steelacademy 2016

Transcription

steelacademy 2016
2016
steelacademy
Journée d’étude sur les ponts
Du calcul des différences de contrainte pour la
vérification en fatigue
Conseils et particularités, avec exemples pratiques
Prof. Alain Nussbaumer, RESSLab, EPFL
steelacademy 2016 | Horw, 30 juin 2016 | Prof. Alain Nussbaumer
1
Contenu
1. 
Introduction
Rappels concernant la fatigue, vérification
2. 
Facteurs affectant le calcul des contraintes
Détermination des efforts, contraintes, exemples
3. 
Facteurs d’équivalence de dommage
Concept, détermination longueur déterminante, croisements
4. 
5. 
Remarque finale
Annexes
steelacademy 2016 | Horw, 30 juin 2016 | Prof. A. Nussbaumer
2
INTRODUCTION
Rappels concernant la fatigue, vérification
Rappels concernant la fatigue
§  Se produit lorsqu’un élément de structure est soumis à des sollicitations répétées
(d’amplitude variable ou non), différences de contraintes faibles (par rapport à fy)
§  Se manifeste sous la forme de fissures à des endroits particuliers (souvent le soudures)
Durée de vie
Cycles pour initier
=
une fissure
++
Pièces usinées
+
Cycles pour
propager une
+
fissure à la rupture
> 75%
< 25%
Trous perçés
60%
40%
-
Joints soudés
< 25%
> 75%
+
Joints soudés traités
50%
50%
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
4
Courbes de résistance à la fatigue (SIA 263, Eurocode 3)
§  Indépendant du type et de
la nuance d’acier
2.
§  Acier toujours protégé de la
corrosion
ΔσC ou FAT
m=3
1.
ΔσD
m2 = 5
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
ΔσL
Modèle sous VA
5
Résumé de détails types (tiré du guide du SETRA)
80
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
6
Méthodes de vérification en fatigue
1.
Avec facteurs d’équivalence de dommage
(Nequ = 2.106 cycles) SIA 263 § 4.7.4.2
λ ⋅ Δσ (Q fat ) ≤ Δσ C γ Mf
λ = λ1 ⋅ λ2 ⋅ λ3 ⋅ λ4 ≤ λmax
Facteurs λi selon SIA 261, annexe G
2.
Utilisant la limite de fatigue
(N infini) SIA 263 § 4.7.4.8
3.
En dommage
SIA 263 § 4.7.4.10
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
Dtot = ∑
ni
≤ Dlim
Ni
(= 1.0)
7
Difficultés d’utilisation de la méthode de vérification
§  Evaluation correcte de la différence de contrainte près du détail
§  Pour ponts existants, penser charges effectives et non normatives, sinon
trop conservateur è monitoring et vérif. en cumul de dommage
§  Détermination correcte des FAT (souvent par analogie des caractéristiques)
§  Les normes ne disent pas tout, si fissures il y a, elles se produisent souvent
à des endroits, détails non-prévus !
§  Les fissures peuvent être dues à un manque de compréhension du
fonctionnement réel de la structure, par exemple des effets spaciaux
§  Ou dues à des imperfections, concentrations de contraintes car mauvaise
conception, ou/et mauvaise fabrication
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
8
FACTEURS AFFECTANT LE CALCUL
DES CONTRAINTES
Modélisation, détermination des efforts et des contraintes
Modèle structural pour la fatigue
§  Un bon modèle ? compromis entre simplification et réalisme du
comportement
§  En fatigue, modélisation du comportement sous charges de service (bien que
cela soit un ELU). Les charges extrêmes se produisent (rarement) en réalité
et donc n’ont pas à être considérées (les modèles de charge diffèrent aussi)
§  SIA 263: 2013, article 4.7.2.2 modifié
§  Les efforts intérieurs et les contraintes doivent être calculés selon la théorie de l’élasticité.
Les contraintes secondaires, négligées lors de la vérification de la résistance
structurale, doivent être prises en considération. L’influence des concentrations locales
de contraintes est déjà comprise dans la résistance à la fatigue des détails de construction
indiqués (SIA 263, annexe E).
