les breves innovation n° 89

Transcription

les breves innovation n° 89
GROUPE FRANÇAIS D'ÉTUDES ET D'APPLICATIONS DES POLYMÈRES
Juillet 2013
LES BREVES INNOVATION N° 89
Informations rassemblées et compilées par A. Momtaz
1. Nouveaux PRODUITS, nouveaux Matériaux
Un matériau élastique mais résistant
2. Techniques de synthèse: matières premières, procédés, outils
Complex 3-D polymer brush nanostructures from
photopolymerization
Acide acrylique biosourcé : BASF, Cargill et Novozymes avancent
3. Techniques de MISE en ŒUVRE et ADDITIFS de formulation
The role of non-covalent interactions and matrix viscosity on the
dispersion and properties of LLDPE/MWCNT nanocomposites
4. Polymères biosourcés, biopolymères, biocarburant
Sustainable Polymers: Opportunities for the Next Decade
Functionalized Polymers from Lignocellulosic Biomass: State of the
Art
Bioplastics from waste glycerol derived from biodiesel industry
Avantium on track for 2016 launch of innovative PEF bottles
ii
Mois Année
“Capa” caprolactones for bioplastic blends ready to be launched
Du caoutchouc à partir de pissenlit
Bayer plans commercial production of CO2-based polyols
5. APPLICATIONS des Polymères
a. Systèmes intelligents
Self-healing materials for structural applications
Spotlight on Polymer Chemistry, Issue 16
Amélioration des performances des polymères à mémoire de forme
b. Polymères pour l’électronique
OLYMP project aims to make OLED as efficient as LED
c. Revêtement de surface
Une amélioration pour le traitement de surface de l'aluminium
Design of Modified PP Film Surfaces for Antimicrobial Applications
d.
Energie
Cellules solaires organiques: des molécules simples comme
alternatives aux polymères
Supercapacitor yarn: small fibres are powerful batteries
Shape-Shifting Plastic Powers Motors
iii
Mois Année
e.
Transport
R.A.S.
f.
Bâtiment
R.A.S.
g.
Textile
Un tissu piézoélectrique utilisé comme un capteur
Flexible, Switchable Electrochromic Textiles
h. Médical, santé
Molecularly Imprinted Polymers Developed as Synthetic Receptors for
Nicotine
Plastics applications grow in expanding dental implant market
6. Techniques d'ANALYSE de calcul et de CARACTERISATION, études
TOXICOLOGIQUES
R.A.S.
7. RECYCLAGE, ENVIRONNEMENT, REGLEMENTATIONS
R.A.S.
8. Enseignement et Recherche
R.A.S.
iv
Mois Année
9. ECHOS de l'INDUSTRIE
LANXESS Rationalizes Portfolio of its Rubber Chemicals Business to
Enhance its Competitiveness
Lanxess Completes Production Campaign of Biobased PBT Using
Genomatica's BDO Process Tech
Asahi Kasei Kick-starts Solution-polymerized SBR Plant in Singapore
GROUPE FRANÇAIS D'ÉTUDES ET D'APPLICATIONS DES POLYMÈRES
Juillet 2013
LES BREVES INNOVATION N° 89
Informations rassemblées et compilées par A. Momtaz
1. Nouveaux PRODUITS, nouveaux MATERIAUX
Un matériau élastique mais résistant
Des scientifiques développent des composites hétérogènes élastiques et résistants en
superposant des couches de rigidité variable.
Les chercheurs de l'EPFZ de Zurich (EPFZ) ont développé un polyuréthane très étirable
mais résistant en combinant des couches de rigidités très différentes. Dans la nature, de
nombreux matériaux sont constitués de zones plus rigides et plus souples, comme la
liaison entre les tendons et les os.
Les chercheurs sont parvenus à créer un gradient de 10 000 x entre la couche la plus
rigide et la plus souple en modulant la dureté de l'élastomère par l'addition de micro- et
nanoparticules hiérarchiquement organisées. Malgré tout, le multicouche est résistant :
il est étirable jusqu'à 4.5 x sa longueur initiale.
Une telle différence de rigidité est inédite dans les composites hétérogènes.
Ce premier cas devrait servir de base aux scientifiques pour le développement de
nouveaux matériaux et de dispositifs fonctionnels avec des interfaces incompatibles. De
2
Mois Année
nombreuses applications sont envisagées dans les films souples pour les cellules PV ou
les écrans enroulables, dans la réparation de tendons et de ligaments ou encore dans les
secteurs de l'automobile ou l'aéronautique.
Source : Sirris (05-07-2013), www.nature.com
2. Techniques de synthèse: matières premières, procédés, outils
Complex 3-D polymer brush nanostructures from
photopolymerization
(Phys.org) —Polymer brushes are polymers in which individual polymer chains stand
side by side on a surface, causing the chains to stick out like bristles on a brush. In the
journal Angewandte Chemie, American scientists have now presented a new simple
method for making three-dimensional nanostructures in a controlled fashion from
polymer brushes.
There are a wide variety of current and future applications for polymer brushes. For
example, a coating of polymer brushes on a plastic surface such as an artificial heart
valve or a dialysis machine can hinder the adsorption of proteins onto the surface. It can
also be used in the fabrication of next-generation microelectronic devices. Other areas of
application include biocompatible coatings for implants, chemical sensors, and new
"intelligent" materials.
Although progress has been made with regard to new brush structures, current methods
do not offer sufficient temporal and spatial control over the growth process. Usually, a
self-organized monolayer of an initiator is assembled on a substrate and the polymer
chains can grow out from there. In order to obtain specific patterns, the initiator must be
applied to the substrate in a corresponding pattern—a complex undertaking that is not
manufacturable and does not allow for the generation of complex three-dimensional
structures.
