A stratospheric oscillation detected at the equator of Saturn

Transcription

A stratospheric oscillation detected at the equator of Saturn
A stratospheric oscillation detected at the equator of Saturn
Extrait du Observatoire de Paris centre de recherche et enseignement en astronomie et
astrophysique relevant du Ministère de l'Enseignement supérieur et de la Recherche.
https://www.obspm.fr/a-stratospheric-oscillation-detected-at-the.html
A stratospheric oscillation
detected at the equator of
Saturn
Date de mise en ligne : mardi 1er avril 2008
Observatoire de Paris centre de recherche et enseignement en astronomie et
astrophysique relevant du Ministère de l'Enseignement supérieur et de la
Recherche.
Copyright © Observatoire de Paris centre de recherche et enseignement en astronomie et astrophysique relevant du Ministère de l'Enseignement
Page 1/3 supérieur
A stratospheric oscillation detected at the equator of Saturn
A team led by researchers from Paris Observatory found evidences for temperature vertical
oscillations in the stratosphere of Saturn. Using the Composite Infrared Spectrometer (CIRS)
aboard the Cassini spacecraft orbiting the planet since 2004, they retrieved a temperature
map in Saturn s stratosphere. The meridional gradient of temperature is changing sign
vertically. This allowed the team to calculate the wind direction and wind magnitude,
showing the existence of a westward and eastward equatorial jets stacked vertically.
The stratosphere is the region of a planetary atmosphere where the temperature increases with altitude. In this
respect, the stratosphere differs from the troposphere --- where we are living ---where the temperature does
decrease with altitude. The rise in temperature is due to the solar flux absorption by an atmospheric constituent :
ozone for the Earth, methane for the Giant Planets, and Saturn in particular.
The vertical temperature variations of opposite direction in the troposphere and stratosphere induce sharply different
atmospheric circulations in these two atmospheric regions. In the troposphere, convection dominates and drives the
Hadley circulation where warm air is lifted at the equator and descends over polar regions. In the stratosphere,
convective movements are forbidden. Indeed, as it is lifted up, an air parcel cools down, while the environment
warms up. The parcel hence becomes colder than its neighbourhood and sinks back. This reflex movement triggers
temperature and pressure waves that propagate vertically. With radiative transfer, these waves dominate energy and
heat transport in the stratosphere.
A team led by Paris Observatory researchers just found new evidence for this. Using the Composite InfraRed
Spectrometer (CIRS) aboard the Cassini mission orbiting Saturn since 2004, they obtained a map of Saturn s
stratospheric temperature as a function of altitude (or pressure) and latitude. At the equator, the temperature does
not increase regularly with altitude, but rather shows vertical oscillations. In addition, at a given pressure level, a
warm temperature at the equator corresponds to a cool temperature at tropical latitudes (20°S and 20°N). From this
temperature gradient, it is possible to calculate the direction and the magnitude of winds. The map shows the
presence two equatorial westward and eastward jets stack one above the other.
Figure 1 : Température mesurée par Cassini/CIRS dans la stratosphère de Saturne en fonction de la latitude
et de la pression (les latitudes négatives correspondent à l'hémisphère sud, les latitudes positives à
l'hémisphère nord). Aux latitudes moyennes, la température croît avec l'altitude, donc lorsque la pression
Copyright © Observatoire de Paris centre de recherche et enseignement en astronomie et astrophysique relevant du Ministère de l'Enseignement
Page 2/3 supérieur
A stratospheric oscillation detected at the equator of Saturn
décroît. Au contraire, à l'équateur, la température oscille verticalement. De plus, à 1 hPa, la température
chaude à l'équateur correspond à une température froide vers 20°N et 20°S, et vice-versa à 0.1 hPa et 10 hPa.
Cliquer sur l'image pour l'agrandir
Such a structure also exists in the equatorial stratosphere of the Earth, as well as in Jupiter. It is driven by the
interaction of the zonal mean wind with atmospheric waves. Atmospheric waves transport either westward or
eastward angular momentum depending on their nature, and transfer it to the equatorial jets when they are damped.
In addition, the vertical wind structure is pulled downward. Hence, at a given altitude, the wind alternates
quasi-periodically between westward and eastward. On Earth, the period is about 26 months, leading to the name of
quasi-biennial oscillation. On Jupiter, the period is about 4 years (quasi-quadriennial oscillation). In parallel to the
CIRS/Cassini observations, US astronomers, after a 20-year long ground-based observation campaign, established
that the oscillation period for Saturn is about 15 years.
Hence, Saturn s stratosphere behaves like its terrestrial and jovian siblings. The comparison between the three
planets will help us to understand how atmospheric waves triggers this kind of oscillation on Earth and elsewhere in
the Solar System.
Figure 2 : A partir de la carte de température ci-contre, il est possible de déduire le sens et la vitesse des
vents dans la stratosphère de Saturne. L'oscillation de température à l'équateur permet de montrer qu'il
existe plusieurs jets intenses superposés verticalement. Seules les ondes atmosphériques peuvent générer
une telle structure. Cliquer sur l'image pour l'agrandir
Copyright © Observatoire de Paris centre de recherche et enseignement en astronomie et astrophysique relevant du Ministère de l'Enseignement
Page 3/3 supérieur

Documents pareils