The role of action in the representation of moving shapes in children

Transcription

The role of action in the representation of moving shapes in children
THE ROLE OF ACTION IN THE REPRESENTATION OF MOVIN...
1 of 3
file:///C:/%23desktop%23/old%20desktop/zabalia.htm
.WAFL (l‡©ˆQ MœÍ%N´Ê›^“LFj[¬ntry(SLvàƒøǨç6›Þ œÍ%N´Ê›^“LFj[¬PD‹url Fhttp://cogprints.ecs.soton.ac.uk/archive/00001223/00/cpl_zabalia2.htm mime
text/htmlhntt"1ab3e6-4f39-3d3eaab8"hvrsdata
THE ROLE OF ACTION IN THE REPRESENTATION OF MOVING SHAPES
IN CHILDREN WITH CEREBRAL PALSY
Marc Zabalia
LPCP, ModeSCO, Maison de la Recherche en Sciences Humaines
Université de Caen , Esplanade de la paix F-14032 Caen cedex
tél: 02 31 56 62 19 ; Fax: 02 31 56 62 60 ; e-mail: [email protected]
The aim of the present study is to provide evidence for the role of action used mainly by children with cerebral palsy to get over difficulties in some mental rotation tasks. 25 children with cerebral palsy and 25 able
children were given a task inspired from the Tétris video game consisting in fitting together geometrical figures. Results show that children with cerebral palsy are able to anticipate mentally the motion of the
object, but they can not mentally break down the motion. This may be explained by the use of an object manipulation strategy necessary to actualize the properties of the object motions. These findings have
implications in the understanding of the role of action in the development of mental imagery.
Keywords : cerebral palsy, mental imagery, action, representation.
Introduction
From Piaget’s early work to current theories of cognition, theoretical and empirical data in the area of mental imagery show a divergence of points of view (Lautrey & Chartier, 1987 ; see also Dean,
1990). This opposition concerns the mental rotation process that is to say the relations between spatial operations and the capacity for representation of motions. In the Piagetian’s theory, the
representation of motions is only possible when the mental image is sustained by the operations of thought (Piaget & Inhelder, 1966). This position is not tenable any longer, ever since findings have
shown that children perform mental rotation task as young as 5 (Marmor, 1975 ; Kosslyn & al., 1990) and provide convincing verbal reports of this mental process (Estes, 1998). In order to eliminate
these contradictions in the literature, theoretical positions adopt a new framework to understand the representational format involved in the tasks presented to the children. Lautrey (1990) notes that
experimental situations imply an analog processing when mental imagery is evaluated by chronometric methods with familiar objects. Tasks may elicit a propositional processing when mental imagery
is evaluated by a verbal response or a drawing or the use geometric stimuli.
Recent empirical and theoretical advances in the study of mental imagery highlight that action is a source of mental imagery (see Bideaud & Courbois, 1998). Currently, theoretical proposals increase
convergences and complementarity between the Piaget’s theory and works of cognitive neurosciences. Kosslyn (1994) suggests that the motor system is involved in the images of motions because it
guides the motion itself. Much indirect evidence supports the hypothesis that transformations of mental images are guided, at least in part, by a motor process, even in the cases involving images of
abstract objects rather than images of body parts (Parsons et al., 1995 ; Cohen et al., 1996 ; Parsons, 1994 ; Wexler, Kosslyn & Berthoz, 1998).
Thus, the aim of a comparative approach between able children and children with cerebral palsy is to reexamine the theory in which mental imagery emerges from a repertoire of sensorimotor
behaviors that are gradually integrated and internalized (Piaget, 1945). Such an approach is consistent with alternative proposals.
In this perspective, we have already concluded that the capacities to use an analog mental rotation in children with cerebral palsy are preserved. By contrast, they show important difficulties to actualize
a propositional processing in a task that consists in arranging of rotational events (Zabalia, 1999). According to Marmor (1977) and Dean, Scherzer & Chabaud (1986), this research suggests that
mental images of rotation do not necessarily imply the operations of thought in chronometric tasks involving familiar stimuli. But it is perhaps even more evident that these operations of thought are
essential when the task requires an understanding of the motion and a breaking down of its structure.
