La cogénération au gaz naturel

Transcription

La cogénération au gaz naturel
Cogénération au
gaz naturel
Contribution de la filière à la transition
énergétique
JUIN 2015
L’Association Technique Énergie Environnement (ATEE) rassemble tous les acteurs concernés dans leur activité professionnelle par les questions énergétiques et environnementales
(petites et grandes entreprises, sociétés de service, organismes
publics, collectivités territoriales, universités, …). Elle compte environ environ 2.000 adhérents.
Elle a un rôle d’alerte et d’information sur les dernières techniques, sur les tendances économiques et
tarifaires, ainsi que sur les évolutions réglementaires nationales ou internationales. Force de proposition reconnue, souvent consultée par les pouvoirs publics, l’ATEE est objective et indépendante.
Quatre clubs fonctionnent au sein de l’association : le Club C2E, le Club Biogaz, le Club Stockage
d’énergies et le Club Cogénération, co-auteur de cette note de synthèse. Avec FEDENE et UNIDEN, le
Club Cogénération de l’ATEE est le principal organisme représentatif regroupant la majorité des acteurs français de la filière cogénération (141 sociétés). Vingt de ces acteurs (fournisseurs d’énergies,
gestionnaires de réseaux gaziers, industriels utilisateurs, distributeurs de matériels de cogénération,
bureaux d’étude, installateurs et exploitants – voir liste en annexe) ont été associés à ce travail.
Contact : Patrick Canal, Délégué général du Club Cogénération ([email protected])
E-CUBE Strategy Consultants est un cabinet de conseil de Direction générale.
E-CUBE intervient dans trois domaines :



Énergie & Environnement : accompagner les énergéticiens dans
l’anticipation de l’évolution des marchés, de la réglementation, de la concurrence et des technologies. Assister les acteurs privés et publics dans la
réévaluation de leur stratégie afin d’intégrer les enjeux et les opportunités
d’une « nouvelle donne » énergétique et environnementale ;
Mobilité : accompagner les acteurs de l’automobile, du ferroviaire, de la logistique, du transport aérien et maritime dans leurs projets stratégiques, réglementaires et opérationnels.
Infrastructures : conduire des projets de stratégie de croissance ou d’amélioration de la performance pour des gestionnaires et exploitants d’infrastructures. Assister les fonds
d’investissement dans leurs acquisitions et prises de participation.
E-CUBE Strategy Consultants accompagne ses clients à partir de son siège à Paris, de ses bureaux à
Bruxelles, Lausanne, Munich, San Francisco, Chennai, Tunis et Hongkong.
Contact : Alexandre Bouchet, Directeur Associé ([email protected])
Stéphane Schifflers, Directeur ([email protected])
Alexandre Hoffer, Senior Consultant ([email protected])
2
Cette note a été commanditée par le Club Cogénération de l’ATEE. E-CUBE Strategy Consultants, corédacteur de la note, a assisté l’ATEE à consolider l’état des lieux de la filière, et à modéliser les impacts de la cogénération sur les économies d’énergie primaire et les émissions de CO2.
Depuis plusieurs années, les discussions entre les acteurs de la filière et les pouvoirs publics ont été
centrées sur la définition des contrats d’obligation d’achat (OA), en particulier sur les modalités
d’application des tarifs d’achat. Le processus de Planification pluriannuelle de l’énergie (PPE), qui vise
à fournir un cadre intégré (électricité, gaz, chaleur) à la politique énergétique française est l’occasion
de réfléchir plus globalement à l’évolution de la filière de cogénération au gaz naturel aux horizons de
la PPE (2018 et 2023) puis à 2030.
Cette note complète la présentation faite par l’ATEE à l’atelier PPE « Mix électrique » du 5 juin 2015.
Elle dresse un état des lieux synthétique de la filière, et donne aux différentes parties prenantes des
pistes de réflexion quant à la place de la cogénération au gaz naturel dans le futur mix énergétique
français pour les productions d’électricité et de chaleur.
3
Messages-clés
1. UN OUTIL DE LA TRANSITION ÉNERGETIQUE EN EUROPE SOUSDEVELOPPÉ EN FRANCE
La cogénération est au cœur des politiques de transition énergétique en Europe. En moyenne, les centrales de cogénération au gaz naturel assurent 10%
de la production européenne de chaleur et d’électricité, contre environ 2% en
France.
2. AMBITION : DOUBLEMENT DU PARC
Compte tenu des objectifs de croissance des réseaux de chaleur et d’évolution
du mix électrique de la France (part croissante des sources d’énergie renouvelables intermittentes), la cogénération aidera à réussir la transition énergétique ; la filière ambitionne un doublement du parc d’installations à horizon
2025, portant la capacité totale installée à 10GWe.
3. UN APPUI POUR ATTEINDRE LES OBJECTIFS DE LA PPE
Ses atouts lui permettent de contribuer à l’atteinte de tous les objectifs de la
PPE : production décentralisée à haut rendement, générant des économies
d’énergie ; sécurisation de l’approvisionnement en électricité et stabilisation
du réseau électrique consolidant l’intégration des énergies renouvelables ;
interface entre les réseaux intelligents ; réduction de la précarité énergétique
et amélioration de la compétitivité industrielle.
