This is a Song for You Alone

Commentaires

Transcription

This is a Song for You Alone
Peter Seabourne
This is a song for you alone
Romanza for solo violin and 13 strings
2
3
Peter Seabourne
This is a song for you alone
Romanza
for
violin and 13 strings
Dies ist ein Lied
Für dich allein:
Von kindischem Wähnen
Von frommen Tränen...
Durch Morgengärten klingt es
Ein leichtbeschwingter.
Nur dir allein
Möcht es ein Lied
Das rühre sein.
(Stefan George)
4
I. Appassionato
II. Dolce, Semplice
p.5
p.32
Scoring:
solo violin
4 Violin I
3 Violin II
3 Viola
2 'Cello
Bass
(When the violas divide it is always two on the top note, one on the bottom,
unless the relative strengths of the players dictate otherwise.)
It is quite acceptable for a larger string ensemble to be used, maintaining something of the same instrumental balance.
duration ca. 19 minutes
5
This is a song for you alone
1
Peter Seabourne
November 2003/February 2006/June 2012
Appassionato q = 100
  

Solo Violin   

 
3

        

3
fff
3

       
3

 





      



 
3
3
3
4 Violin I
 







3 Violin II
 






3 Viola
 














   
   
    
   
 

 
  
       


div.
2 Violoncello
ff
   
1 Contrabass     

ff








3
  
     
3
     
3
3

    



          
    
    
 
       

  

  
3


3
6
Solo Vln

     
3
5
Vc.
Cb.
 
 


 

 









    
  






      


  
 
 


  






    

 








10
 
 
  
  
      
         


 
  



   





  




3
3
3
3
3

3
  
5
A
Solo Vln
Vc.
Cb.

 


  
 

  

 
 









  









  


6


     
            
 

3
3
 


        
 
   
14
Solo Vln
Vln I












Vln II
Vla

Vc.










 




  
   



       
3
 



         




        







ff
ff
ff
Cb.


  

 



  
  

19
Solo Vln
Vln I
  


     
 


 

   
 

 
   



   
   

   




 


3

 

 
Vla
Vc.

 
 
 

Vln II
Cb.

 









 



   
 
ff


  
 
                  
   
    

 

  ff
        
  

  
3
ff



   
 





   
  












    
3
3
  
3
3



3
       
 


 



ff
 
 
      
        



ff

      


 


 

 



  
 
ff

  
  
     
  

  


 3
3
3
Vla
Vc.
Cb.












  

  
 
    


 
 




 


  



   
               
     


 
                   
  


      
    



unis.
                     


      
    

div.
Vln II


           
               

div.
Vln I

ff
  
   
23
Solo Vln
3
3



 
               
 


   









   
  

                  
 

Solo Vln
Vln I
Vln II
Vla
Vc.
Cb.

Solo Vln
Vln I

26
  
  
   



    

Cb.
  



 
                    
 

sempre





   
   
                 



 
 
                     


   
   
                


unis.
  
  
     
 


f
               
               


        
 
        
               

 
 

 
sempre
ff
div.
 
sempre
3

 
  

ff




f
ff
f
ff
div.




 
           
        
 


f



ff



 
     
                
f

  
    
    
  
   

             
      
 
   
sempre



  
 
     
 


ff


               
 

7

sempre
ff
           
       div.                 
 
 
 


3



 
                                                    

ff sempre
 



                                                    


 



  

                                                       


  
ff sempre
 
                                   
  
















 

  


 
ff sempre
 
  
ff
Cb.
  
  
sempre
sempre
unis.
Vc.



      
           
32
Vla
           



  


  

   


  




                                    




     
        

 

ff
Vln II

div.
B

29
 
 

Vln I

 
  

              
ff
Vc.

         
     
ff
Vla
 
 
   
  
  
ff
Vln II






 

 
8

  
 
Solo Vln
Vln I
Vln II
Vla
Vc.
Cb.
  
  


35
  


 
div.
  
 


   
  




 
 





            



                         

           
            








            




 


    
 
 


                            
                         

div.




(non div.)
