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
10
Modèle structural pour la fatigue
§  Les détails de construction contiennent les effets de la géométrie, ainsi que :
concentration locale due à la forme de la soudure, aux imperfections, à la
triaxialité, aux contraintes résiduelles
§  Y ajouter toute flexion hors plan, traînage de cisaillement, etc. ou autre
particularité (notion de contrainte nominale modifiée)
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
11
Exemple, CV d’un pont-route
Assemblage du CV
Excentricité !
Résistance, FAT 71
Avec flexion secondaire, Δσ =
50 MPa, fissure après 22 ans et
autant de millions de camions
Réf.: Greiner, R., Ofner, R., Unterweger, H., Betriebsbeanspruchung des Torsionsverbandes einer Strassenbrücke – Analyse
eines aktuellen Anwendungsfalles, Neue Entwicklungen im Konstruktiven Ingenieurbau, KIT, 1994
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
12
Treillis métalliques
§  Considérer les moments secondaires dans les nœuds car ils produisent des variations de
contraintes supplémentaires
§  Sont dues aux effets d’encastrement et d’excentricités (non-concourants)
§  Dans les treillis avec peu d’effets d’encastrement, barres type cornières, etc. on peut faire
un modèle classique articulé, puis ajouter les effets d’excentricités comme M = N.e
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
13
Exemple: pont de Kirchenfeld, Berne (trams et bus)
Validation par mesures des diff. de contraintes calculées
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
14
Pont de Kirchenfeld, Berne
Validation par mesures des diff. de contraintes calculées
§  Vérif. fatigue: coef. dynamique égal à 1.00 pour les éléments de la structure
métallique et à 1.20 pour la dalle en béton
§  Sécurité structurale: un coef. dynamique égal à 1.00 peut être admis pour
tous les éléments (métalliques et dalle), car dissipation d’énergie par
plastification
} 
} 
Excentricités dans calcul FEM des
contraintes (fatigue et sécurité struct.) dans
diagonales peuvent être réduites par rapport
à valeur théorique : eeff = 0.75 x eth
Trouvé même moins pour le pont de
Kornhaus : eeff = 0.5 x eth
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
15
Effets 3D et déformations hors plan:
Responsables de bcp de fissures !!!
§  Exemple: effet traînage de cisaillement entre poutres treillis primaire et système
secondaire
Flexion transversale des entretoises
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
Efforts axiaux dans les longerons
16
Effets 3D et déformations hors plan
Exemple, Chesapeake City Bridge (pont arc)
on
Longer
Entretoise
Poutre
Ref.: Shenton III, H.W., Chajes, M.J., Finch, W.W., Rzucidlo, M.C., Carrigan-Laning, J., Chasten, C.P. (2003). "Field Test of a
Fatigue Prone Steel Tied Arch," Proceedings of the 2003 ASCE Structures Congress.
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
17
Effets 3D et déformations hors plan
Vidéo effets de biais (pont de Münchenstein)
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
18
Effets 3D et déformations hors plan
Comparaison mesures, modèles SCIA et Abaqus, entretoise à mi-travée
} 
} 
} 
Passage train FLIRT:
bonne correspondance
entre mesures, modèles
SCIA et Abaqus
Peu d’effet dynamique,
plus important si jauges
proches de la voie (aile
sup. entretoise)
Aux assemblages,
considérer excentricités
Δσ =
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
ΔN ΔN ⋅ e
+
A
W
19
Modèle structural pour la fatigue
Par rapport à modèle pour ELU, les adaptations suivantes peuvent être
nécessaires:
§  Modélisation des assemblages, rigidité effective (nœuds semi-rigides), excentricités, moments
secondaires résultants
§  Inclusion de manques d’alignement, lorsque les valeurs excèdent les tolérances de fabrication
des normes (EN 1090-2 exécution)
§  Prise en compte des déformations, mouvements imposés
§  Non-linéarités, par exemple effets fissuration du béton (si besoin, souvent homogène ok)
§  Modèle 3D, pour comportement spacial du système, inclure les déformations hors-plan, etc.