4. À COURT TERME : RISQUE DE DEMANTÈLEMENT À EVITER
À court terme, elle souffre cependant de conditions de marché défavorables
(écart électricité-gaz), et d’un manque de visibilité sur l’évolution des mécanismes d’accompagnement et du marché de capacité. La filière souhaite que
la PPE puisse conduire à une bonne définition des mécanismes
d’accompagnement, afin de stabiliser le parc actuel et de stimuler une reprise
de la croissance.
4
Sommaire
1. Introduction : qu’est-ce que la cogénération au gaz naturel ?
2. Le parc français : près de 900 installations ; 4,7GWe de puissance installée
3. Le parc français est l’un des moins développés en Europe
4. Seuls 15% de besoins de chaleur « cogénérables » sont satisfaits par la cogénération en France
5. À terme, la cogénération devra capter l’augmentation de la part du gaz
dans le mix électrique
6. Objectif PPE #1 : Sécurité d’approvisionnement
7. Objectif PPE #2 : Économies d’énergie
8. Objectif PPE #3 : Développement des énergies renouvelables
9. Objectif PPE #4 : Développement des territoires
10. Objectif PPE #5 : Compétitivité
11. La fin annoncée du régime de tarif garanti pour les sites de plus de
500 kWe crée un climat d’incertitude
12. Les conditions de marché actuelles ne permettent pas d’envisager une
rentabilité de la filière à horizon 2017
13. Sans une stabilisation des conditions d’exploitation, la filière hors OA
risque de connaître une vague de démantèlements
5
1. Introduction : qu’est-ce que la cogénération
au gaz naturel ?
L
a cogénération est un mode de production simultanée de chaleur utile et
d’électricité, la plupart du temps à partir
de gaz naturel, dans des installations dont la
puissance peut varier de quelques kW à plusieurs centaines de MW. La chaleur est consommée sur site, l’électricité injectée sur le
réseau ou autoconsommée. La cogénération
consomme 10% à 35% d’énergie primaire en
moins que les meilleurs outils de production
séparés (voir Figure 1). La production décentralisée d’électricité, proche des points de
consommation, limite les pertes réseau, pouvant aller jusqu’à 16%.
Lorsqu’elle répond à un besoin de chaleur
(chaufferie d’un bâtiment tertiaire, réseau de
chaleur municipal, procédé industriel, serre),
la cogénération produit de l’électricité avec un
rendement marginal inégalé par les autres
filières thermiques. Dans la mesure où elle se
substitue à ces dernières, elle est donc une
source d’économie d’énergie primaire et
d’émission de CO2. C’est dans ce sens que la
Commission Européenne encourage le déve-
loppement de la cogénération (Directive sur
l’efficacité énergétique de 2012 ; Directive
cogénération de 2004). C’est aussi la justification des mécanismes de soutien (obligations
d’achat, certificats de garantie d’origine ou
d’économies d’énergie) mis en place dans la
plupart des pays européens. Ceux-ci permettent aux producteurs de valoriser leur production d’électricité au-delà de la simple vente
sur le marché ou de l’autoconsommation.
6
2. Le parc français : près de 900 installations ;
4,7GWe de puissance installée
L
’ATEE recense près de 900 installations
de cogénération au gaz naturel en service en avril 2015, représentant une
puissance électrique totale de 4,7 GWe. Cette
capacité représente environ 4% de la puissance électrique totale en France, et 20% du
parc de production d’électricité par voie
thermique à flamme, soit l’équivalent de
l’autre grande filière au gaz naturel, les centrales à cycle combiné (CCG).
On
distingue
quatre
grands
d’installations (voir Figure 2) :
types
Chaufferies : 379 installations pour une puissance totale installée de 0,5 GWe, soit une
puissance moyenne de 1,4 MWe ;
Réseaux de chaleur : 237 installations, 1,5
GWe, Pmoy 6,3 MWe ;
Sites industriels : 191 installations, 2,5 GWe,
Pmoy 13 MWe ;
Serres maraîchères : 65 installations, 180
MWe, Pmoy 2,7 MWe. Outre la chaleur (alimentant les serres) et l’électricité (injectée dans le
réseau), le CO2 peut aussi être valorisé (capture par photosynthèse).
Un cinquième segment, constitué de la microcogénération (< 36 kVA) et de la minicogénération (36 à 250 KVA), est implanté
dans les logements et les bâtiments tertiaires.
Ce segment est très peu développé en France.
Le parc est réparti sur tout le territoire (voir
Figure 3). Un aperçu plus détaillé du parc est
fourni en Annexe.
7
3. Le parc français de cogénération au gaz naturel est l’un des moins développés en Europe
E
nviron 2% de l’électricité produite en
France est issue de la cogénération au
gaz naturel (3% pour la chaleur). Il s’agit
de l’un des plus faibles pourcentages en Europe. (Voir Figure 4)
L’Allemagne, par exemple, dispose d’un parc
de cogénération total (tous combustibles confondus) d’une puissance de 45 GWe assurant
15,4% de la production d’électricité nationale,
dont 9% au gaz naturel. En outre, suite à sa
décision de sortir du nucléaire, l’Allemagne
s’est fixé l’objectif de doubler son parc de
cogénérations moyennant la mise en place
d’un système de soutien adapté.
Le faible poids de la cogénération dans le mix
énergétique français est historique. Il résulte
d’une politique ayant favorisé les productions
8
électriques nucléaire et hydraulique. Si la cogénération répond avant tout à un besoin de
chaleur en produisant secondairement de
l’électricité, la valorisation de cette électricité
est néanmoins indispensable pour le producteur. La faiblesse des prix de marché en
France a rendu plus difficile que dans d’autres
pays la valorisation de l’électricité cogénérée.