 






























 














Solo Vln

 



Vln I
 

           
  
                            
    
   
             
 

Vln II
 
    
  
                            
         
 
             
     

37
Vla
 
Vc.

Cb.
div.









5

           
unis.
 
 
                                           
    
       

 
   
     
                


unis.
 

  

div.

     


5

5



 



           
             





  



3

Solo Vln
Vln I


40
  
  

 






 





 






9



       
                     
              






    
          
               
     
   
    

















       
    
           
    
    





   
                   
 
 
Vln II
Vla
           

     
                          
 

     
 
                              
   
       

             
                                                    
  
     
   
   
Vc.
Cb.






5
      


       

    
 



 


 
3
5
    
      





 
 
44
Solo Vln




   

  
  
    




      




unis.
Vln I
ff
sempre
unis.
  
     
 
Vln II
 
       
     
  
  


unis.
Vla
Vc.
Cb.

 











unis.

ff

       
    
ff
sempre

ff
 

sempre

      


   
    




    
 














   

 
                

 





sempre



         
 


 div.



 




  






remaining intense
10
C div. (three top line, one bottom line) *
   
48
      
 

  
poco dim., poco a poco
Vln I
poco dim., poco a poco
 
Vln II


     
  
       

Vc.
 

div.
 
poco dim., poco a poco
unis.


 
  

f


5
    

       
 
3
poco dim.
      
      

poco dim.
poco dim., poco a poco


3

f
   
    



poco dim.
     
 

    

poco dim., poco a poco
unis.

Vla

    

5
f
  
      
    

  


div. (two top line, one bottom line) *
                
   
   
   

3
f



    

       

 
3
poco dim.








* i.e. 3 equal violin sections

53
Solo Vln
 
  
  
mf
 
 
Vln I

5
       

     
3
Vln II
5

       




       

5
f
        

 
5
       



       




       




       



mf
tutti
mp

mf
tutti
mp
 
    

 
    

    
     
mf
tutti
 

      

mp
tutti


mf
  
p
  
p
  
p
    
mp
p
     
 
  
    
mp
p

59
Solo Vln
5
      
 

  


 
mf
  
  
           
  



3
f


   
ff







 


64
 
            



  


  






3
Solo Vln
Vln I
 

Vln II
Vla
Cb.
 

 

 
Vc.




















ff
  






 




 



  



  
  
ff




 
 


11
  

ff



  

ff

 



div.

(unis.) 
 


div.
 


 

 
  
 
ff

 
  


ff








ff


ff

69
Solo Vln
Vln I
Vln II
Vla
Vc.
Cb.
 
 

        


  
  



 
  

3



 
f
poco meno



  

 
  

 

 
 


   



  
   

f





poco meno
f

  
poco meno




poco meno
f




  


f
f




poco dim.
     


unis.
  

 

 
  

poco dim.
   

poco dim.



poco dim.





   
 


 
 



mf









poco meno

   


 

poco meno
  





73
Solo Vln
 
    
5

 
5
    
  
 





12
D Agitated - same tempo
81
Solo Vln
Vln I








mp
3
mf
 
Vla



mf
Vc.
mf



mf
mf

  
  
mp
pizz.

 
mf
mp




 


 

                


         
mf
mf



mf


pizz.

 








mp

 

mf


mf
 

 

mf

mp
mf


     
               
mf




 
mp
 
     
   






 
      

   
       

 
Vln II
 
 


mf

   
      
         

 
          

mf
Cb.


 




 


 
mp



mp

Solo Vln
Vln I
88
          

 
3
 


mf

  
Vln II


  

mf
Vc.
Cb.



 



 

   
   


mp


 


 



 


 
mf

mf



3
        



3
mf
       
       


 

 










 
       
 


mf
mp
mf
Vla
 



mp

mp

mp


mf
  

mf
  




mf
 
    



mp






 




 




93
Solo Vln

 

  

3
mf
Vln I
 
 

 
 

 


mp
Vla

 
Cb.


f
Vln I
   
    
f
f
 
     
Vla
f
Vc.
  

 
  

 
f
Cb.

Solo Vln

f
mp


 

5
       
mf


 



 

Vln II

mf
Vla
Vc.
 