§  Inclusion du traînage de cisaillement, des effets de torsion et de distorsion, des contraintes
transversales et dues à la courbure de la semelle
§  Ajout étude comportement sous charges dynamiques, telles que rafales de vent, vibrations
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
20
Facteurs d’équivalence de dommage
λi
Concept, détermination longueur déterminante, croisements
Concept de facteur d’équivalence de dommage
(basé sur simulations du trafic prévu)
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
22
Facteurs d’équivalence partiels de dommage, SIA 261 Annexe G
λ ⋅ Δσ (Q fat ) ≤ Δσ C γ Mf
Avec courbe de fatigue:
λ = λ1 ⋅ λ2 ⋅ λ3 ⋅ λ4 ≤ λmax
N⋅ Δσ m = cte
On a les proportionalités suivantes
€
λ ∝ Δσ ; N 1 m ou N 1 m2
λ1 effet du trafic en fonction de la longueur déterminante, Lλ, ou surface d’influence critique
€
Et expressions pour facteurs partiels λ2 et λ3 :
Acier : m2 = 5
" ∑n Qm
i i
Qm = $
Qm = poids moyen des poids lourds sur piste lente
$ ∑n
i
#
Q0 = 320 kN (poids de référence)
N0 = Nb de cycles de référence (SIA 261, Tab. 12 – 30%)
2
1 m2
Qm ! N obs $
λ2 =
#
&
Q0 " N 0 %
1 m2
%
'
'
&
1 m2
!T $
λ3 = # Ld &
" 100 %
TLd = durée de service prévue (en années), si ≠ 100 ans (SIA 261 § 10.4.1.3 )
λ4 effet du trafic lourd sur les autres voies (si plusieurs voies)
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
23
Facteur d’équivalence partiel de dommage λ1 (ponts-routes)
λ1
Routes nationales, 1’400’000 PL/an/voie lente
(SIA 261 § 10.4.1.5, Tab. 12 – 30%)
Routes principales, 350’000 PL/an/voie lente
Routes collectrices
Routes de desserte
Lλ
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
24
Dispersion sur λ1 en fonction du système statique, Longueur déterminante
} 
} 
Avec correction de la
longueur (≠ portée)
Proche d’une
moyenne et pas une
courbe enveloppe
λ1
Lλ [m]
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
25
Longueur déterminante Lλ (SIA 261 § G.6)
Pas la longueur LΦ ,
Exemples:
ni entre points M nuls
§  M à mi-travée
2ème travée
§  M sur 3ème appui
§  V poutre simple
§  R 4ème appui
§  R culée
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
26
§  Surface d’influence moment mx sur appui du porte-à-faux
2.0 m
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
0
Poutre simple
équivalente
5
10
Lλ
ΔM =
Max (M-)
15
20
mx
armature transv.
nappe sup.
< 10% M
Exemple: définition longueur déterminante Lλ dalle de pont
27
Définition longueur déterminante Lλ dalle de pont
§  Surface d’influence moment my sur appui du porte-à-faux
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
0
Poutre équivalente
Lλ
5
10
15
ΔM =
M+ – M-
20
my
armature longi.
nappe inf.
25
2.0 m
28
Facteur d’équivalence partiel de dommage λ1 (ponts-rails)
λ1
§  Voies normales
§  Trains avec 22,5 to/axe
§  Calibré par rapport à
modèle de charge 1
(UIC 71)
§  Pour un volume de trafic
de 25.106 to/an/voie
Lλ
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
29
Muliples voies, croisements, facteur λ4
Pour les ponts-routes, à la base modèle de charge sur une voie, ajoute
effet jème voie(s) mais pas effet croisements:
⎡ n ⎛ λ ⋅ Δσ ⎞m2 ⎤
j
λ4 = ⎢∑⎜⎜ 2, j
⎟⎟ ⎥
⎢ j=1 ⎝ λ2,1 ⋅ Δσ 1 ⎠ ⎥
⎣
⎦
1
m2
Avec:
λ2,1 facteur tenant compte du volume de trafic dans la voie 1, en général = 1,0
λ2,j facteur tenant compte du volume de trafic dans la voie j, en général 10%
= 0,63
Δσ1 dû à chariot fatigue sur voie 1 ( αQ1Qk1 ≡ 2 x 270 kN )
Δσj dû à chariot fatigue sur voie j ( 2 x 270 kN )
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
30
Muliples voies, croisements, facteur λ4
Pour les ponts-rails, à la base modèle de charge sur deux voies,
prend en compte les croisements (2 voies max.):
(
1 m2
)
m
λ4 = n + [1− n ] "#a m2 + (1− a ) 2 $%
a = Δσ1 Δσ1+2
€
Δσ1 dû au modèle de charge sur voie 1 uniquement
n portion du trafic se trouvant ensemble (attente ou croisant) sur le pont, par
défaut 12%
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
31
Limite sup. au facteur d’équivalence de dommage λmax
λmax exprime la limite de fatigue
Pour les ponts-routes:
Pour les ponts-rails:
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
32
Remarque finale
Remarque finale
} 
Quelques pistes pour la détermination des efforts et des
contraintes, et différence de contrainte équivalente λ ⋅ Δσ (Q fat )
} 
Pour les ponts existants, le chariot de fatigue reste, mais
réévaluation du trafic (à part vérif. avec limite de fatigue)
} 
Mais le calcul n’est pas tout
} 
Avant tout, faire une bonne conception et avoir une bonne
compréhension de la structure
} 
Soigner les détails et surveiller la fabrication (des détails
critiques)
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
34
Merci de votre attention, Questions ?