La comparaison internationale suggère
l’ampleur de la marge de développement de la
cogénération au gaz naturel en France. À
terme, dans la perspective d’un système européen de l’énergie unifié, les caractéristiques
des mix énergétiques propres à chaque pays
s’estomperont. La place future du parc de
cogénération français est alors à considérer au
sein de ce mix européen unifié.
4. Seuls 15% de besoins de chaleur « cogénérables » sont satisfaits par la cogénération en
France
U
ne « Analyse du potentiel national
pour l’application de la cogénération
à haut rendement » a été publiée par
le Ministère de l’Ecologie en 2010 en application de la Directive 2004/8/CE. Cette analyse a
conclu qu’un peu plus de la moitié du besoin
national de chaleur à horizon 2020 était,
compte tenu des profils de consommation,
« techniquement cogénérable » par un parc de
cogénération d’une puissance électrique théorique totale d’environ 30 GWe, soit six fois la
taille actuelle du parc.
peut être considéré comme un scénario de
rupture, nécessitant des évolutions économiques et réglementaires significatives, le seul
potentiel de croissance des secteurs historiques de la cogénération (industrie, serres,
réseaux de chaleur), représente déjà plus du
double de la puissance installée à ce jour.
L’analyse du besoin national de chaleur confirme donc que la taille relative du parc de
cogénération observée dans d’autres pays
européens est techniquement atteignable en
France.
Même si le développement de la cogénération
raccordée en basse tension (qui représente
près de la moitié du potentiel total identifié)
9
5. À terme, la cogénération captera l’augmentation de la part du gaz dans le mix électrique
L
a Loi sur la Transition Énergétique pour
la Croissance Verte (LTECV) a récemment confirmé l’objectif d’un abaissement de la part du nucléaire dans la production électrique à 50% pour 2025. Cet objectif,
couplé aux objectifs de réduction des émissions de CO2 et aux incertitudes sur la vitesse
de déploiement des parcs renouvelables, rend
inéluctable une augmentation de la part du
gaz naturel dans le mix électrique. Le scénario
« Nouveau Mix » élaboré par RTE (cohérent
avec l’objectif de baisse du nucléaire et très
ambitieux sur la croissance du parc renouvelable) prévoit d’ailleurs un quasi-doublement
des capacités CCG en 2030.
3. Faible risque. Le déploiement d’un parc de
cogénération est beaucoup moins aléatoire et
plus rapide que le déploiement de grosses
unités de production centralisées.
Les chapitres suivant exposeront que les différents atouts de la cogénération (son caractère
décentralisé et sont haut rendement énergétique) en font la filière thermique la plus à
même de soutenir l’atteinte de tous les objectifs assignés à la Planification Pluriannuelle de l’Energie (PPE).
Les représentants de la filière cogénération au
gaz naturel, réunis au sein du Club Cogénération de l’ATEE, estiment que cette filière pourrait légitimement capter une large part de
cette croissance :
1. Gisement thermique. Le besoin de chaleur
pouvant être couvert par la cogénération est
important (voir chapitre précédent).
2. Compétitivité coût. Par rapport aux CCG, le
meilleur rendement de la cogénération (grâce
à la valorisation de la chaleur) devrait pouvoir
compenser des coûts d’investissement et
d’exploitation (maintenance, etc.) légèrement
plus élevés (et partiellement compensés par
des dépenses évitées dans une chaudière).
Objectif réaliste du Club Cogénération ATEE : 10GWe en 2025
Compte tenu d’un important gisement thermique et des besoins induits par les
changements du mix de production électrique (baisse du nucléaire, hausse des
énergies renouvelables)
10
6. Objectif PPE # 1 – Sécurité d’approvisionnement et sûreté du système énergétique : la
filière de cogénération est porteuse d’une sécurisation structurelle du système électrique
Sécurité d’approvisionnement électrique
A
vec ses 5GWe fonctionnant en semibase en période hivernale, le parc de
cogénération contribue déjà significativement à la sécurité d’approvisionnement
électrique.
Le développement de la cogénération pourrait
fournir une réponse adaptée au déficit de
capacité de production prévu par RTE
(900MW en 2015-16 progressant à 2 GW en
2016-17 selon le Bilan prévisionnel 2014) en
raison de la concomitance des besoins de chaleur (base de la cogénération) avec la pointe
de consommation électrique.
Le déploiement d’un parc de cogénération est
moins aléatoire que le développement de
grosses unités de production type CCG (relative simplicité technico-administrative ; opposition locale réduite ; délais de réalisation plus
courts ; intégration territoriale et implantation
équivalentes à celles d’une chaufferie), moins
risqué financièrement, et plus adaptables aux
conditions locales de déséquilibre entre l’offre
et la demande.
Sûreté de fonctionnement du réseau électrique
Le parc de cogénération, fortement décentralisé, présente un risque de défaillance systémique quasi-nul et sollicite peu le réseau de
transport.
Dans un contexte de hausse des sources de
production intermittentes fatales, son développement présente des atouts intéressants :
- Possibilité de mise à disposition du système électrique local avec des délais
d’activation très courts (1 à 5 MWe par minute à compter d’un démarrage à froid) ;
- Production programmable, avec engagement fiable de disponibilité à la pointe
(plus de 97% pour le parc actuel sous OA) ;
- Compatibilité avec les futurs codes réseaux
européens, soutien actif à la stabilité des
réseaux (tension, fréquence).
