Simulation d`un modèle causal - Scilab

Transcription

Simulation d`un modèle causal - Scilab
CPGE - Sciences de l’Ingénieur
PCSI
Simulation d’un
modèle causal - Scilab
TP
Document Sujet
2h - v1.1
Lycée Michelet – 5 Rue Jullien - 92170 Vanves - Académie de Versailles
Antenne parabolique de bateau
Problématique
Le positionnement des antennes paraboliques sur les navires revêt une importance capitale dans
de nombreuses situations stratégiques, afin de déterminer précisément la présence et la position
d’objets volants. Dans ce TD/TP de simulation, on se propose d’étudier l’architecture du système
et de déterminer par simulation les performances du système, par la mise en place de modèles et
de simulation.
Domaines de compétences :
Communiquer
Concevoir
Analyser
Compétences
Expérimenter
Résoudre
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Modéliser
Page 1 / 9
CPGE PCSI - S2I
Simulation d’un modèle causal - Scilab
TP
Compétences visées :
A3-04
Identifier la structure d’un système asservi: chaîne directe, capteur, commande, consigne, comparateur, correcteur
A3-05
Identifier et positionner les perturbations
A5
Apprécier la pertinence et la validité des résultats
B2-04
Déterminer les fonctions de transfert à partir d’équations physiques (modèle de connaissance)
B2-06
Analyser ou établir le schéma-bloc du système
B2-07
Déterminer les fonctions de transfert
B2-09
Renseigner les paramètres caractéristiques d’un modèle de comportement (premier ordre,
deuxième ordre, dérivateur, intégrateur, gain, retard)
C2-01
Déterminer la réponse temporelle
C2-07
Prévoir les performances en termes de rapidité
C3-01
Choisir les valeurs des paramètres de la résolution numérique
C3-02
Choisir les grandeurs physiques tracées
D1-01
Repérer les différents constituants de la chaine d’énergie
D1-02
Repérer les différents constituants de la chaine d’information
D3-09
Extraire les grandeurs désirées et les traiter
D3-10
Identifier les paramètres caractéristiques d’un modèle du premier ordre ou du deuxième ordre
à partir de sa réponse indicielle
F1-01
Extraire les informations utiles d’un dossier technique
F1-02
Effectuer une synthèse des informations disponibles dans un dossier technique
F1-03
Vérifier la nature des informations
F1-07
Lire et décoder un diagramme
F2
Mettre en oeuvre une communication
Système réel
Performances
mesurées
Système simulé
Performances
simulées
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 2 / 9
Écart 3
Performances
attendues
Écart 2
Système souhaité
Écart 1
Démarche de l’ingénieur :
CPGE PCSI - S2I
1
Simulation d’un modèle causal - Scilab
TP
Mise en situation
Objectif
On envisage, au moyen du logiciel de simulation Scilab, l’étude de l’asservissement en position angulaire
de l’antenne parabolique d’un radar de poursuite destiné à connaître avec précision la position et la
vitesse d’un mobile évoluant dans l’espace aérien.
Le système comporte une antenne parabolique émettant dans une direction précise appelée axe
radio-électrique. Cet axe est repéré par les angles de « site » et de « gisement » comme le montre la
figure ci-dessous.
→
−
z
→
−
z
Axe radio-électrique
Ligne de visée
Objectif
αe
αs Site
Site
→
−
y
→
−
y
θs
→
−
x
→
−
x
Gisement
θe
Gisement
Des capteurs de position permettent d’avoir en permanence une image des angles θs et αs . En
présence d’une cible réfléchissante, l’écho reçu par la parabole dépend du « dépointage angulaire »
entre l’axe radio-électrique et la ligne de visée. Le dispositif radar est capable de délivrer deux tensions
proportionnelles aux écarts angulaires (θe − θs ) et (αe − αs ).
On se propose d’étudier l’asservissement en gisement de la tourelle porte-parabole dont l’organisation matérielle est donnée par la figure suivante. L’asservissement en site se fera sur le même principe.
Données :
• Inertie de l’ensemble en mouvement composé de l’antenne parabolique, de l’actionneur et du
réducteur rapportée à l’arbre de l’actionneur telle que J = 19 · 10−3 kg.m2 ;
• Rapport de réduction du réducteur tel que r = 1 000 ;
• Coefficient de vitesse angulaire de l’actionneur tel que Km = 0,5 V.s.rad−1 ;
• Résistance d’induit de l’actionneur telle que R = 0,5 Ω ;
• Coefficient d’amplification du modulateur d’énergie tel que A = 10 ;
• Tension d’alimentation maximale de l’actionneur égale à 400 V.