Read more at: http://phys.org/news/2013-06-complex-d-polymer-nanostructuresphotopolymerization.html#jCp
Acide acrylique biosourcé : BASF, Cargill et Novozymes avancent
Les trois groupes ont franchi une étape importante dans leur collaboration qui vise à
produire de l’acide acrylique biosourcé. Ils ont réussi à produire à l’échelle pilote du 3hydroxypropionique (3-HP) issu de matières premières renouvelables, qui est un
précurseur chimique possible de l’acide acrylique. Les partenaires ont aussi identifié
plusieurs technologies permettant de convertir à l’échelle du laboratoire le 3-HP en
acide acrylique. « Nous avons encore beaucoup de travail avant que le procédé soit
commercialement prêt, mais il s’agit d’une étape significative et nous sommes confiants
dans notre capacité à franchir la prochaine étape de développement du procédé dans
3
Mois Année
son ensemble », a expliqué Teressa Szelest, vice-président senior de l’activité Hygiène de
BASF. Actuellement, l’acide acrylique est produit par oxydation du propylène qui est une
matière première fossile. D’autres équipes travaillent sur le développement d’acide
acrylique biosourcé dont le groupe français Arkema qui pâtit des coûts élevés du
glycérol, sa matière première.
Un partenariat initié en 2008
Ce projet est issu d’une alliance initiée en 2008 entre l’Américain Cargill et le Danois
Novozymes. Les deux groupes ont d’abord planché sur le développement de
microorganismes capables de convertir des matières premières renouvelables en acide
3-hydroxypropionique. Puis, l’an dernier, BASF les a rejoint pour mettre notamment au
point un procédé de conversion du 3-HP en acide acrylique. Dans un premier temps, le
groupe allemand prévoit d’utiliser l’acide acrylique biosourcé pour produire des
polymères superabsorbants, principalement utilisés dans les couches pour nourrissons
et d’autres produits hygiéniques.
Source: http://formule-verte.com/acide-acrylique-biosource-basf-cargill-et-novozymesavancent/
3. Techniques de MISE en ŒUVRE et ADDITIFS de formulation
The role of non-covalent interactions and matrix viscosity on the
dispersion and properties of LLDPE/MWCNT nanocomposites
Linear low density polyethylene (LLDPE)/ multi-walled carbon nanotube (MWCNT)
composites were prepared by melt compounding, following two different
compatibilization strategies that involved non-covalent interactions between the matrix
and the filler. The first approach involved grafting pyridine aromatic moieties on the
maleated polyolefin backbone, which are able to interact by π-π stacking with the
surface of the nanotubes. The second method implemented non-covalent/non-specific
surface functionalization of the MWCNTs with a hyperbranched polyethylene (HBPE).
The enhanced interfacial interactions established in the composites containing LLDPE
functionalized with pyridine grafts improved the dispersion of the nanotubes within the
polymer matrix. Dispersion was also favoured by higher matrix viscosity. Composites
containing finely dispersed MWCNTs exhibited an increase in the rheological and
electrical percolation thresholds, and a significant improvement in mechanical
properties. On the contrary the composites based on the low viscosity matrix contained
large amounts of aggregates, which promoted lower percolation thresholds.
Manipulation of matrix viscosity and compatibilization resulted in composites with good
mechanical properties, and low percolation thresholds.
Source:
http://www.sciencedirect.com/science/article/pii/S0032386113006782#undfig1
4
Mois Année
4. Polymères biosourcés, biopolymères, biocarburants
Sustainable Polymers: Opportunities for the Next Decade
The field of sustainable polymers is growing and evolving at unprecedented rates.
Researchers are increasingly concerned with the feedstock origins and the degradation
behavior of, especially, large-scale commodity packaging plastics. A perspective is
offered here for the design of sustainable polymers, specifically addressing
opportunities for monomer development and polymer degradation.
Key concepts include: water degradability
instead of biodegradability; incorporation
of novel main-chain functionality, such as
acetals;
utilization
of
lignin-based
aromatics; and direct polymerization of
biogenic C1 feedstocks.
Lire l’article: https://www.amazon.com/clouddrive/share?s=BY_fROVcRIkv4JVLwZi3v4
Source: http://pubs.acs.org/doi/abs/10.1021/mz400207g
Functionalized Polymers from Lignocellulosic Biomass: State of the
Art
Since the realization that global sustainability depends on renewable sources of
materials and energy, there has been an ever-increasing need to develop bio-based
polymers that are able to replace petroleum-based polymers. Research in this field has
shown strong potential in generating high-performance functionalized polymers from
plant biomass. With the anticipated large-scale production of lignocellulosic biomass,
lignin, cellulose and hemicellulosic polysaccharides will be abundantly available
renewable feedstocks for biopolymers and biocomposites with physico-chemical
properties that match or exceed those of petroleum-based compounds. This review
examines the state of the art regarding advances and challenges in synthesis and
applications of specialty polymers and composites derived from cellulose, hemicellulose
and lignin, ending with a brief assessment of genetic modification as a route to tailor
crop plants for specific applications.
Source: http://www.mdpi.com/2073-4360/5/2/600
Bioplastics from waste glycerol derived from biodiesel industry
Polyhydroxyalkanoates (PHAs) are polyesters that can be biologically synthesized by
many microorganisms and engineered plants that have been investigated by
5
Mois Année
microbiologists, biochemists, polymer scientists, material engineers, and medical
researchers for several decades. Research on microbial production of PHAs has been
extensively focused on using pure carbon sources, such as sugars and fatty acids.
Practical considerations of production costs of PHAs have resulted in research efforts to
use alternative renewable and inexpensive feedstocks. One potential feedstock for the
production of PHA polymers is the glycerol waste byproduct of biodiesel production.
The major focus of this review is the production of PHA polymers from glycerol. A
review of biosynthetic pathways for PHAs production from glycerol, current production
of waste glycerol in biodiesel industry, physical and mechanical properties of PHAs, and
applications of PHAs in the areas of packaging industry, implant materials, drug carrier,
biofuels, are covered.
Read the article: ©2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Source: http://onlinelibrary.wiley.com/doi/10.1002/app.39157/abstract
Avantium on track for 2016 launch of innovative PEF bottles
Avantium’s announcement several weeks ago that it had entered into a joint
development agreement with ALPLA for the development of PEF bottles signaled that
the company’s strategy of moving forward in partnership with the industry remains a
guiding principle. PlasticsToday talked to Nathan Kemeling, director business
development at Avantium, about the company’s countdown to 2016, when the first PEF
bottles are targeted to reach the market.