Facteur de sûreté du réseau gazier
La forte dispersion du parc de cogénération
permet de répartir le pic de demande de gaz
sur l’ensemble du réseau.
Hiver 2012 : suite à une défaillance majeure du réseau de transport, la ville de
Seclin approvisionnée en électricité grâce à une centrale de cogénération
Le 5 mars 2012, des chutes de neige collante et de pluie d’une intensité exceptionnelle ont touché les
départements du Nord et du Pas-de-Calais, causant la défaillance du réseau RTE. Environ 150.000
clients finals ont subi des coupures d’alimentation, dont 20.000 foyers à Seclin. Après plus de 36
heures, le réseau n’étant toujours pas rétabli dans cette ville, ERDF a sollicité auprès de NovaWatt la
mise en route de sa centrale de cogénération de Seclin, à hauteur de 3MWe. Cette centrale a assuré
sans interruption la totalité de l’approvisionnement électrique de la ville jusqu’à la remise en service
du réseau de transport deux jours et demi plus tard.
11
7. Objectif PPE #2 - Amélioration de l’efficacité
énergétique et baisse de la consommation :
l’atout majeur de la cogénération
L
es économies d’énergie primaire et la
réduction des émissions de CO2 attribuables au parc de cogénération ont été
estimées par E-CUBE Strategy Consultants sur
la base d’une modélisation du parc de production (de chaleur et d’électricité) qui se substituerait à la cogénération si cette dernière
s’effaçait entièrement. Ce « mix déplacé » a
été modélisé à trois horizons (2018, 2023,
2030) en prenant en compte les hypothèses
suivantes :
- Niveaux et profils de production du parc
de cogénération calés sur les valeurs de
2014, segmentés (industrie vs. réseaux de
chaleur, etc.) et incluant une dose croissante de modulation (voir détail en annexe).
12
- Production de chaleur : substitution à
100% par des chaudières à condensation
au gaz naturel.
- Production d’électricité : mix de substitution (CCG, nucléaire, charbon, etc.) modélisé au pas horaire en fonction de l’ordre de
préséance économique (« merit order »)
des actifs disponibles, en cohérence avec le
scénario « Nouveau Mix » de RTE.
Selon cette modélisation, le parc actuel de
cogénération
représente
une
source
d’économie d’énergie primaire de 12TWh en
2018 à parc constant, baissant progressivement à 6TWh en 2030 (voir Figures 7 et 8). Les
réductions d’émissions de CO2 s’élèvent à
4,6 Mtonnes en 2018, et 1,5 Mtonnes en
2030.
Les gains sont plus importants en début de
période en raison d’une prépondérance du
charbon dans le mix électrique déplacé. Ceci
reflète les importations d’électricité produite
en Allemagne, dont les centrales au charbon
sont la première source (près de 50GWe installés, représentant la moitié de la production
nationale). À terme, la réduction du contenu
carbone du mix déplacé induit une baisse des
gains d’énergie primaire attribuables à la cogénération.
Le développement de la cogénération, notamment pour les usages tertiaires ou résidentiels (micro- et mini-cogénération), dans
les serres ou les réseaux de chauffage urbain,
augmenterait ces bénéfices proportionnellement à la puissance installée. E-CUBE Strategy
Consultants estime que le développement de
chaque tranche de 1 GWe de cogénération
(produisant 3,5 TWhe annuels) permettrait
d’économiser environ 3 TWh d’énergie pri-
maire en 2018, 2 TWh en 2023 et 1 à 2 TWh
en 2030.
De façon analogue, l’impact sur la baisse des
émissions de CO2 serait d’environ 500.000
tonnes en 2030 par GWe de puissance installée.
Les impacts de la cogénération sur les besoins
d’investissement dans le système énergétique
n’ont pas été modélisés, mais sont néanmoins
réels. Un démantèlement du parc actuel nécessiterait à terme des investissements dans
des nouveaux moyens de production, et probablement des renforcements de réseau.
L’ajout de nouvelles capacités de cogénération
se substituerait à des investissements dans
des moyens de production centralisés. Localement, cela pourrait réduire les besoins
d’investissements dans les réseaux de transport et de distribution. Ces effets doivent être
évalués au cas par cas.
13
8. Objectif PPE #3 - Développement des énergies renouvelables et de récupération : des synergies plutôt qu’une concurrence
Apport de fiabilité et de disponibilité au
réseau électrique, accompagnant le développement des EnR
L
e développement des filières photovoltaïques et éoliennes pose des défis au
système électrique : intermittence ; production fatale ; contraintes de capacité
d’accueil réseau à la maille locale.
Face à ces défis, la cogénération est un outil
complémentaire performant. Une unité de
cogénération peut par exemple s’effacer lors
de la pointe de production photovoltaïque à
midi, ou fournir des capacités électriques
d’appoint le soir. Sa flexibilité est accrue par le
stockage de chaleur (pratiqué dans les serres)
ou la modulation entre production de chaleur
seule et d’électricité + chaleur.
Synergies avec le développement du biogaz
Le développement de la filière biométhane est
un des enjeux majeurs de la Transition énergétique. Les objectifs sont ambitieux : multiplication par quatre de la production
d’électricité et de chaleur en 2020 ; 10% de
biométhane injecté dans le réseau à horizon
2030, et 30% à horizon 2050 ; développement
de plus de 1.500 méthaniseurs à la ferme d’ici
2020.