The aim of the present study is to provide evidence for an object manipulation strategy used mainly by children with cerebral palsy. This strategy seems to be used to overcome difficulties in the
process of " breaking down - reconstitution "of rotational motions. We hypothesized that the representation of the properties of figures motions emerges from the actions accomplished by children with
cerebral palsy.
Method
Participants : Cerebral Palsy is caused by a perinatal lesion of the brain and affects mainly locomotor, gesture and postural control. In this study, children had develop a periventricular leucomalacia.
Data suggest that periventricular leucomalacia involve lesions in the periventricular white matter and in the posterior putamen (Rutherford & al., 1992 ; de Vries & al., 1998). The white matter and the
putamen nuclei control gross intentional movements and patterns of motions. Children with cerebral palsy suffer from a variety of disabling conditions. They are schooled in a " Institut d’Education
Motrice " since 6 years old. According to estimates by the teaching staff their intelligence was within the normal range. 25 handicapped children aged 6;8 to 16;6 years (mean = 10;1 years) participated
in the study. The mean gestational age is 31 weeks (27 weeks to 36 weeks) and the mean birthweight is 1,500g (1,100g to 2,600g). 25 children aged 6;6 to 9;6 years (mean = 7;8 years) were normal
controls.
Procedure : The task is inspired by the Tétris video game (Zabalia & Mellier, 1996). It consists in fitting together geometrical figures. The objects are two-dimensional in form. Each geometrical figure
appears at the high top center of the screen and it goes down to the bottom at constant speed. As shown in Figure 1, children have to modify the shape motion either by a translatory movement (two key
presses) or by a rotational movement (two key presses) or they have to combine translatory and rotational movements (four key presses). The object translate only one unit of distance for each key
press, and one press cause 90 degrees of rotation. In this study, the three colored keys (12 cm diameter) are grouped and can be easily manipulated by physically disabled children. The right key for
right translations, left key for left translations and a central key for rotations. The keys are pushed serially.
The software pilots the presentation of 30 successive patterns (5 figures, 3 patterns presented twice). Manoeuvres and the temporal distribution of the key strikes are recorded, time between the arrival
of the stimulus at the high top center of the screen and the first press of the child and time between each key press.
This task offers the possiblity for children to anticipate the future position of the moving shapes and to see directly the result of their actions. The object may be mentally moved and it may be moved
on the screen. However, in these dynamic events, children detect objects properties and develop their representation of the shape motion.
Figure 1 : samples of patterns of the task presented to the children,
requiring 2 translations, 2 rotations or combining both motions
Results
Figure 2 : mean reaction times (RT) in function of patterns
for children with cerebral palsy (CP) and control.
Mean reaction times of children are illustrated in Figure 2. It is apparent that disabled children and able children did not differ significantly on this measure (F(2,48)= 0.65, P= .4). Note that mean
05/12/2004 20:48
THE ROLE OF ACTION IN THE REPRESENTATION OF MOVIN...
2 of 3
file:///C:/%23desktop%23/old%20desktop/zabalia.htm
reaction time is significantly longer for both groups when the shifting implies both movements - both two rotations and two translations - in comparison to patterns with one kind of motion - only two
rotations or only two translations (t(24)= 7, P= .0001 for children with cerebral palsy ; t(24)= 5.24, P= .0001 for able children). This result suggests that children use a mental rotation or a
representation of the motion to anticipate the future position of the object.
Figure 3 : mean number of handles in function of patterns
for children with cerebral palsy (CP) and control.
Figure 3 clearly shows that the mean numbers of manipulations for both groups were very different. The number of manipulations for disabled children is significantly higher than those for the control
group in patterns with only one kind of motion (t(48)= 3.48, P= .001 for rotations and t(48)= 2.94, P= .005 for translations). We can not conclude to a significant difference in patterns with a
combination of both motions (t(48)= 0.79, P= .4).