PEF (polyethylene furanoate) is the next-generation biobased, recyclable polyester
developed by Avantium on the basis of furanics technology. Kemeling: “In the transition
to biobased materials, we think PEF holds the best cards to become the next commodity
material for packaging applications.”
And Austrian blowmolding specialist ALPLA, or ALPLA Werke Alwin Lehner GmbH to
give the company its full name, is the leading manufacturer of packaging solutions in
Western Europe. “According to ALPLA, everyone encounters an ALPLA product at least
once a day,” said Kemeling. “It therefore made perfect sense to partner with them to
develop the supply chain for PEF, as they already supply to all the major brand owners.”
Even more important, however, was ALPLA’s proven track record in developing
innovative technology. “They have very extensive knowledge in the area of PET
conversion and the research facilities for developing and optimizing the new PEF
bottle,” said Kemeling. “Although there’s no need to invest in new machines: PEF can be
processed on the same equipment as PET. Obviously, some tuning is required, as the
processing window is slightly different, but otherwise, converting PEF is very similar to
PET.”
ALPLA will not only be producing PEF bottles for cosmetics, food and personal care
products, but will also collaborate with Avantium on developing PEF packaging for the
beer and alcoholic beverage sectors. “We think that the superior barrier properties of
6
Mois Année
PEF—PEF offers a ten-times better barrier to oxygen than PET, four-times better CO2
and a twice-better barrier to water—could prove a significant advantage in this area,”
noted Kemeling.
To read more: http://www.plasticstoday.com/articles/avantium-track-2016-launchinnovative-pef-bottles
“Capa” caprolactones for bioplastic blends ready to be launched
Swedish specialty chemicals producer Perstorp (Perstorp; www.perstorp.com) plans to
launch new “Capa” caprolactones for bioplastic blends at the “K” Fair in Düsseldorf /
Germany in October. The company says it has enhanced the biodegradability and
bioplastic performance of the products. “Considerable investments have been made in
caprolactones to ensure we deliver new products that address key issues related to
plastic materials, such as sustainability, biodegradability and product safety,” the
company states. “With a projected growth in bioplastics of 500% between 2011-2016
this is a very exciting growth area.”
Perstorp's enhanced caprolactones gain on degradability & bioplastic performance
(Photo: Perstorp)
The updated caprolactones can be used to enhance the properties of bioplastics such as
PLA and starch-based polymers, allowing them to be used for new market opportunities
and applications, Perstorp says. By adding Capa to PLA, the PLA can be used in film
applications.
Blending with can improve mechanical properties and accelerate the biodegradation
process, enabling the use of domestic composting rather than industrial composting that
requires a higher temperature, says Perstorp. In addition, the low melting point enables
processing at lower temperatures. End products include disposables such as compost
bags, coated paper and one-time plastic cutlery as well as items that need to last a year
or two such as cutlery and trays.
Perstorp did not provide details of the investments in its Capa product line, though it
said in 2012 it would continue to raise production capacity at its UK site in line with
market demand – see Plasteurope.com of 24.10.2012.
Source:
http://www.plasteurope.com/news/detail.asp?id=225805&goback=.gde_946387_mem
ber_259230761
Du caoutchouc à partir de pissenlit
En raison de la hausse des coûts de production des caoutchoucs synthétiques ou
naturels, l'industrie cherche actuellement à développer la culture d'espèces végétales
alternatives, ou complémentaires à l'hévéa.
7
Mois Année
Après plusieurs essais infuctueux de production de
caoutchouc à partir du pissenlit caucasien (Taraxacum
koksaghyz), l'entreprise Aesculap GmbH a atteint des
résultats concluants. Ses chercheurs souhaitent dans
un premier temps sélectionner les plants à haut
rendement, puis par la suite tester les aptitudes du
caoutchouc naturel obtenu pour la fabrication de
pneumatiques et d'autres produits en caoutchouc. La
possibilité de cultiver le pissenlit caucasien en Europe
centrale, où il est adapté aux conditions climatiques et
pédologiques, permettrait d'obtenir localement des
matières premières de haute qualité, que ce soit du
caoutchouc ou de l'inuline.
Illustration d'un pissenlit
Crédits : Franz Eugen Köhler
Ce projet de culture du pissenlit caucasien, intitulé "De la plante sauvage aux matières
premières industrielles renouvelables" (Von der Wildpflanze zum nachwachsenden
Industrierohstoff - TAKOWIND), est soutenu par le Ministère fédéral de l'Alimentation,
de l'Agriculture et de la Protection des consommateurs (BMELV) en partenariat avec
l'Agence pour les ressources renouvelables (FNR). L'objectif du projet est d'arriver à
augmenter d'ici 2016 la culture du pissenlit caucasien à une échelle agricole.
Source: http://www.bulletins-electroniques.com/actualites/73594.htm
Bayer plans commercial production of CO2-based polyols
LEVERKUSEN, GERMANY — Following a two-year test phase, Bayer MaterialScience is
aiming to commercialize the use of carbon dioxide as a raw material for polyurethane
foam.
The company has started the planning process for the construction of a production
facility at its site in Dormagen, Germany, where CO2 will be used to produce precursor
for PU foam. Bayer said its objective is to initially make larger quantities of this
precursor available to "selective processors" from 2015. The planned production facility
in Dormagen will have a facility of several thousand metric tons, though Bayer expects
higher volumes in the future.
Further details of investment in the project or a construction schedule is not yet
available, a Bayer spokesman told Urethanes Technology International.
The use of CO2 replaces a portion of the fossil-fuel raw materials, such as petroleum,
that would otherwise be used exclusively, Bayer said. The chemical giant also expects
the new process to provide economic advantages over a conventional production
method.
8
Mois Année
"CO2 is taking on a new light: The waste gas is turning into a useful and profitable raw
material. That makes us one of the first companies worldwide to take an entirely
different approach to the production of high-quality foams," said Patrick Thomas, CEO of
Bayer MaterialScience.