Il est artificiel de considérer séparément les
filières biogaz et cogénération. La cogénération est le mode principal de valorisation du
biogaz : 260 MWe de capacités sont déployés
en France sur 400 sites produisant 2,4TWhe.
14
Une filière de cogénération forte, présente
dans les territoires, est un gage de réussite du
défi industriel que représente le développement du biogaz. A contrario, un affaiblissement de la filière gaz hypothéquerait ce développement, en fragilisant les acteurs de
l’ensemble de la chaîne de valeur : bureaux
d’études, installateurs, exploitants, opérateurs
de maintenance, distributeurs, etc.
À plus long terme, le parc de cogénération au
gaz naturel pourrait représenter l’une des
filières de choix de valorisation du biométhane : meilleur rendement, production décentralisée, proche des centres de production.
Complémentarité avec la biomasse
La croissance de la biomasse comme source
de chaleur est également un enjeu important
de la Transition énergétique.
Production de chaleur par biomasse et cogénération au gaz naturel sont complémentaires
plus que concurrentes, car adaptées à des
types de sites différents :
- Zones urbanisées ou industrielles desservies par le réseau gazier pour la cogénération ; les contraintes logistiques associées à
l’approvisionnement et au stockage de la
biomasse peuvent la rendre inadaptée à
cet environnement
- Zones rurales et diffuses pour la biomasse,
en particulier les zones proches des ressources de biomasse.
9. Objectif PPE #4 - Réseaux, stockage, transformation des énergies, pilotage de la
demande : la cogénération interface entre les
réseaux électrique, de gaz et de chaleur
L
e projet de Loi relatif à la Transition
énergétique pour la croissance verte
assigne à la PPE l’objectif suivant : « Art.
L 141-2 4° [le] développement équilibré des
réseaux, du stockage et de la transformation
des énergies et du pilotage de la demande
d'énergie pour favoriser notamment la production locale d'énergie, le développement des
réseaux intelligents et l'autoproduction. Ce
volet identifie notamment les interactions
entre les réseaux d'électricité, de gaz et de
chaleur aux différentes échelles pour en optimiser le fonctionnement et les coûts »
La cogénération au gaz répond parfaitement à
cet objectif :
- Production d’électricité locale pouvant être
autoconsommée ;
- Commandabilité des installations facilitant
leur intégration dans des réseaux intelligents à la maille locale. L’expérimentation
Greenlys à Grenoble intègre par exemple
plusieurs installations de cogénération ;
- Pont entre les réseaux de gaz (et de biogaz), d’électricité et de chaleur (voir Figure
9). L’adjonction de capacités de stockage
de chaleur fournit un levier d’arbitrage
complémentaire, flexibilisant encore la
production d’électricité.
15
10. Objectif PPE #5 - Préservation de la
compétitivité du prix de l’énergie : en valorisant
l’électricité produite, la cogénération baisse le
coût de la chaleur
La cogénération est un facteur de compétitivité dans de nombreuses entreprises
L
a cogénération permet à plus de 190
sites industriels répartis sur l’ensemble
du territoire de bénéficiant d’un coût de
la chaleur compétitif.
La cogénération contribue à la lutte
contre la précarité énergétique
L
a
FEDENE estime que 800.000 logements
sociaux sont raccordés à des réseaux de
chaleur, dont 500.000 avec cogénération.
Les familles occupant ces logements bénéficient
La production maraîchère sous serre est un
en moyenne, grâce à la cogénération, d’une
exemple intéressant, détaillé dans l’encart ci-
baisse de 10 % du prix de la chaleur. Cet
dessous.
avantage pourrait devenir plus prégnant encore
avec l’objectif affiché dans la LTECV d’un
quintuplement à l’horizon 2030 des réseaux de
chaleur
valorisant
les
sources
de
chaleur
renouvelable et récupérable.
La cogénération facteur de compétitivité – Exemple des serres
L’énergie est un facteur-clé de la compétitivité des entreprises de production sous serres. Selon les
régions, l’énergie représente en effet entre 18 et 30 % des coûts directs de production.
Sur un peu plus de 1.300 hectares de serres chauffées en France, 275 hectares (employant directement
1.700 personnes) le sont par cogénération, soit 21%. Le parc représente près de 200 MWe. L’utilisation
de la cogénération dans les serres est particulièrement efficace :
Grâce à l’utilisation de cuves de stockage de chaleur, le rendement thermique est proche de 100%
Jusqu’au quart des émissions de CO2 peut être réinjecté dans les serres et capté par
photosynthèse
La valorisation de l’électricité produite permet de réduire le coût de la chaleur de 15 à 30%, soit un
avantage de coût global moyen de 6% environ. Cet avantage est décisif dans un secteur soumis à
une concurrence internationale, notamment des Pays-Bas (parc de cogénération agricole de 3GWe
!) et de l’Espagne.
La filière estime que chaque MW e installé permet de participer à la sauvegarde d’environ 12
emplois directs.
