60th ICASS Final Program - Canadian Society for Analytical

Transcription

60th ICASS Final Program - Canadian Society for Analytical
présente/presents:
et/and
60th ICASS
International Conference on Analytical Sciences
and Spectroscopy
Programme final et livre de résumés
Final Program and Book of Abstracts
May 19-22 juin, 2015
Saint Mary’s University
Halifax, Nova Scotia, Canada
Bienvenue à Spectr’Atom 2015
Le comité scientifique de Spectr’Atom 2015 a le plaisir de vous souhaiter la bienvenue à
l’Université Saint Mary’s, Halifax, Nouvelle-Ecosse. Un programme mémorable vous attend.
Il débute le matin du mardi le 19 mai avec la session “état de l’art et perspectives”, suivi
d’applications environnementales après midi (le dîner étant inclus). L’ouverture de l’exposition
est ensuite accompagnée d’une réception.
Pendant tout le congrès, vous avez aussi accès aux sessions de la 60e ICASS (conférence
internationale sur les sciences analytiques et la spectroscopie) qui se déroule en parallèle du 19
au 22 mai. Pour faciliter les échanges, les repas du midi et pauses-café seront en commun avec
la 60e ICASS, ainsi que la session d’affiches, avec un temps spécifique pour poser des
questions aux auteurs.
L’après-midi du 21 mai, une sortie en groupe est planifiée pour vous aider à découvrir le cachet
de cette province maritime du Canada. Le tout sera suivi du banquet pour une dégustation de
fruits de mer et la remise de prix pour les meilleures affiches.
Nous espérons que la qualité du programme, des présentations et de l’exposition combinée au
site très attirant et amical feront de Spect’Atom 2015 un événement inoubliable. Puissiez-vous
avoir de nombreuses discussions fructueuses et vous faire beaucoup de nouvelles relations!
Le comité scientifique:
Diane Beauchemin (Queen’s University, Canada)
Olivier F.X. Donard (Université de Pau et des Pays de l’Adour, France)
Pierre Dumas (Institut de santé publique du Québec)
Marc Lamoureux (Université Saint Mary’s)
Dominic Larivière (Université Laval, Canada)
Hugues Paucot (Formations & Conseil UT2A, France)
José Luis Todolí (Université d’Alicante, Espagne)
Welcome to the 60th ICASS
The 60th ICASS organising team has the pleasure of welcoming you to Saint Mary’s
University, in Halifax, Nova Scotia.
An outstanding program awaits you, which will start with a welcome from the Dean of Arts and
Science of Saint Mary’s university. Two or three parallel sessions will be held during most of
the conference.
Attendees also have access to Spectr’Atom 2015, a conference solely on atomic spectrometry
entirely in French. To facilitate exchanges, lunches (which are included), coffee breaks, the
poster session, and the banquet will be common with Spectr’Atom 2015.
On Thursday afternoon, an organized outing will allow attendees to discover the friendliness of
this maritime province of Canada. It will be followed by the banquet where poster prizes will
be presented.
Our hope is that the programme featuring numerous high-quality presentations and an
exhibition in combination with the attractive and friendly venue will make the 60th ICASS an
unforgettable event. May you enjoy many fruitful discussions and make several new
acquaintances!
60th ICASS Conference co-Chairs
Diane Beauchemin (Queen’s University, Canada)
Marc Lamoureux (Saint Mary’s University, Canada)
Web Master
Chaoyang Huang (Actlabs, Canada))
Organizing committee
Kingsley Donkor (Thompson Rivers University)
Jesse Greener (Université Laval, Canada)
Kevin Hewitt (Dalhousie University)
Edward Lai (Carleton University)
Peter Wentzell (Dalhousie University)
COUP D’OEIL SUR LE PROGRAMME/ PROGRAM AT A GLANCE
Spectr’Atom
/ ICASS
Heure
Mardi/Tuesday
Mercredi 20 mai
Jeudi/Thursday
Vendredi/Friday
Time
May 19 mai
Wednesday May 20 May 21 mai
May 22 mai
Préparation et
Image analysis
Matinée Accueil
Etat de l’art et
introduction
workshop
perspectives
d’échantillons
Analytical
Atomic spectrometry Atomic
Morning Analytical
Separations/Mass
Separations/Mass
I
spectrometry II
Spectrometry I
Spectrometry III
Biomedical
Micro/nano imaging Nanoparticles
Spectroscopy/Imaging I
Noon
Dîner / Lunch
CSASS AGM
Aprèsmidi
Applications
environnementales
Afternoon Analytical
Separations/Mass
Spectrometry II
17:00
18:00
Dîner, exposition et Dîner et exposition /
affiches / Lunch,
Lunch and
exhibition and
exhibition
posters
Analyse de
spéciation
Analytical
Separations/Mass
Spectrometry IV
13:10-14:30
Vendors Showcase
Data Analysis and
Chemometrics
Micro/nano imaging 14:30-17:00
II
Conference event
Réception pour
l’ouverture de
l’exposition /
Reception for
exhibition opening
Session d’affiches
(auteurs présents) /
Poster session
(authors present)
Tear down of
exhibition
Banquet
Édifice Sobey Building
2nd floor/2e étage
Conference room/salle de congrès
S255, S260, S265
Main Entrance
Entrée Principale
COMMANDITAIRES/SPONSORS
Commanditaires Platine/Platinum Sponsor
Commanditaires Or/Gold Sponsor
Commanditaires Argent/Silver Sponsor
EXPOSANTS/EXHIBITORS
(Salle/Room L290, Loyola Building)
Kiosque/Booth 1
Kiosque/Booth 5
Katanax inc.
2022 Lavoisier, suite 100
Quebec QC
Canada G1N 4L5
Tel.: +1 418 657-6201
http://www.katanax.com
SCP Science
21800 Clark Graham
Baie D'Urfé, QC H9X 4B6
Camada
Tel: 800-253-5549
www.scpscience.com
Kiosque/Booth 2
Kiosque/Booth 6
ThermoFisher Scientific
2845 Argentia Road, Unit 4
Mississauga, ON L5N 8G6
Canada
Tel.: 905-890-1034
www.thermo.com
Northern ANI Solutions
55 Water Street, Suite 415
Vancouver, BC
Canada V6B 1A1
Office: 604-558-4973
www.northernani.com
Kiosque/Booth 3
Agilent Technologies Inc.
6705 Millcreek Drive, Unit 5
Mississauga, ON L5N 5M4
Canada
Tel: 877-424-4536
www.agilent.com
Kiosque/Booth 4
Elemental Scientific
1500 North 24th Street
Omaha, NE 68110
U.S.A.
Tel.: 402.590.2919
www.icpms.com
www.prepFAST.com
Kiosque/Booth 7
Canalytical
1110 Heritage Road, Unit 10
Burlington, Ontario
L7L 4X9
Toll Free: 1.800.639.7144
Phone: 905.331.3386
http://canalytical.com/
INFORMATION SUR SPECTR’ATOM
60TH ICASS INFORMATION
Bureau d’inscription
Registration desk
Tous les participants (incluant les
exposants) doivent se présenter au bureau
d’inscription situé dans le lobby de l’édifice
Sobey pour recevoir le matériel du congrès.
All attendees, speakers and exhibitors are
requested to sign in at the registration desk
located in the foyer of the Sobey building to
pick up the delegate pack.
Présentations orales
Oral presentations
Un projecteur (pour présentation
PowerPoint) sera disponible. A part la
plénière, les présentations sont d’une durée
de 20 ou 30 minutes, incluant les questions.
LCD (for PowerPoint presentations)
projectors will be available. Presentations
are 20 or 40 minutes in length, including
questions.
Affiches
Posters
Les panneaux d’affiche seront numérotés
tel qu’indiqué dans le programme.
Poster boards will be numbered
corresponding to the program.
Les affiches doivent être installées au plus
tard avant 9:00 le 20 mai et enlevées avant
14:30 le 21 mai. Il est préférable de les
installer avant la réception d’ouverture de
l’exposition le 19 mai. Les auteurs doivent
être présents de 17:00 à 18:00 le 20 juin
pour répondre aux questions.
Posters should be installed at the latest by
9:00 on May 20 and removed by 14:30 on
May 21. Delegates are encouraged to
install their posters before the opening
reception of the exhibition on May 19.
Presenters must attend their posters from
17:00 to 18:00 on May 20 to answer
questions. Student presenters will be
eligible for poster prizes (of up to $250).
The latter will be announced during the
banquet.
Compliemnetary Social Event for all participants
Activité sociale gratuite pour tous les paticipants
All conference particpants are invited to a complimentary social event on Thursday May 21st,
beginning at 3 pm. Particpants will be bused from Saint Mary’s University to the water front
where we will board the Sylvia Tall Ship for a 2hr cruise on the Halifax Harbour. Whales have
been sighted in the harbour! Compliemntary appetizers and drink (plus cash bar) will be
offered. The cruise will end at our conference banquet location, the restaurant of Murphy’s on
the Water, for a delicious lobster dinner. Banquet tickets are still available and can be
purchased for $70 ($CND).
Tous les participants du congrès sont invités à une activité sociale gratuite jeudi le 21 mai à
partir de 15h. Un autobus partira de l’Université Saint Mary’s et apportera les participants au
port de mer d’Halifax. Les participants seront invités à monter à bord du grand voilier Sylvia
pour une croisière de 2 hrs dans le havre d’Halifax. Des baleines ont été aperçues récemment
dans le havre! La croissière se terminerra à l’endroit où nous allons avoir le banquet du
congrès, au restaurant de Murphy’s on the Water, pour un déicieux souper de homard. Les
billets pour le banquet sont encore disponible pour la somme de $70 ($CND)
Spectr’Atom 2015
Programme (numéros de résumés entre parenthèses)
Toutes les salles sont situées dans le complexe académique Loyola et Sobey
MARDI 19 MAI
ETAT DE L’ART ET PERSPECTIVES DE LA SPECTROMÉTRIE ATOMIQUE – Salle S255
Président: Marc Lamoureux (Université Saint Mary’s)
10:00 Accueil par Marc Lamoureux, Diane Beauchemin et Olivier Donard
10:10 (S14) FRONTIERES DE l’ICP/MS (Q, HR, ET MC) POUR LA DYNAMIQUE DES
METAUX DANS L’ENVIRONNEMENT : DE LA SPECIATION A L’IMAGERIE.
O.F.X. Donard1, D. Amouroux1, Z. Pedrero1, S. Berail1, E. Tessier1, C. Pecheyran1, A.
Donard1 J. Barre1, M. Monperrus1, J. Cavalheiro1, J. Malherbes1, D. Schaumlöffel1,
1
Laboratoire de Chimie Analytique Bioinorganique et Environnement, Institut des
Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, UMR
CNRS 5254 IPREM, Université de Pau et des Pays de l’Adour, Hélioparc, Pau (France)
10:50
(S09) SPECTROSCOPIE ATOMIQUE A PLASMA PAR COUPLAGE INDUCTIF
ET L’EVOLUTION DU SYSTEME D’INTRODUCTION D’ECHANTILLONS
LIQUIDES. José-Luis Todolí Departement de Chimie Analytique, Nutrition et
Bromatologie, Université d’Alicante, E-03080. Alicante, Espagne.
11:20
Table ronde
12:00
Dîner – Lobby de l’Édifice Sobey
APPLICATIONS ENVIRONNEMENTALES ET NUCLÉAIRES – Salle S255
Organisateur et président: Dominic Larivière (Université Laval)
13:40
(S12) L’EXPLOITATION DES SABLES BITUMINEUX AN ALBERTA
REPRÉSENTE-T-ELLE UNE NOUVELLE SOURCE DE CONTAMINATION EN
MÉTAUX LOURDS POUR LA RIVIÈRE ATHABASCA ? Olivier Clarisse,
Université de Moncton, Département de Chimie et Biochimie Moncton, NouveauBrunswick, Canada E1A 3E9
14:10
(S01) DÉTERMINATION DE LA COMPOSITION ISOTOPIQUE ET DE LA
CONCENTRATION DU ZIRCONIUM DANS DES ÉCHANTILLONS
NUCLÉAIRES À L’AIDE D’UN SPECTROMÈTRE DE MASSE À THERMOIONISATION. Alexandre Quémet, Christophe Maillard et Alexandre Ruas. CEA,
Direction de l’Energie Nucléaire, Département de RadioChimie et Procédés, F-30207
Bagnols sur Ceze, France.
14:30
(S17) DÉVELOPPEMENT D’UNE MÉTHODE D’ANALYSE DES ÉLÉMENTS DE
TERRES RARES PAR SPECTROMÉTRIE À ÉMISSION ATOMIQUE AU
PLASMA MICRO-ONDE. Keven Turgeon1-2, Laurence Whitty-Léveillé1-2, Claude
Bazin1, Dominic Larivière2, 1Département de génie des mines, de la métallurgie et des
matériaux, 2Département de chimie, Université Laval, Québec, QC
14:50 Pause-café, exposition et affiches – Salle S255
15:30
(S07) ÉTUDES COMPARATIVE DES MÉTHODES DE DIGESTION
D’ÉCHANTILLONS ET D’ANALYSE DES ÉLÉMENTS DE TERRES RARES
DANS DIFFÉRENTES MATRICES ENVIRONNEMENTALES ET MINÉRALES.
Laurence Whitty-Léveillé1,2, Keven Turgeon1,2, Claude Bazin1, Dominic Larivière2,
1
Département de génie des mines, de la métallurgie et des matériaux; 2Département de
chimie; Université Laval, Québec
15:50
(S11) LA MESURE PB-210 DANS L’ENVIRONNEMENT. R. Jack Cornett, A.
Sookdeo, X.L. Zhao, C.J. Charles and W.E. Kieser. Laboratoie SMA Andre E.
Lalonde, Départements de Sciences de la Terre et Physique, Université d'Ottawa,
Ottawa CA
16:10
(S13) EXERCICE D’INTERCOMPARAISON POUR LE SUIVI
D’ENVIRONNEMENTS AQUATIQUES D’EUROPE DU SUD (PROJET ORQUE
SUDOE). F. Séby1, F. Pannier2, M. Monperrus2, Z. Pedrero2, C. Bonnemason-Carrère2
et O.F.X. Donard2. 1Ultra-Traces Analyses Aquitaine (UT2A), Pau (France), 2IPREM
(LCABIE), UMR CNRS/UPPA 5254, Pau (France).
16:30-17:00
Table ronde
MERCREDI 20 MAI
PRÉPARATION ET INTRODUCTION D’ÉCHANTILLONS – Salle S255
Organisatrice et présidente: Diane Beauchemin (Université Queen’s)
09:00
(S08) LE DOSAGE DE METAUX DANS LES BIO ETHANOLS PAR LES
TECHNIQUES A PLASMA PAR COUPLAGE INDUCTIF. José-Luis Todolí,1
Carlos Sánchez,1 Charles-Philippe Lienemann2. 1 Département de Chimie Analytique,
Nutrition et Bromatologie, Université d’Alicante, E-03080, Alicante, Espagne; 2 IFP
Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3, F-69360 Solaize –
France, Rond-point de l'échangeur de Solaize, Lyon, 69360, France
09:30
(S02) APPLICATIONS DE LA VAPORISATION ELECTROTHERMIQUE
COUPLEE A LA SPECTROMETRIE ICP-AES POUR LA DETERMINATION
ELEMENTAIRE DANS LES VEGETAUX DIRECTEMENT A L’ETAT SOLIDE.
Pierre Masson. INRA-USRAVE, Centre de Recherches de Bordeaux, CS20032,
33882 Villenave d’Ornon Cedex, France.
10:00
Pause-café, exposition et affiches – Salle L290
10:40
(S03) ANALYSE DE SOLUTIONS ORGANIQUES POUR LA
CARACTERISATION DES DECHETS RADIOACTIFS. A. Masset, P. Fichet, C.
Colin, C. Cruchet, M. Coppo. CEA/DEN/DANS/DPC/SEARS/LASE, CEA Saclay,
Bât 459, PC 171, 91191 Gif sur Yvette CEDEX
11:00
(S15) LE MINIWAVE : UN SYSTÈME ABORDABLE DE DIGESTION PAR
MICROONDES. John Dykeman, SCP SCIENCE, 21800 Clark-Graham, Baie D'Urfé,
QC H9X 4B6.
11:20
(S21) POTENTIEL DU MP-AES 4200 POUR L’ANALYSE DE METAUX DANS
LES PRODUITS PETROLIERS. D. Guihéneuf1, S. Lepiller1, Y. Abdelnour2, J.-L.
Todoli3, C. Greatti1, 1 TOTAL RESEARCH & TECHNOLOGY GONFREVILLE,
BP27, 76700 Harfleur, France; 2 Agilent Technologies – ZA Courtaboeuf - 3, avenue
du Canada - CS 90263 - 91978 LES ULIS CEDEX, France ; 3 Département de Chimie
Analytique, Nutrition et Bromatologie, Université d’Alicante, E-03080, Alicante,
Espagne
11:40
Table ronde
12:00
Dîner – Salle L290
ANALYSE DE SPÉCIATION – Salle S255
Organisateur et président: Pierre Dumas (Institut national de santé publique du Québec)
13:40
(S10) ANALYSE DE L'ARSENIC INORGANIC TOTAL DANS LES DROGUES
PHARCEUTIQUES ET LES PRODUITS DE SANTE NATUREL PAR HPLC
ICPMSMS. S.Bélisle2, L.Dextraze1, H.Gagnon1, J-F Paradis2, 1Laboratoire de
l'Inspectorat de Longueuil, RPB Québec, Santé Canada, Longueuil, QC ; 2Laboratoire
des Aliments de Longueuil, RPB Québec, Santé Canada, Longueuil, QC.
14:10
(S19) SPÉCIATION DU SÉLÉNIUM SANGUIN PAR CI-DI-ICP-MS/MS
(CHROMATOGRAPHIE IONIQUE –DILUTION ISOTOPIQUE EN LIGNESPECTROMÉTRIE DE MASSE
EN TANDEM PAR PLASMA D’ARGON
INDUCTIF) SUR LES TRACES DE LA SÉLÉNONÉINE. Pierre Dumas1, Adel
Achouba2, Pierre Ayotte1,2, Mathieu Martinez3, Lisa Gautrin3, 1Institut national de
santé publique du Québec (INSPQ) QC, Canada; 2Département de médecine préventive
et sociale, Université Laval , Centre de recherche du CHU, QC Canada, 3Université de
Pau et des Pays de l’Adour (UPPA) Pau France
14:40
(S05) LA SPÉCIATION EN TOXICOLOGIE CLINIQUE. Patrick Bélanger, Institut
National de Santé Publique du Québec (INSPQ) Qc, Canada.
15:00
Pause-café, exposition et affiches – Salle L290
15:40
(S20) ANALYSE SIMULTANÉE DE SPÉCIATION DU SE, CR ET AS DANS LES
LIXIVIATS DE CÉRÉALES POUR BÉBÉ POUR UNE ÉVALUATION DU
RISQUE PLUS RÉALISTE. Nausheen Sadiq et Diane Beauchemin, Queen’s
University, Department of Chemistry, Kingston, ON K7L 3N6, Canada.
16:00 Table ronde
17:00-18:00 SESSION D’AFFICHES (auteurs présents) – Salle L290
Panneau #
Présentation
1
(S04) DETERMINATION ELEMENTAIRE DANS LES VEGETAUX PAR
SPECTROMETRIE DE FLUORESCENCE X A DISPERSION DE LONGUEUR
D'ONDE: PREMIERS RESULTATS. Pierre MASSON. INRA-USRAVE, Centre de
Recherches de Bordeaux, CS 20032, 33882 Villenave d'Ornon Cedex, France
2
(S06) PRODUCTION D’UN MATERIAU DE REFERENCE CERTIFIE : ÉTAPES DE
PREPARATION ET TEST D’HOMOGENEITE. Patrice Soulé1, Mireille Barbaste1,
Karine Hakim1, Guillaume Daugey1, Alison Hewitt1, Thierry Prunet1, Manuel Nicolas2.
1: USRAVE, Centre de Recherches INRA de Bordeaux, CS20032, 33882 Villenave
d’Ornon cedex, France; 2: Office National des Forêts, Département Recherche
Développement Innovation, Bd de Constance, 77300 Fontainebleau, France.
3
(S16) LE PROJET MARSS (CENTER OF MASS SPECTROMETRY FOR
REACTIVITY AND SPECIATION SCIENCES). Olivier F.X. Donard, Emmanuel
Tessier, Joanna Szpunar, Kashia Bierla, Dirk Schaumlöffel, Julien Malherbe, Hervé
Martinez, Cécile Courrèges, Laure Tastet. Center of Mass Spectrometry for Reactivity
and Speciation Sciences, Université de pau et des Pays de l’Adour, Hélioparc, 2 Avenue
P. Angot, 64000 Pau
4
(S05) COMMENT EVALUER LES INCERTITUDES EN ICP? A. Masset, P. Fichet,
M. Coppo, C. Colin, C. Cruchet, CEA/DEN/DANS/DPC/SEARS/LASE, Cea Saclay,
Bât 459 PC171, 91191 Gif sur Yvette, France Table ronde
Le congrès 60e ICASS se poursuit jusqu’à midi, le 22 mai.
60th ICASS Program
All rooms are located in the Loyola and Sobey Academic Complex
TUESDAY, MAY 19, MORNING
ANALYTICAL SEPARATIONS/MASS SPECTROMETRY I – Room S260
Organizer: Kingsley Donkor
Chair: David Chen
10:00 (I28) ANALYSIS OF THE NEUROTOXIN, β-N-METHYLAMINO-L-ALANINE
(BMAA), BY HYDROPHILIC INTERACTION LIQUID CHROMATOGRAPHYDIFFERENTIAL MOBILITY SPECTROMETRY-TANDEM MASS
SPECTROMETRY. Elliott Kerrin1,2, Michael A. Quilliam1,2, Daniel G. Beach1.
1
National Research Council Canada, Measurement Science and Standards, Halifax, NS;
2
Department of Chemistry, Dalhousie University, Halifax, NS.
10:20 (I48) DEVELOPMENT OF PRACTICAL AND EFFECTIVE ANALYTICAL
APPROACHES FOR PRODUCT AUTHENTICATION OF HERBAL MEDICINES
AND NATURAL HEALTH PRODUCTS. Rob O'Brien1,2 , Anderson Smith2 and
Chuck Chang1, 1ISURA, 2Supra Research and Development
11:00 (I01) OVER 10,000 PEPTIDE IDENTIFICATIONS FROM THE HELA PROTEOME
USING SINGLE-SHOT CAPILLARY ZONE ELECTROPHORESIS-TANDEM
MASS SPECTROMETRY. Norman J. Dovichi, Liangliang Sun, Xiaojing Yan,
Yimeng Zhao, Guijie Zhu, Matthew M. Champion. Department of Chemistry and
Biochemistry, University of Notre Dame. Keynote speaker.
12:00 Lunch (provided) – Room S260
--------------------------------------------------------------------------------------------------------------BIOMEDICAL SPECTROSCOPY/IMAGING – Room S265
Organizer: Kevin Hewitt
Co-Chairs: Kevin Hewitt and Laurent Kreplak
10:00 (I59)
MULTIMODALITY
MICROSCOPY
GUIDED
MICRO-RAMAN
SPECTROSCOPY FOR ACCURATE TARGETING AND BIOCHEMICAL
ANALYSIS OF MICROSTRUCTURES IN HUMAN SKIN IN VIVO. Haishan Zeng,
Hequn Wang, Anthony Lee, David I. McLean, Harvey Lui, Imaging Unit – Integrative
Oncology Department, British Columbia Cancer Agency Research Centre,
Photomedicine Institute – Department of Dermatology and Skin Science, University of
British Columbia & Vancouver Coastal Health Research Institute, Vancouver, BC,
Canada.
10:40 (I60) FTIR SPECTROCHEMICAL IMAGING OF BIOLOGICAL SAMPLES; 2D
AND 3D, FROM MILLIMETER TO NANOMETER LENGTH SCALES. Kathleen
M. Gough, Department of Chemistry, University of Manitoba, Winnipeg, Canada.
11:20 (I61) EGFR-SPECIFIC NANOPROBE BIODISTRIBUTION IN MOUSE MODELES.
Samia Baroudi1, Maiara Castilho1,2, Allan Hupman1, Caroline Wood1, Christopher
Lee1, Ian Alwayn1, Kevin C. Hewitt1. 1Dalhousie University, 2Universidade do Vale do
Paraíba.