 


mf



mf
Cb.
 



mf












 


mf

 
(pizz.)
 
(pizz.)

mf

mf
 
        
3
5
mp
 
     
 


 
  
 

 
  
mf
mp
mf

mf


mf
  
 

 
         
 

 
 

 
 




mp
 
 



mf
mp



mp







mf
   



mp

  
  


     
  
           
mf




 
mf
 
3
   
      
mf
            
 
   
          
  
mp
 


mf
 


     
         
 
     




       

 
    

  
     
 
     

  
  
       
104

   
       


5
mf

    
            
3
Vln I

mf
mp
       
molto
  
   
 
  
mf
mp

 
3
mp
mf

      
3
  


    
 
 

f




 
 

mp

mp
f
mf
mp
     
    


       
   
  
  

 
mf


f


mf
mp
       
Vln II




  
 



3
f






 
mf
    




98
Solo Vln
  
mf


  
mf
mp
Vc.

       
 

mf
Vln II
 



3
13


mp



mf


mf

mp
mf

 
 

 


mp

mf
  
  

 

mf





mf

mf

14
 


109
Solo Vln
Vln I
mf

Vc.
mf
 
 

 
 


112
Solo Vln



mf





mf

arco



mf

mf

Vla



Cb.
 


mf
mp


mf






mp



  

  

118
Solo Vln
   

 
 
mf

mf
3









f
3
3
3
3



   
  
 
  




    


 
  













  
 
3
 

ff
3
Vln I
                   
 
  
 

f
3
f3

 
Vla

f
 
Vc.
Cb.
f
3
         

Vln II

 
div.


f
arco
f
3
 
 


 


pizz.
unis.

     pizz. 
  

f





 

  
div.

 

 
arco
 
f
div.
  

mf


 
mf






pizz. unis.
 


 
f
f
arcodiv.
unis.
 
   
   
 

poco
      
3

   

                        
mf

 

3

     
                      





3
mf
3

     
 

   

  

3
mp
3




                 

 


    
E





mf



mp
  


mf
Vc.
  




  


 

  
mf

 
Vln II
mp

f
3
mf






mp
   

f
   
3
     
mf




 





mf
Vln I
   
    
3
mp
f



      





f
mf
 
Vla

3
mf
   
    
Vln II
Cb.
  
 
  

mf
   

  
3
 

f

mf
             
   

  
unis.
   
pizz.
 
f
arco  

 
 
3
 
   
mf
mf
 
 
mf


15
124
Solo Vln
 
 


3
 

      


f

3
mp
f
div.

   


unis.


f
3
f
 
 

   



arco
3

mp
f

           

 
Vc.
Cb.
3
3
 
3

    



3
p

     
          



 


 



 

mp
p
non.
 div.
     



p


3
mp



f 3
mp

p
p
pizz.
 




p
3
3
  

p
p



     



              

       

3
non.
 div.
      
  



  


mp
3
mp
3
Vla

 
  
     
           


     


Vln II

 F
    

mp
3
Vln I

   



  
 


   
     
 

133
Solo Vln


mf
Vln I
 


mf



mf
  
 
f
non dim.

         



f
          
       
 








     
      
   
 
 

non.
 div.
   




 







   


mf
mf
mf


mf


arco

mf




mf
mf
mf
  
cresc. poco a poco
cresc. poco a poco






cresc. poco a poco


mf
mf
Cb.




              
    

non. div.
Vc.

mf
mf
Vla


          


   
Vln II
 





mf



cresc. poco a poco


 


 
 

 


cresc. poco a poco


3
f
non. div.
f
 
f




f

16
140
Solo Vln
Vln I



   

Vc.
 
  
       

  
ff
 

 

     
ff
         
   div. 

   


ff



 
   



ff


G
Vln I
 unis.

    
ff
Vln II


     
ff
Vla








 



 






 








 




 




  

 


 
 
ff
Vc.
Cb.
intense
ff





   








    




  

   
ff
f




3

 

ff
  
 










f
3







ff



unis. 

 


 
 
ff


non. div.
3
3
3
3
 
3
3

 
                              



3
div.
 

ff
 
  
3
3
                  
3

3
ff
     
div.