Children of control group handle as required to fit the object in the empty place (on average 2.5 presses for rotational motions ; 2.64 presses for translatory motions and 4.07 presses for the
combination of both motions). The difference between mean number of manipulations in patterns with two motions and patterns with four motions is significant (t(24)= 5.33, P= .0001). By contrast,
the mean number of manipulations of different patterns do not show any significant differences in children with cerebral palsy (F(2,48)= 0.27, P= .7 ; on average 4.65 presses for rotational motions ;
4.43 presses for translatory motions and 4.56 for the combination of both).
Discussion
These observations suggest that able children mentally anticipate the object motion before the first key press. Motion seems to be represented before any action, that is the reason why mean response
time increases for the motion involving four presses, and why mean number of manipulations corresponds to the number of presses required. A mental anticipation of the future position of the moving
object is also amphasised by mean response time of disabled children. Furthermore, children with cerebral palsy and able children did not differ significantly on this measure. This finding is consistant
with our previous conclusions (Zabalia, 1999) showing that children with cerebral palsy were able to actualize an analog representation in a mental rotation task. Additional result of the same work
revealed that children with cerebral palsy failed when the task may elicit a propositional processing. Children were given a task in which they had to arrange seven pictures of a rotating character.
Disabled children showed difficulties both in breaking down and in reconstituting the rotation. Results illustrated in Figure 3 inform us that children with cerebral palsy, even though they could
mentally anticipate the object motion, could not mentally break down this motion to act on the object. It would be misleading to think that mean number of manipulations of children with cerebral palsy
suggest that they act randomly. The patterns involving a combination of both motions - four presses - are performed with a correct number of manipulations. These observations may be explained by an
object manipulation strategy used by disabled children to actualize properties of the object motion. This strategy seems to require few presses to extract the spatio-temporal properties of the object
motion. I believe that the number of manipulations is not linked to the complexity of the motion structure. That is the reason why the patient's movement difficulties seem impair their performance on
the rotation-only and translations-only trials but not the rotation and translation trials. To act supports the " breaking down - reconstitution process " that is to say the mental organization of the motion
spatio-temporal properties.
These findings are consistent with the view of an analog representation independent from the operations of thought. Lautrey (1990) suggests that it exists a dissociation between two processing systems
of mental rotation. The dissociation is not meant to imply that these two processing systems are completely independent. Mental imagery is an analog representation which assures a guidance in the
development of the operations themselves. Clearly, the two processing modes interact at some levels, and developmental changes in one system affect the other. Knowledges about the final state of
motions could help the integration of intermediate states. But the conclusion emerging from this research concerns the role of action in the representation of moving objects. Action contributes to the
development of analytic representations and they make possible a logical understanding of object motions. A recent theoretical position emphasised the role of action in mental imagery (Kosslyn,
1994). A reconciliation between current proposals and the Piagetian’s theory leads us to investigate when and how new representations emerge from action in the developmental process.
Conclusion
The results for the children with cerebral palsy allow us to postulate that action is involved differently in the development of the two formats of representation. An analog representation both holistic
and undifferenciated would emerge from the gradual coordination of movements and locomotion. Although the experiences to learn and integrate spatial knowledges are poor and practiced in a more
passive manner by disabled children. Apparently, these experiences would offer sufficient features to develop holistic mental imagery of motions. One may speculate that children with cerebral palsy
actualized analog representations from the motor experiences that involve the whole body. But the motor disabilities affect mainly the analytic representations emerging from internalization and
coordination of motor skills such as motor imitation, reaching, object manipulation and exploration, all internalizable and reversible actions at the origin of the thought operations.
References
Bideaud, J., & Courbois, Y. (1998). Image mentale et développement. Paris: Presses Universitaires de France.
Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, W. L., Thompson, W.L., Anderson, A. K., Bookheimer, S. Y., Rosen, B. R. & Belliveau, J. W. (1996). Changes in cortical activity
during mental rotation. A mapping study using functional MRI. Brain, 119, 89-100.