12:00 Lunch (provided) – Room L290
TUESDAY, MAY 19, AFTERNOON
ANALYTICAL SEPARATIONS/MASS SPECTROMETRY II – Room S260
Organizer: Kingsley Donkor
Chair: Karen Waldron
13:40 (I05) IDENTIFYING EVIDENCE OF AUTOLOGOUS BLOOD TRANSFUSIONS
BY CAPILLARY ELECTROPHORESIS. Christopher R. Harrison, & Jack Fang. San
Diego State University, Department of Chemistry & Biochemistry.
14:00 (I17) PROBING PROTEIN CONFORMATIONAL CHANGES BY USING
APTAMERS. Nena Thi Nguyen1, X. Chris Le1,2, Hongquan Zhang2, 1Department of
Chemistry and 2Department of Laboratory Medicine and Pathology, Faculty of Medicine
and Dentistry, University of Alberta, 10-102 Clinical Sciences Bldg., Edmonton,
Alberta, Canada T6G 2G3.
14:20 (I32) EXPLORING SUBCELLULAR COMPLEXITY IN TISSUES BY CAPILLARY
ELECTROPHORETIC ANALYSIS OF INDIVIDUAL ORGANELLES. Katherine
Muratore*, Deirdre Manion-Fischer*, Manjunatha Shankarappa°, Ian Lanza°, K.
Sreekumaran Nair°, Edgar A. Arriaga*. *University of Minnesota, Minneapolis, MN,
USA. °Mayo Clinic, Rochester, MN, USA.
15:00 Coffee break – Room L290
15:40 (I16) DEVELOPING SELECTIVE AND ROBUST MOLECULARLY IMPRINTED
POLYMER FILMS FOR DIRECT ANALYSIS OF COTININE CONTAMINANTS
WITH MASS SPECTROMETRY. Christina S. Bottaro, Adam G. Beaton, Stefana N.
Egli, Jeremy R. Gauthier. Department of Chemistry, Memorial University, St. John’s,
NL A1B 3X7.
16:00 (I03) MEASUREMENT OF THE ACTIVITY OF INDIVIDUAL SUBUNITS OF A
SINGLE ENZYME MOLECULE AND THE CONVERSION OF A MOLECULE
BETWEEN DIFFERENT ACTIVE CONFORMATIONS. Douglas B. Craig,1 Jeremie
J Crawford,2 Coleen Ong-Justiniano3 and Ellert Nichols.3 1Chemistry Department,
University of Winnipeg, Winnipeg MB, 2Chemistry Department, University of
Manitoba, Winnipeg MB, 3Department of Biochemistry and Medical Genetics,
University of Manitoba, Winnipeg MB.
16:40 (I27) SELECTION OF APTAMERS USING QUANTUM DOT-ASSISTED
CAPILLARY ELECTROPHORESIS SELEX. Jeffrey. W. Guthrie and Michael J.
Martin. Eastern Michigan University, Department of Chemistry, Ypsilanti, MI, USA
17:00 Exhibition opening and reception – Room L290
---------------------------------------------------------------------------------------------------------------
DATA ANALYSIS AND CHEMOMETRICS – Room S265
Organizer and Chair: Peter Wentzell
13:40 (I53) EMBEDDED CHEMOMETRICS FOR HANDHELD ANALYZERS:
EXAMPLES FROM RAMAN, FTIR, AND MS. Christopher D. Brown, 908 Devices,
Boston, MA.
14:20 (I08) APPLICATION OF PARTIAL LEAST SQUARES 2 TO INFRARED
SPECTRUM TRANSFER. S. Hou, and J T. McClure, Department of Health
Management, University of Prince Edward Island, Charlottetown, Canada
14:40 (I25) ESTIMATION OF INSTRUMENTAL NOISE MODELS IN THE ABSENSE OF
REPLICATED DATA. Peter D. Wentzell and Anthony C. Tarasuk. Department of
Chemistry, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
15:00 Coffee break – Room L290
15:40 (I26) PROJECTION PURSUIT METHODS FOR EXPLORATORY DATA
ANALYSIS. Chelsi C. Wicks, Peter D. Wentzell. Department of Chemistry,
Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2.
16:00 (I64) ANALYSIS OF FATTY ACID PROFILES OF PACIFIC COD IN THE GULF
OF ALASKA USING PRINCIPAL COMPONENT ANALYSIS AND PROJECTION
PURSUIT. Wei Xia1, Suzanne M. Budge1, Peter D. Wentzell2, Olav Ormseth3, Shiway
Wang4, Kim Rand3, 1Department of Process Engineering and Applied Science,
Dalhousie University, Halifax, NS B3H 4R2, Canada; 2Department of Chemistry,
Dalhousie University, Halifax, NS B3H 4R2, Canada; 3Alaska Fisheries Science Center,
National Oceanic and Atmospheric Administration, Seattle, WA 98115, US; 4Sedna
Ecological, Fairbanks, AK 99709, US
16:20 (I66) ANALYSIS OF RAMAN HYPERSPECTRAL IMAGES OF HELA CELLS.
Tobias K. Karakach, Li-Lin Tay, National Research Council of Canada, Measurement
Science and Standards Portfolio
17:00 Exhibition opening and reception – Room L290
WEDNESDAY, MAY 20, MORNING
ANALYTICAL SEPARATIONS/MASS SPECTROMETRY III – Room S260
Organizer: Kingsley Donkor
Chair: Christina Bottaro
9:00
(I19) HIGH PEAK CAPACITY, TWO DIMENSIONAL SEPARATIONS USING
MICRO FREE FLOW ELECTROPHORESIS. Michael T. Bowser, Matthew Geiger,
Alexander Johnson, Sarah Anciaux and Nicholas Frost. University of Minnesota,
Department of Chemistry.
9:40
(I02) DEVELOPMENT AND VALIDATION OF A RAPID LC-MS/MS METHOD
FOR SCREENING ILLEGAL AND COUNTERFEIT DRUGS: FROM 24
CANNABINOIDS TO 82 ERECTILE DYSFUNCTION REMEDIES AND
ADULTERATED PRODUCTS. Karen C. Waldron, Philippe Lebel and Alexandra
Furtos. Département de chimie, Université de Montréal.
10:00 Coffee break, exhibition and posters – Room L290
10:40 (I51) CAPILLARY ELECTROPHORETIC DETERMINATION OF CHLORIDE AND
SULFATE IN HIGHLY SALINE OILFIELD WATER USING BILAYER-COATED
CAPILLARIES AND INDIRECT ABSORPTION DETECTION. Kingsley K.
Donkor1, Zhi C. Guo1, Laiel C. Soliman1, Yuen Ting Law1, Jessica M. Risley2,
Kenneth J. Schmidt3, H. John Crabtree4, Neil A. Warrender3, 1Department of Physical
Sciences, Thompson Rivers University, Kamloops, BC; 2Department of Chemistry,
UBC, Vancouver; 3Wilson Analytical Services,Sherwood Park, AB; 4HJC Consulting
Inc., Edmonton, AB. 9:40
11:00 (I62) PROTEOMIC AND METABOLOMIC ANALYSIS OF CHINESE HAMSTER
OVARY CELLS – PEERING INTO THE BIOLOGICS BLACK BOX. Devanand M.
Pinto, Kenneth Chisholm, Andrew Leslie, Susanne Penny, Patrick Murphy, Phuong Lan
Pham, National Research Council, Human Health Therapeutics, Halifax, Nova Scotia.
11:20 (I40) CAPILLARY ELECTROPHORESIS MASS SPECTROMETRY FOR
UNLABELED SERUM GLYCANS. Roxana G. Jayo and David D. Y. Chen,
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
12:00 Lunch (provided)
--------------------------------------------------------------------------------------------------------------MICRO/NANO IMAGING AND ANALYTICAL MEASUREMENTS OF CELLS AND
BIOMATERIALS – Room S265
Organizer and Chair: Jesse Greener
09:00 (I29) MICROSENSORS FOR STUDY OF MICROBIALLY STRATIFIED
ENVIRONEMNT: APPLICATIONS AND CHALLENGES. Tong Yu, Department of
Civil and Environmental Engineering, University of Alberta, Canada
09:40 (I20) FABRICATION AND EVALUATION OF A METHANE MICROBIOSENSOR.
Yijun Chen, Yan Zhang and Tong Yu, Department of Civil and Environmental
Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
10:00 Coffee break, exhibition and posters – Room L290
10:40 (I06) MAPPING THE STRUCTURE AND CHEMICAL PROPERTIES OF SINGLE
COLLAGEN FIBRILS. Laurent Kreplak, Department of Physics and Atmospheric
Science, Dalhousie University, Halifax, NS, Canada. School of Biomedical Engineering,
Dalhousie University, Halifax, NS, Canada.
11:20 (I13) VOLUME IMAGING AND QUANTITATIVE PHASE MEASUREMENTS
WITH DIGITAL IN-LINE HOLOGRAPHIC MICROSCOPY. M.H. Jericho,
Department of Physics and Atmospheric Science, Dalhousie University, Halifax N.S.
12:00 Lunch (provided) – Room L290
WEDNESDAY, MAY 20, AFTERNOON
ANALYTICAL SEPARATIONS/MASS SPECTROMETRY IV – Room S260
Organizer: Kingsley Donkor
Chair: Christopher Harrison
13:40 (I49) DIRECT MEASUREMENT AND ON-LINE MONITORING OF
PHARMACEUTICALS AND NAPHTHENIC ACIDS USING MEMBRANE
INTRODUCTION MASS SPECTROMETRY. Kyle D. Duncan, Dane R. Letourneau,
Greg W. Vandergrift, Chris G. Gill, Erik T. Krogh, Applied Environmental Research
Laboratories (AERL), Department of Chemistry, Vancouver Island University,
Nanaimo, BC and Chemistry Department, University of Victoria, Victoria, BC.
14:20 (I10) KINETIC SIZE-EXCLUSION CHROMATOGRAPHY WITH MASS
SPECTROMETRY DETECTION (KSEC-MS): AN APPROACH FOR SOLUTIONBASED LABEL-FREE KINETIC ANALYSIS OF PROTEIN-DRUG
INTERACTIONS. Sergey N. Krylov and Svetlana M. Krylova, Department of
Chemistry and Centre for Research on Biomolecular Interactions, York University,
Toronto, ON M3J 1P3, Canada.
15:00 Coffee break, exhibition and posters – Room L290
15:40 (I44) COMMERCIAL AND CUSTOM MADE MIRCOSTRUCTURED FIBRE
BASED EMITTERS FOR (MULTI) ELECTROSPRAY IONIZATION MASS
SPECTROMETRY ON A MICROFLUIDIC DEVICE. Lili Mats, Yueqiao Fu, Kyle
Bachus, Graham Gibson and Richard Oleschuk, Queen’s University, Kingston, ON.
16:00 (I21) USING APTAMERS IN CAPILLARY ELECTROPHORESIS (CE)-BASED
ASSYAS FOR DETECTION OF PROTEINS. Svetlana M. Krylova, Roman Yufa,
Michael Musheev, Mirzo Kanoatov, Leonid T. Cherney, Victor A. Galievsky, Sergey N.
Krylov. Department of Chemistry and Centre for Research on Biomolecular
Interactions, York University, Toronto, Ontario, Canada M3J 1P3
16:20 (I47) ELECTROPHORESIS IN CHITOSAN-COATED CAPILLARY: SEPARATION
OF DIETHYLENETRIAMINEPENTAACETIC ACID FROM VARIOUS
PHARMACEUTICALS IN WATER. Edward P.C. Lai, Manal Almalki and Zafar
Iqbal. Department of Chemistry, Carleton University.
16:40 (I04) CLOUD POINT EXTRACTION AND PRECONCENTRATION OF TRACE
AMOUNT OF IRON IN WATER AND ENVIRONMENTAL SAMPLES PRIOR TO
SPECTROPHOTOMETRIC DETERMINATION. Ragaa El Sheikh, Ayman A.
Gouda. Chemistry Department, Faculty of Science, Zagazig University, Zagazig,
44519, Egypt.
--------------------------------------------------------------------------------------------------------------MICRO/NANO IMAGING AND ANALYTICAL MEASUREMENTS OF CELLS AND
BIOMATERIALS – Room S265
Organizer and Chair: Jesse Greener
13:40 (I54) BIOFILM STREAMER FORMATION IN LOW REYNOLDS NUMBER
FLOWS. Aloke Kumar, Department of Mechanical Engineering, University of Alberta.
14:20 (I24) TOWARD A NEW HIGH-THROUGHPUPT ELECTROCHEMICAL IMAGING
SYSTEM FOR DISSOLVED BIOMATERIALS. Adnane Kara1,2, Jessy Mathault1,2,
Amine Miled1, Jesse Greener2, 1LABioTRON Bioeng. Res. Lab., Elect. Compt. Eng.
Dept. Laval University, Québec City, QC, Canada 2Dept. of Chemistry, Laval
University, Québec city, QC, Canada
15:00 Coffee break, exhibition and posters – Room L290
15:40 (I42) PROBING NANOSCOPIC STRUCTURAL ALTERATIONS OF
OVERLOADED COLLAGEN FIBRILS WITH ATOMIC FORCE
MICROSCOPY. Samuel J Baldwin1, Laurent Kreplak1,2, J. Michael Lee2 1Department
of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
2
School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
16:00 (I23) A LOW-COST AUTOMATED SYSTEM FOR LINEAR SPECTRAL IMAGING
IN MICROCHANNELS F. Paquet-Mercier, M. Pousti and J. Greener, Department of
chemistry, CERMA, CQMF, Université Laval.
Poster session (Authors present from 17:00-18:00) – Room L290
Board #
Poster
1 (I12) DETERMINING LANTHANIDE SPECIATION IN NATURAL WATERS.
Alexandra Carvajal, Jim McGeer and D. Scott Smith. Wilfrid Laurier University.
2
(I35) BENEFICIAL EFFECT OF SEGMENTED FLOW INJECTION ON THE
INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY MEASUREMENT
OF PT ELECTRO DISSOLUTION IN SIMULATED FUEL CELL. Ram P. Lamsal,
Gregory Jerkiewicz and Diane Beauchemin, Queen’s University, Department of
Chemstry, Kingston, ON K7L 3N6, Canada.
3
(I37) OPTIMIZATION OF SAMPLE INTRODUCTION TO ICP-OES USING AN
ULTRASONIC NEBULIZER WITH PRE-EVAPORATION TUBE. Tia Anderlini and
Diane Beauchemin Queen’s University, Department of Chemstry, Kingston, ON K7L
3N6, Canada.
4
(I39) CERTIFIED REFERENCE MATERIALS AVAILABLE FROM THE NRC
BIOTOXIN METROLOGY PROGRAM. Pearse McCarron, Krista Thomas, Sheila
Crain, Sabrina Giddings, Daniel Beach, Pat LeBlanc, Ruth Perez Calderon, Nancy
Lewis, Kelley Reeves, William Hardstaff and Michael Quilliam, National Research
Council Canada, Measurement Science and Standards, Biotoxin Metrology, 1411
Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada.
5
(I43) ADVENTURES IN MICROWAVE DIGESTION. Andrew Dalton, SCP
SCIENCE, 21800 Clark-Graham, Baie D'Urfé, QC H9X 4B6.
6
(I50) ANALYSIS OF POTENTIALLY TOXIC AND ESSENTIAL ELEMENTS IN
COUSCOUS SAMPLES FROM LIBYA USING ICP-MS AND ICP-OES. Mabrok
Salem and Diane Beauchemin, Queen’s University, Department of Chemistry, 90 Bader
Lane, Kingston, ON K7L 3N6, Canada.
7
(I55) ENHANCED SELECTIVITY OF A MOLECULARLY IMPRINTED POLYMER
TOWARD ITS TARGET MOLECULE VIA ESTERIFICATION OF NON-SPECIFIC
BINDING SITES WITH DIAZOMETHANE. Noof A. Alenazi, Edward P.C. Lai and
Jeffrey M. Manthorpe. Department of Chemistry, Carleton University.
8 (I57) BLOOD ANALYSIS THROUGH ICP-MS EMPLOYING A TOTAL SAMPLE
CONSUMPTION SYSTEM. Águeda Cañabate,1 Esperanza García-Ruiz,2 Charo
Flórez,2 Martín Resano,2 Maite Aramendia,2,3 José-Luis Todolí 1, 1Deparment of
Analytical Chemistry, Nutrition and Food Science, University of Alicante, Carreta San
Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; 2Department
of Analytical Chemistry, University of Zaragoza ,Pedro Cerbuna 12, E-50009,
Zaragoza, Spain; 3Centro Universitario de la Defensa, Academia General Militar,
University of Zaragoza, Carretera de Huesca s/n, 50090, Zaragoza, Spain.
THURSDAY, MAY 21, MORNING
NANOPARTICLES - AIR QUALITY, WATER CHEMISTRY AND ENGINEERED
MATERIALS – Room S255
Organizer and Chair: Ed Lai
09:00 (I65) SIMPLIFIED METHOD TO MEASURE PARTICLE SIZE BY SINGLE
PARTICLE INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND
ITS APPLICATION TO THE ANALYSIS OF PT NANOPARTICLES USED AS
CATALYST IN FUEL CELLS, Ram P. Lamsal1, Stève Baranton2, Gregory Jerkiewicz1
and Diane Beauchemin1, 1Queen’s University, Department of Chemistry, 90 Bader
Lane, Kingston, ON K7L 3N6, Canada; 2Institut de Chimie des Milieux et Matériaux de
Poitiers, Université de Poitiers, Poitiers, France.
09:40 (I34) CHARACTERIZATION OF NANOMATERIALS BY DIFFERENT
TECHNIQUES SUCH AS DLS, AF4-MALLS(-ICP-MS) AND SP-ICP-MS IN
CONSUMER PRODUCTS. Inmaculada DE LA CALLE1,2, Mathieu MENTA2,
Marlène KLEIN2, Fabienne SÉBY2. 1Departamento de Química Analítica y
Alimentaria, Área de Química Analítica, Facultad de Química, Universidad de Vigo,
Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain. 2Ultra Trace Analyses
Aquitaine UT2A/ADERA. Hélioparc Pau-Pyrénées, 2 avenue du Président Angot,
64053 PAU cedex 9, Pau, France.
10:00 Refreshment break and exhibition – Room L290
10:40 (I52) POLYMER COATINGS FOR SENSITIVE ANALYSIS OF COLLOIDAL
SILICA NANOPARTICLES IN WATER. Edward P.C. Lai, Samar Alsudir,
Department of Chemistry, Carleton University, Ottawa, ON.
11:00 (I45) FURTHER INVESTIGATION OF POLYDOPAMINE GROWTH ON
NANOPARTICLES IN WATER - ELECTROPHORESIS IN CHITOSAN-COATED
CAPILLARY. Zafar Iqbal and Edward P.C. Lai, Department of Chemistry, Carleton
University, Carleton University, Ottawa, ON.
11:20 (I63) AIRBORNE SILICA AND TITANIUM DIOXIDE
NANOPARTICLES: COLLECTION WITH AQUEOUS SURFACTANT OR
CHEMICAL REAGENT. Olaitan Edu and Edward Lai. Department of Chemistry,
Carleton University.
11:40 End of session
12:00 Lunch (provided) – Room L290
--------------------------------------------------------------------------------------------------------------09:00-noon IMAGE ANALYSIS WORKSHOP – Room L280
Instructor: Jesse Greener
12:00 Lunch (provided) – Room L290
NEW DEVELOPMENTS AND APPLICATIONS IN OPTICAL AND ATOMIC MASS
SPECTROMETRY I – Room S260
Organizer: Diane Beauchemin
Chair: José Luis Todolí
09:00 (I07) TACKLING CHALLENGING SAMPLE MATRICES AND DEMYSTIFYING
INTERFERENCE REMOVAL DURING ICP-OES ANALYSIS. Christoph Wehe,
Matthew Cassap. Thermo Fisher Scientific, Hanna-Kunath-Straße 11, Bremen,
Germany 28199.
09:20 (I14) IMPLICATIONS OF PERFORMANCE METRICS ON THE QUALITY OF ICPMS ANALYSIS. Pamela Wee, Agilent Technologies Canada Inc.
10:00 Coffee break and exhibition– Room L290
10:40 (I11) ANALYSIS OF LITHIUM-ION BATTERY DEGRADATION PRODUCTS
USING IC-ICP-MS. Daniel Kutscher1, Antonella Guzzonato1, Paul Voelker2, Shona
McSheehy Ducos1. 1Thermo Fisher Scientific, Hanna-Kunath-Straße 11, Bremen,
Germany 28199. 2Thermo Fisher Scientific, 490 Lakeside Dr, Sunnyvale, CA 94085
11:00 (I30) DETERMINATION OF ARSENIC COMPOUNDS IN RICE: A STATUS
REPORT. Julian Tyson, Department of Chemistry, University of Massachusetts
Amherst, MA 01003 USA.
11:40 (I09) TRACE ELEMENT SPECIATION SOLUTIONS FOR FOOD SAFETY
APPLICATIONS. Kristan Bahten1, Shona McSheehy Ducos2. 2Thermo Fisher
Scientific, 490 Lakeside Dr, Sunnyvale, CA 94085. 2Thermo Fisher Scientific, HannaKunath-Straße 11, Bremen, Germany 28199.
12:00 Lunch (provided) – Room L290
THURSDAY, MAY 21, AFTERNOON
VENDORS SHOWCASE – Room S260
Organizer and Chair: Diane Beauchemin
13:10 (I18) THE DIRECT ANALYSIS OF MULTIPLE ELEMENTS IN 25% BRINES
USING AN AGILENT 7900 ICP-MS WITH AN ULTRA HIGH MATRIX
INTERFACE. Pamela Wee, Agilent Technologies Canada Inc.
13:30 (I46) RECENT INNOVATIONS IN LIQUID SAMPLE INTRODUCTION FOR
ICPMS AND ICPOES. Andrew Toms and Paul Field; Elemental Scientific Inc.,
Omaha NE
13:50 (I31) DUAL VIEW MINUS THE WAIT - INTRODUCING THE AGILENT 5100 ICPOES WITH SYNCHRONOUS DUAL VIEW TECHNOLOGY. Wayne Blonski;
Agilent Technologies.
14:10 (I33) NEW MULTIVIEW ARCOS 2 ICP-OES FROM SPECTRO. John Dykeman,
SCP SCIENCE, 21800 Clark-Graham, Baie D'Urfé, QC H9X 4B6
14:30 Conference event (see Social Event)
14:30 Tear down of exhibition
18:00 Banquet – Murphy’s on the Water
FRIDAY, MAY 22, MORNING
NEW DEVELOPMENTS AND APPLICATIONS IN OPTICAL AND ATOMIC MASS
SPECTROMETRY II – Room S260
Organizer and Chair: Diane Beauchemin
09:00 (I38) STRATEGIES FOR PLUTONIUM AND AMERICIUM MEASUREMENTS. R.
J. Cornett, Z.H. Kazi, X.L. Zhao, R.J. Charles, W.E. Kieser. Andre. E. Lalonde AMS
Laboratory, Departments of Earth Sciences and Physics, University of Ottawa, Ottawa,
ON.
09:20 (I58) INCREASING THE SAMPLE INTRODUCTION EFFICIENCY INTO
INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY
USING INFRARED HEATING OF SCOTT DOUBLE-PASS SPRAY CHAMBER.
Ahmed Al Hejami and Diane Beauchemin, Queen’s University, Department of
Chemistry, 90 Bader Lane, Kingston, ON K7L 3N6, Canada.
9:40
(I36) ENHANCEMENT OF ELECTROTHERMAL VAPORIZATION COUPLED TO
INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY
USING NEBULIZATION/PRE-EVAPORATION FOR THE DIRECT ANALYSIS OF
GLUTINOUS RICE FLOUR. Nausheen Sadiq, Farhad Kaveh, Lily Huang and Diane
Beauchemin, Queen’s University, Department of Chemstry, Kingston, ON K7L 3N6,
Canada
10:00 Refreshment break – Room Sobey foyer
10:40 (I41) FORENSIC ANALYSIS OF AUTOMOTIVE PAINT CHIPS BY SOLID
SAMPLING ETV-ICP-OES USING LDA AND PCA. L. Huang and D. Beauchemin.