   




ff







 
f
3
f
3
3


ff
Vln I
Vln II
 
 

 
 
 


       

f
f



      







   

3
Vc.

3
 
   
 
3
  

   
 
3
3
3
         











 




3
Cb.
3
3
3
f
unis.



 
 
  

3
Vla

  

  
156
f
f
     
  

f
     
  

f

f

3


  
  

(non dim.)
    
            



f (non dim.)
  


   





 




f

      


 

      
 
f
   

 
f
 

3
   
 
3

   



 

 
 
stormy
147
intense


  



ff



  







 



ff
Cb.
 
  



  

 
   

                
  

               



  

  
  
intense
ff

   
Vla

ff
  

Vln II
 


f
(non dim.)
     
   
f



 



(non dim.)
 

f
17
164
Vln I
 

   
    
ff
3
3
f
    
        

 
               




Vln II
ff
 
Vla
Vc.
 





ff



div.

 

unis.

f
    

5
5
  
  

  
   
f
3
ff


















dancing

               



 

3
mf
      


 
        
3

           
  



3
              



3

5:6

          


  
   

3
3
3
unis.
 
3
 div.
           3

















 

   

   









 



3
mf
mf
mf
 
  











Vln II
Vla

Vc.



  
  

 

  
  

 
   

  


  

  

  

  


 


  

  

 

   

  

            
183

 
        
     




5:6
  

   



3
  
     
Vln II

Vla
5:6
f



5:6
f
  


mf


3
3

3

pizz. div.
  
mf





mf
  


   
mp

3
3
mf

     
mf
 


 


mf

mf

 
mf
Vc.

3
3
3
3
 



 
        




3

3
3
mf
f

5:6

  
    
         
 



f
3
3
mf
  
mf
3
mf
  
pizz.

mf
Vln I
 

  

  

mf
Solo Vln
3
ff

 

5

172
Cb.
    
      

H
Vln I
3
ff


Solo Vln

  

3

    
ff
Cb.

 

                   


      

  
             



 


 


mf
Cb.









mf
18
Solo Vln

3
191


       




 


5:6
Vln I


  


Vla
Cb.
div.
     


arco unis.  

  

I

 



mf
 

  
   

pizz.
f
  



 
pizz.

     
 
mf

   
 





arco
 
 




arco
 

















 

f
mf

 
 
 


f
 
    

  
Vc.
              
 
 
  
 
f

 

          
   
  
  
         


    
3
3
3
mf
 
  div.
       


 
f
    
 
  

Vln II
 
 





199
Solo Vln
Vln I

      



 
     

 
 
    

 
div.
 
f
div. 
  
Vla
f
  
(pizz.)
Vc.
 
    


  
   
 

 
  
arco
pizz.
  
 



 
arco
 
f
Cb.

 
f
 




 
     

 
 
 


 



   
   
      
 

  


f
Vln II


3
3
3
f




  
5:6
3
ff


        
3
 


 
 




ff
3
 

  


 
  







3
 




unis. pizz.

  



pizz.
  



ff

div.
arco 

ff
pizz.
  

  
arco

  

ff


206
Vln I
div.

 


 
 





 
  
unis.

  

      
Cb.





 


      

    


     
 
 



  

    
 


 

    

19






  


 

 
  
     
 
  
non dim.
f
     


 


  
      
  
  

f
   

f
non dim.



 
   


    
3
3
div. (two top line, one bottom line)*
    



 
       
 
 

 


  
div. (three top line, one bottom line)*


pizz. arco

 
  








 
 
pizz. arco


unis. 
  
Vc.
 


 
Vln II
Vla



arco



pizz.

3
3
non dim.


  
     
   
  



f
non dim.
unis.

  


















f
* i.e. 3 equal violin sections come prima

J Heavier - meno mosso q = 90

       

   
 
212
Solo Vln
ff
div. a 3 (two on top note)
Vln I
   
 

f

 
unis.
Vln II
f
f
   

Vc.
Cb.

   

f

  

non dim.


