Rotation des corps et déformations de marée

Transcription

Rotation des corps et déformations de marée
Librations
3 layers model
Application to Titan
Rotation des corps et déformations de marée
Andy Richard
Direction: N. Rambaux, J. Laskar
Elbereth 2013
25 novembre 2013
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
How to destroy a planet with a Death Star?
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Synchronous orbit
Satellite evolving on a circular orbit
Synchronous rotation: ω = n
ω: rotation frequency
n: orbital frequency
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Synchronous orbit
Satellite evolving on a circular orbit
Synchronous rotation: ω = n
ω: rotation frequency
n: orbital frequency
Consequence:
Orientation with respect to the planet is
conserved
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Eccentric orbit
Ψ = f − θ : Direction of the planet in the satellite frame
f : true anomaly, θ: rotation angle of the satellite
Libration: Variations around the uniform rotation of the satellite
Synchronous rotation: θ = M + γ (M: mean anomaly, γ: libration angle)
Then: Ψ = f − M − γ ∼ 2e sin M + 0(e2 ) with e the eccentricity
Restoring torque proportional to Ψ induces a librational response γ (Goldreich 1966)
A. Richard
Rotation des corps
logo
Librations
3 layers model
Application to Titan
Many parameters influence the libration:
Internal structure of the satellite
Orbital perturbations
Surface forcing (atmosphere)
⇓
Tool to study the internal structure of icy satellites
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Icy satellites
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Elastic case
Elastic response: the surface deforms instantaneously under the influence of tidal
potential
Restoring torque is maximal
Restoring torque is null
Radial elastic deformation ur of the surface with Love formalism (1911):
ur =
h2
V2
g(R)
where h2 is the Love number, g(R) the surface gravity and V2 the tidal potential
A. Richard
Rotation des corps
logo
Librations
3 layers model
Application to Titan
Obtained librations
High amplitudes librations: Low frequencies (∼ 1 km), diurnal librations (∼ 500 m in
the rigid case, ∼ 50 m in the elastic case)
A. Richard
Rotation des corps
logo
Librations
3 layers model
Application to Titan
Libration spectrum
Frequencies contained in the librational motion:
Quasi-periodic approximation of the orbital
P motion (frequency analysis: Laskar, 1988):
f − M = j Hj sin(ωj t + αj ).
Titan’s orbit eccentricity / Perturbations: Diurnal frequencies
Saturn’s orbital motion: Seasonal frequencies
Elasticity: Low frequencies
A. Richard
Rotation des corps
logo
Librations
3 layers model
Application to Titan
Conclusion
Summary:
Librations: Oscillations around the uniform rotation of the satellite
Importance of the rheology to modelize the restoring torque exerted by the
planet on the satellite figure
At low frequencies, the libration follows the orbital forcing (rigid or elastic cases).
The diurnal libration is strongly reduced for an elastic satellite compared to a
rigid one: informations on the internal structure
Some librations at low frequencies containing informations on the internal
structure appears for an elastic satellite.
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Libration amplitudes
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Couplage atmosphérique
Echange et transfert de moment angulaire
avec la surface: couplage atmosphérique
Global Circulation Model (Tokano
2005)
Titan IPSL GCM
(Lebonnois et al. 2012, Charnay et
al. 2012)
Thomson Higher Education, 2007
Insolation de l’atmosphère entraîne des
mouvements convectifs: cellules de
Hadley
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Cas d’un satellite rigide
~
dH
dt
= ~Γ
~ = [I]~
H
ω : Moment cinétique, ~Γ: Couple de
force appliqué au système
Satellite à 3 couches (s: shell, i: inner core)
Equations de la libration linéarisées pour un
satellite rigide (Van Hoolst et al., 2008):
Cs γ¨s + Kint,s γs − Kint γi = Ks (f − M) + ΓA ,
Ci γ̈i + Kint,i γi − Kint γs = Ki (f − M) ,
Rouge: Couple gravitationnel exercé par la planète sur les couches solides
Bleu: Couplage gravitationnel interne dû au déphasage des couches solides
Vert: Couple atmosphérique exercé sur la surface (Charnay et al. 2012)
logo
A. Richard
Rotation des corps
Librations
3 layers model
Application to Titan
Effet de l’élasticité
Variation périodique du potentiel de marée à la fréquence orbitale n=
Forme du corps périodique & Amplitude des couplages périodique
A la fréquence orbitale, au 1er ordre en eccentricité:
Cs γ¨s + Kint,s γs − Kint γi = 2e(Ks − ∆Ks ) sin M ,
Ci γ̈i + Kint,i γi − Kint γs = 2e(Ki − ∆Ki ) sin M ,
p/s
p
avec ∆Ks = 12 32 Ks + 13 Kint − nĊs et par exemple
p/s
Kint
=
24πG
5
R
Z
ρ(r )
ri
d
(d̃(r ))dr [(Bi − Ai ) − (Bi0 − A0i )]
dr
Effet de l’élasticité:
A la fréquence orbitale, le couplage gravitationnel exercé sur les couches solides est
réduit.
Dans un cas pratique:
La libration est-elle détectable?
Quelles informations sur la structure peut-on en tirer?
A. Richard
Rotation des corps
logo
Librations
3 layers model
Application to Titan
Influence de la coquille
Libration diurne
Paramètre dominant pour un modèle rigide: épaisseur de la coquille de glace
Pas vrai pour un modèle élastique
Excentricité de l’orbite de Titan / Perturbations: Fréquences diurnes
Mouvement orbital de Saturne: Fréquences saisonnières
Elasticité: Basses fréquences
A. Richard
Rotation des corps
logo