Queen’s University, Department of Chemistry, 90 Bader Lane, Kingston, ON K7L 3N6,
Canada.
11:00 (I56) LASER ABLATION COUPLED TO ICP TECHNIQUES FOR THE ANALYSIS
OF CATALYSTS. José-Luis Todolí,1 Ángela Villaseñor,2 Caroline Greatti1,
1
Department of Analytical Chemistry, Nutrition and Food Science, University of
Alicante, 03080 Alicante, Spain, 2Total Research & Technology Gonfreville, Harfleur ,
76700, France.
11:20 End of the 60th ICASS
Résumés de Spectr’Atom
2015
(« A » indique une affiche)
S01
DÉTERMINATION DE LA COMPOSITION ISOTOPIQUE ET DE LA CONCENTRATION
DU ZIRCONIUM DANS DES ÉCHANTILLONS NUCLÉAIRES À L’AIDE D’UN
SPECTROMÈTRE DE MASSE À THERMO-IONISATION. Alexandre Quémet, Christophe
Maillard et Alexandre Ruas. CEA, Direction de l’Energie Nucléaire, Département de
RadioChimie et Procédés, F-30207 Bagnols sur Ceze, France. ([email protected])
Le Zr est un élément d’intérêt pour les applications nucléaires : il est utilisé comme matériau de
construction des réacteurs nucléaires et est un produit de fission. Chaque origine présentant une
abondance isotopique caractéristique, une analyse isotopique précise est nécessaire. De plus, la
détermination précise de la concentration est importante pour le recyclage. La spectrométrie de
masse à thermo-ionisation est une technique de référence pour déterminer l’abondance
isotopique et la concentration avec une grande justesse et précision. Les principales difficultés
de la mesure du Zr sont : sa faible efficacité d’ionisation dû à son haut potentiel d’ionisation
(6,84 Ev), les différents éléments présent dans la solution interférant son analyse (Mo, Y, Nb,
Ru) et la présence de traces de Mo dans le filament. De nombreuses études isotopiques du Zr
sont basées sur une correction mathématique des interférences. Néanmoins dans l’industrie
nucléaire, les abondances isotopiques sont généralement inconnues et varient d’un échantillon à
l’autre rendant l’équation de correction d’interférence inapplicable. Une méthode alternative a
donc été développée. La mise en oeuvre d’une séparation chimique par chromatographie
utilisant le support chargé UTEVA, l’optimisation du dégazage des filaments et l’amélioration
de la méthode d’analyse ont permis de diminuer au maximum les traces des éléments
interférents. Cette méthodologie a montré des résultats satisfaisant avec les valeurs de référence
pour des solutions simulées et a ensuite été appliquée à 3 échantillons nucléaires. Puis, la
calibration d’un traceur isotopique enrichi en isotope 91 a permis de déterminer la
concentration de Zr avec une incertitude finale inférieure à 1 % dans les 3 échantillons à l’aide
de la dilution isotopique.
S02
APPLICATIONS DE LA VAPORISATION ELECTROTHERMIQUE COUPLEE A LA
SPECTROMETRIE ICP-AES POUR LA DETERMINATION ELEMENTAIRE DANS LES
VEGETAUX DIRECTEMENT A L’ETAT SOLIDE. Pierre Masson. INRA-USRAVE, Centre
de Recherches de Bordeaux, CS20032, 33882 Villenave d’Ornon Cedex, France.
([email protected])
Le développement des systèmes d’introduction d’échantillons a été l’un des thèmes les plus
abordés de la spectrométrie atomique. Parmi ceux-ci, la vaporisation électrothermique (ETV)
permet l’analyse directe des solides quand elle couplée à un spectromètre ICP-AES ou ICP-MS.
Son principe de fonctionnement est simple. Il consiste à transformer, par chauffage, quelques
milligrammes d’échantillon en un aérosol, qui est ensuite transporté dans le spectromètre où la
composition élémentaire est mesurée. La faible quantité de solide nécessaire et la possibilité
d’analyser une vaste gamme de matrice de nature différente à séduit de nombreux analystes. Ici,
l’utilisation spécifique de cette technique pour la détermination élémentaire dans les végétaux
est présentée. Les principales difficultés rencontrées pendant l’analyse (étalonnage, effets de
matrice, variabilités sur les concentrations mesurées) sont abordées ainsi que les solutions pour
les réduire. Les résultats obtenus initialement sur des poudres permettent d’autres applications
comme l’analyse d’échantillons entiers, la détermination d’éléments particuliers ou la
cartographie de la composition chimique d’organes végétaux.
S03
ANALYSE DE SOLUTIONS ORGANIQUES POUR LA CARACTERISATION DES DECHETS
RADIOACTIFS. A. Masset, P. Fichet, C. Colin, C. Cruchet, M. Coppo. ([email protected])
CEA/DEN/DANS/DPC/SEARS/LASE, CEA Saclay, Bât 459, PC 171, 91191 Gif sur Yvette CEDEX
Le laboratoire d’analyse en soutien aux exploitants (LASE) est chargé de caractériser des effluents et
déchets radioactifs pour les besoins propres du CEA (Commissariat à l’Energie Atomique, France) mais
également pour différents partenaires extérieurs (ANDRA, EDF, AREVA). Il est aussi amené dans le
cadre de son expertise à soutenir les programmes de recherche de la direction de l’energie nucléaire du
CEA en assurant la caractérisation des produits issus d’expérimentations en laboratoire. Dans ce cadre,
le lase doit prendre en charge un flux croissant de nouvelles demandes d’analyses de déchets
organiques. Pour traiter ce type d’échantillon le laboratoire s’est équipé d’un nouvel ICP-AES. Cet
appareil a été sélectionné sur des critères d’exactitude par rapport à une solution multi élémentaire. Des
expérimentations de validation se sont focalisées sur différentes huiles certifiées en suivant deux voies
expérimentales. La première voie, commence par une minéralisation classique mise en œuvre avec deux
types de micro-ondes (fermés et semi-ouverts). Cette minéralisation transforme la matrice organique en
matrice aqueuse. Selon les éléments recherchés et les limites de détection à atteindre (imposés par
l’ANDRA gestionnaire de déchets nucléaires en France), la mesure peut ensuite être réalisée par
diverses techniques ICP-AES ou ICP-MS (appareils utilisés pour le dosage de ces éléments en aqueux).
La seconde voie consiste à effectuer l’analyse directement sur la phase organique, en limitant ainsi la
phase de minéralisation de l’échantillon. La mesure une fois validée sera réalisée avec le nouvel ICPAES dédié aux organiques. Selon la voie utilisée, l’étalonnage et les standards sont différents. Les
différents modes opératoires appliqués et les performances respectives de chaque méthode seront
discutés. Au terme de ces mises au point, le gain attendu au niveau des limites de détection sera évalué.
Tous les points de la validation de méthode seront abordés : fidélité intermédiaire, exactitude,
incertitude.
S04 A
DETERMINATION ELEMENTAIRE DANS LES VEGETAUX PAR SPECTROMETRIE DE
FLUORESCENCE X A DISPERSION DE LONGUEUR D’ONDE : PREMIERS
RESULTATS. Pierre MASSON. INRA-USRAVE, Centre de Recherches de Bordeaux, CS
20032, 33882 Villenave d’Ornon Cedex, France ([email protected])
Parmi les systèmes dédiés à l’analyse directe des solides, la spectrométrie de fluorescence X
(XRF)est couramment utilisée dans l’industrie des matériaux (verres, ciments, métaux...), celle
du pétrole ou encore en géologie. Cette technique offre, en effet, rapidité, simplicité et un temps
de préparation des échantillons réduit. Malgré sa facilité d’utilisation, elle reste cependant peu
employée dans le domaine de l’agronomie en générale et pour l’analyse élémentaire des
végétaux en particulier. Nous avons testé cette technique pour cette dernière application. Dans
ce cadre, les concentrations de deux échantillons (maïs et feuilles de chênes), pressés sous
formes de pastilles, ont été mesurées quantitativement. L’étalonnage était constitué de pastilles
de cellulose dopée par des solutions élémentaires de concentrations connues ainsi que par des
matériaux de référence certifiés du NIST. Pour les éléments majeurs (Ca, K, Mg et P), comme
pour les éléments mineurs (Al, Fe, Mn, Na et Zn), l’erreur de mesure par rapport à la valeur
cible est restée généralement inférieure à 10%. Le spectromètre XRF utilisé permettait aussi la
possibilité d’une quantification sans étalons. Les échantillons ont donc été mesurés sous forme
de pastilles, mais aussi sous forme de poudres en vrac avec cette méthode. Les résultats restent
acceptables vis-à-vis des valeurs recherchées avec une erreur généralement inférieure à 20%.
La spectrométrie XRF apparaît donc prometteuse pour la détermination élémentaire dans les
végétaux mais l’étalonnage doit être particulièrement soigné afin d’obtenir les résultats les plus
justes possible.
S05 A
COMMENT EVALUER LES INCERTITUDES EN ICP? A. Masset, P. Fichet, M. Coppo, C.
Colin, C. Cruchet, CEA/DEN/DANS/DPC/SEARS/LASE, Cea Saclay, Bât 459 PC171, 91191
Gif sur Yvette, France ([email protected])
Le Laboratoire d’Analyse en Soutien aux Exploitants (LASE) est chargé de caractériser des effluents et
déchets radioactifs pour les besoins propres du CEA (Commissariat à l’Energie Atomique, France) mais
également pour différents partenaires extérieurs (ANDRA, EDF, AREVA…). Pour les analyses des
déchets nucléaires et pour les exigences de sûreté, il est exigé des mesures nucléaires (alpha, béta,
gamma) mais aussi des mesures d’éléments stables. Etant donnés les seuils demandés, les techniques
utilisées sont l’ICP-AES et l’ICP-MS. Les déchets à analyser au laboratoire arrivent quasiment
systématiquement à l’état solide ou sous forme de boue. A ce stade une étape de minéralisation microonde est obligatoire avant analyse. Différents acides sont utilisés en fonction des nombreuses matrices
analysées. L’analyse des déchets nucléaires demande une parfaite maîtrise des techniques mais aussi les
évaluations des limites de quantification d’une part et les évaluations des incertitudes d’autre part,
critères compliqués à investiguer. Une première étude a porté sur les très nombreuses techniques
d’investigations des limites de quantification. Différentes méthodes ont été ensuite considérées pour les
évaluations des incertitudes et seront présentées dans cette communication. Une première technique
pour évaluer les incertitudes est d’utiliser les intervalles de confiances issus des calculs des moindres
carrés. Cette approche ne tient compte que de la mesure des ICP sans les préparations. La méthode issue
de la norme française, mettant en œuvre les profils d’exactitude, considère également la méthode de
mesure mais en prenant compte la fidélité intermédiaire. L’ultime méthode préconisée dans la norme
permet de manière beaucoup plus appropriée de tenir compte de la mise en solution. Suite à des
participations à des circuits d’intercomparaison sur des boues et des aciers, on a pu mettre en évidence
des ordres de grandeurs d’incertitudes cohérentes avec la mesure ICP et la mise en solution.
S06 A
PRODUCTION D’UN MATERIAU DE REFERENCE CERTIFIE : ÉTAPES DE
PREPARATION ET TEST D’HOMOGENEITE. Patrice Soulé1, Mireille Barbaste1, Karine
Hakim1, Guillaume Daugey1, Alison Hewitt1, Thierry Prunet1, Manuel Nicolas2. 1 : USRAVE,
Centre de Recherches INRA de Bordeaux, CS20032, 33882 Villenave d’Ornon cedex, France;
2 : Office National des Forêts, Département Recherche Développement Innovation, Bd de
Constance, 77300 Fontainebleau, France ([email protected]; correspondance à :
[email protected])
Les matériaux de référence, certifiés ou non, sont indispensables pour développer une nouvelle
méthode d’analyse, la valider et vérifier la justesse d’une méthode en production. Les matériaux de
référence certifiés existants sur le marché pour l’analyse des éléments minéraux dans les végétaux
sont rarement totalement adaptés à une problématique : ils peuvent avoir une matrice éloignée de la
matrice des échantillons à analyser ; souvent, seulement quelques-uns des éléments cibles ont des
valeurs certifiées, ils sont disponibles en petites quantités (de 15 g à 60 g) pour des tarifs élevés et il
y a un risque fort de ne plus pouvoir s’approvisionner lorsque le producteur de l’échantillon a
totalement écoulé son stock. Dans le cadre de son implication dans des projets de suivi à long terme
de placettes forestières, l’Unité de Service et de Recherche en Analyses Végétales et
Environnementales de l’INRA (USRAVE) a décidé d’élaborer un échantillon de référence certifié
d’aiguilles d’épicéa pour l’analyse des éléments majeurs et en traces. Le BCR101 (Spruce needle)
était utilisé jusqu’à présent mais il est en rupture de stock. Nous présentons ici la création et la
production d’un matériau de référence certifié d’aiguilles d’épicéas (prélèvement en partenariat
avec l’ONF, séchage, broyage, homogénéisation et mise en pots sous-traité au BIPEA, inertage
thermique, test d’homogénéité et conception des plans d’expériences de caractérisation).
S07
ÉTUDES COMPARATIVE DES MÉTHODES DE DIGESTION D’ÉCHANTILLONS ET
D’ANALYSE DES ÉLÉMENTS DE TERRES RARES DANS DIFFÉRENTES MATRICES
ENVIRONNEMENTALES ET MINÉRALES. Laurence Whitty-Léveillé1,2, Keven
Turgeon1,2, Claude Bazin1, Dominic Larivière2, 1Département de génie des mines, de la
métallurgie et des matériaux; 2Département de chimie; Université Laval, Québec,
([email protected])
La hausse des prix des éléments de terres rares (ETR) a entraîné un avènement sur le marché
prospectif dans le monde entier, avec plus de 30 pays ayant des gisements de terres rares, y
compris les gisements marginaux dont le succès économique repose sur ces prix élevés. Ceci
entrainera certainement une pression accrue sur les laboratoires analytiques traitant ces dépôts,
exigeant à la fois de la sensibilité et de la précision pour déterminer les teneurs en ETR. Digérer
les minerais de terres rares afin d’appliquer les techniques de spectrométrie et spectroscopie
atomique habituelles est laborieux puisque les oxydes de lanthanides sont connus pour leurs
caractères réfractaires, ce qui suggère que la dissolution de l’échantillon doit être effectuée dans
de rudes conditions de digestion. Cette présentation met donc l’accent sur la comparaison de
trois différentes techniques de digestion (fusion boratée, digestion par micro-onde et digestion
acide) ainsi que quatre méthodes analytiques différentes (ICP-OES, ICP-MS, MP-AES et
NAA). La fusion boratée s’est avérée être la technique la plus efficace pour digérer les quatre
matrices minérales de terres rares testées. Bien que l’ICP-OES, le MP-AES et l’ICP-MS ont
donné des résultats similaires, cette dernière technique a montré les limites de détection les plus
basses et une meilleure reproductibilité pour tous les éléments analysés, un aspect essentiel
dans la détection des éléments de terres rares.
S08
LE DOSAGE DE METAUX DANS LES BIO ETHANOLS PAR LES TECHNIQUES A
PLASMA PAR COUPLAGE INDUCTIF. José-Luis Todolí,1 Carlos Sánchez,1 CharlesPhilippe Lienemann2. 1 Département de Chimie Analytique, Nutrition et Bromatologie,
Université d’Alicante, E-03080, Alicante, Espagne ; 2 IFP Energies Nouvelles, Rond-point de
l’échangeur de Solaize, BP 3, F-69360 Solaize –France, Rond-point de l’échangeur de Solaize,
Lyon, 69360, France ([email protected])
Actuellement, l’intérêt pour le développement de sources d’énergie alternatives aux
combustibles fossiles a augmenté significativement. Un point important dans ce domaine est le
dosage des métaux dans ce type d’échantillons. Néanmoins, la quantification de ces espèces
dans les biocarburants montre quelques difficultés : (i) les analytes sont présents à très faibles
concentrations ; (ii) il y a une manque importante d’échantillons de référence ; (iii) le
bioéthanol commercialement disponible a des proportions variables en eau ; (iv) les matières
premières utilisés sont très hétérogènes et ses caractéristiques modifient les propriétés du
produit final. Jusqu’au présent il y a très peu d’essais liés à la détermination de métaux dans les
bioéthanols. Pour la plus part des cas, les études sont liés à l’analyse de ce que l’on appelle
superéthanol (une mélange d’éthanol et essence).
Cet exposé montre des résultats obtenus avec un système à consommation total d’échantillon
adapté à un spectromètre ICP optique (ICP-OES) ainsi qu’à un appareil ICP-MS. Les
concentrations obtenues seront validées parmi la comparaison avec les données obtenues
suivant une méthode de pre-concentration de l’échantillon. Des résultats concernant l’analyse
de différents échantillons réels seront aussi montrés.
S09
SPECTROSCOPIE ATOMIQUE A PLASMA PAR COUPLAGE INDUCTIF ET
L’EVOLUTION DU SYSTEME D’INTRODUCTION D’ECHANTILLONS LIQUIDES.
José-Luis Todolí Departement de Chimie Analytique, Nutrition et Bromatologie, Université
d’Alicante, E-03080. Alicante, Espagne ([email protected])
Les résultats obtenus par les techniques à plasma par couplage inductif (ICP) en termes de
sensibilité, limites de détection et effets de matrice dépendent de la qualité du système
d’introduction d’échantillon. Pour cette raison, il y a eu un grand intérêt par le développement
de nouvelles stratégies d’introduction de solutions. Des travaux sont consacrés à l’application
de nouveaux principes de génération d’aérosols. Par exemple, on trouve des nébuliseurs
pneumatiques exploitant le phénomène du pre-laminé de la solution. Dans ce cas, le but est
d’augmenter le pouvoir de détection et minimiser le risque de bouchage lors qu’on introduit des
échantillons chargées en sels. Un autre exemple est composé par des nébuliseurs permettant
l’application d’une méthode d’ajouts dossés car ils ont deux ou plus sorties indépendantes.
De l’autre côté, il y a des nouveaux moyens de transport d’aérosol vers le plasma. Dans ce cas
la chambre de nébulisation évolue vers un composant neutre au niveau des effets de matrice
conduisant à une augmentation de la sensibilité et diminution des limites de détection. Les
avantages d’augmenter la température de l’aérosol seront aussi discutés dans le cadre de cette
présentation. Des chambres « multifonction » permettent l’introduction d’aérosol et la
génération simultanée d’hydrures. Toutes ces études nous amènent à conclure que la situation
au niveau introduction d’échantillon en ICP, bien que n’est pas complètement optimisée, est
bien améliorée par rapport à celle précédente. Il est certain que pour certains cas, on est proche
de résoudre des problèmes tels que les effets de matrice ou la manque de sensibilité. Cependant,
il faut encore plus d’efforts dédiés à la prospection de nouvelles solutions dans le domaine des
systèmes de génération et transport d’aérosols pour les techniques à ICP.
S10
ANALYSE DE L’ARSENIC INORGANIC TOTAL DANS LES DROGUES
PHARCEUTIQUES ET LES PRODUITS DE SANTE NATUREL PAR HPLC
ICPMSMS. S.Bélisle2, L.Dextraze1, H.Gagnon1, J-F Paradis2, 1Laboratoire de l’Inspectorat de
Longueuil, RPB Québec, Santé Canada, Longueuil, QC ; 2Laboratoire des Aliments de
Longueuil, RPB Québec, Santé Canada, Longueuil, QC ([email protected])
La présentation couvrira les sujets tels que la recherche, les problématiques rencontrées,
l’adaptation et la validation d’une méthode pour l’analyse de l’arsenic inorganic total dans les
drogues pharmaceutiques et les Produits de Santé Naturel par HPLC ICP MSMS.
L’exercise de validation montre des résultats de recouvrements situés entre 90-110% et une
déviation standard (%RSD) inférieure à 5 % pour les échantillons à base d’algue et à base
d’herbe et pour les drogues pharmaceutiques enrichis au niveau règlementaire (0.03 ug/kg by
weight/day).
La limite de quantification instrumentale a été estimée à 24 et à 63 pg/ml en solution pour
l’As+3 et l’As+5 respectivement.
S11
LA MESURE PB-210 DANS L’ENVIRONNEMENT. R. Jack Cornett, A. Sookdeo, X.L.
Zhao, C.J. Charles and W.E. Kieser. Laboratoie SMA Andre E. Lalonde, Départements de
Sciences de la Terre et Physique, Université d’Ottawa, Ottawa CA ([email protected])
Pb-210 est un radionucléide utile dans de nombreuses études. Ce est un membre de la série U238 décroissance qui est largement répandu dans la nature parce que ce est un produit radioactif
plus vécu de Rn-222 décroissance et le radon est un gaz noble volatile. Pb-210 est un outil
important dans des sciences de la Terre pour datant sédiments, le sol et l’accumulation de la
tourbe, le calcul de transport de métal à travers les bassins versants, la détermination des taux
d’érosion, mesure de l’exposition aux descendants du radon et de comprendre le transport
atmosphérique et le dépôt d’oligo-éléments
A ce jour, les deux méthodes d’analyse primaires pour Pb-210 mesure sont (1) la spectrométrie
gamma et (2) la mesure du Po-210 par spectrométrie alpha. Po-210 est très utile mais il est
important de s’assurer que les deux isotopes sont en équilibre séculaire. Cependant, une
nouvelle génération de spectrométrie de masse de fournir des approches alternatives. Pb-210
peut être mesurée par compter le nombre d’atomes à l’aide de plasma à couplage inductif
spectrométrie de masse ou Accelerator Mass Spectrométrie. Ce rapport compare les approches
alternatives pour mesurer Pb-210 sur des échantillons de différentes tailles, et des
concentrations différentes. Spectrométrie de masse, Accelerator Mass Spectrométrie et une
nouvelle génération de spectromètre gamma équipé avec une meilleure résolution de l’énergie
sont maintenant utile pour certains types de mesures.
S12
L’EXPLOITATION DES SABLES BITUMINEUX AN ALBERTA REPRÉSENTE-T-ELLE
UNE NOUVELLE SOURCE DE CONTAMINATION EN MÉTAUX LOURDS POUR LA
RIVIÈRE ATHABASCA ? Olivier Clarisse, Université de Moncton, Département de Chimie
et Biochimie Moncton, Nouveau-Brunswick, Canada E1A 3E9 ([email protected])
Les gisements des sables bitumineux de l’Alberta sont situés au cœur de la forêt boréale, une
région essentielle pour le stockage du carbone et la régulation du climat. Leur exploitation qui
s’est largement intensifiée ces dernières années pose de nombreux défis pour l’environnement :
en effet, les gisements albertains contiennent également des polluants métalliques comme le
mercure et l’eau douce utilisée en grande quantité pour extraire le pétrole est susceptible de
s’enrichir de ces contaminants. Le rejet subséquent de ces eaux dans les écosystèmes
aquatiques naturels avoisinants soulève des inquiétudes vis-à-vis de leur impact potentiel sur la
qualité de ces derniers. C’est dans ce contexte que nous nous sommes intéressés à la
concentration, à la répartition et à la spéciation des éléments métalliques dans la rivière
Athabasca et de ses principaux affluents de la région de Fort McMurray.
Lors de cette présentation, nous nous attarderons plus spécifiquement sur la problématique du
mercure et de sa principale forme organique, le méthylmercure, au fort potentiel de
bioaccumulation. En combinant des approches classiques de terrain aux échantillonneurs
passifs, les DGT, il a été possible de mettre en avant l’influence des sites d’exploitation sur les
niveaux de concentration et la spéciation de ce polluant dans la phase dissoute des rivières
avoisinantes.
S13
EXERCICE D’INTERCOMPARAISON POUR LE SUIVI D’ENVIRONNEMENTS
AQUATIQUES D’EUROPE DU SUD (PROJET ORQUE SUDOE). F. Séby1, F. Pannier2, M.
Monperrus2, Z. Pedrero2, C. Bonnemason-Carrère2 et O.F.X. Donard2. 1Ultra-Traces Analyses
Aquitaine (UT2A), Pau (France), 2IPREM (LCABIE), UMR CNRS/UPPA 5254, Pau (France).