 


  

    
   




          
      
     
 
  




   
 


  
f
arco
 
      
        
    
   





 
 
      
Vla

  

 
    



  





    
   
 

  




  







 


 
 
 

 





non div.
 


non dim.
 

20
220
Solo Vln
Vln I






 
   

  
  

f



molto
 


      
  
poco
p













    











  

 

f
Cb.





3




   
3
  

 
3
 

  




 

238
p

     
 
241

Solo Vln
Cb.


 
















p




p



          



       


 

  

 

Solo Vln

 
Cb.

 
mf



 
    
mp



  


 

         
          
 










 

  
mf

5
           


mp



3

5
3

           
   




 
        
sub. p

247
 
mp

244
 
 
p
f

 
 
  
mf

   






 
 

  

 





  
       
   









p ma pesante
mp
f
mp

 

Cb.

leggiero
mf
Solo Vln
   
3
    
 
      

 
     
     
      
    
  



Cb.
 

mf

 
pp sempre
Solo Vln


K
p
Cb.


p
mf
232
Solo Vln

mf


p
mf
Vc.

p
mf
Vla
pp



mf
Vln II
 
       


         

 
 




 


ten.


ten.

3
p








21
Solo Vln
L Dolcissimo - legatissimo
    
  
253
 
 
pp ma
solo
  
con sord.
 

3

q = 84
 

5


pp

     



   


3
    


 


3
 
  

   







  



     


div.
Vln I
con sord.



 
5
pp
con sord.


Vln II
   
   
 




  

pp
div. (one top line, two bottom)
con sord.   
  


3
  
3
pp
 

 


 

   
 
3






      
 
 


3
3
      

   

 
5
con sord.







 



 


 

 
 

pp
Vla
 
con sord.

pp
 







 


con sord.









pp
Vc.
Cb.

con sord.

pp

 
con sord.
  
pp

22
259
Solo Vln


    
 
 

Vln I
 





 
 
  



 



      
5





     



















3

 

3



mp



p

   

 
 
      
 


 
 
5

     






3




p

 



3
pp



senza sord.



 



senza sord.



senza sord.



Vla
Vc.

 



 



senza sord.



 



senza sord.



 



senza sord.



 



senza sord.



 



senza sord.






     

  
    
 
 

Vln II

p
  
5

       

Vln I
Cb.
  

   
  

265
Solo Vln

3
3
 

Cb.
 
  
     
  
    

   

Vc.

  
  
Vln II
Vla

 




pp

270
Solo Vln
Cb.


 
  

pp
p
 

 

pp

 


23



 

ppp



ppp


  
  


M
Solo Vln
Vln I
Delicate q = 72
276
  
 


 
3
 
3


p
  
Vla
div.





pp
  
pizz.



 
 


Vc.

 
 
 


3
  
  
 

Vln II
  

mp
p 3
Cb.
 

p
3
         
 

 
 
  














3
3
3

 
3













 

  
     
p
3

pp

senza sord.

3
3

3
  
   

  
3
3


3
3
3
    






             
 




















pizz.








     



p




279
Solo Vln
Vln I
 
 

 
5
   

3
3
3
3

3
p
  
Vla



p
arco
 

Vc.




  

poco

p
arco

  

pp
poco






3

3
 
3
  
 


mp



3

  
5
f
3
  

3
 


mp
poco
3
  

mp


 

                            


mp
  

         
 


Vln II

mf
            
 


 
p
Cb.
      








3
3
3
mf

 


3
  

3
poco
 
 
  
 
 
 

mf
 




 



mf



 

mf
poco
poco





poco
                       
   
poco
mp
mf
24
 
  
 
283
Solo Vln
Vln I
Vln II
 

 

 
 
N subito accelerando - appassionato
 



 
5
      
3
  

   

3





3
3
   
 
   
poco

 

            
     


3
 
3
3
 

 

 

 
3
3
   
3


3



poco
Vla
Vc.



  
 




























poco
div.







              

unis.


3
poco
Cb.
       
                
         

          
poco

286
Solo Vln
Vln I




     

 
ff
Vln II
5
ff
3

   
  
 

  
5
     
3
3


3
  

Vla
ff
Vc.