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
35
DIAS ANNEXES
Pont Münchenstein, longueur déterminante
Effets 3D et déformations hors plan
Exemple effets de biais (pont de Münchenstein)
§  Pont-rail CFF de 43.50 m de portée
§  Construction 1892
§  Biais de 47°
§  Trafic, passage de catégorie D3 en D4
§  Modèles SCIA et ABAQUS
§  SCIA: seulement connexions entre éléments
principaux considérées
comme rigides
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
37
Effets 3D et déformations hors plan
Exemple effets de biais (pont de Münchenstein)
Modèle SCIA barres
PDM E. Mayor, 2013
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
38
Effets 3D et déformations hors plan
Exemple effets de biais (pont de Münchenstein)
Eléments poutres pour
régions non-critiques
Assemblages en
Taille type
maillage 50 mm
éléments coque
Modèle Abaqus
G. Prinz, ICOM, 2012
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
39
Longueur déterminante (SIA 261 ou EN 1993-2)
Pour les contraintes provenant de moments de flexion:
•  Pour une poutre isostatique, la portée L
•  Pour une poutre continue, dans les régions en travée, la longueur Li de la travée
considérée
•  Pour une poutre continue, dans les régions d’appui, la moyenne des 2 travées adjacentes
Li et Lj à cet appui
•  Pour les poutres transversales portants des augets, ou supports de rails, la some des deux
travées adjacentes des augets connectés aux poutres transversales
•  Pour une tôle ou dalle supportée uniquement par des poutres transversales ou des pièces
de pont (aucun élément longitudinal), la longueur de la ligne d’influence utilisée pour
calculer la flèche de la tôle, en ignorant toute partie qui indique une flèche vers le haut. La
même chose s’applique aux poutres transv. elles-mêmes. Dans les ponts-rails, la rigidité des
rails sur la distribution des charges doit être considérée.
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
40
Longueur déterminante (SIA 261 ou EN 1993-2)
Effort tranchant, pour les poutres simples et continues:
•  Pour une section d’appui, la portée considérée Li
•  Pour les régions en travée, 0.4.Li
Réaction d’appui:
•  Pour un appui d’extrémité, la portée considérée Li
•  Pour les appuis intermédiaires, la somme des 2 portées adjacentes Li et Lj
Pont-arc:
•  Pour les suspentes, 2 fois la longueur des suspentes
•  Pour l’arc, la moitié de sa portée
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
41
Longueur déterminante (SIA 261 ou EN 1993-2)
Cas non-traités:
•  Important, même si approximation, principe du respect de la forme de la Ligne
d’Influence (une, deux, etc. bosses de même signe ou non)
•  Calculer pour chaque élément la L.I.
•  Si possible, analogie avec la L.I. de la poutre simple pour déterminer la longueur
d’influence
•  Si deux zones de L.I. ou plus, plus prudent de prendre la longueur d’influence la plus
courte
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
42
Longueur déterminante, exemple, pont haubanné
•  Effort normal dans câble de pont haubanné
•  Par analogie, comme pour réaction d’appui
•  Valeur lambda tirée du graphique: région d’appui
Cable 2
Cable 1
L1
L2
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
43
Limite sup. au facteur d’équivalence de dommage λmax
λmax exprime la limite de fatigue, comparaison avec simulations
Pour les ponts-routes:
Lλ
steelacademy 2016 | Horw, 30 juin 2016 | (A. Nussbaumer)
44

Documents pareils