Ecoulements multiphasiques
Transcription
Ecoulements multiphasiques
Ecoulements multiphasiques Benoit Oesterlé Prof. ESSTIN – Université Henri Poincaré Labo. LEMTA – CNRS Ecoulements multiphasiques 1. 2. 3. 4. 5. 6. 7. Principes généraux et notions de base Ecoulements gaz-liquide en conduite : approche globale Interfaces : propriétés et évolutions Particules, gouttes et bulles Interactions particules-turbulence Traitement des écoulements avec particules ou bulles Synthèse – étude de cas 1 Ecoulements multiphasiques 1. 2. 3. 4. 5. 6. 7. 1. Principes généraux et notions de base Ecoulements gaz-liquide en conduite : approche globale Interfaces : propriétés et évolutions Particules, gouttes et bulles Interactions particules-turbulence Traitement des écoulements avec particules ou bulles Synthèse – étude de cas Principes généraux et notions de base 1.1. Différents types d’écoulements. Limitations 1.2. Cadre théorique 1.3. Particularités des écoulements à phase dispersée 1.4. Les paramètres adimensionnels en écoulements multiphasiques 2 1.1. Différents types d’écoulements. Limitations • Ecoulements dispersés • Ecoulements à phases séparées → particules + fluide « porteur » → interfaces à grande échelle, complexes, instationnaires Combinaisons entre les deux : problèmes multiéchelles 1.1. Différents types d’écoulements. Limitations Exemples d’écoulements dispersés 3 1.1. Différents types d’écoulements. Limitations Exemples d’écoulements à phases séparées 1.1. Différents types d’écoulements. Limitations Exemples d’écoulements complexes (phase dispersée + interfaces évolutives) 4 1.1. Différents types d’écoulements. Limitations Exemples d’écoulements complexes (phase dispersée + interfaces évolutives) (Source : thèse Bonometti, IMF Toulouse, 2005) 1.1. Différents types d’écoulements. Limitations Ecoulements dispersés Ö surface d’échange énorme ( = aires des interfaces entre phases) Æ voir exercice Domaines d’applications en dispersé : • génie des procédés (lits fluidisés, réacteurs gaz-solide, ...) • ingénierie des solides divisés: atomisation, séchage, mélange, transport pneumatique • transport hydraulique, charriage, sédiments • captation, filtration, dépoussiérage • météorologie • environnement (dispersion de particules dans l’atmosphère, ...) • combustion, brûleurs, injecteurs, carburateurs • pulvérisation, sprays (peinture, traitements agricoles, refroidissement, ...) • revêtement de surfaces (coating) • ... 5 1.1. Différents types d’écoulements. Limitations Ecoulements complexes et/ou à phases séparées Domaines d’applications des écoulements à phases séparées : • génie nucléaire (circuits de refroidissement, écoulements eau-vapeur) • génie chimique (colonnes à bulles, contacteurs liquide-liquide, ...) • traitement des eaux et des effluents • sidérurgie (brassage, désoxygénation et traitements de l’acier liquide) • évaporateurs, condenseurs • industrie pétrolière (extraction) • ... 1.1. Différents types d’écoulements. Limitations • Limitations : Æ on ne parlera pas des questions suivantes : – – – – – – écoulements granulaires denses émulsions, mousses suspensions liquide-solide concentrées (boues, pulpes) écoulements réactifs, combustion méthodes numériques spécifiques techniques de mesure 6 1. Principes généraux et notions de base 1.1. Différents types d’écoulements. Limitations 1.2. Cadre théorique 1.3. Particularités des écoulements à phase dispersée 1.4. Les paramètres adimensionnels en écoulements multiphasiques 1.2. Cadre théorique Equations générales et conditions de saut Equations de conservation classiques pour chaque phase (notée K ): (+ équation de l’énergie si nécessaire) • valables uniquement dans le domaine occupé par la phase K Î problèmes de conditions aux limites • Conditions de saut : selon la normale : + égalité des vitesses tangentes à l’interface + continuité du tenseur des contraintes si tension superficielle négligeable (sinon voir plus loin → loi de Laplace) 7 1.2. Cadre théorique Outils pour l’établissement des équations moyennées : Moyenne de phase : Taux de présence : 1.2. Cadre théorique Distribution caractéristique de phase en un point fixe en fonction du temps: exemple sonde gaz liquide 8 1.2. Cadre théorique