        



  

       

3
 


        
5
5
3
3
3
ff

  
  

           
3
   
               



 
più mosso q = 90








   
3
3




   

unis.

 
 

    
ff
       


  
   
     
div.



                     
ff
Cb.


3

                



 
       
           
   




Solo Vln
Vln I
290 

 
 

 


  
 

295



 

 



       
Cb.

Vln I




 



 











  
div.
unis.
       div.               
           
  



             

unis.
Vln II
 
 
 
Vla


 

Vc.
 
    



3










  


 

div.



3
      
 

 
     



    
     

 
   


 
  
3
 
 

 


3
    

 
 
   


   


 
 
 

 
 



             


molto

 
unis.






mf

 

  
   



molto
mf
mf

 
  
 
molto
mf
    

 



div.
   
                 
      

 


ff

5

   
  

    



      








f
ff
div.

  
       
 



3

 
ff


f
 




 




 




    

 

 
    



300
  
 
  

 
ff
Cb.



      
   


f
f
Vc.

 

  

    unis.



Vln II
Vla



div.



  

  
                   
 

 
Vc.
Vln I

 




q = 100
unis.
                
    
               
       
                                                  
  
Vla
Cb.

 
        
                




Vln II
25
O Turbulent
 
 
3
    
 




           
           

         
            
 
 



   
 
 
  

 


mf
  
    


   
 





ff






26
P
306
Solo Vln
Vln I





 
Vln II







 



    
unis.
Vla
 


Vc.
Cb.

 
    
  unis.
 


             
  











  




  



3
div.
3
3
3
ff
5
      
      

3
3
                

 


   

5
3
   
 



 

ff


ff

    






unis.

                 
 

   

 





 



 


 



 


 


 
div.
pizz.
ff
unis.

   
312
Solo Vln
 

  

   
  

 
 
   
3
3
f
Vln I
 
   
   

3
3
 

 
 
  


  

 
 
   


 
 
 
   


 

 
 
   


 

f
Vln II
  
f
          

 
unis.
Vla
 
f
pizz.
Vc.
   

 
pizz.   


 

  
 
arco
   




  
 pizz. 
 

arco

  
 

 
arco







pizz.     

f
Cb.
 
  
f
3
  
3

 

3

  




  
3



 
 
arco



Solo Vln
ff
Vln I



 




 


3
f
 

     
   
318
3
3
3
  3
 3        








      


 
 


 
 



27
      
f
Vln II






  
f
Vla
  

ff

div.
Vc.

 

ff
Cb.
arco

  
 






 


 
   

 
div.
unis.

         div.

 

f
unis.
pizz.


 



ff

 

 




unis.

arco 
 

 

   

  

 

f
pizz.
     
   
3
f


  

 


3

323
Solo Vln
Vln I



Vla
 



 



 




    

        
  


 









 





3
            
 
3
  


    
5
 



       
arco
 
 
  
   
      
   

        

 
Cb.


3
Vln II
Vc.
 





  
 







 

       


 

  





28
 
 



327
Solo Vln
Vln I
3
Vla
Vc.




 

 

 








       


     
     
 







 
 
3
div. a 3



3

 
 


         
  
 
 
 
 
 
     


 








        

Vln II
Cb.






      

       

     
     
  
  


 
 
 
  
 











div.













330
Solo Vln








 

 


3
unis.
Vln I

       






 


Vln II
 

Vla
Vc.
Cb.



      

 
  
   


div.
       
        
  
 


3

 





Q
  
  
  
 
       

           








   
 
 


 
 
 
 




3

    
3
mf
     


unis.
  

mf


   
 




mf
 
 
 
 
 
mf
pizz.
  


mf






pizz.
 
mf



335
Solo Vln
Vln I
 

Vla
 
Vc.
 
Cb.
 
    



 



 
   


 
 
 

unis.
non
  div.


 
 
 
 
 

3

3



 
3

3




3


3

3

3
 
 








   
div. 
 
   



 
 
  


  


3
3
5
  
   
    
 



 

     

      
   

5






 
Vln II
 

       
3
3

  
29
pesante




 








   







 


 


342
Solo Vln
Vln I





  






  

  

Vln II
Vla
 
Vc.
 