Bayer said it collaborated with partners from industry and academia to develop the
process, which has been tested intensively over the last two years. As part of the
publicly funded research project Bayer calls Dream Production, a pilot plant at Bayer's
main site in Leverkusen produced smaller quantities of the precursor polyol, in which
the CO2 is chemically bound.
"After successfully completing the test phase, we are now launching Stage 2 with the
target of commercialization," Thomas noted. The first use of the new CO2-based flexible
foam will be for the production of mattresses.
Thomas added that Bayer is keen to license the carbon dioxide to polyol technology to
suitable partners.
Source: http://www.plasticsnews.com/article/20130725/NEWS/130729964/bayerplans-commercial-production-of-co2-based-polyols#email_sustain
5. APPLICATIONS des Polymères
a. Systèmes intelligents
Self-healing materials for structural applications
Self-healing materials for structural applications offer considerable practical benefits
because they would allow to overcome the difficulties connected to damage diagnosis
and repair. In this article, a process active at very low temperature for the repair of
damaged structural material is shown. The self-repair function is based on the
metathesis polymerization of ENB activated by Hoveyda–Grubbs' first generation
catalyst. The self-healing epoxy mixture, containing the catalyst powder allows a cure
temperature up to 180°C. Dynamic mechanical analysis was used to determine
mechanical parameters. The autorepair composite shows a high modulus in a wide
temperature range, a glass transition temperature at about 100°C and a self-healing
efficiency of about 95%. POLYM. ENG. SCI., 2013. ©2013 Society of Plastics Engineers
Source:
http://onlinelibrary.wiley.com/doi/10.1002/pen.23621/abstract;jsessionid=9302F969
4F2A39FA1C7F52498F22EBA4.d03t04
9
Mois Année
Spotlight on Polymer Chemistry, Issue 16
Four articles from the Journal of Polymer Science Part A: Polymer Chemistry are
featured in Volume 51, Issue 16: “A Comparative Study of the Stimuli-Responsive
Properties of DMAEA and DMAEMA containing polymers,” “Effect of Temperature and
Solvent on Polymer Tacticity in the Free-Radical Polymerization of Styrene and Methyl
Methacrylate,” “Thermally Amendable Tailor-Made Functional Polymer by RAFT
Polymerization and ‘Click Reaction,’” and “Synthesis and Properties of Butyl RubberPoly(ethylene oxide) Graft Copolymers with High PEO Content.”
Lire la suite : http://www.materialsviews.com/spotlight-on-polymer-chemistry-issue16/?utm_source=rss&utm_medium=rss&utm_campaign=spotlight-on-polymerchemistry-issue-16
Source : Journal of Polymer Science Part A: Polymer Chemistry Volume 51 Issue 16
Amélioration des performances des polymères à mémoire de forme
Les polymères à mémoire de forme sont des matériaux qui, après avoir été déformés par
des contraintes mécaniques, peuvent retrouver leur forme une fois placés dans un
environnement à une température donnée. Cependant, ce changement intervient lors de
cycles complexes à des températures spécifiques et n'est reproductible qu'un nombre de
fois limité. Les chercheurs de l'Institut de recherche en biomatériaux de Teltow
(Brandebourg), un institut du Centre de recherche Helmholtz de Geesthacht (HZG,
Schleswig-Holstein) ont réussi, d'après leur publication dans la revue PNAS, à produire
un matériau capable de reproduire ce changement de forme plusieurs centaines de fois.
Ce matériau permettrait de nombreuses applications comme des actionneurs
fonctionnant sans électricité.
Andreas Lendlein, qui dirige l'Institut, explique : "Nos actionneurs peuvent changer de
forme plus d'une centaine de fois, dès qu'un certain seuil en deçà ou au-delà de la
température ambiante est atteint." L'avantage de leur découverte réside dans le fait que
tant la forme que le seuil sont facilement programmables. Pour rendre plus tangible le
sens de leur découverte, Tilman Sauer, doctorant à Teltow, imagine un store piloté par
ses actionneurs. Cela signifie que la fermeture ou l'ouverture des stores serait pilotée
par la chaleur ambiante. Des moteurs thermiques peuvent aussi être envisagés.
Concernant l'explication de tels phénomènes, il faut se plonger au niveau moléculaire.
En effet certaines particules ont un mouvement qui varie en fonction de la température
alors que d'autres restent fixes. Pour transmettre ce mouvement nanoscopique à une
échelle macroscopique, il faut comprendre qu'un matériau à mémoire de forme se
constitue d'un cadre et d'une partie dite "mobile". L'idée est aussi d'avoir des particules
mobiles au sein de la partie cadre. C'est la part d'éléments mobiles et fixes qui permet de
gérer le mouvement, selon l'explication de Marc Behl, chercheur à Teltow.
Source: http://www.bulletins-electroniques.com/actualites/73599.htm
10
Mois Année
b. Polymères pour l’électronique
OLYMP project aims to make OLED as efficient as LED
An association of German companies have grouped together as part of the OLYMP
(Organic Light emitting sYstems based on energy and cost-efficient Materials and
Processes), project to improve the efficiency and service life of organic light emitting
diodes (OLEDs).
The project aims to reduce production costs to ensure that OLEDs can be successful in
the general lighting mass market. In the past years, the participating companies which
include: Osram Opto Semiconductors, Merck, BJB, KG, LEDON OLED Lighting and Trilux,
have achieved innovative advantages that are intended to be expanded as a part of the
funded project.
"We want to offer customers OLEDs that have superior energy efficiency compared to
traditional light sources," said Ulrich Eisele, head of the OLED sector at Osram. Research
is being specifically carried out to achieve efficiency values greater than 100 lm/W and
to increase operational lifetimes. OLED, in the mid-term, should become as efficient as
related LED technology and in the long term OLED should also be pliable and as
transparent as glass panels.
The successes of past funded projects, combined with intensive research, have brought
OLED technology to a level that enables OLED panels to be integrated into high quality
designer luminaires. Current OLED panels however are too expensive for a wider
spectrum of use, for example as part of general lighting. Manufacturing costs intended to
be reduced by new forms of materials among other factors are essential conditions that
dictate prices.