([email protected])
Un des objectifs du projet européen ORQUE SUDOE est d’obtenir des outils permettant
d’assurer un suivi approprié de la qualité de l’environnement et de le réaliser sur le long terme,
ce qui nécessite de bien définir la base de ce suivi. Le choix d’échantillons représentatifs, la
sélection de protocoles de prélèvement/conditionnement/méthodes d’analyses adaptés ainsi que
le mode de traitement des données analytiques produites sont des étapes essentielles pour
permettre d’assurer une bonne comparabilité des données aussi bien entre laboratoires que d’un
point de vue temporel. Dans cet objectif, un exercice d’intercomparaison a été organisé en 2013
impliquant un consortium de neuf laboratoires partenaires du projet. Cette étude porte sur
différents analytes organiques et inorganiques comme les métaux, les composés
organométalliques, les hydrocarbures aromatiques polycycliques (HAPs) et les composés
polychlorobiphényles (PCBs). La préparation et la distribution de huit matériaux (tissus
d’huîtres et de moules) représentatifs de différents milieu aquatiques du sud de l’Europe ont été
réalisées en incluant des milieux côtiers (La Rochelle (France), Bilbao (Espagne)), estuariens
(Urdabai (Espagne), Sado, (Portugal)) et des lagunes côtières (Arcachon (France), Aveiro
(Portugal)). Les méthodes analytiques utilisées par chaque laboratoire ont tout d’abord été
évaluées par l’analyse de matériaux de référence certifiés. Des calculs statistiques basés sur la
norme ISO 13528 ont ensuite été réalisés pour évaluer les performances des laboratoires dans le
but d’assigner une valeur de concentration associée à une incertitude permettant d’accéder à
une comparabilité des données pour 41 paramètres (9 métaux, 3 composés organométalliques,
16 HAPs et 12 PCBs). Des résultats supplémentaires ont aussi été obtenus dans le cadre de ce
projet pour des contaminants émergents comme les alkylphénols, les composés perfluorés, les
musk ainsi que des mesures d’isotopie pour Cu, Pb, Hg et Cd. La bonne comparabilité des
données obtenue dans cet exercice a permis aux laboratoires participants d’évaluer la qualité de
leurs résultats et la compilation des valeurs a fourni une première évaluation de la
contamination des milieux aquatiques sélectionnés situés dans le sud de l’Europe. De tels
échantillons sont donc appropriés pour être utilisés dans les programmes de suivi temporel et
pourront également être proposés sous forme de matériaux de référence.
S14
FRONTIERES DE l’ICP/MS (Q, HR, ET MC) POUR LA DYNAMIQUE DES METAUX
DANS L’ENVIRONNEMENT : DE LA SPECIATION A L’IMAGERIE. O.F.X. Donard1, D.
Amouroux1, Z. Pedrero1, S. Berail1, E. Tessier1, C. Pecheyran1, A. Donard1 J. Barre1, M.
Monperrus1, J. Cavalheiro1, J. Malherbes1, D. Schaumlöffel1, 1Laboratoire de Chimie
Analytique Bioinorganique et Environnement, Institut des Sciences Analytiques et de
Physicochimie pour l’Environnement et les Matériaux, UMR CNRS 5254 IPREM, Université
de Pau et des Pays de l’Adour, Hélioparc, Pau (France) ([email protected])
La nature du mode d’introduction de l’échantillon dans les systèmes à ionisation par plasma
permet l’introduction continue de l’échantillon. L’ICP/MS a donc vu se développer le couplage
de techniques de toutes natures chromatographique mais aussi avec ablation laser. Cette
potentialité de gérer les signaux transitoires a permis de développer la spéciation des éléments
et leurs formes chimiques dans tous les domaines de l’environnement, sciences de la vie et de
l’industrie. L’une des frontières à faire évoluer est de renforcer et diffuser de façon robuste, le
potentiel de l’ICP/MS comme détecteur de spéciation fiable et simple d’opération pour des
applications dans tous les domaines. Les préparations de l’échantillon pour la spéciation ont
aussi bien évoluées et l’analyse de spéciation en routine en y intégrant une robustesse et grande
fiabilité opérationnelle, en introduisant l’apport de la dilution isotopique, est un challenge
actuel. L’ICP/MS permet maintenant d’avoir la possibilité de suivre les formes chimiques des
métaux sur différents canaux isotopiques en simultané. Cela a permis de considérablement faire
évoluer la connaissance tant au niveau de la chaine analytique que dans la compréhension des
mécanismes au niveau environnemental. Ainsi, les artéfacts de formation de méthyl mercure
ont pu être mis en évidence dans certaines conditions de préparation de l’échantillon. De même,
l’utilisation de dopage de micro- ou de méso-cosmes par des isotopes spécifiques du Hg et/ou
leur utilisation pour le marquage des formes chimiques du Hg, a permis de décrire les
transformations et compétitions des formes chimiques, à des très faibles niveaux proches des
conditions environnementales. Cela permet ainsi d’avoir une meilleure connaissance des
cinétiques de réactions et leurs inter-conversions (méthylation-dé méthylation) en compétition
dans le milieu.
Ces évolutions de l’ICP/MS quadripolaires peuvent être directement translatées avec des
aménagements à l’ICP/MS haute résolution ou Multicollecteur. En ce qui concerne l’ICP/MS
MC, cela permet d’amener l’information de la signature isotopique sur les différentes formes
chimiques d’un élément au sein du même échantillon. Cela amène de nouvelles questions et
challenges pour la connaissance des cycles des métaux.
Finalement, le couplage des ICP/MS quadripolaires ou haute résolution avec des lasers nanoou femto secondes ouvrent aussi de nouveaux horizons. Ainsi, le couplage d’un laser femtoseconde avec un ICP/MS Haute Résolution permet maintenant de détecter quelques attogrames
d’analytes directement dans les solides. C’est sensibilité remarquable ouvre aussi de nouveau
types d’horizons pour l’imagerie par ablation laser couplée, stratégie analytique développée
depuis quelques années déjà mais qui prends un envol considérable dans les sciences de la vie
par l’imagerie. Le marquage de cycle par une formulation chimique avec des isotopes stables
permet aussi d’avoir une imagerie des mécanismes et des localisations des processus dans le
vivant par exemple. Il faut toutefois remarquer la complémentarité des techniques et les
couplages ablation laser ICP/MS sont très complémentaires des systèmes à sources d’ionisation
direct comme les NanoSIMS qui, s’ils n’obtiennent pas une sensibilité très élevée en
comparaison des systèmes ablation laser/ICP/MS, ils permettent néanmoins d’avoir une
excellente résolution spatiale (de l’ordre de quelque nanomètres de résolution spatiale comparé
à quelques µm pour les systèmes AL/ICP/MS) avec des évolutions innovantes qui font qu’à
terme les techniques seront proches et complémentaires.
Nous présenterons les innovations et avancées dans ces différents domaines avec une vision
critique de l’avancée de ces techniques. Ceci va amener un renouveau de l’analyse inorganique
et de son potentiel dans les secteurs de l’environnement, du vivant et du monde industriel.
S15
LE MINIWAVE : UN SYSTÈME ABORDABLE DE DIGESTION PAR MICROONDES
John Dykeman, SCP SCIENCE, 21800 Clark-Graham, Baie D’Urfé, QC H9X 4B6
([email protected])
Présentation d’un système abordable de digestion par microondes. SCP SCIENCE, un
manufacturier Canadien renommé pour la fabrication d’étalons chimiques certifiés et le
distributeur des spectromètres Spectro au Canada, annonce l’introduction du produit
MiniWAVE pour les laboratoires académiques. Le système peut accommoder jusqu’a 6
vaisseaux à la fois, soit en quartz ou Téflon. Le MiniWAVE est un système modulaire car un
contrôleur peut contrôler jusqu’à 4 modules de digestion.
S16 A
LE PROJET MARSS (CENTER OF MASS SPECTROMETRY FOR REACTIVITY AND
SPECIATION SCIENCES). Olivier F.X. Donard, Emmanuel Tessier, Joanna Szpunar,
Kashia Bierla, Dirk Schaumlöffel, Julien Malherbe, Hervé Martinez, Cécile Courrèges, Laure
Tastet. Center of Mass Spectrometry for Reactivity and Speciation Sciences, Université de pau
et des Pays de l’Adour, Hélioparc, 2 Avenue P. Angot, 64000 Pau ([email protected])
Métaux et métalloïdes jouent un rôle clé dans de nombreux domaines de nos sociétés
modernes. On les retrouve par exemple dans les procédés industriels en tant que matière de
base telle que l’acier. Ils sont aussi présents à l’état de trace dans l’environnement et dans les
organismes vivants. La recherche au cours des 25 dernières années a montré que des
informations simples sur les métaux, par exemple leurs concentrations totales dans un
échantillon et les connaissances sur les structures chimiques des métaux et métalloïdes sont des
données importantes afin d’évaluer leur réactivité dans les procédés industriels, leur transport
dans l’environnement ou leur rôle et leur toxicité dans les organismes vivants. L’objectif du
projet MARSS est d’installer un centre de spectrométrie de masse pour les recherches sur la
spéciation et la réactivité. Cette plateforme instrumentale est composée de quatre spectromètres
de masse uniques et complémentaires pour mener des recherches sur la spéciation et la
réactivité chimiques. L’originalité de cette plateforme unique est d’intégrer les concepts de
spéciation du niveau isotopique jusqu’à l’imagerie 3D dans l’environnement, le vivant, les
applications industrielles et les matériaux. L’objectif scientifique qui est recherché est de faire
progresser l’analyse de la spéciation : - la compréhension du rôle des métaux et des métalloïdes,
liée à leur identité chimique ou à leur signature isotopique, - la compréhension de leur réactivité
primaire associée à la cinétique de la transformation, - l’identification des espèces chimiques
d’intérêt dans leurs matrices environnantes, sur des surfaces ou des interfaces et leurs
localisations par imagerie et cartographie en 2D et 3D. MARSS renforcera la position
d’excellence en France sur la spectrométrie de masse et les techniques d’analyse de surface et
permettra le renforcement d’un réseau national en sciences analytiques. Ce centre d’excellence
s’inscrit dans le Forum européen de la stratégie sur l’effort d’infrastructures de recherche
européen (ESFRI).
S17
DÉVELOPPEMENT D’UNE MÉTHODE D’ANALYSE DES ÉLÉMENTS DE TERRES
RARES PAR SPECTROMÉTRIE À ÉMISSION ATOMIQUE AU PLASMA MICRO-ONDE
Keven Turgeon1-2, Laurence Whitty-Léveillé1-2, Claude Bazin1, Dominic Larivière2,
1
Département de génie des mines, de la métallurgie et des matériaux, 2Département de chimie
Université Laval, Québec, QC ([email protected])
L’analyse par spectrométrie à émission atomique au plasma micro-onde (MP-AES) est une
technique relativement récente et l’analyse des éléments de terres rares (ETR) par cet appareil
est peu documentée. Le MP-AES utilise l’émission atomique pour générer un signal tout
comme l’ICP-OES. Cependant, l’utilisation d’azote pour entretenir le plasma distingue le MPAES de l’ICP-OES. Avec un générateur d’azote optionnel, le MP-AES ne dépend pas d’un
approvisionnement en bonbonnes de gaz. De ce fait, l’instrument est intéressant pour les
endroits où l’approvisionnement en gaz comprimé peut-être problématique comme le secteur
minier. L’industrie minière s’intéresse de plus en plus à la production des éléments de terres
rares. Il est donc important de développer une méthode d’analyse juste, précise et rapide de ces
éléments. Présentation de l’appareil, de ses avantages et de ses limitations. La principale limite
de l’appareil est la sensibilité réduite induite par le plasma à l’azote comparativement à un
plasma à l’argon traditionnel. Exposer de la méthode utilisée pour l’analyse de solutions
aqueuses d’ETR concentrées. Bien que les limites de détection soient plus élevées que pour un
ICP-OES, elles sont suffisamment basses pour permettre la quantification de la majorité des
ETR. Discussion des interférences et des différentes méthodes de correction utilisées. Dans
l’ensemble, le MP-AES s’avère une technique prometteuse dans le dosage de la majorité des
ETR. Cependant, quelques ETR peu intenses en émission atomique sont difficilement dosables
par cette méthode.
S18
LA SPÉCIATION EN TOXICOLOGIE CLINIQUE. Patrick Bélanger, Institut National de
Santé Publique du Québec (INSPQ) Qc, Canada
La spéciation élémentaire devient de plus en plus un incontournable en toxicologie clinique.
L’utilité d’avoir plus d’un système d’introduction (UPLC, GC, HDC, FFF, etc) couplé au ICPMS permet l’analyse de nombreuses espèces élémentaires (Arsenic, Mercure, Étain, Chrome,
Sélénium, etc.) ou nanoparticulaires (TiO2, AgO, Au, etc.). L’INSPQ met à profit son parc
instrumental diversifié pour établir différentes stratégies de spéciation en fonction des
exigences analytiques de laboratoire de routine moderne.
Entre autres exemples, le laboratoire offre la spéciation d’arsenic dans l’urine et autres matrices
biologiques ou non biologiques afin d’évaluer le niveau d’exposition réel ainsi que la source
d’exposition, depuis plus de 5 ans à raison de plus de 2000 dosages par années. Les conditions
analytiques et de traitements des données ont été optimisées afin de soutenir une production
routinière accélérée.
Cette approche est le fruit de l’investigation approfondi, des différents systèmes (MS vs
MS/MS, HPLC vs UPLC, diversité des modes correctifs, sensibilité) aujourd’hui disponibles
pour faire face aux défis futurs de la spéciation des métaux en toxicologie humaine.
S19
SPÉCIATION DU SÉLÉNIUM SANGUIN PAR CI-DI-ICP-MS/MS (CHROMATOGRAPHIE
IONIQUE –DILUTION ISOTOPIQUE EN LIGNE- SPECTROMÉTRIE DE MASSE EN
TANDEM PAR PLASMA D’ARGON INDUCTIF) SUR LES TRACES DE LA
SÉLÉNONÉINE. Pierre Dumas1, Adel Achouba2, Pierre Ayotte1,2, Mathieu Martinez3, Lisa
Gautrin3, 1Institut national de santé publique du Québec (INSPQ) QC, Canada; 2Département
de médecine préventive et sociale, Université Laval , Centre de recherche du CHU, QC
Canada, 3Université de Pau
et des Pays de l’Adour (UPPA) Pau France
([email protected])
La compréhension du rôle que jouent les différentes espèces de sélénium présentes en biochimie
reste incomplète. En ce qui concerne les populations qui se nourrissent de poissons et de
mammifères marins, une quantité croissante de données probantes donnent à penser qu’un apport
élevé en sélénium pourrait jouer un rôle dans l’atténuation de certains des effets négatifs de
l’exposition au méthylmercure (MeHg). Outre les concentrations totales sanguine et plasmatique
en sélénium, qui constitue les biomarqueurs les plus usuels, la spéciation des espèces de sélénium
reste essentielle pour l’identification et la quantification d’autres biomarqueurs qui pourraient
aider à mieux caractériser les effets bénéfiques du sélénium. Depuis sa découverte en 2010
(Yamashita) dans la chaire et le sang de poissons, la sélénonéine, l’analogue sélénié de
l’ergothionine, suscite un intérêt accru pour l’établissement plus précis du cycle biochimique du
sélénium. L’équipe de recherche du l’Université Laval , en collaboration avec le laboratoire de
l’INSPQ et de l’Université de Pau des Pays de l’Adour, a élaboré une stratégie de dosage de la
sélénonéine et de son métabolite méthylé dans le sang par couplage chromatographique à la
spectrométrie de masse en tandem à plasma d’argon inductif. L’équipe a d’abord travaillé à la
biosynthèse et l’isolation de la sélénonéine et de sa forme méthylée afin de supporter la mise au
point et la validation du protocole analytique subséquent. Deux modes correctifs par MS/MS ont
été investigués pour la résolution des interférences soit l’hydrogène qui procure la meilleure
sensibilité pour les 5 isotopes principaux du sélénium (76,77,78,80,82) ou l’oxygène permet la
spéciation du soufre simultanément. Différentes approches d’étalonnage, externe et par dilution
isotopique, ont, de plus, été évaluées. Ces travaux ont permis de confirmer la présence de
sélénonéine dans le sang humain chez les populations nordiques canadiennes hautement exposées à
la fois au sélénium et au mercure.
S20
ANALYSE SIMULTANÉE DE SPÉCIATION DU SE, CR ET AS DANS LES LIXIVIATS
DE CÉRÉALES POUR BÉBÉS POUR UNE ÉVALUATION DU RISQUE PLUS RÉALISTE.
Nausheen Sadiq et Diane Beauchemin, Queen’s University, Department of Chemistry,
Kingston, ON K7L 3N6, Canada. ([email protected])
La détermination de la concentration totale des éléments dans les aliments est insuffisante pour
l’évaluation du risque car elle peut la surestimer si ces éléments ne sont pas bio-accessibles (i.e.
solubles dans le système digestif et donc accessibles au système sanguin) et/ou s’ils sont sous
une forme qui n’est pas toxique. Pour une évaluation plus réaliste du risque, une analyse de
spéciation de la fraction bio-accessible est requise. Une lixiviation continue séquentielle avec
de la salive, du suc gastrique et du suc intestinal artificiels libère la fraction bio-accessible en
quelques minutes, qui est ensuite analysée par chromatographie ionique couplée à la
spectrométrie de masse avec plasma couplé inductivement. Un gradient d’acide nitrique permet
l’analyse simultanée de spéciation du Se, Cr et As. La méthode est appliquée à des céréales de
riz pour bébés car ces derniers sont plus à risque à cause de leur petit poids.
S21
POTENTIEL DU MP-AES 4200 POUR L’ANALYSE DE METAUX DANS LES PRODUITS
PETROLIERS. D. Guihéneuf1, S. Lepiller1, Y. Abdelnour2, J.-L. Todoli3, C. Greatti1, 1 TOTAL
RESEARCH & TECHNOLOGY GONFREVILLE, BP27, 76700 Harfleur, France; 2 Agilent
Technologies – ZA Courtaboeuf - 3, avenue du Canada - CS 90263 - 91978 LES ULIS
CEDEX, France ; 3 Département de Chimie Analytique, Nutrition et Bromatologie, Université
d’Alicante, E-03080, Alicante, Espagne ([email protected])
Le plasma micro-onde couplé à un spectromètre d’émission atomique (Microwave Induced
Plasma – Atomic Emission Spectrometry) MP-AES 4200 Agilent est un appareil de paillasse,
compact, utilisant un plasma d’azote excité par champ magnétique. Cet appareil présente de
multiples avantages pour les sites de production industriels : possibilité d’effectuer des analyses
multi-élémentaires (comme pour l’ICP-AES), coût d’investissement et de fonctionnement
inférieurs à ceux de l’ICP-AES et des performances annoncées comprises entre celles atteintes
par SAAF et par ICP-AES. Par ailleurs, le MP-AES 4200 présente un avantage en termes de
sécurité puisqu’il fonctionne à l’azote de l’air, ce qui permet de s’affranchir de l’utilisation de
gaz combustibles et dangereux comme l’acétylène ou le protoxyde d’azote (N2O5) couramment
utilisés en SAAF.
TOTAL RESEARCH & TECHNOLOGY GONFREVILLE, en collaboration avec Agilent
Technologies, a évalué en 2014 le potentiel du MP-AES 4200 pour les applications courantes
du raffinage. Trois des applications ICP-AES les plus communément mises en œuvre dans les
laboratoires de raffineries ont ainsi été étudiées :
- L’analyse de Mn et Fe dans le diesel selon la norme ISO EN 16576,
- L’analyse des éléments Al, Si, Fe, Na, Ni and V dans les fuels et les résidus,
- L’analyse de Ca, Cu, K, Na, Zn et P dans le diesel selon la norme ISO EN 16476.
Les résultats et conclusions de cette étude font l’objet de cette présentation
th
60 ICASS
Abstracts of invited and
contributed presentations, in
order of submission
(“P” indicates poster)
I01
OVER 10,000 PEPTIDE IDENTIFICATIONS FROM THE HELA PROTEOME USING
SINGLE-SHOT CAPILLARY ZONE ELECTROPHORESIS-TANDEM MASS
SPECTROMETRY. Norman J. Dovichi, Liangliang Sun, Xiaojing Yan, Yimeng Zhao, Guijie
Zhu, Matthew M. Champion. Department of Chemistry and Biochemistry, University of Notre
Dame. ([email protected])
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has recently attracted
attention as a tool for shotgun proteomics. However, its performance for this analysis has fallen
far below that of reversed phase liquid chromatography (RPLC)-MS/MS. Here, we report the
use of a CZE method with a wide separation window (up to 90 min) and high peak capacity
(~300). This method is coupled to an Orbitrap Fusion mass spectrometer via an electrokinetically pumped sheath flow interface for analysis of complex proteome digests. Single-shot
CZE-MS/MS identified over 10 000 peptides and 2 100 proteins from a HeLa cell proteome
digest in ~100 min. This performance is nearly an order of magnitude superior to earlier CZE
studies and is within a factor of 2 to 4 of state-of-the-art nano ultrahigh pressure LC system.
I02
DEVELOPMENT AND VALIDATION OF A RAPID LC-MS/MS METHOD FOR
SCREENING ILLEGAL AND COUNTERFEIT DRUGS: FROM 24 CANNABINOIDS TO
82 ERECTILE DYSFUNCTION REMEDIES AND ADULTERATED PRODUCTS
Karen C. Waldron, Philippe Lebel and Alexandra Furtos. Département de chimie, Université
de Montréal, Montréal, Québec, Canada. ([email protected])
The proliferation of counterfeit and illegal drugs combined with their ease of procurement on
the internet is an ongoing problem for food and drug security in all countries. Accurate and
rapid determination of the drug components in products ranging from pills to smoking mixtures
can be a challenge; standard GC-MS and HPLC-MS methods used by food and drug agencies
(Health Canada, FDA, etc.) can be slow and/or require knowledge about the analytes, i.e., the
spectra must be in searchable databases or targeted methods like MRM must be used. We
discuss the development of a rapid LC-MS/MS screening method that couples solid-core
particle chromatography—providing high resolution rapid separations—with a high resolution
orbital ion trap MS. The latter, when operated with the full scan event in the acquisition
method, allows post-analysis identification, in an untargeted approach, of additional isomers in
the complex matrices encountered. The method resolved, in 10 min, 82 analytes pertaining to
drugs and natural compounds reported to treat erectile dysfunction. Recovery from real samples
(tablets, capsules, liquids, herbal products) was 92-111% with LODs less than 1 ng/Ml. The
intra- and inter-assay precisions were 3.2 and 10% respectively across standards of 50-1000
ng/Ml. The method resolved, in 8 min, 24 natural and synthetic cannabinoids. The latter are an
ongoing nuisance for governments; as quickly as analogs are added to controlled substance
lists, new ones are synthesized in this illicit “market” making their monitoring a virtual moving
target. The means by which counterfeit and illegal drugs make their way into consumer’s hands
will also be discussed.
I03
MEASUREMENT OF THE ACTIVITY OF INDIVIDUAL SUBUNITS OF A SINGLE
ENZYME MOLECULE AND THE CONVERSION OF A MOLECULE BETWEEN
DIFFERENT ACTIVE CONFORMATIONS. Douglas B. Craig,1 Jeremie J Crawford,2
Coleen Ong-Justiniano3 and Ellert Nichols.3 1Chemistry Department, University of Winnipeg,
Winnipeg MB, 2Chemistry Department, University of Manitoba, Winnipeg MB, 3Department
of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg MB.
([email protected])
Single molecules of the homotetrameric enzyme beta-galactosidase were assayed using the
capillary electrophoresis continuous flow protocol. In one assay, the activity was measured as a
slow-release inhibitor dissociated from the enzyme. Step-wise increases in activity were
observed with each step representing the activity of a single subunit. The most simple
explanation of the data was that each subunit on a given molecule provided the same catalytic
rate but the catalytic rates differed between different individual molecules. In a different assay,
individual molecules were assayed before and after brief heating periods. This resulted in
changes in the catalytic rate and electrophoretic mobilities. This is most easily explained by
thermal conversion between different active conformations.
I04
CLOUD POINT EXTRACTION AND PRECONCENTRATION OF TRACE AMOUNT OF
IRON IN WATER AND ENVIRONMENTAL SAMPLES PRIOR TO
SPECTROPHOTOMETRIC DETERMINATION. Ragaa El Sheikh, Ayman A. Gouda.
Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
([email protected])
A new, simple, selective and highly sensitive cloud point extraction (CPE) procedure combined
with spectrophotometry, was developed for separation, preconcentration and determination of
trace amount of total iron in water and environmental samples. In this method, Fe(II) reacts
with 7-(1,5- dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo)-8-hydroxyquinoline-5sulphonic acid (DPPAHS) as a chelating agent yielding a hydrophobic complex at Ph 4.5,
which extracted into surfactant-rich phase Triton X-114 as non-ionic surfactant. Total iron was
determined after the reduction of Fe(III) to Fe(II) by using ascorbic acid as reducing agent.
Variable parameters affecting the CPE efficiency were evaluated and optimized. Under
optimum conditions the calibration graph was linear in the range of 5.0–140 ng Ml-1 (at 615
nm). The detection limits of 1.40 ng Ml-1 with enrichment factor of 140. The molar absorptivity
and Sandell sensitivity are calculated, when compared with those parameters without using
cloud point extraction method. The interference of various ions has been studied. The proposed
CPE technique has been successfully applied for the determination of trace amount of iron in
water and environmental samples with high efficiency and satisfactory results.
I05
IDENTIFYING EVIDENCE OF AUTOLOGOUS BLOOD TRANSFUSIONS BY
CAPILLARY ELECTROPHORESIS. Christopher R. Harrison, & Jack Fang. San Diego
State University, Department of Chemistry & Biochemistry. ([email protected])
In the realm of endurance sports, such as professional cycling, cross country skiing, triathlons,
and others, there is a propensity for some athletes to attempt to cheat in order to succeed at the
highest levels. The most notable example of this level of cheating is the cyclist Lance
Armstrong, who for years employed blood doping techniques that evaded the anti-doping
analytical methods.
Though many of the techniques employed by endurance athletes to improve their physical
capabilities have become identifiable through new and advanced bioanalytical techniques, some
remain elusive. Notably among those still difficult to detect, are autologous blood transfusions;
where the athlete stores and then later infuses their own blood into themselves.
We have developed a rapid capillary electrophoresis based method of analysis to specifically
identify signs of autologous blood doping in minute blood samples taken from an athlete’s
finger tip. We will present here the results of both in vitro and in vivo blood doping studies,
illustrating the changes in the erythrocyte populations in the blood following a simulated and an
actual autologous blood transfusion in active cyclists.
I06
MAPPING THE STRUCTURE AND CHEMICAL PROPERTIES OF SINGLE COLLAGEN
FIBRILS. Laurent Kreplak, Department of Physics and Atmospheric Science, Dalhousie
University, Halifax, NS, Canada. School of Biomedical Engineering, Dalhousie University,
Halifax, NS, Canada. ([email protected])
Collagen fibrils are the building blocks of connective tissues. Their structure and chemical
properties varies from tissue to tissue, during development and aging, and can be remodeled in
response to pathologies or external stimuli such as UV exposure, heat or mechanical damage. In
this context, it is important to have tools capable of addressing changes in connective tissues at
the single fibril level. I will present atomic force microscopy (AFM) based approaches to map
changes in molecular packing within single hydrated collagen fibrils [1] and to acquire Raman
spectra at the surface of dried fibrils [2]. Time permitting, I will also discuss the effect of
temperature on the molecular packing of single fibrils.
[1] Baldwin, S. J., Quigley, A. S., Clegg, C., Kreplak, L. (2014). Nanomechanical mapping of
hydrated rat tail tendon collagen I fibrils. Biophysical Journal. 107(8):1794-1801.
[2] Gullekson, C., Lucas, L., Hewitt, K. C. & Kreplak, L. (2011). Surface sensitive Raman
spectroscopy of Collagen I fibrils. Biophysical Journal. 100:1837-45.
I07
TACKLING
CHALLENGING
SAMPLE
MATRICES
AND
DEMYSTIFYING
INTERFERENCE REMOVAL DURING ICP-OES ANALYSIS. Christoph Wehe, Matthew
Cassap. Thermo Fisher Scientific, Hanna-Kunath-Straße 11, Bremen, Germany 28199.
([email protected])
In order to remain competitive and financially profitable, laboratories must analyze an
increasing number of samples in less time and with a decreasing number of resources. An
increase in sample demand brings with it an increase in potential matrix challenges and
interferences. In this presentation, we will address the types and origins of various
interferences encountered during ICP-OES analysis, along with methods for identifying and
overcoming them. The sample introduction system of an ICP-OES and its role in tackling
challenging sample matrices will also be discussed. The tips and tricks discussed here will
allow users with any skill level to perform successful analyses of any sample matrices with
minimal instrument downtime due to cleaning and maintenance.
I08
APPLICATION OF PARTIAL LEAST SQUARES 2 TO INFRARED SPECTRUM
TRANSFER. S. Hou, and J T. McClure, Department of Health Management, University of
Prince Edward Island, Charlottetown, Canada ([email protected])
Infrared spectroscopy has becoming a promising method to measure the amount of many
different chemical compounds in biological samples. This is often coupled with chemometrics
tools to build a multivariate calibration model. To develop a good multivariate calibration
model, it generally requires that a large number of samples be tested, and thus the development
of the multivariate calibration model is time and labor consuming. Ideally a multivariate
calibration model based on one spectrometer could be used for a long period of time or could be
used in other spectrometers. However, a spectrometer can have changes with time and different
spectrometers will typically give slightly different spectra. Thus a multivariate calibration
model’s accuracy decreases over time and the model cannot be directly applied to other
spectrometers. A solution to this problem is to perform multivariate calibration transfer. Ideally,
the transfer can be achieved by testing a small number of samples, such as 10 or 15 samples.
However, because the number of wavelengths is typically large (100s-1,000s), spectrum
transfer based on a small number of samples is quite challenging. In this work, we proposed to
use partial least squares 2 (PLS 2) to perform spectrum transfer. The results based on some real
experimental data show PLS 2 is promising to be a simple and effective method to carry out
spectrum transfer between instruments.
I09
TRACE ELEMENT SPECIATION SOLUTIONS FOR FOOD SAFETY APPLICATIONS.
Kristan Bahten1, Shona McSheehy Ducos2. 2Thermo Fisher Scientific, 490 Lakeside Dr,
Sunnyvale, CA 94085. 2Thermo Fisher Scientific, Hanna-Kunath-Straße 11, Bremen, Germany
28199. ([email protected])
During the last decade, the measurement of toxic and nutritional elements in foods and
beverages has become a topic of significant public interest which has sparked renewed
enthusiasm from consumer groups and national regulatory bodies. Many of these elements
exist in multiple chemical forms which differ in chemical properties such as bioavailability and
toxicity. Therefore, determining the total concentration of each element is insufficient in
evaluating the potential toxic or nutritive properties of a food or beverage. The work presented
here will discuss the use of IC-ICP-MS to quantify species of arsenic in fruit juice and organic
brown rice syrup, mercury species in fish samples and iodine species in milk products and baby
formula.
I10
KINETIC SIZE-EXCLUSION CHROMATOGRAPHY WITH MASS SPECTROMETRY
DETECTION (KSEC-MS): AN APPROACH FOR SOLUTION-BASED LABEL-FREE
KINETIC ANALYSIS OF PROTEIN-DRUG INTERACTIONS. Sergey N. Krylov and
Svetlana M. Krylova, Department of Chemistry and Centre for Research on Biomolecular
Interactions, York University, Toronto, ON M3J 1P3, Canada ([email protected])
Studying the kinetics of reversible binding between a protein and a small-molecule drug is a
major challenge. The available approaches require that either the small molecule of the protein
be modified by labeling or immobilization on a surface. Not only can such modifications be
difficult to do but they can also drastically affect the kinetic parameters of the interaction. To
solve this problem, we developed kinetic size-exclusion chromatography with massspectrometry detection (KSEC-MS), a solution-based, label-free approach. KSEC-MS utilizes
the ability of size-exclusion chromatography (SEC) any small molecule from any protein-small
molecule complex without immobilization and the ability of mass-spectrometry (MS) to detect
a small molecule without a label. The rate constants of complex formation and dissociation are
deconvoluted from the temporal pattern of small molecule elution measured with MS at the exit
from the SEC column. In this lecture, the concept of KSEC-MS will be explained and
examples of its use for studying kinetics for protein-drug interactions will be presented.
I11
ANALYSIS OF LITHIUM-ION BATTERY DEGRADATION PRODUCTS USING IC-ICPMS. Daniel Kutscher1, Antonella Guzzonato1, Paul Voelker2, Shona McSheehy Ducos1.
1
Thermo Fisher Scientific, Hanna-Kunath-Straße 11, Bremen, Germany 28199. 2Thermo
Fisher Scientific, 490 Lakeside Dr, Sunnyvale, CA 94085.
([email protected])
Lightweight rechargeable lithium-ion batteries are key components for portable electronics,
medical devices, industrial equipment, and automobiles. They provide high energy density and
can be recharged without memory effects. Understanding these processes can lead to enhanced
battery performance, improved product safety, and reduced component failure. This work will
utilize IC-ICP-MS to compare the trace element concentrations in battery anodes, including
high performance automotive batteries as well as those used in consumer electronics products.
I12 P
DETERMINING LANTHANIDE SPECIATION IN NATURAL WATERS. Alexandra
Carvajal, Jim McGeer and D. Scott Smith. Wilfrid Laurier University.
([email protected])
The proposed development of Lanthanides (Ln) mines in northern Canada may pose a health
threat to aquatic ecosystems downstream. It is well known that impacts of metals are dependent
on speciation in the exposure medium, however, speciation information for these metals is
limited. The purpose of this study is to understand Ln interactions with dissolved organic
matter (DOM). Fluorescence quenching was used to derive Ln-DOM binding constants and
capacities. Samples of DOM from four natural sources (Kouchibouguac NB, Southampton
PEI, Suwannee River GA and Luther Marsh ON) were prepared and titrated with Sm3+ and
Dy3+ at concentrations ranging from 0 µM to 100 µM and Ph of 7.3±0.05, using flow through
cuvette and variable-angle synchronous fluorescence measurements to observe the quenching
of intrinsic DOM fluorescence in the presence of each metal. Simple-To-Use Interactive SelfModeling Mixture Analysis (SIMPLISMA) technique was implemented to resolve the peaks
corresponding to multiple fluorophores within the DOM. Two components were identified,
with only one of them exhibiting fluorescence quenching. Binding constants ranged from 4.584.94 for all samples. The results from the resolved quenching data can be fitted to an
equilibrium complexation model to estimate free Ln concentrations (i.e., [Sm3+] or [Dy3+]).
As a secondary speciation measurement technique, a Sm ion-selective electrode is being
investigated and will be discussed in more detail. Understanding Ln interactions with DOM
will facilitate the development of quantitative bioavailability-based models to help manage the
potential risks associated with impacts of mining operations in northern Canada.
I13
VOLUME IMAGING AND QUANTITATIVE PHASE MEASUREMENTS WITH DIGITAL
IN-LINE HOLOGRAPHIC MICROSCOPY. M.H. Jericho, Department of Physics and
Atmospheric Science, Dalhousie University, Halifax N.S. ([email protected])
In recent years, digital in-line holographic microscopy (DIHM) with numerical reconstruction
has been perfected to the point at which sub-micron resolution is routinely achieved with light.
In the simplest DIHM instrument design, a sample volume is sandwiched between a point
source of light, such as a pin- hole or optic fibre, and a CCD camera sensor. The light scattered
from objects in the sample combines with un-scattered light (the reference wave) to form an
interference pattern or hologram at the sensor chip. Numerical reconstructions of these
holograms can generate images of all objects in an illuminated sample volume and not, as in
standard optical microscopy, only of those that happen to be in the focal plane of the objective
lens. The hologram reconstruction transforms, however, also give access to phase information
and images of the spatial variations of phase shifts of the wave fronts in the optic field are
easily created. The quantitative determination of phase shifts is an integral part of DIHM so
that, unlike the situation in standard optical phase microscopy, a quantitative determination of
the optical path through an object is easily accomplished. The talk will review the basic
principles of DIHM and present results for both intensity and phase images of a variety of
aquatic organisms including bacteria.
I14
IMPLICATIONS OF PERFORMANCE METRICS ON THE QUALITY OF ICP-MS
ANALYSIS. Pamela Wee, Agilent Technologies Canada Inc. ([email protected])
Despite popular belief, attaining the highest possible sensitivities in ICP-MS analysis does not
always result in the lowest detection limits, nor does it provide optimal analytical conditions for
all applications. Unless the sample matrix is a simple one, or removed prior to introduction to
the MS, highest sensitivities can result in increased background, more noise, and poor long term
run stability. This leads to increased frequency of QC failures, maintenance, and instrument
downtime. Hence adequate sensitivities that deliver the required method detection limits
(MDL) should be the ultimate practical goal.
Another commonly used metric is the cerium oxide to cerium (CeO+/Ce+) ratio. This ratio
serves as an indicator of polyatomic ion interferences, such as 35Cl16O+ on 51V+. The lower the
CeO+/Ce+ ratio, the less severe these interferences. But to attain this, sensitivities will be
reduced and may deteriorate MDLs. In some ICP-MS systems, a decrease in the CeO+/Ce+ ratio
is accompanied by a significant increase in the Ce2+/Ce+ or Ba2+/Ba+ ratio. The higher this ratio,
the worse the severity of doubly-charged ion interferences, such as 150Nd2+ or 150Sm2+ on 75As+.
Since polyatomic interferences are more common than doubly-charged ion interferences, the
Ba2+/Ba+ ratio is often sacrificed in order to minimize the CeO+/Ce+ ratio.
This paper investigates the effects of sensitivity and Ba2+/Ba+ ratio on instrument detection
limits and spectral interferences, with and without the use of various gases in a collision
reaction cell.
I15
METHODS FOR THE STUDY OF PROTEIN GLYCOSYLATIONS. R. Chen1, Z. Ning1, A E.
Starr1, D. Mack2, A. Stinzi1 and D. Figeys1,3 1: Department of Biochemistry, Microbiology and
Immunology, University of Ottawa. 2: Children Hospital of Eastern Ontario. 3: Department of
Chemistry, University of Ottawa. ([email protected])
Protein glycosylations are the most prevalent post-translational modifications. However, the
mapping of site and structure of glycosylations on proteins and their quantitation are difficult.
We will presents new approaches for the quantitative study of proteins N- and O-glycosylations
by combining enrichment methods, HPLC, and ESI-MS/MS. As well, we will present
applications of these methods for the study of protein glycosylations in Inflammatory Bowel
Diseases (IBD).
I16
DEVELOPING SELECTIVE AND ROBUST MOLECULARLY IMPRINTED POLYMER
FILMS FOR DIRECT ANALYSIS OF COTININE CONTAMINANTS WITH MASS
SPECTROMETRY. Christina S. Bottaro, Adam G. Beaton, Stefana N. Egli, Jeremy R.
Gauthier. Department of Chemistry, Memorial University, St. John’s, NL A1B 3X7
([email protected])
Cotinine is the primary metabolite of nicotine and has a relatively long half-life in the human
body, which makes it a useful indicator of exposure to nicotine-containing products. It is
routinely analyzed by solid phase extraction with gas chromatography-mass spectrometry
(SPE-GC-MS) or with high performance liquid chromatography-MS (SPE-HPLC-MS). Though
analytical advances (e.g. ultra-HPLC) have increased throughput, SPE to eliminate complex
matrix components limits further improvements. To streamline the process, we have been
developing thin-film molecularly imprinted polymers (MIPs) that are selective for uptake of
cotinine and suitable for direct interrogation by desorption electrospray ionization (DESI)-MS.
MIPs are synthetic molecular recognition materials made by cross-linking functional monomers
in the presence of the template (usually the target analyte) and porogen. Optimized
formulations show high selectivity toward the target analytes and can be robust under
operational conditions. The composition of the pre-polymerization solution with respect to the
ratio between the template, functional monomer, cross-linker, and porogen was optimized with
the assistance of experimental design (Box-Behnken) to maximize the amount of cotinine taken
up by the polymer. Other factors studied include template removal time, assessment of template
bleeding with possible pseudo-templates to overcome template bleeding, and effects of sample
Ph and volume. Initial MIP performance assessment used GC-MS analysis, as access to DESIMS was limited, however the optimized formulation produced a material that was not very
robust under the DESI spray. GC-MS results of the optimization efforts, data illustrating
compatibility with complex biological matrices, new compositions aimed at increasing MIP
mechanical stability, and data from method development studies with DESI-MS will be
presented.
I17
PROBING PROTEIN CONFORMATIONAL CHANGES BY USING APTAMERS. Nena Thi
Nguyen1, X. Chris Le1,2, Hongquan Zhang2, 1Department of Chemistry and 2Department of
Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta,
10-102 Clinical Sciences Bldg., Edmonton, Alberta, Canada T6G 2G3.
([email protected])
Cooperation of key non-covalent interactions endows aptamers with affinity and specificity for
their targets, including precise stacking, specific hydrogen bonding, and molecular shape
complementarity. The conformation changes can alter protein surface chemistry, thereby
impacting the molecular interactions between aptamers and their target proteins and
compromising the binding of protein targets to their aptamers. We reasoned that aptamers with
high affinity and specificity can act as sensitive probes to sense conformational changes of
proteins and conformational changes can be quantitatively characterized by measuring varying
of protein-aptamer binding affinity. To demonstrate the proof of the concept, we used capillary
electrophoresis with laser-induced fluorescence detection to determine the varying of proteinaptamer binding upon thermally induced conformational changes for three different proteins,
human -thrombin, human immunoglobulin (Ig G), and platelet-derived growth factor (PDGF)BB. Parallel conformational change characterization was performed on human -thrombin
using an enzyme activity assay and circular dichroism spectroscopy. Consistent results were
obtained for all three techniques, suggesting that aptamers can be used as sensitive probes to
quantitatively characterize conformational changes of proteins.
I18
THE DIRECT ANALYSIS OF MULTIPLE ELEMENTS IN 25% BRINES USING AN
AGILENT 7900 ICP-MS WITH AN ULTRA HIGH MATRIX INTERFACE. Pamela Wee,
Agilent Technologies Canada Inc. ([email protected])
The analysis of solutions containing high total dissolved solids (TDS) by ICP-MS can be
challenging. Problems from clogging of the interface cones, poor run stability, and non-spectral
interferences, are often mitigated by dilution. A suitable 46abeling can be difficult to procure,
either due to inadequate purity or analyte insolubility. The use of an Ultra High Matrix
Interface (UHMI) allows samples to be directly delivered to the nebulizer. The aerosol is
diluted by high purity argon before transfer into the torch.
The effectiveness of the Agilent 7900 ICP-MS with UHMI in directly analyzing multiple
elements in 25% brines will be discussed. An octopole collision reaction cell was used for
optimal spectral resolution and detection capability. Pure helium was used for the resolution of
polyatomic interferences on several elements, such as 40Ar35Cl+ and 40Ca35Cl+ on mono-isotopic
75
As+. Pure H2 was used to chemically resolve interferences on some elements such as
40
Ar38Ar+ and 40Ca38Ar+ on 78Se+. Basic concepts and many examples will be presented.
I19
HIGH PEAK CAPACITY, TWO DIMENSIONAL SEPARATIONS USING MICRO FREE
FLOW ELECTROPHORESIS. Michael T. Bowser, Matthew Geiger, Alexander Johnson,
Sarah Anciaux and Nicholas Frost. University of Minnesota, Department of Chemistry.
([email protected])
Traditional chromatography and electrophoresis separations provide excellent selectivity for
samples containing up to several dozen analytes. While impressive, this is often insufficient for
complex mixtures encountered in modern research, which may contain hundreds or even
thousands of analytes. Two dimensional (2D) separations offer the potential for assays with
dramatically improved peak capacities. 2D approaches separate mixtures sequentially
according to two independent mechanisms. The ideal peak capacity of a 2D separation
approaches the product of the peak capacities for each individual separation. Existing
hyphenated 2D separations rarely reach this ideal peak capacity due to under sampling of peaks
as they elute off of the first dimension column. Instead current 2D separations are
characterized by long separation times and peak capacities that fall well short of those predicted
by theory. Micro free flow electrophoresis (µFFE) is the ideal second stage for 2D separations.
In FFE a thin stream of sample is continuously introduced into a planar flow chamber. An
electric field is applied perpendicularly to the flow through the separation chamber. Analytes
are deflected laterally in the electric field according to their electrophoretic mobility giving rise
to individual stream paths. The continuous analysis provided by µFFE further separates analyte
peaks as they elute off the first separation column removing under sampling limitations
encountered in previous 2D separations. Coupling with Nlc or CE is as straightforward as
inserting the column outlet directly into the µFFE separation chamber. We have demonstrated
that coupling with µFFE increases peak capacity 20 to 30-fold with no sacrifice of efficiency or
separation time in the first dimension separation. We have performed initial Nlc×µFFE and
CE×µFFE experiments that achieve peak capacities >2,300 for peptide separations in less than
10 minutes.
I20
FABRICATION AND EVALUATION OF A METHANE MICROBIOSENSOR. Yijun Chen,
Yan Zhang and Tong Yu, Department of Civil and Environmental Engineering, University of
Alberta, Edmonton, AB T6G 2W2, Canada ([email protected])
Methanogenesis, the formation of methane by methanogens, widely exists in anaerobic
environments. Comparing to conventional testing method, microbiosensor is a powerful
technique for the detection of methane generated in methanogenic microenvironments with
high spatial resolution. In this study, the fabrication of a microbiosensor for methane detection
is studied. This microbiosensor is composed of an oxygen microsensor, an oxygen reservoir and
a media capillary. The methane-oxidizing bacteria are placed in the media capillary and can
consume oxygen from the reservoir. Accordingly, the consumption rate of oxygen is associated
with the external partial pressure of methane which can be reflected by the signal of the oxygen
microsensor. These three components of the methane microbiosensor were assembled together
with sensor tip diameter of 190 μm and response time being 90 s. The calibration data shows
that the methane microbiosensor can exhibit both linear and non-linear response to methane
concentration in the range of 0-1 atm partial pressure. The results prove the potential of the
methane microbiosenor fabricated with this procedure to be used as a powerful tool for the
measurement of methane concentration with high spatial resolution.
I21
USING APTAMERS IN CAPILLARY ELECTROPHORESIS (CE)-BASED ASSYAS FOR
DETECTION OF PROTEINS. Svetlana M. Krylova, Roman Yufa, Michael Musheev, Mirzo
Kanoatov, Leonid T. Cherney, Victor A. Galievsky, Sergey N. Krylov. Department of
Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto,
Ontario, Canada M3J 1P3. ([email protected])
We present the use of CE for: (i) selection of DNA aptamers for bacterial and human
2OG/Fe(II)-dependent oxygenases and (i) simultaneous determination of Kd of oxygenaseaptamer binding and oxygenase concentration. To facilitate selection of aptamers, we
introduced a combination of CE-based partitioning of protein-DNA complexes from unbound
DNA with emulsion-PCR-based amplification of collected DNA. To facilitate simultaneous
determination of Kd and protein concentration, we developed a new 2-step analytical approach.
In the first step, the dependence of fraction of unbound aptamer on a dilution factor of protein
stock solution is used to determine dilution factor that corresponds to protein concentration
equal to Kd. In the second step, the dependence of fraction of unbound aptamer on aptamer
concentration is determined for this protein dilution and this dependence is fitted with a
function describing their theoretical dependence. Kd and protein concentration are used as
fitting parameters and their sought values are determined as the ones that generate the best fit.
I22 P
INVESTIGATION OF THE INTERACTION BETWEEN BIOMIMETIC MEMBRANES
AND PROTEIN AGGREGATE USING VARIOUS SPECTROSCOPIC TECHNIQUES.
Reem Karaballi, Soraya Merchant, Christa Brosseau, Saint Mary’s University, Chemistry
Department ([email protected], [email protected])
Alzheimer’s disease (AD) is a neurodegenerative disorder that is caused by the aggregation of
proteins, and it is known to be the most common form of dementia. Although the mechanism
of AD is not fully understood, there have been many theories proposed. One of the theories that
has been used to explain AD is the pore-hypothesis theory which states that protein aggregates
insert themselves into cell membranes to form non-specific channels that lead to loss of cellular
homeostasis. This research work is focusing on studying the interaction between a cost
effective amyloid model protein (insulin) and a LB-LS biomimetic membrane deposited onto a
modified screen-printed electrode consisting of silver nanoparticles. Surface-Enhanced Raman
Spectroscopy (SERS) coupled with electrochemistry (E-SERS) is used to detect molecular level
changes occurring upon this interaction. Also, characterization of insulin and the aggregation
process was monitored using Transmission Electron Microscopy (TEM) and attenuated total
internal reflection Fourier transform infrared (ATR-FTIR) as well as turbidity measurements.