Dean, A. L. (1990). The development of mental imagery : a comparison of piagetian and cognitive psychological perspectives. Annals of Child Development, 7, 105-144.
Dean, A. L., Scherzer, E., & Chabaud, S. (1986). Sequential ordering in children's representations of rotation movements. Journal of Experimental Child Psychology, 42, 99-114.
Estes, D. (1998). Young children’s awareness of their mental activity: The case of mental rotation. Child Development, 69, 5, 1345-1360.
De Vries, L.S., Eken, P., Groenendaal, F., Rademaker, K.J., Hoogervorst, B. & Bruinse H.W. (1998) Antenatal onset of haemorrhagic and/or ischaemic lesions in preterm infants : prevalence and
associated obstetrics variables, Arch. Dis. Child. Fetal Neonatal Ed. 78, 51-56.
Kosslyn, S. M. (1994). Image and brain : the resolution of the imagery debate. Cambridge: MIT Press.
Kosslyn, S. M., Margolis, J. A., Barrett, A. M., & Goldknopf E.J. (1990). Age differences in imagery abilities. Child Development, 61, 995-1001.
Lautrey, J. (1990). Unicité ou pluralité dans le développement cognitif: les relations entre images mentales, action et perception (p. 71-89), In G. Netchine-Grymberg (Edit.), Développement et
fonctionnement cognitifs chez l’enfant. Paris: Presses Universitaires de France.
Lautrey, J., & Chartier D. (1987). Images mentales de transformations et opérations cognitives, une revue critique des études développementales. l’Année Psychologique, 87, 581-602.
Marmor, G. S. (1975). Development of kinetic images : when does the child first represent movement in mental images ? Cognitive Psychology, 7, 548-559.
Marmor, G. S. (1977). Mental rotation and number conservation: Are they related ? Developmental Psychology, 13, 4, 320-325.
Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology : Human Perception and Performance,
20, 709-730.
Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., Jerabek, P. A., & Lancaster, J. L. (1995). Use of implicit motor imagery for visual shape discrimination as
revealed by PET. Nature, 375, 54-58.
Piaget, J., & Inhelder, B. (1966). L'image mentale chez l'enfant. Paris : Presses Universitaires de France.
Piaget, J. (1945). La formation du symbole chez l’enfant. Neuchâtel : Delachaux et Niestlé.
Rutherford, M.A., Pennock, D.M., Murdoch-Eaton, F.M. & Dubowitz, L.M. (1992) Athetoid cerebral palsy with cyst int the putamen after hypoxic-ischaemic encephalopathy. Archives of
Disease in Chilhood, 67, 846-850.
Wexler, M., Kosslyn, S. M., & Berthoz A. (1998). Motor processes in mental rotation. Cognition, 68(1), 77-94.
Zabalia, M. (1999). Traitement analogique et traitement propositionnel des rotations mentales chez les enfants IMC. l’Année Psychologique, 99, 75-97.
05/12/2004 20:48
THE ROLE OF ACTION IN THE REPRESENTATION OF MOVIN...
3 of 3
file:///C:/%23desktop%23/old%20desktop/zabalia.htm
Zabalia, M., & Mellier, D. (1996). Effets d'exercice de rotation mentale sur le traitement des relations topologiques élémentaires chez des enfants handicapés moteurs. Les Archives de
Psychologie, 64, 67-82.