 







 
  

       

   

          

     
ff
 
 
     



  
ff



  
unis.




   



arco

(unis.)


 
  



  
   



  



arco


 



(unis.)
ff
Cb.

 






 
 
ff
ff

 
  
    

div.


 

  

ff
30
348
Solo Vln
Vln I
 
  
 

 
 
R
 
   

  
      
 






3
5
 
 

 


 

    
  
  




fff


   
             
 

(div.)                         
fff
  
Vln II
 

 
 



div.
                        
                        
fff
Vla

   

 
    
 

 

div.
Vc.
Cb.
    
  


 


unis.

    





div.
                        
                        
fff
     
  

  
fff

     
 


fff
(unis.)









  

3



 


    
3

353
Solo Vln
Vln I
   
    

  
 
5
                        
  
   

        


   
   
 


 


   
                         
           
            
 

   
                         
     
           
            



  













 










Vln II
Vla
Vc.
Cb.
   


31
Solo Vln
Vln I
Vln II
Vla

356 
 










unis.



 


 


 

Cb.




   
   
   
                 



    
   
   
                  
       

    

 

 

div.
Vc.


     




















 

 


   
      

    
      

 
 





 

 

32
2
Dolce, semplice
Solo Vln
  
 


  




 
  




q = 44

 
p
Vln I
 

p



pp
Vla

 



pp


Vc.
Cb.

 



pp

  
Vln II





        

pp

 

  
 


pp



 
   





   
   



 
   

div.
 







 
   

  

  









Solo Vln
          
9
                 
  



 

3
Vln I
 
   

   

   


 


Vln II
Vla
Vc.
Cb.

 
poco

poco
poco
poco
 

 

poco
poco
 
              







 













 



poco







poco



33
Solo Vln
 
      


      

14
 
           
poco
5

  
 
  
 






Vln II
  






Vla
  






  






      

 

Vln I
Vc.


Solo Vln
Vln I
18
  


 
   

 
  

 

p



  
pp

 



p
 
p

    


pp
 
pp

S
22
Solo Vln
 




 
   
  
   


        


 
  

 
 
  

  
 

mp
Vln I

    

 
pp
Vla
   
 
pp
Cb.


  
  
pp
 



mp
div.
 





 
  
 
 

p


mp
div.
f
p
div.
pp
Vc.
 
mp
pp
    
div.
       



Vln II
 
mp
mp
 


 


  

p
mf

  




 



mf
p



mf
p
  


  


 

 




mf


mf
34
Solo Vln

   


  

mf
Vln I
 
mp

  

 
  


  


 
   
 
Vln II
mp
Vla
mp
Vc.
mp
Cb.
   
dolcissimo

             

       


 
28
mp

   
 
   
  


        
  
 
 

   



       


 

  

 


        

 


  

 
pp
pp
pp

  

unis. 
 




 
 
 
p
          
 


unis.
pp









             

    



        
pp
unis.
   

     
pp

T
35
Solo Vln
Vln I
 
 

  
  

              

5
p
         
 



 
Vln II
Vla
Vc.


  
 








(div.)
  




  


     

   
 


pizz.


(div.)
p

  

pp


p
 


p
p

unis.
   
 



unis.

 





  



p




pizz.
p






 
p
p


(div.)
pizz.
p
35
Solo Vln
41

 
      




  



mp
Vln I
   
 
   
 
mp
poco
Vln II
Vla
   
Cb.


mp

mp




mf

mp
  
mp

mf

mp
 
 


mf


 
mf
 

     


p
molto
mf









molto
    

mp
pizz.
 
 
pp
    

mp
(unis.)
mp

mp
(unis.)

 
 

  
mf
 
pp
molto
unis.
div.
poco

p
molto
  
 
   

 
mp

 
mp
 
 


  

   
 
p
     



molto
  div.         

 

mp
mp


    


  
mf
mp
       
  

Vc.
  
mp
 
 




 


46
Solo Vln
 
 
  
U






                





 
   
p
Vln I
  unis.
  