Based on the results obtained aggregated insulin was achieved at extreme conditions as follows;
65°C and Ph 1.6. The aggregation process was successfully monitored by turbidity
measurements and TEM. There were some significant changes in the EC-SERS spectra of LBLS biomimetic membrane containing the aggregated insulin.
I23
A LOW-COST AUTOMATED SYSTEM FOR LINEAR SPECTRAL IMAGING IN
MICROCHANNELS F. Paquet-Mercier, M. Pousti and J. Greener, Department of chemistry,
CERMA, CQMF, Université Laval ([email protected])
Microfluidics has become an established tool for chemical synthesis, optimization of
formulations and study of biological systems due to its precise control over experimental
conditions and ability to process small volumes. The introduction of in situ ATR-FTIR
spectroscopy has opened the way for chemical and structural characterization of analytes in
solution and adsorbed to channel walls. In addition, position-dependant measurements within
microchannels have been demonstrated for studies of reaction kinetics, mass-transfer,
multiphase systems and heterogeneous materials. Until now, spectral imaging in microchannels
has been implemented by expensive and highly technical approaches. Therefore, a low-cost
method for linear imaging along the microchannel can open the way for sophisticated analytical
studies without the need for an expensive or highly specialized setup. Here we will present a
setup for infrared spectral imaging and parallel optical microscopy within microchannels using
an integrated ATR crystal and a computer controlled microscope system. The system features a
low-cost linear stage with automated stepper motor for positioning the microchannel relative to
the stationary IR beam and video camera. After a thorough review of system performance, we
conduct a proof-of-concept study of biofilm growth kinetics by IR and optical microscopy.
Differences in growth of optical density and chemical bands from proteins, polysaccharides and
other species at different locations within the microchannel were measured. We tentatively
attributed these differences to ejected biomolecules and a nutrient depletion zone caused by
upstream biofilm portions.
I24
TOWARD A NEW HIGH-THROUGHPUPT ELECTROCHEMICAL IMAGING SYSTEM
FOR DISSOLVED BIOMATERIALS. Adnane Kara1,2, Jessy Mathault1,2, Amine Miled1, Jesse
Greener2, 1LABioTRON Bioeng. Res. Lab., Elect. Compt. Eng. Dept. Laval University, Québec
City, QC, Canada 2Dept. Of Chemistry, Laval University, Québec city, QC, Canada
([email protected])
We present a microelectrochemical system for imaging redox systems in microchannels. A
high-density electrode array was embedded in microchannel for a real-time imaging of the
concentration change in the microchannel. A first low-cost prototype was designed with a
20x10 in-channel electrode array. A new designed low-noise bidirectional multiplexer handle
the communication between each electrode and the main control unit. Each individual electrode
is independently addressable working electrode through the designed multiplexer. A
communication/measurement protocol, involving an integrated on-channel potentiostat and the
multiplexer, results in location-specific cyclic voltamograms, which originate from each
working electrode. Cyclic voltamograms are subsequently batch 49abeling to identify redoxactive species and to determine their concentrations. A two-dimensional image is then
generated, which represents the redox chemical environment within the microchannel. The
platform is demonstrated by imaging confined laminar streams of a ferrocyanide solution.
Diffusion measurements are also made by sampling the ferrocyanide concentrations at different
positions along the image cross-section, corresponding to different contact times. Finally, we
demonstrate the ability to obtain “chemical videos” where images are acquired at different
times to monitor time-dependent phenomena. Applications to different natural redox active
systems such as biofilms and neurotransmitters will be discussed.
I25
ESTIMATION OF INSTRUMENTAL NOISE MODELS IN THE ABSENSE OF
REPLICATED DATA. Peter D. Wentzell and Anthony C. Tarasuk. Department of
Chemistry, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
([email protected])
The characterization of errors in analytical measurements is critical for the evaluation of
analytical figures of merit, such as limit of detection (LOD), and for the optimal processing of
analytical data. However, the determination of measurement error characteristics is often
hindered by the absence of replicated samples. To overcome this limitation, it is possible to use
multiple (non-replicate) samples of vectorial data (e.g. spectra, chromatograms) to estimate
error variance models for an analytical method. This is accomplished by high-pass digital
filtering of the data using a Blackman windowed-sinc filter to obtain point estimates of
measurement, followed by appropriate binning and ensemble averaging of these estimates.
Various noise models can then applied to describe heteroscedasticity (non-uniform variance) in
the measurement errors. The optimal filter parameters (size, cutoff frequency) are easily
determined through a Fourier analysis of the original signals, and the filter has been shown to
have a rapid response to changes in noise characteristics through simulated data. The principles
of this approach will be described and several examples will be presented to illustrate its
application. Limitations of the method, in particular its difficulty in dealing with highly
correlated noise sources, are also discussed.
I26
PROJECTION PURSUIT METHODS FOR EXPLORATORY DATA ANALYSIS. Chelsi C.
Wicks, Peter D. Wentzell. Department of Chemistry, Dalhousie University, PO Box 15000,
Halifax, NS, B3H 4R2. ([email protected]).
Exploratory data analysis strategies are often among the first steps employed to examine the
viability of classification based on multivariate data. Typically this includes visualization
methods such as principal components analysis (PCA) or hierarchical cluster analysis (HCA).
These methods segregate the samples with no prior knowledge of the class structure and can
therefore provide an unbiased indication of the feasibility of the classification before more
powerful (but potentially biased) supervised classification methods are applied. However, these
exploratory measurements are based on variance (PCA) or distance (HCA) metrics which may
not be optimal for class separation. Projection pursuit (PP) methods based on kurtosis (fourth
statistical moment) optimize subspace projections based on non-normality and can often prove
more useful in this regard. Recent developments have made these algorithms more accessible
and, while PP is applied in a manner similar to PCA, the results are often superior. One
drawback of PP, however, is that it is ineffective when the sample-to-variable ratio is too low,
and a compression step using PCA is often necessary prior to data analysis. This complicates
the analysis and decreases the interpretability of the projection vectors. In this presentation, the
principles and application of PP will be reviewed, and new methods for variable selection based
on Procrustes analysis will be described.
I27
SELECTION OF APTAMERS USING QUANTUM DOT-ASSISTED CAPILLARY
ELECTROPHORESIS SELEX. Jeffrey. W. Guthrie and Michael J. Martin. Eastern Michigan
University, Department of Chemistry, Ypsilanti, MI, USA. ([email protected])
Aptamers are short, synthetic oligonucleotide sequences that can selectively bind to targets with
high affinity. Selection of aptamers is accomplished by Systematic Evolution of Ligands by
Exponential enrichment (SELEX). The target is incubated with a random sequence oligonucleotide
library, and target-bound sequences are separated from the unbound pool to generate a higher
affinity library for use in subsequent selection rounds. Capillary electrophoresis (CE) has been used
for the selection of aptamers for large protein targets and generally requires fewer rounds of
selection than conventional SELEX methods. Unlike large targets, small molecule targets bound to
DNA sequences show little to no change in electrophoretic mobility, resulting in poor separation
from the unbound sequences. To solve this problem, quantum dots (QDs) with covalently bound
target molecules can be employed to effectively increase the size of small molecule targets and
allow efficient separation based on the QDs mobility. As a proof of concept for the use of QDs in
CE-SELEX, commercially available QDs conjugated to streptavidin were used to show that the
QD-target-DNA complexes could be separated from unbound DNA sequences. After each selection
round, single-stranded DNA was isolated from double-stranded PCR products using denaturing
PAGE and the crush and soak method. After five rounds of selection including a negative selection
round, the Kd of the library was determined to be in the low Nm range.
I28
ANALYSIS OF THE NEUROTOXIN, β-N-METHYLAMINO-L-ALANINE (BMAA), BY
HYDROPHILIC INTERACTION LIQUID CHROMATOGRAPHY-DIFFERENTIAL
MOBILITY SPECTROMETRY-TANDEM MASS SPECTROMETRY. Elliott Kerrin1,2,
Michael A. Quilliam1,2, Daniel G. Beach1. 1National Research Council Canada, Measurement
Science and Standards, Halifax, NS; 2Department of Chemistry, Dalhousie University, Halifax,
NS. ([email protected])
β-N-Methylamino-L-alanine (BMAA) is a neurotoxin that has been implicated as a cause of
Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC). This toxin has
been reported to be present in cyanobacteria (blue-green algae) and shellfish, thus raising
concerns over widespread exposure. However, some researchers have been reporting
inconsistent results for the analysis of BMAA, leading to controversy in the field. One main
problem is the potential for interference by the many possible isomers for BMAA, at least 3 of
which have been detected in cyanobacteria and shellfish: 2,4-diaminobutyric acid (DAB), N2(aminoethyl)-glycine (AEG), and β-amino-N-methylalanine (BAMA). Since mass spectrometry
is not very good at distinguishing isomers, it is essential to have a good separation by a
technique such as liquid chromatography. In our work, we have achieved separation of BMAA,
DAB and AEG by hydrophilic interaction liquid chromatography coupled with tandem mass
spectrometry (HILIC-MS/MS). BAMA is more difficult to resolve completely from BMAA.
Therefore, we have investigated differential mobility spectrometry (DMS) as a technique for
introducing an additional, orthogonal separation, ultimately arriving at a very selective HILICDMS-MS/MS method. One of the key findings was the need to accurately control the modifier,
acetonitrile, at low flow rates in the carrier gas, which allowed the separation of BMAA and its
isomers by DMS. Our optimized method was then used to quantify BMAA and its isomers in
cycad leaf, spiked cyanobacteria and mussel tissues using isotope dilution calibration with d3BMAA.
I29
MICROSENSORS FOR STUDY OF MICROBIALLY STRATIFIED ENVIRONEMNT:
APPLICATIONS AND CHALLENGES. Tong Yu, Department of Civil and Environmental
Engineering, University of Alberta, Canada ([email protected])
Environmental samples with internal chemical concentration variations, caused often by
stratified microbial metabolic activities, are of great importance in environmental studies.
Direct analytical measurements, with high special resolution, inside the intact samples are
sometimes necessary. These measurements can provide information, which would otherwise be
unavailable, regarding the internal chemical concentration variations and related microbial
metabolic activities. Microsensors, with tip diameter in micrometer level, are a suite of
analytical tools of this kind. In the Microsensor Laboratory at University of Alberta, my
research group has developed the expertise for a number of microsensors that are important to
environmental studies, including O2, Ph, NH4+, NO3-, H2S, SO42-, CH4, NH2Cl and redox
potential microsensors. In this laboratory, these microsensors can be fabricated, calibrated and
used in measurements of the chemical species and their changes, often as result of or in relation
to microbial metabolic activities, in stratified microenvironment in biofilms, river sediments,
and oil sands tailings. In this presentation, the microsensor techniques and examples of their
application in environmental samples will be introduced. The challenge of the techniques and
their use will also be discussed.
I30
DETERMINATION OF ARSENIC COMPOUNDS IN RICE: A STATUS REPORT. Julian
Tyson, Department of Chemistry, University of Massachusetts Amherst, MA 01003 USA.
([email protected])
There is compelling evidence that some people are at risk of long-term adverse health effects
from the ingestion of arsenic compounds in their diets. Most at risk are those whose diets
consists predominantly of rice and rice products, a group that includes young children and
infants. There are calls for the introduction of arsenic-in-food regulations. Compliance with
and enforcement of any such regulations will depend critically on the chemical measurement
community’s ability to determine reliably the arsenic species in food and, in particular, in rice,
the foodstuff that contains the highest concentrations of inorganic arsenic, a class 1 carcinogen.
Three sources of information will be examined to determine the status of our ability to perform
this analysis: proficiency tests organized by the Food Analysis Performance Assessment
Scheme in the UK and the Joint Research Centre Institute for Reference Materials and
Measurement in the EU (IMEP-107), and literature reports of the speciation analysis of NIST
SRM 1568a (rice flour). As not all of the participants in the proficiency tests obtained results
that the organizers considered satisfactory, methods consisting of extraction, HPLC separation,
and ICP-MS detection will be discussed in terms of possible problems, such as enhancement
due to carbon-containing species, the fate of chlorine-containing species, compound-dependent
responses (for which there is plenty of evidence, but which are almost never acknowledged or
discussed), and possible sampling errors, due to variations in the concentrations in individual
rice grains. As the predominant species in rice are inorganic arsenic and dimethylarsinate,
whether a material is in compliance with future arsenic-in-food regulations may be assessed by
a simpler procedure, such as selective hydride-generation AFS. With the goal of achieving
convergence in method performance in this area, suggestions will be made for the inclusion of
details of sampling and drying, as well as chromatographic parameters and calibration data in
published accounts of new methods.
I31
DUAL VIEW MINUS THE WAIT – INTRODUCING THE AGILENT 5100 ICP-OES WITH
SYNCHRONOUS DUAL VIEW TECHNOLOGY. Wayne Blonski; Agilent Technologies;
([email protected])
The Agilent 5100 ICP-OES revolutionizes ICP-OES analysis. It is designed to run samples
faster, using less gas, without compromising performance on difficult matrices. The 5100
SVDV features unique Dichroic Spectral Combiner (DSC) technology that selects and
combines axial and radial light from a robust vertically oriented plasma, in a single
measurement covering the entire wavelength range. This capability, together with the high
speed VistaChip II CCD detector and the innovative SVS 2+ switching valve, provides the
fastest sample throughput and the lowest gas consumption per sample of any ICP-OES.
Additional technologies such as the vertical torch with axial viewing and Cooled Cone Interface
(CCI) also contribute to the 5100’s ability to analyze high Total Dissolved Solids (TDS)
samples with an excellent linear dynamic range. Both of these performance benefits minimize
the need for additional sample dilutions or multiple readings of the same sample, further
improving sample throughput.
I32
EXPLORING SUBCELLULAR COMPLEXITY IN TISSUES BY CAPILLARY
ELECTROPHORETIC ANALYSIS OF INDIVIDUAL ORGANELLES. Katherine Muratore*,
Deirdre Manion-Fischer*, Manjunatha Shankarappa°, Ian Lanza°, K. Sreekumaran Nair°,
Edgar A. Arriaga*. *University of Minnesota, Minneapolis, MN, USA. °Mayo Clinic,
Rochester, MN, USA. ([email protected])
Maintenance of cellular processes involves the coordinated function of multiple types of
subcellular organelles. One such process is macroautophagy (referred herein as autophagy),
which is responsible for the degradation of large cellular components and involves at least four
different organelle types (phagophores, autophagosomes, lysosomes and autolysosomes).
Deficiencies in autophagy have been implicated in multiple diseases and in the progression of
aging. Currently, there are no suitable methodologies to investigate the interplay of the various
organelle types involved in autophagy. Major challenges have been the lack of bianalytical
tools to identify each organelle type in mixtures and the inaccessibility of sensitive detection
schemes to tissue samples.
This presentation will describe our efforts towards immunolabeling different organelle types in
tissue samples and their subsequent analysis by capillary electrophoresis with laser induced
fluorescence detection (CE-LIF). We specifically focus on 53abeling53 of autophagosomes,
lysosomes, and the simultaneous detection of two or more organelle types.
I33
NEW MULTIVIEW ARCOS 2 ICP-OES FROM SPECTRO John Dykeman, SCP SCIENCE,
21800 Clark-Graham, Baie D’Urfé, QC H9X 4B6 ([email protected])
The new SPECTRO ARCOS with MultiView technology has eliminated plasma-viewing
compromises and revolutionized spectrometer design. SPECTRO ARCOS provides
uncompromised axial-view and radial-view plasma observation in a single instrument.
MultiView is truly axial, truly radial, and totally radical. The periscope-free design means
operators now can literally “turn” a radial-view instrument into an axial-view device, or viceversa — in 90 seconds or less! Users get full axial sensitivity and full radial precision — with
no dual-view compromises.
I34
CHARACTERIZATION OF NANOMATERIALS BY DIFFERENT TECHNIQUES SUCH
AS DLS, AF4-MALLS(-ICP-MS) AND SP-ICP-MS IN CONSUMER PRODUCTS.
Inmaculada DE LA CALLE1,2, Mathieu MENTA2, Marlène KLEIN2, Fabienne SÉBY2.
1
Departamento de Química Analítica y Alimentaria, Área de Química Analítica, Facultad de
Química, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain.
2
Ultra Trace Analyses Aquitaine UT2A/ADERA. Hélioparc Pau-Pyrénées, 2 avenue du
Président Angot, 64053 PAU cedex 9, Pau, France. ([email protected])
In the last years, the use of nanomaterials (NMs) in different consumer products has increased.
Some of the nanoparticles (NPs) that can appear in different products available in the market
are TiO2 and ZnO in sunscreens and face creams, SiO2 in foods, Ag in foods and clothes as
antimicrobial agent, Au in medicines, etc. Due to this fact, European directives are releasing in
order to regulate the label of food packaging that should include the word “nano” and also the
allowed and forbidden NMs or the specific characteristics of these NMs. The most important
parameters to describe NMs are size, size distribution, shape and chemical composition. For the
purpose of accomplishing these regulations, characterization of these nanocompounds becomes
something necessary in diverse types of commercial products. This work presents the
development of a methodology for the determination and characterization of NPs in consumer
products by diverse techniques such as Dynamic Light Scattering (DLS), Asymmetric Field
Flow-Field Fractionation coupled with Multiangle Laser Light Scattering and Inductivelycoupled Plasma Mass Spectrometry (AF4-MALLS-ICP-MS) and Single Particle Inductivelycoupled Plasma Mass Spectrometry (SP-ICP-MS). Firstly, optimization and validation has been
performed on NMs standards (polystyrene nanospheres, Au NPs, etc.) for the different
techniques. After that, the methodology has been applied to real samples (cosmetics, drinks and
foods). However, in this case, sample preparation is a critical step, because the particles should
be extracted/separated from the matrix and should be stable until analysis. DLS and AF4MALLS are techniques allowing to obtain only information about the hydrodynamic diameter
of NPs, being DLS generally considered as a fast method but not as accurate as AF4-MALLS.
Moreover, the data obtained by AF4-MALLS allows obtaining the fractionation of particles
according to the size giving the size distribution, as well as the radius of gyration. The coupling
of AF4-MALLS-ICP-MS is necessary in order to assess metals associated to each fraction
obtained from AF4 and/or the composition of the NMs investigated. Results obtained by SPICP-MS represent an approach to obtain simultaneously the size and the composition of the
NMs. This work allows demonstrating the complementarity of the techniques to comply with
the regulations.
I35 P
BENEFICIAL EFFECT OF SEGMENTED FLOW INJECTION ON THE INDUCTIVELY
COUPLED PLASMA MASS SPECTROMETRY MEASUREMENT OF PT ELECTRO
DISSOLUTION IN SIMULATED FUEL CELL. Ram P. Lamsal, Gregory Jerkiewicz and
Diane Beauchemin, Queen’s University, Department of Chemstry, Kingston, ON K7L 3N6,
Canada. ([email protected])
The analytical performance of flow injection coupled to inductively coupled plasma mass
spectrometry was assessed for the measurement of Pt electrochemical dissolution in corrosive
inorganic acids that are used in fuel cells. Specifically, dissolution in sulfuric acid in a
simulated fuel cell was studied. Flow injection was required to minimize the corrosive effect of
sulphuric acid on the sampler and skimmer cones. Different types of carriers were evaluated:
water, 2% HNO3 and air-segmented water. In the latter case, injections were made within air
segments. Compared with flow injection into water or 2% HNO3, narrower and symmetrical
peaks were observed with air-water carrier. As a result, the latter provides a higher sample
throughput than water or 2% nitric acid. Precision is also improved. In addition, peak area
sensitivity and detection limit were improved three-fold when using an air-water instead of
water of 2% HNO3 carrier. This improvement did not only arise from a reduction or elimination
of dispersion; introduction of air into the carrier stream also translates into higher analyte
transport efficiency.
I36
ENHANCEMENT OF ELECTROTHERMAL VAPORIZATION COUPLED TO
INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY USING
NEBULIZATION/PRE-EVAPORATION FOR THE DIRECT ANALYSIS OF GLUTINOUS
RICE FLOUR. Nausheen Sadiq, Farhad Kaveh, Lily Huang and Diane Beauchemin, Queen’s
University, Department of Chemstry, Kingston, ON K7L 3N6, Canada.
([email protected])
Glutinous rice flour is consumed by millions of individuals around the world. Many specialty
items are created from this ground rice flour, which contains many of the same essential and
toxic elements as rice. For this reason, it is essential to know what the contents of glutinous rice
flour are. The use of solid sampling electrothermal vaporization (ETV) coupled to inductively
coupled plasma optical emission spectrometry (ICP-OES) allows for a quick and simple
analysis, precluding the need for time-consuming acid digestion that is dangerous and can lead
to loss of analyte. However, the amount of sample that can be introduced without extinguishing
the plasma is limited to about 4 mg, which in turns leads to relative standard deviations of 1020%. This work will show that increasing plasma robustness through the simultaneous
introduction of pre-evaporated water aerosol (i.e. along with the dry aerosol produced by ETV)
allows for the introduction of twice the amount of sample without extinguishing the plasma.
This combined setup will be compared to conventional ETV for the determination of the total
amount of toxic and essential elements in three different brands of glutinous rice flour, one of
which is organic. Not only are sensitivity and detection limits improved, but aqueous standard
solutions can be used for external calibration instead of solid reference material. This enables
the determination of a greater number of elements, which are no longer restricted to those with
certified concentrations in the reference material. This significantly increases the applicability
of solid sampling ETV-ICP-OES.
I37 P
OPTIMIZATION OF SAMPLE INTRODUCTION INTO ICP-OES USING AN
ULTRASONIC NEBULIZER WITH PRE-EVAPORATION TUBE. Tia Anderlini and Diane
Beauchemin Queen’s University, Department of Chemstry, Kingston, ON K7L 3N6, Canada.
([email protected])
Improvements were made to a sample introduction system for inductively coupled plasma
optical emission spectrometry (ICP-OES) using an ultrasonic nebulizer (USN) connected to an
infrared (IR) heated pre-evaporation tube (PET) and a sheathing device. This set-up was
previously optimized, with a minimum pre-evaporation temperature of 400°C, based on USNPET worked previously performed using heating tape, which had indicated that a higher
temperature than 400°C would be optimal. However, IR heating being much more efficient
than convective heating with heating tape, the results suggested that less than 400°C may in fact
be sufficient if not more optimal. The USN-PET(IR) method provides improved detection
limits and allows for the analysis of elements that are removed in the heater-condenser system,
such as Hg. Multivariate optimizations were conducted for 36 elements to find operating
conditions that improve sensitivity and detection limit. Additionally, improvements in plasma
robustness were assessed using the Mg II/Mg I intensity ratio, as this would facilitate the
accurate multi-element analysis of geological and environmental samples using a simple
external calibration with standard solutions without matrix matching.
I38
STRATEGIES FOR PLUTONIUM AND AMERICIUM MEASUREMENTS. R. J. Cornett,
Z.H. Kazi, X.L. Zhao, R.J. Charles, W.E. Kieser. Andre. E. Lalonde AMS Laboratory,
Departments of Earth Sciences and Physics, University of Ottawa, Ottawa, ON.
([email protected])
Isotopes of plutonium and americium must be separated from their matrix before they can be
measured using alpha spectroscopy (AS), mass spectroscopy (MS) or accelerator mass
spectrometry (AMS). We developed and tested a simple method to separate Pu and Am
isotopes from the sample matrix using a single N,N,N0 ,N0-tetra-n-octyldiglycolamide (DGA)
resin extraction chromatography column.
For maximum adsorption Pu was stabilized in the tetra valent oxidation state in 8 M HNO3
with 0.05 M NaNO2 before loading the sample onto the resin. Am(III) was adsorbed also onto
the resin from concentrated HNO3, and desorbed with 0.1 M HCl while keeping the Pu
adsorbed. The on-column reduction of Pu(IV) to Pu(III) with 0.02 M TiCl3 facilitated the
complete desorption of Pu. Interferences (e.g. Ca2+, Fe3+) were washed off from the resin bed
with excess HNO3.