From concept to luminaire
OSRAM GmbH is formulating concepts for increased efficiency of OLED panels. Its
subsidiary, Osram Opto Semiconductors, is project coordinator and benefits from wide
expertise in the field of OLED manufacture.
Organic functional materials have been developed by Merck KGaA. Base-lampholder
concepts are being researched by BJB GmbH & Co.KG, and LEDON OLED Lighting GmbH
& Co. KG is developing high-integration modules in which OLEDs panels are equipped
with driver electronics. Trilux GmbH & Co. KG is responsible for the development of new
OLED-based luminaires. The funded project is running until 1 September 2015 and has a
total value of 34 million euros.
11
Mois Année
OLED - light in its most modern form
OLEDs, as with LEDs, are semiconductors that convert electric current to light. While
LEDs emit point light from a tiny luminous chip, OLED panels are luminous surfaces
produced by vaporizing various organic plastics onto a substrate material. The luminous
layer of an OLED is around 400 nanometres thick, corresponding to one hundredth of a
human hair. OLEDs, according to base material, appear reflective, neutral white or
transparent in switched-off state.
Source: http://www.printedelectronicsworld.com/articles/olymp-project-aims-tomake-oled-as-efficient-as-led-00005602.asp
c. Revêtement de surface
Une amélioration pour le traitement de surface de l'aluminium
Des chercheurs de l'Institut Fraunhofer pour les techniques de fabrication et la
recherche appliquée en matériaux (IFAM) de Brême ont développé une bande adhésive
pour faciliter le décapage des pièces d'aluminium de grande taille. L'objectif est ici de
développer une technique plus sûre, reproductible et plus écologique.
L'aluminium est un métal léger utilisé dans les secteurs aéronautique, automobile et
dans toutes les industries cherchant à limiter le poids des pièces utilisées. Lorsqu'il n'est
pas traité, l'aluminium s'oxyde, mais contrairement au fer, cet oxyde protège la pièce.
Cependant, cet oxyde ne possède pas les mêmes propriétés que l'aluminium et il est
nécessaire, dans le cas d'assemblage de pièces ou de peinture, de travailler sur le métal
lui-même. Il existe pour cela des techniques de décapage à base de bains dans des
produits chimiques, de pâtes ou de sprays.
Ces techniques engendrent diverses difficultés. Dans le cas des pièces de grandes tailles,
comme dans certaines applications pour l'aéronautique, il peut être difficile de plonger
la pièce dans un bain. C'est pourquoi des solutions de traitement localisé ont été
développées, comme le spray ou la pâte. Mais ces techniques sont manuelles et les
produits utilisés sont soit acides, soit basiques, c'est-à-dire nuisibles à la santé des
travailleurs et à l'environnement.
C'est de ces constatations qu'est venue l'idée d'une bande adhésive. L'objectif est donc
de développer une colle qui s'enlève facilement, tout en ne laissant aucun dépôt. De plus,
la colle doit permettre les réactions chimiques conduisant au décapement de la pièce.
Une contradiction existe dans ce cahier des charges : bien que pour le processus de
décapage, une forte proportion d'eau est nécessaire, une colle d'adhésif est
généralement basée sur un solvant qui n'agit plus ou très mal en présence d'eau. Les
chercheurs ont donc développé une solution à base de polymère soluble dans l'eau.
Selon les tests menés par l'IFAM, leur solution est aussi fiable que les techniques
actuelles, et évite le rinçage à l'eau claire, ce qui en limite la consommation. Développée
12
Mois Année
avec des acteurs industriels, l'IFAM vise désormais l'étape suivante du développement, à
savoir l'étape de production.
Source: http://www.bulletins-electroniques.com/actualites/73447.htm
Design of Modified PP Film Surfaces for Antimicrobial Applications
Technical Paper - Surface modification of PP sheets was carried out by radiation induced
graft polymerization of hydrophilic functional molecules such as N,Ndimethylacrylamide (DMA) and [2-methacryloyloxy)ethyl] trimethylammonium
chloride, which is a quaternary ammonium salt (QAS). PP sheets were activated prior to
the grafting reaction by using electron beam radiation. The changes in morphology,
crystallinity and tensile parameters like deformation and stress at yield and deformation
at break of PP after irradiation were investigated. The results showed that a minor
crystalline reorganization takes place during the irradiation of PP at 100 kGy. The
grafting has been observed to be strongly dependent on the monomer dilution in the
reaction medium. After grafting of QAS (40%) and DMA (20%) it was possible to
develop highly hydrophilic surfaces (water contact angle comprised between 30 and
41°). The surfaces of virgin, irradiated and grafted PP were studied using polarized
optical microscopy (POM) and scanning electron microscopy (SEM). Spherical particles
(i.e. polystyrene or silica beads) adhering to the modified samples were studied
according to the surface parameters. Adhesion tests confirmed the strong influence of
substrate type (mainly hydrophilicity and roughness) and to a lesser extent underlined
the role of electrostatic interactions for the design of plastic surfaces for antimicrobial
applications.
More information on:
http://www.sciencedirect.com/science/article/pii/S0969806X13002636
Source:
http://www.specialchem4polymers.com/resources/rdhighlights.aspx?id=9525&lr=rss4
6
d.
Energie
Cellules solaires organiques: des molécules simples comme
alternatives aux polymères
Utiliser des molécules organiques pour produire des cellules photovoltaïques aux
performances comparables à celles, en silicium, des panneaux solaires proposés
aujourd'hui sur le marché. Tel est l'objectif de nombreuses équipes de recherche dans le
monde qui, depuis le début des années 2000, se livrent à une intense compétition. Si
l'utilisation des polymères est la plus répandue des deux voies qui font actuellement
l'objet de développements en laboratoire, l'autre voie, initiée en 2005 par MoltechAnjou, l'Institut des Sciences et Technologies Moléculaires d'Angers (CNRS/Université
d'Angers), qui consiste à utiliser des molécules organiques solubles de structures
13
Mois Année
parfaitement définie, a été reprise depuis par de nombreux laboratoires. Soulignons que
celle-ci a permis d'obtenir récemment des rendements de conversion électrique de plus
de 7%, ceux des cellules à base de polymères se situant entre 8 et 9%.