16
11. La fin annoncée du régime de tarif garanti
pour les sites de plus de 500 kWe crée un climat d’incertitude
L
e parc actuel de cogénération au gaz
naturel s’est développé grâce à un mécanisme d’obligation d’achat (« OA »)
proposant un tarif qui garantissait l’équilibre
économique de la filière (voir historique en
Annexe). Sur un parc de total de 4,7GWe,
1,8GWe est piloté par l’OA dans le cadre du
contrat « C13 » d’une durée de 12 ans (voir
Figure 10). Les installations de plus de 12
MWe, exclues du mécanisme d’OA depuis la loi
de février 2000, bénéficient d’un « contrat
transitoire de capacité », qui cessera fin 2017
avec la mise en place du marché de capacité.
Le régime d’OA, remanié fin 2013, sera profondément modifié en 2016 en application des
lignes directrices de la Commission européenne encadrant les aides à la protection de
l’environnement et à l’énergie. Elles continuent cependant à autoriser les tarifs d’achat
garantis pour les installations de moins de 500
kW. Au-delà de ce seuil, les mécanismes suivants sont prévus.
À partir de janvier 2016, une prime de marché
et une prime de gestion compléteront la rémunération issue de la vente sur le marché de
l’électricité produite et des certificats (de capacité, de garantie d’origine, d’économie
d’énergie).
À partir de janvier 2017, les installations de
plus de 1 MWe seront soutenues via des appels d’offres technologiquement neutres.
Le relatif manque de visibilité quant à la transcription de ces règles en droit français, encore
en cours de discussion, génère de l’incertitude
pour la filière. Les modalités du marché de
capacité et des futurs mécanismes de soutien
(en particulier sur les appels d’offres, dont
l’efficacité passée sur la biomasse n’a pas été
démontrée)
sont
aussi
des
sujets
d’incertitude.
17
12. Les conditions de marché actuelles ne
permettent pas d’envisager une rentabilité de la
filière à horizon 2017
À court terme (avant 2017), le marché de
le signal prix du CO2, l’évolution des mécanismes
l’énergie ne permet pas d’envisager l’équilibre
de soutien aux EnR évitant les phases de prix
économique des installations de cogénération
négatifs, le démarrage du marché de capacité, la
sans mécanisme de soutien. En effet, le prix de
diminution du parc nucléaire. De plus, les autres
gros de l’électricité – historiquement bas – est
composantes devraient également progresser :
inférieur au coût de production. Ceci concerne
transport, taxes,… La sophistication croissante du
toutes les filières au gaz naturel dont la
marché de l’électricité permettra également de
rentabilité est conditionnée par le « Clean Spark
mieux valoriser les atouts de la cogénération en
Spread » (CSS), soit l’écart entre le prix de
tant qu’outil flexible, programmable et disponible.
l’électricité et le prix du gaz qui a permis sa
production (majoré du prix du CO2), actuellement
négatif (voir Figure 11).
À moyen terme (2017-2023), l’incertitude
plane tant sur l’évolution des conditions de
marché que sur l’aptitude du futur marché de
À long terme (après 2023), si l’évolution
capacité à faire émerger un prix suffisant pour
du CSS restera sujette à des fluctuations de
les certificats de capacités délivrés par RTE. Le
marché, elle devrait cependant progresser
plafond envisagé (40 à 45 k€/MW/an) est trop
avec : le retour de la croissance économique,
faible pour compenser le niveau actuel du CSS.
13. Sans une stabilisation des conditions
d’exploitation, la filière risque de connaître une
vague de démantèlements
ce jour, des actifs de cogénération au
gaz naturel représentant une capacité
totale de 400 MWe ont été démantelés,
sous l’effet combiné :
À
- d’un manque de visibilité, jusqu’à fin 2013
sur l’avenir des contrats d’OA ;
- d’une substitution ponctuelle par la cogénération biomasse sur les sites papetiers ;
- d’une baisse de la demande de chaleur liée
à une conjoncture économique difficile ;
- de la dégradation rapide du CSS survenue
depuis 2012 pour les grosses installations
sorties d’OA.
La stabilisation récente du parc tient en
grande partie au déploiement du nouveau
contrat C13 qui a provisoirement apporté la
visibilité nécessaire notamment grâce à un
nouveau référentiel du prix du gaz disponible
sur Powernext et prévisible.
Une mauvaise adaptation des mécanismes
d’accompagnement conjuguée à des perspectives de marché négatives (voir chapitre précédent), provoquerait, avant 2020, la reprise
du démantèlement du parc de grosses installations (> 12 MWe), estimé à 2,2 GWe de capacités en service (dont 29 sites industriels et
7 sites raccordés à des réseaux de chaleur).
Une telle vague de démantèlements aurait des
effets négatifs, déjà en partie décrits plus
haut :
- Pertes d’emplois ;
- Perte de compétitivité pour certains sites
industriels ;
- Augmentation de la précarité énergétique
dans les logements sociaux desservis par
les réseaux de chauffage urbain concernés ;
- Affaiblissement rapide du système électrique français, qui serait privé de capacités
de production fortement mobilisées pendant les pointes. À court terme, seule une
augmentation des importations permettrait de compenser cet effet.
Au-delà de ces impacts directs, le coût
d’opportunité pour la Transition énergétique
serait important. L’érosion de la filière priverait la France d’une source d’économies
d’énergie primaire et de baisse des émissions
de CO2 et générerait des surcoûts d’accès au
réseau gazier pour les autres consommateurs.
Elle pourrait hypothéquer la réussite du développement de la filière biogaz, qui ne bénéficierait plus des effets d’échelle et du partage
d’expérience avec la cogénération au gaz naturel.