Equations moyennées Conservation de la masse de la phase n°K : , 1.2. Cadre théorique Equations moyennées Conservation de la quantité de mouvement de la phase n°K : 9 1.2. Cadre théorique Méthodes eulériennes pour la résolution des équations générales c « Modèles à deux fluides » (ou à N fluides) Æ destinés au traitement des écoulements avec interfaces complexes de petite échelle (écoulements avec bulles, gouttes ou particules) Æ équations moyennées pour chaque phase Æ problèmes de fermeture liés essentiellement : Æ à la turbulence Æ aux termes de transfert aux interfaces Æ plus simple en écoulement dispersé « au sens strict » Æ particules très petites, sphériques, rigides Æ des termes collisionnels doivent être rajoutés si nécessaire 1.2. Cadre théorique Méthodes eulériennes pour la résolution des équations générales d « Suivi d’interface » Æ un système d’équations unique partagé par les différentes phases Æ prédiction de la forme et de l’évolution des interfaces de dimension caractéristique supérieure à la taille des mailles Æ méthodes de la famille « VOF » (= Volume Of Fluid) ou « Level Set » ou « Front Tracking » e Modèles de mélange ou « Mixture models » Æ un système d’équations unique pour le mélange Æ trop simpliste et peu efficace sauf exceptions 10 1. Principes généraux et notions de base 1.1. Différents types d’écoulements. Limitations 1.2. Cadre théorique 1.3. Particularités des écoulements à phase dispersée 1.4. Les paramètres adimensionnels en écoulements multiphasiques 1.3. Particularités des écoulements à phase dispersée • simplification des termes de transferts interfaciaux Æ car particules très petites, supposées sphériques • existence de termes collisionnels • couplage entre phases Æ one-way, two-way, four-way • description statistique possible Æ introduction d’une fonction de distribution de vitesse par analogie avec la théorie cinétique des gaz 11 1.3. Particularités des écoulements à phase dispersée • Approche eulérienne-lagrangienne N.B. : « lagrangien » ⇔ suivi de particules Æ calcul d’un grand nombre de trajectoires de particules (échantillon représentatif) Æ équations eulériennes moyennées résolues pour la phase continue (avec modèle de turbulence) Æ possibilité de prise en compte de phénomènes impossibles ou difficiles à traiter par voie eulérienne Æ nécessité d’un « modèle de dispersion » pour simuler l’influence de la turbulence sur le mouvement des particules Æ mais : méthodes gourmandes en temps de calcul… 1.3. Particularités des écoulements à phase dispersée • granulométrie • fn(D) = distribution granulométrique «en nombre» ou «en fréquence» ( fn(D)dD est la probabilité pour que le diamètre d’une particule soit compris entre D et D+d D) • diamètres moyens : (diamètre moyen de Sauter ou SMD) 12 1.3. Particularités des écoulements à phase dispersée • granulométrie (suite) • les lois de distribution granulométriques courantes portent plutôt sur la distribution volumique fv(D) telle que fv(D)dD représente le rapport entre le volume occupé par les particules de diamètre compris entre D et D+d D et le volume total. • distribution log-normale • distribution de Rosin-Rammler 1. Principes généraux et notions de base 1.1. Différents types d’écoulements. Limitations 1.2. Cadre théorique 1.3. Particularités des écoulements à phase dispersée 1.4. Les paramètres adimensionnels en écoulements multiphasiques 13 1.4. Paramètres adimensionnels en écoulements multiphasiques • Nombres «classiques» : Re, Fr, Pr, Sc = ν / DAB (Schmidt) • Nombres «nouveaux» : - Froude modifié - Galilée (ou Archimède) - Stokes (en écoulements dispersés : St = rapport d’un temps de réponse caractéristique de l’inertie des particules à un temps caractéristique du mouvement du fluide porteur) 1.4. Paramètres adimensionnels en écoulements multiphasiques Nombres «nouveaux» mettant en jeu la tension superficielle - Weber - nombre capillaire γ : (rôle très important) (= We / Re) - Bond (ou Eötvös) - Morton • Autres paramètres adimensionnels fréquents : - rapports de propriétés physiques, de longueurs, de débits, etc. - coefficients de traînée, portance, nombre de Nusselt, etc. - coefficients caractérisant les collisions - angles de mouillage, ... 14