Reste que la production de ces molécules est difficile, les plus performantes d'entre elles
nécessitant 12 étapes de synthèse, qui plus est avec un rendement global inférieur à
0,10%, peu compatible avec une production à l'échelle industrielle. Aussi les chercheurs
de Moltech-Anjou se sont-ils lancés dans la recherche de molécules plus simples
présentant un effet photovoltaïque intéressant. D'où leur choix d'une famille de
molécules à base de triarylamines, dont la synthèse ne nécessite que peu d'étapes. Dans
un deuxième temps, ils ont cherché à optimiser certaines propriétés de ces molécules
(capacité d'absorption de la lumière, niveaux d'énergie, stabilité ou encore mobilité des
charges électriques). Un véritable travail d'ingénierie moléculaire consistant à ajouter,
selon les besoins, certains types de liaisons ou de groupements chimiques, qui les a
conduit à développer des molécules de faible masse moléculaire dont le rendement de
conversion électrique est d'environ 4%. Notons qu'il s'agit là d'un des rendements les
plus élevés obtenus avec des molécules de structure aussi simple.
Ces travaux, dont les résultats sont publiés en ligne dans Chemistry : A European
Journal, se poursuivent aujourd'hui, l'objectif des chercheurs étant d'améliorer non
seulement les performances des cellules photovoltaïques mais aussi des procédés de
synthèse, notamment en limitant l'utilisation des réactifs ou de solvants toxiques mais
aussi de catalyseurs coûteux.
Source: http://www.bulletins-electroniques.com/actualites/73436.htm
Supercapacitor yarn: small fibres are powerful batteries
UOW scientists have developed a strong and flexible yarn that conducts and stores
electricity and could be used to create wearable medical devices and smart clothes.
Researchers from the ARC Centre of Excellence for Electromaterials Science (ACES) at
UOW worked with an international team of engineers to develop a novel way to turn
small fibres into powerful batteries with ultrafast charge and discharge rates.
The result, published in the journal Nature Communications, is a flexible, wearable
supercapacitor yarn - about the width of a human hair - that is made by weaving two
nano materials together to form a super-strong carbon nanotube. Hundreds of layers of
nanotubes, which are coated with small molecules of plastic, are woven together with a
thin metal wire. This is then spun into a yarn in a similar way to how you would spin
wool into thread, ACES Executive Research Director and Australian Research Council
laureate fellow, Professor Gordon Wallace, said.
"The highly functional fibres can be integrated into complex 2D and 3D structures using
our integrated knitting braiding machines. These facilities were recently commissioned
as part of an Australian National Fabrication Facility Materials Node expansion",
Professor Wallace said.
14
Mois Année
The yarn's flexibility means it can be knitted or sewn into clothing to power wearable
electronics, which could be used to monitor movement during training or physiotherapy
or to power high-tech fashion accessories. The mechanical properties of the yarn mean
it can add strength to composites often used in automotive components and could be
especially useful in electric vehicles.
Professor Wallace said the outcomes from this research were a direct result of the
ability to combine expertise and facilities from across the globe to tackle a critical area
of research - developments of new materials for energy storage. "This work highlights
the need to integrate advances in materials science with innovative fabrication protocols
to deliver effective solution for energy storage," Professor Wallace said.
Source and top image: University of Wollongong
Top image shows: Dr Javad Foroughi and Professor Gordon Wallace inspect
nanostructured fibres produced at UOW's labs using knitting and braiding machines.
Source: http://www.energyharvestingjournal.com/articles/supercapacitor-yarn-smallfibres-are-powerful-batteries-00005580.asp?sessionid=1
Shape-Shifting Plastic Powers Motors
A new polymer that changes shape and returns to its previous form, depending on the
temperature could use ambient heat to drive tiny motors. The new shape-shifting
polymer could be used as window blinds that open and close automatically without a
battery or any other power source.
Previous shape memory polymers lose their
ability to “remember” their original shape after
only a few cycles. But the new polymer, designed
by researchers from the Institute of Biomaterial
Science at Germany’s Helmholtz Center,
Geesthacht, is able to flip back and forth between
two stages 250 times.
Source: http://news.discovery.com/tech/alternative-power-sources/shape-shiftingplastic-powers-motors-130712.htm#mkcpgn=rssnws1
e.
R.A.S.
Transport
15
Mois Année
f.
Bâtiment
R.A.S.
g.
Textile
Un tissu piézoélectrique utilisé comme un capteur
Les chercheurs de l'institut Nanoscience du Conseil national des recherches (Nano-Cnr)
ont réalisé le prototype d'un nouveau tissu flexible, robuste et capable de produire de
l'énergie à partir de ses propres mouvements et vibrations. Constitué de fibres de
polymères piézoélectriques, le nouveau matériau a été réalisé grâce à une méthode
spéciale de "nano-filature" par les chercheurs du Nano-Cnr de Lecce.
Il pourra avoir des utilisations très variées dans les
dispositifs autoalimentés ou sur les futurs robots
humanoïdes, par exemple.
L'étude coordonnée par Luana Persano du NanoCnr a été réalisée en collaboration avec l'université
du Salento, l'Institut Italien de Technologies,
l'université de l'Illinois et celle de Northwestern.
Tissu piézoélectrique
Crédits : Cnr
Les résultats ont été publiés sur la revue Nature Communications.
Les chercheurs ont exploité les propriétés
piézoélectriques de certains polymères : les
polyfluorures de vinylidène. "Ces matériaux
produisent à leurs extrémités une décharge
électrique lorsqu'ils sont sollicités par une force
mécanique d'étirement ou de compression"
explique Luana Persano.
Fibres de polymères piézoélectriques
Crédits : Cnr
"Cette énergie peut être emmagasinée ou utilisée comme le signal d'une déformation
survenue. Notre prototype est capable de générer un signal électrique en réponse à une
sollicitation même très faible, comme celle induite par un insecte se posant sur le tissu,
ou la chute d'une feuille. Testé comme capteur de pression, le dispositif a donné des
mesures ultra-précises. Intégré dans des systèmes plus complexes, il a des applications
potentielles dans les domaines de l'électronique portable (qui s'adapte sur le corps
16
Mois Année
humains), les dispositifs de diagnostic pour la santé et le bien être, les muscles artificiels
et les tissus artificiels".