Finalement, la diminution de parc de cogénération français irait à l’encontre de la dynamique européenne encourageant le développement de la filière. La Directive sur
l’efficacité énergétique de 2012 conforte les
préconisations de la Directive cogénération de
2004 en faveur de la filière. Le projet de Loi
relatif à la Transition énergétique pour la
croissance verte confirme cette orientation.
L’Article 49, Section 4 indique que la PPE doit
comporter un plan stratégique national ayant
pour objectif, notamment de « développer
des synergies avec la production électrique
par le déploiement et l’optimisation de la cogénération à haut rendement ».
19
Annexes
A. Liste des contributeurs à cette note
B. Aperçu du parc de cogénération au gaz naturel
C. Méthodologie de modélisation des gains d’énergie primaire
D. Historique des contrats d’obligation d’achat (OA)
20
A. Liste des contributeurs à cette note
VRIngénierie
21
B. Aperçu du parc de cogénération au gaz naturel
Segments
Nombre de sites en service
(avril 2015)
1. Chaufferies
Administration
Aéroports
Bureaux
Résidentiel et petit tertiaire
Enseignement et recherche
Grande distribution
Santé
Sports-loisirs
Moteurs Turbines
Total
364
15
379 43%
7
0
7 1%
4
2
6 1%
7
2
9 1%
156
1 157 18%
26
1
27 3%
3
0
3 0%
143
8 151 17%
18
1
19 2%
2. Régies & Réseaux de
chaleur
Puissance installée (MWe)
Moteurs Turbines
Total
479
46
525 11%
3
0
3 0%
5
12
17 0%
6
0
6 0%
194
0 195 4%
30
5
34 1%
4
0
4 0%
217
29 246 5%
18
0
18 0%
173
64
237
27%
627
3. Industrie
Aéronautique
Agro-alimentaire
Automobile
Chimie
Electricité
Electronique
Environnement et propreté
Industrie du bois
Industrie Minérale
Mécanique
Métallurgie
Papier
Pétrole et gaz
Textile
70
121
191 22%
10 1%
40 5%
27 3%
41 5%
2 0%
5 1%
3 0%
7 1%
5 1%
5 1%
2 0%
39 4%
3 0%
2 0%
243
4. Serres
63
2
65
7%
169
Total
670
202
872
100%
1.517
Source : ATEE Club Cogénération
22
5
21
8
7
1
5
2
3
3
3
2
7
1
2
5
19
19
34
1
0
1
4
2
2
0
32
2
0
8
98
31
14
7
4
3
5
12
7
4
38
4
8
855
Puissance
moyenne
(MWe)
1,4
0,5
2,9
0,7
1,2
1,3
1,4
1,6
1,0
1.482 32%
6,3
2.222 2.465 53%
30
38 1%
221 319 7%
122 153 3%
949 963 21%
40
47 1%
0
4 0%
11
14 0%
26
31 1%
10
22 0%
12
20 0%
0
4 0%
505 544 12%
295 299 6%
0
8 0%
12,9
3,8
8,0
5,7
23,5
23,5
0,7
4,6
4,5
4,4
3,9
2,0
13,9
99,7
3,9
7
176
4%
3.130 4.647 100%
2,7
5,3
C. Méthodologie de modélisation des gains
d’énergie primaire
M
esurer
les
économies
d’énergie
primaire et la baisse des émissions
de CO2 attribuables au parc de
cogénération
actuel
revient
à
poser
les
questions suivantes : si le parc actuel était
totalement démantelé ...
profil horaire donné), et on calcule deux
scénarios d’offre (toujours au pas horaire) :
Un premier scénario (A) incluant le parc de
cogénération actuel, dont la production est
calée sur le niveau de production 2014 (voir
détail ci-dessous). La production des autres
- ... quelle surconsommation d’énergie primaire
filières (nucléaire, EnR, etc.) s’ajoute à la
serait nécessaire afin de satisfaire les besoins
production par cogénération. Elle est modélisée
de
selon l’ordre de préséance économique (« merit
chaleur
et
d’électricité
qu’il
satisfait
order » des coûts variables) : les EnR (PV et
aujourd’hui ?
- ... quelle quantité de CO2 supplémentaire les
éolien) ont un coût variable nul, et sont donc
moyens se substituant à la cogénération
toujours sollicitées en premier, vient ensuite le
émettraient-ils ?
nucléaire, etc. ; l’ordre des autres moyens de
Le parc actuel (4,7GWe) est supposé assurer
une
production
annuelle
de
12TWhe
d’électricité et de 15TWhth de chaleur.
de
chaleur
serait
substituée
capacités disponibles sur le marché par type de
production sont cohérentes avec le scénario «
Nouveau mix / MDE renforcé » défini par RTE
Production de chaleur : 100% de la production
production peut varier. Les hypothèses de
par
des
chaudières au gaz naturel.
Production électrique : le mix de substitution
est modélisé au pas horaire. On suppose que la
demande globale d’électricité est fixée (selon un
dans son Bilan prévisionnel 2014. (Voir Figure
C1)
Un deuxième scénario (B) sans le parc de
cogénération. Dans ce cas, le mix de production
est calculé entièrement sur la base de l’ordre de
préséance économique.