The actinides in the column eluent were then measured by MS, AS or AMS. For AS and AMS
the Pu and Am were coprecipitated with NdF3. The AMS beams of fluoride anions were much
stronger than the oxide beams. The strongest AMS beams of Pu and Am were produced when
there was a large excess of fluoride donor atoms in the target. The measured concentrations of
239,240
Pu and 241Am agreed with the concentrations in standards of known activity and with two
IAEA certified reference materials. This work demonstrated that fluoride targets can produce
reliable beams of actinide anions and that the measurement of actinides using fluorides agree
with published values in certified reference materials. At the AE Lalonde AMS system strong
negative actinide molecular fluoride beams were easier to produce than the actinide oxide
beams.
I39 P
CERTIFIED REFERENCE MATERIALS AVAILABLE FROM THE NRC BIOTOXIN
METROLOGY PROGRAM. Pearse McCarron, Krista Thomas, Sheila Crain, Sabrina
Giddings, Daniel Beach, Pat LeBlanc, Ruth Perez Calderon, Nancy Lewis, Kelley Reeves,
William Hardstaff and Michael Quilliam, National Research Council Canada, Measurement
Science and Standards, Biotoxin Metrology, 1411 Oxford Street, Halifax, Nova Scotia, B3H
3Z1, Canada ([email protected])
Ingestion of shellfish contaminated with toxins can result in diarrhea, amnesia, paralysis and
even death. Routine monitoring prior to harvest is essential to ensure that seafood is safe for
consumption and is necessary for international trade. Other algal toxins, originating from
freshwater cyanobacteria, pose risks for drinking water. Testing for all these toxins requires
validated analytical methods, accurate calibration standards, certified reference materials
(CRMs) and a rigorous quality system. Marine toxins can be divided into two general
classifications: hydrophilic and lipophilic. The hydrophilic toxins include the domoic acid and
saxitoxin groups, which are responsible for amnesic shellfish poisoning (ASP) and paralytic
shellfish poisoning (PSP), respectively. The lipophilic toxins include the following groups:
okadaic acid and dinophysistoxins, pectenotoxins, azaspiracids, yessotoxins, and the cyclic
imines. Fresh and brackish water toxins comprise compounds from the microcystin,
cylindrospermopsin, anatoxin, and saxitoxin groups. This poster will provide an update on the
biotoxin CRMs available from Biotoxin Metrology and the methodology used to certify these
materials. There are two categories of materials: (a) calibration solution CRMs and (b) matrix
CRMs. The former are critical for instrument calibration, while the latter are important for
verifying the complete analytical method, from sample preparation and extraction through to
data analysis.
I40
CAPILLARY ELECTROPHORESIS MASS SPECTROMETRY FOR UNLABELED SERUM
GLYCANS. Roxana G. Jayo and David D. Y. Chen, Department of Chemistry, University of
British Columbia, Vancouver, BC, Canada ([email protected])
Glyco-profiling of serum glycoproteins is a promising strategy for identifying specific glycans
with potential biological roles. We used a recently reported method from our group based on
capillary electrophoresis-mass spectrometry using a flow-through microvial interface for
glycoprofiling of N-glycans released from human serum. We analyzed N-linked glycans, both
neutral and acidic, using a neutral-coated capillary and acidic background electrolyte
conditions. The high resolution and high mass accuracy provided by an ultrahigh resolution
TOF MS allowed the identification of more than 60 N-glycans. Under the conditions of the
analysis, baseline separation of isomeric N-glycans species was also achieved. To determine the
applicability of the method for monitoring glycan alterations in the context of malignancies,
prostate cancer (late-stage, III) and bronchial asthma serum samples were analyzed. A detailed
profile of the glycan composition and relative abundances across the samples revealed that
fucosylation and sialylation of N-glycans increased in abnormal serum samples in comparison
with control serum.
I41
FORENSIC ANALYSIS OF AUTOMOTIVE PAINT CHIPS BY SS-ETV-ICP-OES USING
LDA AND PCA. L. Huang and D. Beauchemin. Queen’s University, Department of
Chemistry, 90 Bader Lane, Kingston, ON K7L 3N6, Canada.
([email protected])
Direct solid sampling (SS) into an electrothermal vaporization (ETV) unit that is coupled to
inductively coupled plasma optical emission spectrometry (ICP-OES) is a technique that is
ideal for the analysis of forensic samples, as it requires mg amounts of sample with minimal
sample preparation. This was demonstrated in a proof of concept paper, where paint scrapings
from red vehicles could be correctly ascribed to the right vehicle brand by looking at the
relative signals of different elements obtained by SS-ETV-ICP-OES using multivariate
statistical techniques such as linear discriminant analysis (LDA) and principal component
analysis (PCA). No quantitation of the elements was required in order to discriminate samples.
During this presentation, improvements of the method will be described, which enable
matching of different coloured vehicles by manufacturer, colour, and year of production. The
sample throughput was also maximized by eliminating the drying step of the ETV temperature
program, which was really not required for the analysis of flakes of paints. The resulting
method should be useful for the forensic analysis of automotive paint chips to identify vehicles
involved in hit-and-run cases.
I42
PROBING NANOSCOPIC STRUCTURAL ALTERATIONS OF OVERLOADED
COLLAGEN FIBRILS WITH ATOMIC FORCE MICROSCOPY. Samuel J Baldwin1,
Laurent Kreplak1,2, J. Michael Lee2 1Department of Physics and Atmospheric Science,
Dalhousie University, Halifax, NS, Canada 2School of Biomedical Engineering, Dalhousie
University, Halifax, NS, Canada ([email protected])
Connective tissues derive their tensile strength from fibrous proteins in their extracellular
matrix. One such family of proteins are the fibril forming collagens which form hierarchical
rope like structures to provide tensile strength to tissues. The fundamental unit of the collagen
hierarchical structure is the collagen fibril, a nanoscale linear aggregate of collagen molecules
which can span millimetres in length. Due to the functionality of connective tissue, mechanical
overload and subsequent damage is a common occurrence. Probing the nanoscopic structure of
overloaded tendon has revealed a structural alteration of collagen fibrils due to overload. This
structural alteration, termed discrete plasticity, is characterized as periodic kink deformations
along individual collagen fibrils within overloaded tendon [1].
Applying previously described techniques facilitated by atomic force microscopy, moduli maps
of hydrated native and kinked collagen fibrils sourced from five bovine tails were acquired.
These moduli maps serve as a molecular density probe of the collagen fibrils [2]. The resulting
data shows that discrete plasticity results in a lower molecular density of collagen fibrils.
Average moduli values of 16.9 Mpa, 7.1 Mpa, and 2.2 Mpa for the native, kinked (<1.5
kink/µm), and very kinked (>1.5 kink/µm) sample groups (p<.0001). This correlates well with
the swelling ratio (hydrated/dehydrated height) of the same three groups, suggesting that the
change in modulus is associated with increased water content of the kinked collagen fibrils.
[1] Veres, S. P./ (2012 Biophys J. 102(12):2876-2884
[2] Baldwin, S. J.. (2014). Biophys J. 107(8):1794-1801
I43 P
ADVENTURES IN MICROWAVE DIGESTION. Andrew Dalton, SCP SCIENCE, 21800
Clark-Graham, Baie D’Urfé, QC H9X 4B6 ([email protected])
Presentation of various digestion methods for canned vegetables, highlighting recoveries of
metal and elemental impurities by ICP-OES / ICP-MS. A comparison of acid based digestion
recipes will be considered as well, using microwave digestion with SCP SCIENCE
NovaWAVE Research Microwave unit.
I44
COMMERCIAL AND CUSTOM MADE MIRCOSTRUCTURED FIBRE BASED
EMITTERS FOR (MULTI) ELECTROSPRAY IONIZATION MASS SPECTROMETRY ON
A MICROFLUIDIC DEVICE. Lili Mats, Yueqiao Fu, Kyle Bachus, Graham Gibson and
Richard Oleschuk, Queen’s University, Kingston, ON. ([email protected])
Many analytical, chemical and biological applications require rapid and sensitive analysis on a
limited amount of sample, where high reproducibility is desired, rendering mass spectrometry a
technique of choice. Due to its versatility, mass spectrometry, particularly electrospray
ionization (ESI), is one of the most commonly used ionization techniques, applicable for the
analysis of both small molecules and large proteins. The sensitivity of ESI is determined by
efficient transition of ions into the gas phase under applied potential, where the shape of the
emitter, solvent composition and applied potential determine spray stability and efficiency.
Typically, a narrow tapered emitter with the channel size of several microns is used, however
clogging and instability can limit their performance. Our group has proposed the use of
multichannel emitters that can produce stable and robust ionization spray and are resistant to
clogging1. These emitters are based on microstructured optical fibres (MSFs), which feature an
array of uniform channels within a capillary format that form from heating and pulling a bundle
of capillaries i.e. 59abelin. The composition of the fibre itself can be altered to contain regions
of doped silica to tailor optical and chemical characteristics for specific applications. In this
study a custom fibre with regions of boron-doped silica was fabricated to allow the use of
differential etching to produce specific geometries at the fibre tip. A further increase in
sensitivity could be achieved by using a multiple electrospray (MES) approach, where several
independent Taylor cones, formed on the same emitter, can increase the sensitivity proportional
to the total number of cones according to Itotal = √n * Iindividual. We have demonstrated several
approaches to producing MES, including etching of commercially available MSFs, custommade polymer based MSFs and modifying the channels to include polymeric protrusions2.
However, best performance is achieved with our custom designed fibre which is composed of
various silica types that can be etched at different rates to form the geometry required for MES
formation. A fabrication technique for these new emitters is developed, along with systematic
characterization of their performance in offline and online modes. We also present an integrated
microfluidic device capable of online chromatographic separation and MS detection via a
coupled MSFs-based emitter. This microchip represents further development of sensitive smallscale integrated separation and detection devices.
[1] Su, S.; Gibson, G.T. T.; Mugo, S.M.; Marecak, D.M.; Oleschuk, R.D. Anal. Chem., 2009,
81, 7281-7287
[2] Fu, Y., Gibson, G.T.T., Oleschuk, R.D. J. Mater. Chem., 2012, 22, 8147-8148.
I45
FURTHER INVESTIGATION OF POLYDOPAMINE GROWTH ON NANOPARTICLES IN
WATER – ELECTROPHORESIS IN CHITOSAN-COATED CAPILLARY. Edward P.C.
Lai and Zafar Iqbal. Department of Chemistry, Carleton University, Ottawa, Canada.
(([email protected])
Capillary electrophoresis (CE) is a highly efficient separation technique useful for the analysis
of nanomaterials in water. A new method based on polydopamine (PDA) growth was
developed two years ago towards trace analysis of nanoparticles in aqueous suspension. Using
colloidal silica (SiO2) as a model inorganic oxide, the growth of PDA on SiO2 nanoparticles at
Ph 13 and 90°C completes rapidly within 15 minutes. The thick coating of PDA afforded strong
UV absorbance, increasing the detection sensitivity by several hundred folds. The size
distribution of SiO2@PDA particles was also narrow to produce a sharp peak, allowing for
efficient CE separation from other organic compounds that might be present in environmental
or industrial water. The PDA growth kinetics has further been investigated at neutral Ph and
room temperature over an extended period of several months. Chitosan can be used to coat the
inside wall of a fused silica capillary for the CE determination of PDA-coated SiO2 and other
nanoparticles. The goal is to successfully determine these nanoparticles under negative polarity
with higher efficiency to enhance their analytical separation and detection sensitivity. A
feasibility study will also be conducted in our lab to explore the stop-flow technique as a new
approach to probe their dielectrophoretic properties based on the core-shell structure
hypothesis.
I46
RECENT INNOVATIONS IN LIQUID SAMPLE INTRODUCTION FOR ICPMS AND
ICPOES.
Andrew Toms and Paul Field; Elemental Scientific Inc., Omaha NE
([email protected])
A new, automated analysis system for ultratrace determination of low and sub-ppt metals in
high matrix samples is described. Simple external autocalibration from a single multielement
stock standard eliminates common sources of contamination for ultratrace metals
determination. Inline, automatic matrix matching provides exceptional accuracy. Metals may be
measured in up to three modes: preconcentration and matrix removal, direct analysis with inline
dilution, and hydride generation.
A newly designed syringe driven, flow injection system precisely and accurately loads a loop
and then smoothly injects this into a nebulizer at defined rates from 10-1000 µL/min. The flow
injection valve system selects from two discrete parallel flow paths for standard and samples.
This allows rapid switching between sample and standard solutions with minimal dead volume
between the valve and the nebulizer. The result is increased sample throughput, as well as
improving sample utilization for the lowest flow injection rates. External reproducibility is
improved for the smallest absolute sample amounts using low volume solution aliquots.
I47
ELECTROPHORESIS IN CHITOSAN-COATED CAPILLARY:
SEPARATION OF
DIETHYLENETRIAMINEPENTAACETIC
ACID
FROM
VARIOUS
PHARMACEUTICALS IN WATER. Edward P.C. Lai, Manal Almalki and Zafar Iqbal.
Department of Chemistry, Carleton University. ([email protected])
Diethylenetriaminepentaacetic acid (DTPA) is available in the market as pentasodium salt that
is widely applied in many industries as a metal ion chelator and scavenger. As this chemical
does not degrade in wastewater treatment plants, a significant amount of DTPA is released into
the aquatic environment among a variety of pharmaceuticals. This has led to the development
of analytical separation methods such as capillary electrophoresis (CE) to determine its levels in
paper mill wastewater. Improvement of CE for higher efficiency towards better resolution in
the analysis of free and metal-DTPA complexes is the main research focus in this work.
Analysis of DTPA by capillary electrophoresis was not efficient under positive polarity.
Chitosan was previously used to coat the inside wall of a fused silica capillary for the CE
determination of proteins. This inexpensive hydrophilic basic polysaccharide seemed to be a
good alternative to commercially available coating materials that were cost-ineffective.
Determination of DTPA in water with a chitosan-coated capillary is being conducted in our lab.
The capillary coating conditions are optimized for the best separation from cationic, neutral and
anionic pharmaceuticals including aminophylline, dyphylline, metformin, mexiletine,
phenformin and ranitidine. DTPA can successfully be determined under negative polarity in a
chitosan-coated capillary. A feasibility study will also be conducted in our lab to explore the
stop-flow technique as a novel approach that enhances the separation efficiency further, for
comparison with cetyltrimethyl ammonium bromide assisted sample stacking.
I48
DEVELOPMENT OF PRACTICAL AND EFFECTIVE ANALYTICAL APPROACHES FOR
PRODUCT AUTHENTICATION OF HERBAL MEDICINES AND NATURAL HEALTH
PRODUCTS. Rob O’Brien1,2 , Anderson Smith2 and Chuck Chang1, 1ISURA – http://isura.ca,
2
Supra Research and Development – http://SupraRnD.ca ([email protected])
Early in 2014, the Dietary Supplement and Natural Health Product industry in the United States
was sent into crisis mode when the New York state attorney general ordered GNC, Target,
Walgreens and Walmart, to remove several herbal remedies from their shelves after testing
showed that they lacked the main ingredients indicated on the labels. Since then more than a
dozen other attorney generals across the US have requested a congressional inquiry into the
herbal supplement industry. Given that this industry generates over $32 billion a year in sales,
product authentication of herbal products is now a significant issue. However, the testing that
New York state attorney general relied on to demonstrate that 80% of products tested were
fraudulent was DNA Barcoding. In many cases, the products tested were extracts which had
little or no probability of containing the original plant DNA from the source herb.
This talk will review the range of analytical approaches available for product authentication and
also highlight research into new approaches. These approaches include GCMS, LCMS, HPLC,
Chiral purity profiling, GC-Combustion-IRMS and Qpcr. Data will be presented that
demonstrates the limitation of many of the current US pharmacopeia methodologies. We will
also explore the limitations of the current testing to prove Non-GMO claims and recommend
alternate solutions.
I49
DIRECT MEASUREMENT AND ON-LINE MONITORING OF PHARMACEUTICALS
AND NAPHTHENIC ACIDS USING MEMBRANE INTRODUCTION MASS
SPECTROMETRY. Kyle D. Duncan, Dane R. Letourneau, Greg W. Vandergrift, Chris G.
Gill, Erik T. Krogh, Applied Environmental Research Laboratories (AERL), Department of
Chemistry, Vancouver Island University, Nanaimo, BC and Chemistry Department, University
of Victoria, Victoria, BC ([email protected])
Membrane introduction mass spectrometry has been employed for the simultaneous detection
of multiple analytes in complex samples without clean-up or chromatography. A semipermeable membrane acts as an interface between aqueous samples and a solvent acceptor
phase. Analytes that permeate the membrane are continuously transferred to an ambient
ionization source and resolved by a triple quadrupole mass spectrometer in selected ion mode
(SIM) or by tandem mass spectrometry (MS/MS). We report the use of a polydimethylsiloxane
hollow fibre membrane mounted on a probe interface that can be immersed directly into an
aqueous sample. A methanol acceptor phase is passed through the lumen and directly infused
into an electrospray ionization source. The membrane excludes much of the sample matrix
reducing ionization suppression effects and improving sensitivity. Performance characteristics
for several compounds classes, including representative phenols and carboxylic acids of
environmental and biological relevance, will be presented. The effect of Ph adjustments and use
of an internal standard in the acceptor phase solvent will be described for sub-ppb quantitation
in negative ion mode. The technique allows for the rapid screening of m/z profiles and on-line
quantification of complex naphthenic acid mixtures associated with oil sands processed waters
within minutes. Applications of the technique as a pre-screening tool and as an in-situ monitor
of removal rates on adsorbents and by photo-oxidation will also be presented.
I50 P
ANALYSIS OF POTENTIALLY TOXIC AND ESSENTIAL ELEMENTS IN COUSCOUS
SAMPLES FROM LIBYA USING ICP-MS AND ICP-OES. Mabrok Salem and Diane
Beauchemin, Queen’s University, Department of Chemistry, 90 Bader Lane, Kingston, ON
K7L 3N6, Canada. ([email protected])
Couscous, which is made of semolina and flour, constitutes a primary food staple in many
Arabic countries (such as Libya, Tunisia, Algeria, and Morocco), as well as the second most
popular dish in France and other parts of the world. It is thus important to ensure its safety for
consumption. An approach that can be used for realistic risk assessment involves three steps.
First, total concentrations are measured to check if any potentially toxic element is above the
maximum level recommended. Second, the bio-accessibility of the latter is determined.
Finally, speciation analysis is performed for elements whose toxicity depends on their chemical
form. This work reports preliminary results from the first two steps for both potentially toxic
(As, Cd, Cr, Hg, Pb, Se) and essential elements (Al, Co, Fe, Li, Mg, Mn, Mo, Ni, S, Zn) in
couscous from different geographical Arabic regions. Depending on the levels, analysis was
carried out by inductively coupled plasma mass spectrometry or optical emission spectrometry
following closed vessel digestion for total concentrations or a conventional batch method,
involving sequential extraction with artificial saliva, gastric juice and intestinal juice, for the
maximum bio-accessible fraction. The results show that both the total and bio-accessible
concentrations of elements vary greatly depending on cooking method and geographic location.
I51
CAPILLARY ELECTROPHORETIC DETERMINATION OF CHLORIDE AND SULFATE
IN HIGHLY SALINE OILFIELD WATER USING BILAYER-COATED CAPILLARIES
AND INDIRECT ABSORPTION DETECTION. Kingsley K. Donkor1, Zhi C. Guo1, Laiel C.
Soliman1, Yuen Ting Law1, Jessica M. Risley2, Kenneth J. Schmidt3, H. John Crabtree4, Neil A.
Warrender3, 1Department of Physical Sciences, Thompson Rivers University, Kamloops, BC;
2
Department of Chemistry, UBC, Vancouver; 3Wilson Analytical Services,Sherwood Park, AB;
4
HJC Consulting Inc., Edmonton, AB. ([email protected])
Analysis of highly saline oilfield waters for anions presents challenges. Traditional analytical
techniques used for such analysis tend to suffer from both poor sensitivity and selectivity due to
the high concentrations of salt present in the samples. A capillary electrophoresis method was
developed for the simultaneous determination of chloride and sulfate anions which is relevant
to the oilfield analysis industry and of economic value. A baseline separation (R s > 1.5) of
chloride and sulfate was achieved by using a capillary with a noncovalently bound bilayer
coating using Polybrene, a cationic polymer, and sodium dodecyl sulfate (SDS), an anionic
surfactant and a buffer consisting of 50 Mm TRIS, 30 Mm sodium dodecyl sulfate (SDS), 5%
methanol and 26 Mm chromium trioxide at Ph 6.7. To mimic possible oilfield water samples,
model water solutions of 5%, 10%, 15%, and 20% chloride containing low ppm sulfate were
prepared and successfully analyzed using the method developed. In addition, the method was
applied to determining chloride and sulfate anions in highly saline oilfield water samples. The
accuracy of the method developed was verified by analyzing NIST certified standards of
chloride and sulfate.
I52 P
POLYMER COATINGS FOR SENSITIVE ANALYSIS OF COLLOIDAL SILICA
NANOPARTICLES IN WATER. Samar Alsudir, Edward P.C. Lai. Department of
Chemistry, Carleton University. ([email protected])
A new analytical approach has been developed for the sensitive detection of trace nanomaterials
in water using silica as model inorganic nanoparticles. Our novel approach is based on coating
of the nanoparticles with a polymer to make them larger in size for better UV light absorption.
These polymer-coated nanoparticles can be separated from the monomer and polymer by
capillary 63abeling63ates63s (CE) due to differences in their ionic charge, size, and surface
functionality. Controlled polymerization of 2-hydroxypropyl 63abeling63ates (HPMA) on silica
nanoparticles increased their UV detection sensitivity by 5-7 folds. A second coating with
polydopamine produced an extra 2-fold increase of the UV detection sensitivity. With both
polyhydroxypropyl 63abeling63ates and polydopamine coatings, a significant total
enhancement of 10-14 folds in detection sensitivity was attained. Alternatively, addition of
bisphenol A or polyvinyl alcohol to the HPMA-polymer-ization mixture resulted in 9-10 fold
increase of SiO2 detection sensitivity due to additional absorption of the UV detector light.
I53
EMBEDDED CHEMOMETRICS FOR HANDHELD ANALYZERS: EXAMPLES FROM
RAMAN, FTIR, AND MS. Christopher D. Brown, 908 Devices, Boston, MA
([email protected])
Just as our telephones and computers have become more powerful, portable, and easier to use,
so have the tools found in most analytical laboratories. Technologies such as FTIR, Raman,
XRF and mass spectrometry have been shrunk from dishwasher-sized laboratory instruments to
handheld devices that can be taken to the point-of-need by non-chemists. The most widely used
of these next-generation systems have been deployed by the tens of thousands. Digital signal
processing, artificial intelligence, and chemometrics lies at the heart of these systems, and is
critical to facilitating use by non-experts in varied environments. This talk will provide a brief
overview of contemporary handheld analytical systems including Raman, FTIR and MS, and
discuss the chemometric challenges/solutions used in these field devices.
I54
BIOFILM STREAMER FORMATION IN LOW REYNOLDS NUMBER FLOWS. Aloke
Kumar, Department of Mechanical Engineering, University of Alberta, Alberta, Canada.
([email protected])
One of the central puzzles concerning the interaction of low Reynolds number (Re<<1) fluid
transport with bacterial biomass is the formation of filamentous structures called streamers.
Paradoxically experiments have shown that these streamers can form in two distinct
experimental time-scales – (a) either when experimental time scales far exceed the rheological
relaxation time scales for biofilms or (b) when experimental time scales are much lesser than
the rheological relaxation time scales for biofilms. We explain this paradox by showing that
when streamer formation time scales are much larger than the rheological time scales, streamer
formation occurs due to the viscous response of the viscoleastic biofilms. We also provide
results from our own initial experiments that indicate towards the validity of this ``liquidstate’’
hypothesis. From our experiments we also show that streamer formation can occur through
large deformation of bacterial flocs. In sharp contrast to the biofilm mediated streamers, these
streamers form over extremely small timescales (less than a second). Our experiments, carried
out in a microchannel with micropillars rely on fluorescence microscopy techniques to illustrate
that floc-mediated streamers form when a freely-moving floc adheres to the micropillar wall
and gets rapidly sheared by the background flow. The subsequent large deformation of the floc
due to the background shear is well characterized through the use of tracer particles. Hence, in
this talk we will show how biofilm streamers can form through multiple physical mechanisms
in creeping flows.