Pour les tissus piézoélectriques, les chercheurs ont prévu également des applications
dans le domaine de la robotique humanoïde. "L'exceptionnelle sensibilité du dispositif
permettrait le développement de capteurs tactiles de précision, et représenterait le
premier pas vers la réalisation d'une peau électronique artificielle capable de reproduire
les propriétés physiques et multifonctionnelles de la peau humaine", explique Luana
Persano. "Les propriétés spécifiques du matériau sont dues à une méthode d'electrofilature mise au point dans les laboratoires de Lecce qui permet d'obtenir des faisceaux
denses en fibres extrêmement bien alignées entres elles et en même temps d'orienter les
chaines moléculaires de chaque fibre. De cette façon nous avons réussi à améliorer les
caractéristiques piézoélectriques du polymère de départ.
Cette technologie est à la base du projet Nano-Jets financé par l'European Research
Council à l'université du Salento et aux laboratoires Nano-Cnr de Lecce. "Les capteurs
disponibles jusqu'à présent, composés de couches de fibres de polymère et non de nanofibres, ont des propriétés piézoélectriques moins marquées et ont un seuil de détection
plus important. Ils ne permettent donc pas de réaliser des mesures des pressions en
dessous d'un millier de Pascal, ce qui correspond au touché d'un doigt" conclut la
scientifique. "Notre tissu détecte des pressions dix mille fois moins importantes, est
produit avec une technologie à bas coûts et peut être industrialisé".
Source: http://www.bulletins-electroniques.com/actualites/73526.htm
Flexible, Switchable Electrochromic Textiles
The construction of electrochromic multilayers on textiles is described. Polyester foils
are sputtered with a thin layer of translucent indium tin oxide (ITO). On these ITO
layers, WO3 and polyaniline (PANI), respectively, are deposited electrochemically in a
continuous process. Both the PANI- and WO3-based materials are equipped with an ionconductive interface layer composed of lithium poly(styrene sulfonate). Electrochromic
elements are made by laminating a PANI- and a WO3-modified substrates together and
by fixing the final material on textile substrates. Electrical control is realized by
connecting a metallic fabric to each of the two-electrochromic parts of the element. The
electrochromic behavior of these materials can be switched reversibly within a few
minutes.
Source:
http://onlinelibrary.wiley.com/doi/10.1002/mame.201300136/abstract;jsessionid=A3
3030B71352C983B2D2805BEE7405E0.d04t04
17
Mois Année
h.
Médical, santé
Molecularly Imprinted Polymers Developed as Synthetic Receptors for
Nicotine
Researchers from the National Environmental Engineering Research Institute in Nehru
Marg, India have added another piece to the puzzle of how to synthetize an artificial
nicotine receptor. Nicotine -- the infamous principal component of tobacco -- is
responsible for smoking addition due to specific receptors in the brain that trigger the
dopamine reward system.
One of the most long-lasting goals of biomedical science and technology is to design and
synthesize efficient artificial receptors that would point to new avenues in the treatment
of addiction. Recent advances in materials chemistry clearly demonstrate that the
development of such robust synthetic materials, which can partially mimic biological
receptors, is possible.
In the article "Molecularly Imprinted Polymer Receptors for Nicotine Recognition in
Biological Systems" published in Molecular Imprinting -- an open access journal by
Versita -- Reddithota Krupadam and his colleagues have developed molecularly
imprinted polymers as synthetic receptors for nicotine. These molecular imprinted
polymers (MIPs) have potential applications for analysis in biological systems such as
clinical detection of nicotine in blood and serum, as well as in the development of
treatment therapies for nicotine addicted patients.
Lire la suite: http://www.azonano.com/news.aspx?newsID=27831
Plastics applications grow in expanding dental implant market
A 19-year-old Alabama company believes that dental implants represent one of the most
important growth areas in the medical market. Increasingly, the field offers
opportunities for plastics.
The dental implant market will reach $6 billion globally by 2015 as a result of annual
growth rates of 12%-14%, according to market research cited by Steve Boggan,
president and CEO of BioHorizons (Birmingham, AL).
Reasons for rapid growth include aging of populations, particularly in developing
countries; improvements in implant technology; and increasing efforts by dentists to
inform patients of the availability of permanent implants as opposed to bridges and
dentures. One factor impeding growth, however, will be high costs.
BioHorizons is using engineering plastics in a new surgical instrument kit for its
Tapered Plus implant system for the replacement of missing teeth. The Radel
18
Mois Année
polyphenylsulfone (PPSU) resin in the surgical tray and colored transparent lid can
withstand steam sterilization cycles and autoclave temperatures up to 270°F (132°C)
without significant loss of properties, according to Solvay Specialty Polymers
(Alpharetta, GA).
PPSU was selected over metal and other thermoplastics because of its impact strength,
transparency, chemical resistance, flexibility, and exceptional sterilization durability,
according to Boyd Peters, director of implant marketing for BioHorizons.
"For us, the material has a long history and gives us a high degree of confidence," he
said.
Snap-on lid
The injection molded surgical tray—measuring 8 x 5 x 2 inches tall (20 x 13 x 5 cm)
when assembled—consists of a light gray base and an orange, transparent snap-on lid.
The hinged lid is removable and easy to disassemble during cleaning.
The surgical tray is about 40% lighter than trays previously developed by BioHorizons,
which is also considering the use of Radel PPSU resin for other sterilizable lids and trays
for the rest of its line of surgical and restorative products.
Injection molded components generally also offer opportunities to reduce costs
compared to versions produced from stamped metal. Snap-on assembly eliminates
fastener costs.
BioHorizons was founded through research conducted at the University of Alabama at
Birmingham in 1994 by Carl E. Misch, DDS, Martha Bidez, PhD, and Todd Strong, COO of
BioHorizons.
Source: http://www.plasticstoday.com/articles/plastics-applications-grow-expandingdental-implant-market071020101
6. Techniques d'ANALYSE de calcul et de CARACTERISATION, études
TOXICOLOGIQUES
R.A.S.