postœÍ%NXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SLvœÍ%NL¹d[8ºHPDO9ntry(Ÿ~W討EÁÔpJ‡·*iê™[à»èL™«œûÐâÙ›ÔÒurl
@http://cogprints.ecs.soton.ac.uk/archive/00001223/00/Image4.gif bsrlFhttp://cogprints.ecs.soton.ac.uk/archive/00001223/00/cpl_zabalia2.htm mime
image/gifhntt"1ab3e9-a82-3d3eaab8"hvrsdataGIF87aQ÷ !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSS
ðHàZ˜t‹þXè`¯…>™˜çb§e?ÐK9/‹—6Ιùãf›‹~žZèh˜¥3žn™šçj•s¾>Ûâl’µgÞ™°[¹½'îþ\åðÅÿ~›âqqå"|ž±ùÊål'Å>VûFê½kÿ2ºæÊwùJ´‹¾}VóÒɺW‘½{ôàÇ/9¿oýûíå·ß€hà&¨à‚6èàƒF(!E•aá…f¨á†vèa(
Vèáˆ$–È!ˆŠhâŠ,žˆw^‰§Œaé7 y˜ÙHféŽÉˆ.ù(Ù`Vþ y’H9i”‚‰•écÏ–öôÕ•o9‘”‰ÉÑdhõå‹û‘Ù–ŠÉxÖ@cçxæ‰ç:~ÉÙ’™4ùÉ&Dï )À¸ ¹IœŽ) ¤œIª¥ Yꦤi*§¨yj¨¬‰:c›¦ºF*l©‰ê Ò9`*£É:µ:å«âÚÎJ›®e
#ÇðÄC‡lÈÕ}¼éÆÇ—qC3eòw$‡÷rL1—72Ê?Öœ#¬)¹$}+ÓŒ³t-d±ÎòeµUÄ3ŸªrÓC"]$ÏÌAýäÐrºnšKWlõtRùu±X‡³Ï=¶AEôSaKôö\qJuvkGé>´ôM‹0Ç&\6³Oßœ:Ç$®¸.ï– øãÊì,xá‹ÖÝhÞ³ò(Ù¹—‰ù–×úy[ƒ
½ïÒGI}B÷ù½ñáWyþò“«ž¾aãƒý¥óŸüÃÝ{½~ó‹J}A›·Ò-ÿé€à·â÷æQàÏV÷Χ]ï‚Weh0ƒŒ²<ˆ†pƒ«{†*VȺð…0Œ¡gX©p†8Ì¡cXCÝp‡@"FÄ"ñˆHL¢—ÈÄ&:ñ‰PŒ¢§HÅ*ZñŠÿXÌ¢E‹vxñ‹`£ÇHÆ2’Q
Ÿ~Wèê™[Pü¹d[8ºH‚Ô ‚€ntry(©³‚rÿ*‘Ù>c» ߢ©n©G,ó°4–U½QCŠxdÓurl
@http://cogprints.ecs.soton.ac.uk/archive/00001223/00/Image1.gif bsrlFhttp://cogprints.ecs.soton.ac.uk/archive/00001223/00/cpl_zabalia2.htm mime
image/gifhntt"1ab3e7-1411-3d3eaab8"hvrsdataGIF87aÛ÷€ `ÿÿÿ!ù,Û@ÿH° Áƒ*\È°¡Ã‡#JœH±¢Å‹3jÜȱ£Ç…BŠI²¤É“(Sª\ɲ¥Ë—0cÊœI³¦Í›8sêÜɳçI>ƒ J´¨Ñ£H“*]JèR F
UêT¦X³jÝʵ«W¥N¿º´*¶¬Ù³hÓª}vmI²nãÊK·.ζGJ%«%\»€³åùW°á·…ã&>Ìøðâ™Æ;7²äËr-à ³çÏ C‹ÖŒY(e£©†Mí·´kÀ¤ÇŠžMûsì×;O+Æ 6·cµƒæ ö¶XãT_Þ¹Mç