 
      
p
Vln II
Vla
  
arco



pp
  
    
p
p
p

   

   

Vc.




Cb.

pp



  



(pizz.)
 

p


 

pp



pp
(div.) (pizz.)



  

     
  

p

div a 3 (two

on top note) 
pp
p


      





   




p



(pizz.)
p
    

     

   
  





36
Vln I


       


mp

     
 

Vc.
p
 
    

pp

p
p




pp
 
Vln II

     
    

52
Solo Vln
V dolcissimo
 



 
pizz.





         
   
    

   
 
arco

pp
 


              
p
 

 


mp
unis.

     







pp






57
Solo Vln


            
   
 
     
 
 
5
     
Vln I
 
  
Vln II
 

Vla


 
      

mp






   








 



  
 

   
     




 

 
 
   

     

 



              




unis.
  

   
  

  


   


   

  
pp
div.







    

Solo Vln
Vln I
63
   

 
         

    

   
 





   
  
 


  
pp


Vln II






    

 

        

  
 


         
pp
 
Vla
Vc.

 
















  
  


  

mp
arco
 


 
mp
Solo Vln
W
70
    
 
Vln I
        

 
     


mf
  



  
 







Vla











 


mf
 

     
 
5:6

mf
Vc.
  


 
mf
   
  
pizz.
Cb.


mf

 
     

mf
  

 
 

cresc. poco a poco
mf

5:6
 

   


   

mf
cresc. poco a poco
cresc. poco a poco


    

5:6
5:6
 

mf
 
37
X appassionato poco a poco (non accel.)

  
      
 





        
 

 
mf

 


mf
mf
Vln II
  

cresc. poco a poco
cresc. poco a poco

 


cresc. poco a poco

78
Solo Vln
Vln I
Vln II
Vla
Vc.
Cb.


 

  

 



        

 
  

  


5:6




pesante poco a poco



 
  


 
5:6
5:6


arco




5:6


 

 






 

5:6


 





             
      
 

                     

  
  
  
div.

5:6



   
 




 




 

pizz.



38


82
Solo Vln
 



Y

        

   
Vln II
 

Vla

 

Vc.
Cb.


div. à 3 (come prima)
f
f
   
 



div.

  


 
 
 
arco

   


 
   




    




non div.
div.
 
 

 
 
 

 

f
 


  

f

 



 
 
f

unis.
f


5:6
       

 
 
    

       
  
  
  
 


  

f
5:6
Vln I
 



 




 

  
87
Solo Vln

 

 

ff
 
           

pesante
Vln I


ff
  

ff
  
 

 



ff
   
     





5
 
             



    


    
5
più cresc. poco a poco
     
più cresc. poco a poco

 
 
 

 

 
 









più cresc. poco a poco
ff
Cb.


più cresc. poco a poco
  
 
Vc.
5
 
ff
Vla
     
più cresc. poco a poco
 
 

  



    
5
   
         

ff
Vln II



più cresc. poco a poco

 

91
Solo Vln
Z pesante
    


  
 


     
fff
   
     
 
 
     
  
 
    

 
    
 
div

Vln I


39
    unis.

   
     

 
 
fff
unis. div
Vln II
fff

Vla
unis.
 

fff

Vc.

 


unis.

  
  

  

 
   



      

 
 


  

   


  



  

   




  
  


    
 





p
unis.
p


    
pp
 
  
      
pp
p
  


 




 
   
 
pp


fff
Cb.





 


fff
 
   



  


   
  

   

p

pp

100
Solo Vln


3

  








 
 

p

  
Vln II
 

    

    

Vla
Cb.

           

 
5
5
Vln I

AA
   
    
 
5
 
   




















 


 
40
BB  
   

 

107
Solo Vln

pp
  
Vln I
Vln II
Vla



  



  



ppp





div

ppp
 

ppp
Vc.






div



       





 
 
     

  
 

  
 
 

  


  



  

 

  
a little obtrusive
  

     

unis.



unis.


 

 





p
ppp

   
    
Solo Vln
Vln I
Vln II
Vla
Vc.





dolcissimo
 
   

 


    





































114
pp
















Documents pareils