7. RECYCLAGE, ENVIRONNEMENT, REGLEMENTATIONS
R.A.S.
19
Mois Année
8. Enseignement et Recherche
R.A.S.
9. ECHOS de l'INDUSTRIE
LANXESS Rationalizes Portfolio of its Rubber Chemicals Business to
Enhance its Competitiveness
LEVERKUSEN, Germany -- Specialty chemicals company LANXESS is streamlining its
plant network and portfolio for its Rubber Chemicals business unit. A central element is
the bundling of production processes for vulcanization accelerators, which are used
primarily in the tire industry. The North American Bushy Park site is taking over
production of the accelerator Vulkacit CZ from the Belgian plant in Kallo. In return, the
company is shifting production for the accelerators Vulkacit DZ and Vulkacit NZ from
Bushy Park to Kallo. These changes will be implemented by 2014.
The business unit is also streamlining its product range as some products have reached
the end of their life cycle. The company is therefore discontinuing production of the
vulcanization accelerator Vulkacit MOZ at the Kallo site during 2014. Also the
production of the aging inhibitors Vulkanox 3100 and Vulkanox DPPD, which are
produced at the Isithebe site in South Africa, will be stopped and the plant will be closed.
"These measures enable us to enhance our efficiency and competitiveness. Moreover, we
can focus our portfolio on innovative, sustainable and profitable products in order to
accommodate the trend toward increasingly high-tech products within the tire industry
also in the future," says Luis López-Remón, Head of the Rubber Chemicals business unit
at LANXESS.
Following the realignment, headcount in Bushy Park will remain unchanged at around
60 while the number of positions in Kallo will decrease by around 45 from currently
205. The site closure in Isithebe will affect some 40 employees. Responsible solutions
will be sought for all affected employees in close collaboration with the employee
representatives.
The realignment at the Rubber Chemicals business unit is part of a package of measures
LANXESS is taking to boost competitiveness at the Performance Chemicals segment's
international sites.
The Rubber Chemicals business unit of LANXESS is one of the world's leading
manufacturers and suppliers of rubber chemicals. These are used primarily by tire
manufacturers and producers of technical rubber products. Other major customers
include companies in the fuels, cosmetics, pharmaceutical and the mining industries.
The business unit employs 560 employees worldwide and has currently production
operations at the Leverkusen, Brunsbüttel and Krefeld-Uerdingen sites in Germany as
20
Mois Année
well as in Kallo (Belgium), Bushy Park (USA), Jhagadia (India) and Isithebe (South
Africa).
Source: SpecialChem - Jul 2, 2013
Lanxess Completes Production Campaign of Biobased PBT Using
Genomatica's BDO Process Tech
LEVERKUSEN, Germany and SAN DIEGO, California -- Lanxess and Genomatica announce
that Lanxess has run a production campaign of bio-based PBT in Lanxess' world-scale
production plant using 20 metric tons of bio-based BDO made with Genomatica's
commercially-proven process. This BDO fully complied with the demanding Lanxess
specifications for petro-based BDO allowing a direct feed of 100 percent bio-based BDO
into the continuous production process.
The properties and the quality of the resulting bio-based PBT are fully equivalent to
conventional petro-based PBT with regard to all tested parameters. The world-scale
PBT plant, with a capacity of 80,000 tons per year, is located in Hamm-Uentrop,
Germany and operated as a joint venture in which Lanxess has a share of 50 percent.
Genomatica's BDO process technology converts sugars – a renewable feedstock – into
the major chemical BDO in a patented, 'direct' fermentation process.
"We were excited to validate the bio-based BDO made with Genomatica's process as a
one-to-one replacement for petro-based BDO for the production of our PBT," said
Hartwig Meier, Head of Global Product and Application Development of the High
Performance Materials Business Unit of Lanxess. "This is a strong signal to the market
and a tremendous step forward in our future plans to offer our high-tech plastic Pocan
in a bio-based version, too. Due to its unchanged properties Pocan compounds based on
bio-based PBT can directly be used in established application fields such as automotive
or electro & electronics area. This fits very well with our strategy of 'Green Mobility.'"
"Lanxess' achievement proves how quickly bio-based monomers can be integrated into
world-scale polymer production plants when you deliver the exact same performance
for an existing, high-volume chemical," said Christophe Schilling, Ph.D., CEO of
Genomatica. "This is additional proof that we got the details right."
Source: SpecialChem - Jun 28, 2013
Asahi Kasei Kick-starts Solution-polymerized SBR Plant in Singapore
Asahi Kasei Chemicals held a grand opening ceremony recently, on Jurong Island,
Singapore, for a new plant for solution-polymerized styrene-butadiene rubber (S-SBR)
which began commercial operation in April 2013.
21
Mois Année
Demand for tires with better performance such as fuel-efficiency is growing rapidly
especially in Asia, with tightening environmental regulations and increasing production
of tires in emerging countries in line with greater motorization.
Being an optimal material for improving the balance of tire performance characteristics
— including good wet grip and fuel efficiency as well as abrasion resistance and
handling stability — the modified S-SBR produced by Asahi Kasei Chemicals using its
continuous polymerization process is widely recognized among tire manufacturers
around the world.
To meet customer needs and ensure stable supply, the company is constructing a second
line at the same site, with its start-up scheduled for the first half of 2015. Asahi Kasei
Chemicals will continue to expand S-SBR operations as strategic world-leading business,
studying construction of other overseas plants following Singapore.
Outline of the new plant:
Company name: Asahi Kasei Synthetic Rubber Singapore Pte. Ltd.
President: Shigenori Konno
Location: Tembusu district, Jurong Island, Singapore
Production: S-SBR for fuel-efficient and high-performance tires
Capacity: 1st line – 50,000 tons/year, 2nd line – 50,000 tons/year (under construction)
Groundbreaking: 1st line – June 2011, 2nd line – April 2013
Start-up:
1st line – April 2013, 2nd line – the first half of 2015
Ownership interest: Asahi Kasei Chemicals 100%
Source: SpecialChem - Jul 15, 2013