23
La demande électrique (commune aux deux
scénarios) est simulée au pas horaire sur la
- un profil continu toute l’année (s’appliquant
principalement au segment Industrie)
période 2015-2030, sur la base de données
- un profil continu du 1er novembre au 31
historiques (pour le profil horaire), et des
prévisions de RTE (pour le niveau total de consommation).
mars
Aucun profil « dispatchable » (sensible à un
signal marché) n’a été modélisé. Même si les
La production électrique du parc de cogénération
contrats d’obligation d’achat prévoient ce
à substituer est modélisée séparément sur quatre
mode de fonctionnement, il est dans les faits
segments (Chaufferies, Réseaux de chaleur,
assez peu utilisé. Afin de traduire le souci de
Industrie, Serres). Chacun combine, dans des
la filière de coller mieux aux conditions de
proportions variables, deux profils de production,
marché, les deux profils décrits ci-dessous
reflétant :
intègrent progressivement (au fil des années)
une part de modulation (voir Figure C2).
24
La différence entre les deux scénarios d’offre (A
et B) définit les sources d’électricité qui se
substitueraient à la cogénération, et donc
permet d’évaluer l’économie d’énergie primaire
et la réduction des émissions de CO2 en prenant
en compte
-
-
un facteur d’émission de CO2 moyen
-
les pertes réseau évitées par la production
décentralisée de la cogénération.
Les Figures C3 et C4 présentent respectivement
les hypothèses de rendement des différentes
filières, et des prix de combustibles.
le rendement moyen du mix se substituant à
la cogénération
25
D. Historique des contrats d’obligation d’achat
(OA)
L
a majeure partie du parc français de
cogénération au gaz trouve son origine
dans le mécanisme d’obligation d’achat
(OA) instauré par les arrêtés tarifaires de
1997, 1999 puis 2001. Stimulé par ce mécanisme, le parc de cogénération au gaz a rapidement crû pour atteindre une capacité totale
proche de 5 GWe en 2002. Après l’an 2000,
seules les installations d’une puissance inférieure à 12 MWe ont été éligibles au contrat
d’OA, ce qui a fortement freiné le développement de la filière.
Les contrats d’OA dits « C97 », « C99 » et «
C01 » – conclus pour une période de 12 ans –
imposaient à EDF (l’acheteur obligé) d’acheter
aux cogénérateurs l’électricité produite à un
tarif composé d’une prime fixe et d’une rémunération proportionnelle plafonnée et indexée sur le tarif STS du gaz (tarif régulé grand
transport).
Le tarif d’achat dont bénéficiaient ces installations a été construit dans une logique de coûts
évités pour le système électrique. Ceci inclut
les coûts d’investissement et d’exploitation
évités d’un cycle combiné au gaz de référence
de 650 MWe et la rémunération des économies de réseau et d’énergie primaire réalisées
grâce à la cogénération.
La dérégulation progressive du marché du gaz
dans les années 2000 a conduit à une décorrélation entre le tarif de référence STS et
le prix de marché du gaz. Le plafond de la
composante proportionnelle du tarif d’achat
des contrats d’OA a systématiquement été
atteint à partir de 2005, pénalisant la rentabilité des installations de cogénération. Chaque
année, un coefficient de déplafonnement négocié entre la profession et les Pouvoirs pu26
blics a été appliqué afin de corriger ce problème.
À partir de 2007, de nombreux contrats d’OA
arrivant à échéance ont été renouvelés.
L’arrêté tarifaire de décembre 2006 offrait en
effet aux producteurs la possibilité, en contrepartie d’un investissement de rénovation d’au
moins 410 € (valeur actualisée 2014) par kWe
de puissance installée de bénéficier d’un nouveau contrat d’OA de 12 ans, avec un tarif
d’achat modifié par rapport aux conditions de
2001, mais toujours constitué :
- d’une prime fixe liée à la puissance installée ;
- d’une rémunération proportionnelle à
l’énergie fournie, toujours indexée sur le
tarif (STS) ;
- d’une prime complémentaire fonction de
l’efficacité énergétique de l’installation.
Ces dispositions ont engendré un démarrage
timide de rénovation du parc à partir de 2009.
En 2013, un nouvel arrêté tarifaire (14 octobre
2013) a profondément modifié les conditions
tarifaires pour les nouveaux contrats d’OA et
permis aux anciens contrats (« C01/C01R») de
migrer vers des nouvelles conditions (« C13 »),
prenant notamment en compte un référentiel
marché pour le prix du gaz. La quasi-totalité
du parc sous OA a migré vers ces nouvelles
conditions.
Concomitamment, les dernières installations
d’une puissance supérieure à 12 MWe inscrites dans le mécanisme d’OA sont arrivées
au terme de leur contrat fin mars 2013. Les
conditions de marché (CSS défavorable), et la
structure même du marché de l’électricité
(difficulté de valoriser la valeur capacitaire des
installations de cogénération) ne permettaient
pas d’envisager une rentabilité propre de ces
installations. Alertés par la filière du risque de
démantèlement de nombreux sites, les Pouvoirs publics ont mis en place le « contrat
transitoire de capacité ». Il garantissait aux
installations de plus de 12 MWe une rémunération annuelle proportionnelle à la puissance
garantie, plafonnée à 45 k€/MWe (rémunération capacitaire de 35 k€/MWe et rémunération investissements de 10 k€/MWe). Ce mécanisme (toujours en cours d’actualisation
suite au rejet en juillet 2014 par le Conseil
constitutionnel de l’arrêté du 19 décembre
2013) doit perdurer jusque fin 2016.
27

Documents pareils