattern, and
injury incidence, Oct-Jan
2012, Army Medical
Department Journal.
5. Ryan et al., Examining
injury risk and pain
perception in runners using
minimalist footwear, Br J
Sports Med 2014;48:16
6. Lohman EB et al., A
comparison of the
spatiotemporal parameters,
kinematics, and
biomechanics between
shod, unshod, and
minimally supported
running as compared to
walking, Physical Therapy
in Sport 2011; 12(4):
151-163
7. Esculier JF, Dubois B,
Roy JS, Dionne CE.,
Defining and rating
minimalist shoes: A Delphi
study. Poster RS 14.
International Calgary
Running Symposium,
Calgary, Canada, 2014.
8. Squadrone R et al.,
Biomechanical and
physiological comparison of
barefoot and two shod
conditions in experienced
barefoot runners. Journal of
Sports Medicine and
Physical Fitness 2009;
49(1): 6-13.
9. Tung KD1, Franz JR,
Kram R., A test of the
metabolic cost of
cushioning hypothesis
during unshod and shod
running, Med Sci Sports
Exerc. 2014 Feb;46(2):
324-9
10. Roy, J-P. R., and D. J.
Stefanyshyn. Shoe Midsole
Longitudinal Bending
Stiffness and Running
Economy, Joint Energy, and
EMG. Med. Sci. Sports
Exerc., 2006, Vol. 38, No.
3, pp. 562–569,.
SPort I Nnovation ( SPI N) Summit 2014, Montreal. Own the Podium
Corresponding author: Blaise Dubois [email protected]
Science et chaussure
La chaussure  la
consommation de O2
* 0.7 à 1% par 100g
,
15’ à 20’
POIDS (PN vs <220g shoes)
Entrainement
2015-Bellar, 2014-Tung, 2012-Franz,
2009-Squadrone, 2008-Divert
2015-Ridge, 2012-Warne
Le plus léger possible!
Plus minimaliste
Selon les habitudes et la perception
de confort
protection
de l’environnement
Motion control
Drop:(dénivelé)
2016-Fuller,
2015-Gillinov, (2014Kahle),
2014-Moore, 2013-Warne,
(2013-Brown)légère
duquel le pied n’est pas adapté,(2009-Rubin)
traction adéquate,
absorption,
un peu de
2013-Sobhani, 2012A-Bootier,
RIGIDITÉnaturelle!
rigidité… et qui n’altère pas la biomécanique
2012-Perl
2009-Roy
POIDS (PN vs >220g shoes)
ABSORPTION
(2014-Vicent), 2014-Reevs, 2014(RS-MA-n13)
2015-Cheung
2015-Fuller
(RS-MA-n19)
Maximaliste
2015-Sinclair -BOOST-, 2014-Worobet, Paulson, 2012-Paoli, 2011-Hanson,
2013-Sinclair, 2004-Harding, 19992009-Squadrone, 2008-Divert,
Thomson, 1986-Frederick
1985-Burkett
POIDS (< ou >220g)
Détecteur
de science
2015-Bellar, 2015-Warne,
2014-Paulson, 2013-Lussiana,
2012A-Braun, 2009Squadrone, 2008-Divert,
1988-Hamil
Pieds nus
Chaussure VS Perfomance
Ne change pas la
neurophysiologie
Avec un
« fit » parfait
Promotion de l’adaptation tissulaire
Protège contre
l’environement
Ne change pas la
biomécanique
Socialement
accepté
Chaussure minimaliste!
Niveau d’évidence
Preuve de faible qualité avec risque
élevé de biais :
- Les coureurs habitués aux chaussures
MINImalistes sont moins à risque de
blessures que les coureurs habitués aux
chaussures traditionnelles/maximalismes.
Niveau d’évidence
Preuve de faible qualité avec risque
élevé de biais :
- Les coureurs habitués aux chaussures
traditionnelles/maximalismes qui
changent pour des chaussures
MINImalistes sont plus à risque de
blessures.
Niveau d’évidence
Preuve de faible qualité avec risque
élevé de biais :
- Les coureurs Néophytes présentent le
même risques de blessures qu’ils
utilisent des chaussures MINImalistes ou
en chaussures MAXImalistes.
Recommandations
Débutants
Débuter avec chaussures
minimalistes (IM >60%), une
cadence de 180, sans faire trop
de bruit… et courir souvent!
Recommandations
Expérimentés
Pas de changement de technique
et de chaussures sauf si blessures
ou performance désirée.
Recommandations
Blessures
Selon la pathologie, transfert le
stress tissulaire par un
changement de technique ET de
chaussure (plus durable)
Recommandations
Performance
S’habituer à une chaussure plus
minimaliste en fonction de sa
capacité, avec critère principal la
légèreté. Augmenter la cadence
si moins de 160 pas/min…
Questions

Documents pareils