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 3 / 9
CPGE PCSI - S2I
Simulation d’un modèle causal - Scilab
TP
u2
=A
u1
θm
=r
θs
Parabole
θs
Réducteur
θm
Moteur
2
u2
Ampli
u1
Modélisation de l’actionneur
2.1
Modèle de connaissance
L’actionneur utilisé est du type moteur à courant continu dont on rappelle les équations et le
schéma électrique, sous l’hypothèse d’inductance négligée.
• Loi d’Ohm :
u2 (t) = e(t) + R.i(t) ;
• Équations électromécaniques :
e(t) = Km .ωm (t)
• Principe fondamental de la dynamique :
J
et
cm (t) = Km .i(t) ;
dωm (t)
= cm (t) − cr (t).
dt
• u2 (t) : tension électrique de commande d’induit de
l’actionneur ;
• i(t) : l’intensité du courant électrique circulant dans
l’induit de l’actionneur ;
L
• L : l’inductance de l’induit de l’actionneur (négligée) ;
R
• R : résistance de l’induit de l’actionneur ;
e
• e(t) : force contre-électromotrice de l’actionneur ;
u2
• cr (t) : couple résistant traduisant la difficulté en
termes de rotation de l’arbre de l’actionneur.
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 4 / 9
CPGE PCSI - S2I
Simulation d’un modèle causal - Scilab
TP
Activité 1
• Écrire les équations décrivant le modèle de connaissance de l’actionneur dans le domaine de
Laplace, en supposant les conditions initiales nulles ;
• Compléter le schéma-blocs ci-dessous traduisant les relations entre U2 (p), Cr (p) et Ωm (p).
Cr (p)
U2 (p)
+
−
1
R
Km
−
+
1
Jp
Ωm (p)
E(p)
Km
Activité 2
• Déterminer, à partir du schéma-blocs précédent, les fonctions de transfert de l’actionneur
Hm (p) et Gm (p) telles que Ωm (p) = Hm (p).U2 (p) + Gm (p).Cr (p) ;
• Déterminer l’ordre des fonctions de transfert, les gains statiques et les constantes de temps
et faire les applications numériques.
Afin de ne pas avoir à faire les calculs à la main (que vous devez savoir faire tout de même), le
logiciel de simulation Scilab permet de les faire à notre place. C’est l’objectif de la partie suivante.
On considère pour la suite que le couple résistant Cr (p) est nul.
2.2
Réponse indicielle par simulation
Activité 3
• Construire dans le logiciel Scilab le schéma-blocs ci-dessous en suivant la méthode exposée
dans le résumé du manuel d’utilisation de Scilab.
Il est nécessaire maintenant de renseigner les paramètres du modèle, ainsi que les conditions de la
simulation.
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 5 / 9
CPGE PCSI - S2I
Simulation d’un modèle causal - Scilab
TP
Activité 4
• Saisir les différents paramètres de simulation en sélectionnant chaque bloc, en double cliquant
dessus, et en entrant les valeurs suivantes :
Entrée, instant de l’échelon = 0, valeur initiale = 0, valeur finale = 1 ;
Fonction de transfert, celle trouvée à l’activité 2 (et non celle de l’image) ;
Durée de simulation de 0,4 s.
Activité 5
• À partir des résultats de simulation, déterminer les valeurs finales et le temps de réponse à
5% ;
• Comparer ces valeurs aux résultats attendues à partir des spécificités des systèmes du premier
ordre.
3
Fonction de transfert de l’axe de gisement de l’antenne radar
3.1
Réponse indicielle en chaîne directe par simulation
Il est possible de représenter le système étudié sous la forme du schéma-blocs fonctionnel ci-dessous.
U1 (p)
?
Tension
entrée ampli
Ωm (p)
?
Vitesse
moteur
Ωs (p)
Vitesse
parabole
?
θs (p)
Position
parabole
Activité 6
• Compléter le schéma-blocs fonctionnel par les noms des composants ;
• Reproduire le schéma-blocs ci-dessus, et déterminer la fonction de transfert de chacun des
blocs.
Activité 7
• Déterminer la fonction de transfert H1 (p) =
θs (p)
;
U1 (p)
• Faire les applications numériques.
Activité 8
• En reprenant votre fichier Scilab de l’activité 4, le compléter pour modéliser le comportement
de la chaîne directe du système.
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 6 / 9
CPGE PCSI - S2I
Simulation d’un modèle causal - Scilab
TP
Il est nécessaire maintenant de renseigner les paramètres du modèle, ainsi que les conditions de la
simulation.
Activité 9
• Saisir les différents paramètres de simulation en sélectionnant chaque bloc, en double cliquant
dessus, et en entrant les valeurs suivantes :
Entrée, instant de l’échelon = 0 s, valeur initiale = 0, valeur finale = 1 ;
Durée de simulation de 100 s.