I55 P
ENHANCED SELECTIVITY OF A MOLECULARLY IMPRINTED POLYMER TOWARD
ITS TARGET MOLECULE VIA ESTERIFICATION OF NON-SPECIFIC BINDING SITES
WITH DIAZOMETHANE. Noof A. Alenazi, Edward P.C. Lai and Jeffrey M. Manthorpe.
Department of Chemistry, Carleton University. ([email protected])
Diazomethane (CH2N2) was used to methylate the non-specific binding sites of molecularly
imprinted polymer (MIP) particles prepared using methacrylic acid (MAA) as the functional
monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker and bisphenol A (BPA)
as the template. After removal of BPA by triethylamine, the treated molecularly imprinted
polymer (TMIP) particles were tested for binding selectivity towards BPA and other organic
compounds by capillary electrophoresis with ultraviolet detection (CE-UV). Even in the
presence of compounds that were positively charged, neutral or negatively charged in the
background electrolyte, BPA was selectively bound with the highest efficiency. A significant
decrease in the affinity for metformin (MF, a positively charged compound) was observed. 13C
NMR spectra and electrophoretic mobility data provided strong evidence for the elimination of
non-specific –COOH binding sites in the TMIP particles. Only 8% of MF and 16% of
diclofenac sodium salt (DFC, a negatively charged compound) remained as non-specific
bindings due to hydrophobic interactions. Further comparison with poly(methyl
65abeling65ates) revealed the true merits of the TMIP, which exhibited minimal non-specific
bindings while preserving a high level of specific binding due to molecular recognition.
I56
LASER ABLATION COUPLED TO ICP TECHNIQUES FOR THE ANALYSIS OF
CATALYSTS. José-Luis Todolí,1 Ángela Villaseñor,2 Caroline Greatti1, 1Department of
Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03080 Alicante,
Spain, 2Total Research & Technology Gonfreville, Harfleur , 76700, France ([email protected])
The elemental determination in heterogeneous catalysts is of capital importance because
metals and metalloids affect the catalytic activity. Laser ablation (LA) associated to ICP-MS or
ICP-OES is a good approach that overcomes problems such as the complexity of some sample
dissolution procedures. Nonetheless, the numerous studies dealing with LA have revealed that
this sampling method suffers from segregation effects and non-spectral interferences.
Therefore, a calibration methodology providing accurate results is required.
In the present work, several alumina based hydrotreatment catalysts were analysed using LAICP-OES and LA-ICP-MS techniques. The laser ablation system was a Q-switched Nd:YAG
laser operated at 213 nm. Fractionation effects and calibration strategies were evaluated.
Results corresponding to crater and aerosol characterization by means of Secondary Electron
Microscopy instrument were correlated with the results corresponding to sensitivity.
I57 P
BLOOD ANALYSIS THROUGH ICP-MS EMPLOYING A TOTAL SAMPLE
CONSUMPTION SYSTEM. Águeda Cañabate,a Esperanza García-Ruiz,b Charo Flórez,b
Martín Resano,b Maite Aramendia,b,c Jose-Luis Todolí a ([email protected])
a
Deparment of Analytical Chemistry, Nutrition and Food Science, University of Alicante,
Carreta San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.
b
Department of Analytical Chemistry, University of Zaragoza ,Pedro Cerbuna 12, E-50009,
Zaragoza, Spain.
c
Centro Universitario de la Defensa, Academia General Militar, University of Zaragoza,
Carretera de Huesca s/n, 50090, Zaragoza, Spain.
In this work, studies related with the analysis of whole blood have been performed with the socalled High Temperature Torch Integrated Sample Introduction System (h-TISIS) coupled to
ICP-MS. Besides, a 50 cm3 inner volume cyclonic spray chamber has been taken as reference.
A Whole blood certified reference material has been analyzed with both systems and the results
reveal that h-TISIS provides much higher ion intensities than the reference system. Besides,
the elemental concentrations, obtained by using plain water standards, are closer to the certified
ones with h-TISIS. In other words, matrix effects are mitigated when using this device.
I58
INCREASING THE SAMPLE INTRODUCTION EFFICIENCY INTO INDUCTIVELY
COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY USING INFRARED
HEATING OF SCOTT DOUBLE-PASS SPRAY CHAMBER. Ahmed Al Hejami and Diane
Beauchemin, Queen’s University, Department of Chemistry, 90 Bader Lane, Kingston, ON
K7L 3N6, Canada. ([email protected])
A sample introduction system (consisting of a Scott double pass spray chamber and pneumatic
nebulizer) and the base of an integrated sheath torch were heated to 200 °C using a ceramic
infrared (IR) heater to improve the analytical performance of inductively coupled plasma
optical emission spectrometry (ICP-OES). Multivariate optimizations were conducted to find
operating conditions maximizing analyte sensitivity and plasma robustness. Under optimum
conditions, analyte sensitivities were around 4 fold those obtained at room temperature. The
improvement was larger for ionic emission lines than for atomic emission ones. The plasma
robustness, assessed using the Mg II/Mg I intensity ratio, increased as well. The effect on
detection limits will also be discussed.
I59
MULTIMODALITY MICROSCOPY GUIDED MICRO-RAMAN SPECTROSCOPY FOR
ACCURATE TARGETING AND BIOCHEMICAL ANALYSIS OF MICROSTRUCTURES
IN HUMAN SKIN IN VIVO. Haishan Zeng, Hequn Wang, Anthony Lee, David I. McLean,
Harvey Lui, Imaging Unit – Integrative Oncology Department, British Columbia Cancer
Agency Research Centre, Photomedicine Institute – Department of Dermatology and Skin
Science, University of British Columbia & Vancouver Coastal Health Research Institute,
Vancouver, BC, Canada ([email protected])
Acquiring confocal Raman spectrum of in vivo skin tissues takes tens of seconds. The
movement from the subjects could change the measurement volume, leading to non-specific
signals. This will undermine the interpretation accuracy of the acquired spectrum. Our
objectives are to develop an integrated system combining reflectance confocal microscopy
(RCM), multiphoton microscopy (MPM), and micro-Raman spectroscopy and to introduce a
method to achieve accurate spectral measurement and precise biochemical interpretation of the
spectra. This method includes (1) developing a multimodal system to achieve better
identification of interesting microstructures and real-time monitoring of every spectral
measurement with RCM imaging and MPM imaging; (2) performing region-of-interest
measurement by scanning the targeting tissue microstructure during spectral acquisition. The
developed system and method have been validated by measuring different microstructures of in
vivo human skin. Our results demonstrated great consistency between RCM/MPM images and
confocal Raman spectra. The superior quality of the images and spectra allows us to derive
blood flow velocity and blood glucose level. We believe that this new method is valuable for
realizing accurate microscopic spectral measurement/biochemical analysis and have great
potential to be adapted into skin clinic to achieve non-invasive measurement of a variety of
important biological parameters.
I60
FTIR SPECTROCHEMICAL IMAGING OF BIOLOGICAL SAMPLES; 2D AND 3D, FROM
MILLIMETER TO NANOMETER LENGTH SCALES. Kathleen M. Gough, Department of
Chemistry, University of Manitoba, Winnipeg, Canada ([email protected])
Spatial resolution in FTIR spectrochemical imaging of tissues is being pushed to, and beyond,
the diffraction limit. In this talk, results will be presented from our ongoing work in FTIR
spectrochemical imaging of tissues and cells with a thermal source Agilent FTIR microscope
and focal plane array detector with ~1×1 m2 at the sample plane (Findlay et. Al. Analyst
140:2493-2503 2015), and from our recent experiments in Synchrotron Infrared NanoSpectroscopy (SINS) at the Advanced Light Source, LBNL. Polarized FTIR imaging of
mechanically stressed, sub-rupture tendons show stress-induced alterations in the collagen fibril
nanoarchitecture. With high magnification FTIR imaging of brain tissue from control and
mouse models for Alzheimer’s disease we seek to identify spectral changes in hippocampal
neurons associated with early stages of the disease. Finally, we are developing FTIR
tomographic imaging of single cells, using our in-house designed tomography accessory. SINS,
which enables spectrochemical imaging with ~30 nm voxel resolution, is being used to probe
the thin (<200 nm) walls of wild type Aspergillus nidulans, and gene deletion strains wherein
single deletions responsible for biosynthesis of critical minor compounds have significant
effects on cell growth and morphology.
I61
EGFR-SPECIFIC NANOPROBE BIODISTRIBUTION IN MOUSE MODELES. Samia
Baroudi1, Maiara Castilho1,2, Allan Hupman1, Caroline Wood1, Christopher Lee1, Ian
Alwayn1, Kevin C. Hewitt1. 1Dalhousie University, 2Universidade do Vale do Paraíba.
([email protected])
In recent years novel methods of treating and imaging cancers using nanoparticles have been
proposed. Previous in vivo studies has shown that these types of nanoparticles induce an
immune response, leading to a build up of the particles in the liver and spleen, limiting the time
spent in circulation throughout the body. In an attempt to avoid an immune response we created
45nm silver and gold nanoparticles coated with alpha-Lipoic Acid (a-LA) or EGF (Epidermal
Growth Factor), which are molecules produced within the body. We injected these
nanoparticles into mouse models via the tail vein and collected the organs after 24 hours of
circulation. Mass spectroscopy was used to determine the particle distribution within each
organ. The a-LA coated nanoparticles were found in higher concentration in the liver and
spleen than in other organs. However, the mouseEGF-coated nanoparticles were found in low
concentration compared to the a-LA trials, even comparable to background level for the gold
nanoparticles. It appears by coating nanoparticles in mouseEGF helps to avoid an immune
response, keeping the particles in circulation through the body.
I62
PROTEOMIC AND METABOLOMIC ANALYSIS OF CHINESE HAMSTER OVARY
CELLS – PEERING INTO THE BIOLOGICS BLACK BOX. Devanand M. Pinto, Kenneth
Chisholm, Andrew Leslie, Susanne Penny, Patrick Murphy, Phuong Lan Pham, National
Research Council, Human Health Therapeutics, Halifax, Nova Scotia ([email protected])
Unlike traditional small molecule drugs that can be produced synthetically, biologics are
typically produced using animal cell lines, such as the Chinese Hamster Ovary (CHO) cell
lines. The cells are valued for their growth characteristics, such as high proliferation rates and
high cell density, as well as their ability to produce and secrete large amount of therapeutics,
such as humanized antibodies. In spite of being used to produce billions of dollars of
therapeutic biologics annually, cell growth is governed by empirical observations.
In this presentation, we highlight the use of mass-spectrometry based metabolomic and
proteomic methods to study the growth of CHO cells under a variety of experimental
conditions, include clonal variations, feed regimens and culture temperature. We focus on the
intracellular and extracellular metabolites and well as the intracellular proteome of the CHO
cells. Metabolomic analysis is conducted using a targeted approach using hydrophilic
interaction chromatography (HILIC) coupled to a triple quadrupole mass spectrometer operated
in the multiple reaction monitoring mode (MRM). Proteomic analysis was conducted using
both label-free and stable-isotope 68abeling approaches.
The utility of large scale mass spectrometry for optimization of CHO feed conditions will be
highlighted as will novel bioinformatics approaches for data analysis and feature selection.
I63
AIRBORNE SILICA AND TITANIUM DIOXIDE NANOPARTICLES: COLLECTION
WITH AQUEOUS SURFACTANT OR CHEMICAL REAGENT. Olaitan Edu and Edward
Lai. Department of Chemistry, Carleton University, Ottawa, Canada. ([email protected])
Silica (SiO2) and titanium dioxide (TiO2) nanoparticles are widely used in agricultural and
cosmetic and medical products. However, sampling devices are not readily available to help
environmental scientists assess the levels of these nanoparticles that have been emitted and
released to air by various sources. In this work, airborne particulates were bubbled through
water containing either a surfactant (sodium dodecyl sulfate) or chemical reagent (ammonium
molybdate + ascorbic acid) and transferred into an aqueous suspension. Changes in the UVvisible spectrum were measured for different concentrations of silica (1 to 5 mg/ml) and
titanium dioxide (1 to 3 mg/ml) nanoparticles at a fixed concentration of sodium dodecyl
sulfate (4 mg/ml) or ammonium molybdate/ascorbic acid (chemical reagent). Capillary
electrophoresis with UV detection at 190 nm verified the attraction between titanium dioxide
and dodecyl sulfate anions. A strong peak of UV light absorption at 311 nm was observed for
titanium dioxide nanoparticles added to the reagent. Silica nanoparticles did not react with the
reagent, even though the absorption peak at 280 nm varied linearly with their concentration. A
UV absorption peak at 328 nm verified the formation of a complex between the reagent and
dissolved silicate. Advantages of the sampling device include simple construction, low
surfactant or chemical reagent cost, and high collection efficiency.
I64
ANALYSIS OF FATTY ACID PROFILES OF PACIFIC COD IN THE GULF OF ALASKA
USING PRINCIPAL COMPONENT ANALYSIS AND PROJECTION PURSUIT. Wei Xia1,
Suzanne M. Budge1, Peter D. Wentzell2, Olav Ormseth3, Shiway Wang4, Kim Rand3,
1
Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS
B3H 4R2, Canada; 2Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2,
Canada; 3Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration,
Seattle, WA 98115, US; 4Sedna Ecological, Fairbanks, AK 99709, US ([email protected])
The fatty acid compositions of fish have been useful tools in the study of the marine
ecosystems. They are commonly used to investigate diet and its variation with geographical
effects and environmental conditions. Principal component analysis (PCA) is normally used to
reduce the dimensionality of the data set, which has been widely applied to identify groups of
fish in the data. Projection pursuit (PP) algorithm has been introduced more recently to search
for projections which are of interests in the high-dimensional data and therefore was considered
a potentially useful tool to analyze the fish groups. In this project, the fatty acid profiles of the
pacific cod (Gadus macrocephalus) in the Gulf of Alaska were analyzed by PCA and PP. The
optimization of the kurtosis was used as the PP index. According to the PCA and PP analyses,
little difference was observed between the fish in the eastern and western Gulf of Alaska. Year
and season were found to be more dominant factors in the fatty acid profiles of pacific cod.
Overall, PP gave better separations of the fish groups than PCA.
I65
SIMPLIFIED METHOD TO MEASURE PARTICLE SIZE BY SINGLE PARTICLE
INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ITS APPLICATION
TO THE ANALYSIS OF PT NANOPARTICLES USED AS CATALYST IN FUEL CELLS,
Ram P. Lamsal1, Stève Baranton2, Gregory Jerkiewicz1 and Diane Beauchemin1, 1Queen’s
University, Department of Chemistry, 90 Bader Lane, Kingston, ON K7L 3N6, Canada;
2
Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers,
France. ([email protected])
Because of their large surface area, nanoparticles are invaluable as catalyst in fuel
cells. However, the effect of nanoparticle size and shape on fuel cell performance is not well
understood because the characterization of such particles is challenging. During this
presentation, single particle (SP) quadrupole-based inductively coupled plasma mass
spectrometry (ICP-MS) will be presented as a powerful tool for the characterization of such
particles. Preliminary results will be presented on the analysis of Pt nanoparticles of 3 nm in
diameter. The high sensitivity of the Varian 820MS ICP-MS instrument easily allows particles
as small as 3 nm to be distinguished from the background. The use of flow injection analysis
will also be presented as a simple way to avoid having to perform the time-consuming
measurement of the sample introduction efficiency prior to each SP-ICP-MS analysis.
I66
ANALYSIS OF RAMAN HYPERSPECTRAL IMAGES OF HELA CELLS. Tobias K.
Karakach, Li-Lin Tay, National Research Council of Canada, Measurement Science and
Standards Portfolio ([email protected])
Hyperspectral imaging (HSI) is a by-product of the remote sensing technology employed by NASA
for space and earth exploration where spatial images are represented, at each pixel, by a spectrum at
more than 100 contiguous wavelengths. The approach extends traditional imaging from the visible
to other regions of the electromagnetic spectrum e.g. UV and IR, and has rapidly been adapted to
applications in the biomedical fields where it is used for non-invasively detecting the molecular
composition of cells and cellular organelles. For instance this work concerns the analysis of
hyperspectral images of HeLa cells acquired using confocal Raman microscopy. The data were
obtained using a system that integrated a sensitive Raman spectrometer (within a state-of-the-art
microscope setup) that allowed Raman microscopy with high spatial resolution to be achieved.
With this setup, a complete Raman spectrum at each image pixel was acquired generating Raman
images consisting of spectra at 1022 wavelengths. It was expected that such a setup would provide
detailed information of the molecular composition of these cells because of the high sensitivity
associated with confocal Raman microscopy and also because of the spatial information obtained by
collecting spectral data from many individual sample positions. The primary objective of this work
was to employ HSI to non-destructively study the presence and distribution of various cellular
materials such as nucleic acids, proteins and lipids within HeLa cells undergoing mitosis. Cells, at
four phases of the cell cycle (interphase, prophase, metaphase and anaphase), were analyzed this
way to obtain time course HSI. In contrast to IR and Raman spectroscopy, the analysis of Raman
HSI has not received as much attention in the chemometrics literature. Here we first characterized
the measurement noise in the data using a digital filter in order to determine their distributional
characteristics. Following this, the digitally filtered and unfiltered data were analyzed using
multivariate curve resolution to show the spatial distribution of different cellular materials and how
this distribution changes at different phases of mitosis.
LISTE DES CONFERENCIERS - INDEX OF SPEAKERS
Last, first names
Al Hejami, Ahmed
Alenazi, Noof A.
Anderlini,Tia
Arriaga, Edgar A.
Baldwin, Samuel J.
Beauchemin, Diane
Bélanger, Patrick
Bélisle, Stéphane
Blonski, Wayne
Bottaro, Christina S.
Bowser, Michael T.
Brown, Christopher D.
Carvajal, Alexandra
Cassap, Matthew
Chen, David D. Y.
Chen, Yijun
Clarisse, Olivier
Cornett, R. J.
Craig, Douglas B.
Dalton, Andrew
De La Calle, Inmaculada
Donard, Olivier F. X.
Donkor, Kingsley K.
Dovicki, Norman J.
Dumas, Pierre
Dykeman, John
Edu, Olaitan
Gouda, Ayman A.
Gough, Kathleen M.
Greener, Jesse
Guthrie, Jeffrey W.
Harrison, Christopher R.
Hou, S.
Huang, Lily
Jericho, M.H.
Karakach, Tobias K.
Kreplak, Laurent
Abstract
I58
I55
I37
I32
I42
S20
I65
S05
S10
I31
I16
I19
I53
I12
I07
I40
I20
S12
S11
I38
I03
I43
I34
S14
S16
I51
I01
S19
S15
I33
I63
I04
I60
I23
I27
I05
I08
I41
I13
I66
I06
Session, day, location
Atomic spectro., Friday a.m., room xxx
Poster, Wednesday, room L290
Poster, Wednesday, room L290
Separations/MS, Tuesday p.m., room xxx
Micro imaging, Wednesday p.m., room xxx
Spéciation, mercredi p.m., Salle xxx
Nanoparticles, Thursday a.m., room xxx
Spéciation, mercredi p.m., Salle xxx
Spéciation, mercredi p.m., Salle xxx
Vendors showcase, Thursday p.m., room xxx
Separations/MS, Tuesday p.m., room xxx
Separations/MS, Wednesday a.m., room xxx
Data analysis, Tuesday p.m., room xxx
Poster, Wednesday, room xxx
Atomic spectro., Thursday a.m., room xxx
Separations/MS, Wednesday a.m., room xxx
Micro imaging, Wednesday a.m., room xxx
Applic. Environ.., mardi p.m., Salle xxx
Applic. Environ.., mardi p.m., Salle xxx
Atomic spectro., Friday a.m., room xxx
Separations/MS, Tuesday p.m., room xxx
Poster, Wednesday, room xxx
Nanoparticles, Thursday a.m., room xxx
Etat de l’art, mardi a.m., Salle xxx
Affiches, mercredi, Salle xxx
Separations/MS, Wednesday a.m., room xxx
Separations/MS, Tuesday a.m., room xxx
Spéciation, mercredi p.m., Salle xxx
Intro. d’échantillons, mercredi a.m., Salle xxx
Vendors showcase, Thursday p.m., room xxx
Nanoparticles, Thursday a.m., room xxx
Separations/MS, Wednesday p.m., room xxx
Biomed. spectro., Tuesday a.m., room xxx
Micro imaging, Wednesday p.m., room xxx
Image analysis workshop, Thu. a.m. room xxx
Separations/MS, Tuesday p.m., room xxx
Separations/MS, Tuesday p.m., room xxx
Data analysis, Tuesday p.m., room xxx
Atomic spectro., Friday a.m., room xxx
Micro imaging, Wednesday a.m., room xxx
Data analysis, Tuesday p.m., room xxx
Micro imaging, Wednesday a.m., room xxx
Krogh, Erik T.
Krylov, Sergey N.
Krylova, Svetlana M.
Kumar, Aloke
Kutscher, Daniel
Lai, Edward P. C.
Lamsal, Ram P.
Lee, Christopher
Masset, Adeline
Masson, Pierre
Mats, Lili
McSheeny Ducos, Shona
Miled, Amine
O’Brien, Rob
Pinto, Devanand M.
Quémet, Alexandre
Quilliam, Michael A.
Sadiq, Nausheen
Salem, Mabrok
Séby, Fabienne
Soulé, Patrice
Todolí, José-Luis
Toms, Andrew
Turgeon, Keven
Tyson, Julian
Waldron, Karen C.
Wee, Pamela
Wentzell, Peter D.
Whitty-Léveillé, Laurence
Wicks, Chelsi C.
Xia, Wei
Yu, Tong
Zeng, Haishan
Zhang, Hongquan
I49
I10
I21
I54
I11
I47
I54
I45
I35
I61
S03
S05
S02
S04
I44
I09
I24
I48
I62
S01
I28
I39
I36
I50
S13
S06
S09
S08
I57
I56
I46
S17
I30
I02
I14
I18
I25
S07
I26
I64
I29
I59
I17
Separations/MS, Wednesday p.m., room xxx
Separations/MS, Wednesday p.m., room xxx
Separations/MS, Wednesday p.m., room xxx
Micro imaging, Wednesday p.m., room xxx
Atomic spectro., Thursday a.m., room xxx
Separations/MS, Wednesday p.m., room xxx
Nanoparticles, Thursday a.m., room xxx
Nanoparticles, Thursday a.m., room xxx
Poster, Wednesday, room xxx
Biomed. spectro., Tuesday a.m., room xxx
Intro. d’échantillons, mercredi a.m., Salle xxx
Affiches, mercredi, Salle xxx
Intro. d’échantillons, mercredi a.m., Salle xxx
Affiches, mercredi, Salle xxx
Separations/MS, Wednesday p.m., room xxx
Atomic spectro., Thursday a.m., room xxx
Micro imaging, Wednesday p.m., room xxx
Separations/MS, Tuesday a.m., room xxx
Separations/MS, Wednesday a.m., room xxx
Applic. environ.., mardi p.m., Salle xxx
Separations/MS, Tuesday a.m., room xxx
Poster, Wednesday, room xxx
Atomic spectro., Friday a.m., room xxx
Poster, Wednesday, room xxx
Applic. environ.., mardi p.m., Salle xxx
Affiches, mercredi, Salle xxx
Etat de l’art, mardi a.m., Salle xxx
Intro. d’échantillons, mercredi a.m., Salle xxx
Poster, Wednesday, room xxx
Atomic spectro., Friday a.m., room xxx
Vendors showcase, Thursday p.m., room xxx
Applic. environ.., mardi p.m., Salle xxx
Atomic spectro., Thursday a.m., room xxx
Separations/MS, Wednesday a.m., room xxx
Atomic spectro., Thursday a.m., room xxx
Vendors showcase, Thursday p.m., room xxx
Data analysis, Tuesday p.m., room xxx
Applic. environ.., mardi p.m., Salle xxx
Data analysis, Tuesday p.m., room xxx
Data analysis, Tuesday p.m., room xxx
Micro imaging, Wednesday a.m., room xxx
Biomed. spectro., Tuesday a.m., room xxx
Separations/MS, Tuesday p.m., room xxx