Activité 10
• Interpréter la courbe obtenue par simulation ;
• Réaliser un zoom sur l’origine (t ' 0) et interpréter la courbe.
3.2
Réponse indicielle en boucle fermée à retour unitaire par simulation
On envisage le fonctionnement du système en asservissement, ce qui conduit au schéma-blocs cidessous, où K2 est la valeur de réglage du gain d’amplification de l’écart détectée par le radar.
Radar
θe (p)
+
−
K2
U1 (p)
?
θs (p)
Activité 11
• En reprenant le fichier Scilab de l’activité 8, le compléter pour modéliser le comportement
en boucle fermée.
Activité 12
• Réaliser plusieurs simulations pour K2 égale à 100, 200, 300, 500, 1 000 et 5 000, et une durée
de simulation de 0,4 s ;
• Préciser l’influence de la valeur du gain K2 sur les 3 performances d’un SLCI.
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 7 / 9
CPGE PCSI - S2I
Simulation d’un modèle causal - Scilab
TP
Activité 13
• Déterminer, par calcul analytique, la valeur de K2 afin que le temps de réponse à 5% soit le
plus faible possible dans les deux cas suivants :
Aucun dépassement n’est permis ;
Un dépassement est autorisé.
Activité 14
• Par simulation, et en utilisant les 2 valeurs de K2 déterminées précédemment, déterminer le
temps de réponse à 5%.
La valeur de K2 sera maintenant de 691 et on placera le gain A en dehors de la fonction de transfert
H1 (p).
Activité 15
• Visualiser l’évolution de la tension électrique d’alimentation d’induit de l’actionneur U2 (t)
et la position angulaire θs (t) de l’antenne parabolique de radar ;
• Ce fonctionnement est-il possible avec les caractéristiques de tension d’alimentation maximale de l’actionneur ?
• Conclure sur le respect ou non des hypothèses, notamment celle d’un système linéaire.
Activité 16
• Modifier le schéma-blocs en introduisant une saturation à l’entrée de l’actionneur selon ses
caractéristiques ;
• Déterminer le nouveau temps de réponse à 5% et le dépassement relatif du premier dépassement ;
• Conclure sur l’influence d’une saturation sur la performance de rapidité dans ce cas.
3.3
Comportement en poursuite
Activité 17
• Dans votre fichier Scilab, remplacer l’entrée échelon par une entrée en rampe telle que θe (t) =
Ω0 .t avec Ω0 = 0,5 rad.s−1 .
• Faire une étude temporelle de 2 s et déterminer l’erreur de traînage θe − θs en régime permanent ;
• Retrouver ce résultat par le calcul en utilisant le théorème de la valeur finale.
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 8 / 9
CPGE PCSI - S2I
4
4.1
Simulation d’un modèle causal - Scilab
TP
Prise en compte des perturbations
Frottement sec
Lors de la rotation de l’antenne parabolique, des frottements s’opposent à celle-ci. Il est donc
important de modéliser ceux-ci pour obtenir un modèle le plus proche de la réalité. On parle alors de
perturbation.
On modélisera ces frottements par un couple Cr , constant, de 15 N.m sur l’arbre moteur. Dans
Scilab, on reprendra une entrée en échelon.
Activité 18
• Mettre à jour votre fichier Scilab, et faire en sorte que les frottements n’apparaissent qu’après
2 s (afin de visualiser l’influence de ceux-ci sur les performances du système modélisé, car
dans la réalité, ils sont toujours présents) ;
• Quelle est l’influence de cette perturbation sur la sortie ? Sur la tension d’alimentation de
l’actionneur ? Sur le courant électrique absorbé par l’actionneur ?
4.2
Mais le navire avance . . .
De plus, le déplacement du navire impose une force aérodynamique sur le radar (action de l’air
sur l’antenne parabolique). Cette force étant proportionnelle au carré de la vitesse du navire, supposée
constante de 13 m.s−1 . Mais cette force dépend aussi de l’orientation de l’antenne radar ! ! Cette force
peut donc être modélisée par un couple résistant, variable, ramenée sur l’arbre moteur, de la forme
2
Cr (θs ) = K(θs ).Vnavire
avec K(θs ) = 0, 1 + 0, 15. sin θ2s .
Activité 19
• Mettre à jour votre fichier Scilab ;
• Le modèle ainsi décrit est-il linéaire ? Justifier votre réponse ;
• Quelle est l’influence de cette perturbation sur la sortie ? Sur la tension d’alimentation de
l’actionneur ? Sur le courant électrique absorbé par l’actionneur ?
D’après: S. GERGADIER - A. MEURDEFROID
s2i.pinault-bigeard.com
Lycée Michelet - Vanves
Page 9 / 9

Documents pareils