Has½yøá†+]hÞ‡xÕŠò4_}QU•\‹{Uµ×M‰u×k:Îøb‹$¸Ù}ª]N'Ž(¡ˆªhäV9>9t&¢bR&Ùä’HZ™¢…TFßT?’)ß4ºxfŒ@šI#šm)¥iviåœANˆ"žyꩤO|ré¢Üi¦3šD%‘'Ž^:ú(¤wXà]!Ÿ{†ÈéŸX2* ¤¼õˆÖ¢~n*“E
Ji§–65E*›mÊ8i¢C¦ÚꪟªÊk¯»ÆjÚ¬wÕyW¤ž[i²ÊÂ*¬…Äâhì« æ¥k£®>‡ì³ÿÐvEЙ¡Ê*¶¿Rëkƒ¢ömi¦ž%.°ä¢;î¨ÙÖ¤e°Ü¶®½Ój»¬¼ðÒˬ¹øæ[Þ¾4½Ûlµš¬n½
okpn¿…kŸcœñųØq»‡,òÈ‚ŒÝ˜¶Öx•n¶\±š+ª\¦Œ2§i³Ë\¡¼òš7Î3Ì“üÜËBmôÑ,™ŒôÒvq7(Î1¢é´ÓQ×
.ÓÙõÖ\o¬t×`‡-6bc—möÙŠjöÚl+¦vÛpÇýÕ×å©vh¸rç7’oï¸÷߀o7Yà„ž¡Vp±¼X߆Óé]ã;2^"ä–Vù/Út{K9–;‹ùºŠÿ,ç·›—š.~H’וyÎýò[òãƒ_+ðÚ«çY;€¹Îûp¹Cs1dŽéš~'ÎññIŸ¾ž¤Yoì»ÓN(éMµñå
/|îóº£íGàGÿt8¿BV¿©öÕ<öÙ£/a™hâ4¯ìÔ‹·ßJkÂYßmwJ #ØûÚç/ÏqÏaÞn¢Ô»L©ÏzÀcŸù¸¼ßeÇyu{ ¥50¿A/sßìB(ÂèÁ\Ô«ÚÕ~FµÒ¯e*dÍŒ—¶b¥Ðq1éÃؽ
vÐ^,[þPh¨AùïH¹£ày˜÷Aò®€;âôX3Á$–„೨EžmˆL ·ÇC%†‡T:$£±¢3ùiwWt"(Á*Æq‰m£‘xÇ3þ0‚$àÓ·FØ@ð‚uÄa«ƒFåá‘mz´!ÇÊÇ¡&>’„ƒ
éÈB›6í9â”,éÇ?2Šc‹ä“GJFš2”‰Tä"“Ç·¹hVì"áXI3º”0êá%sH2U–î˜ÈÄQêBU#5³jÏŒÚç65RQФ®iÌ﫨F+‡ÆoeTQ ic.ª@‘št2µØIWJ’ö$¥,]©KOÓš¦e¦°³)ijQbÝ›ACžN1ùât…1¤"H‡š¦¸dê+sØ‘ZÆNª{ÜŒ(ÿ
U¡bu”¤%$»ª¿¯‚U˜¥”âàYV²4„Le#é)º¥š•¨œD%W¯šË¢¾.ƒEë/ÕjÈóq¯‡E¬.åøE·Š1¯j<wUW\Ù÷¥aÝ-oÛÃÒ0h7üh=½š[95¶Èî)§&Ý ºŸ=pÌJí’©l jYUWó^‘õ½0†›ë:×lÄ›ÜüêªRbÆWÁ«°uœ\ùÂw»5,¬‰
Œžo˜À,Np_,MÜnö<öïl/úXìvÖŽßïkUla¿>¨BòœÊa)ãêÃör ’û«ãÚ0‘Æ^Î*}9b(ùXÄ%òñTd&Y³I¶,yìZ¾…ïÎ Yoƒø´ÅµwG¾epœ»\7×Y¶Ò‚AjÏ
/úÄ;žóW,æèA+·±ç-ô£ÁìŸùú½Aîr§ÇšiIoºÅ(Ö´VAÍSQ³Çª2ð¤›\i:7¼â•³pûç¤:Ô–v±ªWa° ·Ô½Du¤—Ëb×ÚÖàõ¤§>šæC[É[¾¶®qìT_öWÜÄ›wËûf
›ÌÀîö²wX.çšÐÌ>7ŽŸmè[#º»3Vv˜mÜlt·úÝ—fw¬]ïhÙ܇>8Âí½×'ÛÕ2µ¼)î…¼ákísmÝî}۽ή¸¶á-ðŒÛ¶Ú¸°ã=æy‹¼àؾ7{Ç=ò€gæÛ¾9ÎIí.í–öºD¿þ·Åc®ðš¯¼ä3Ï7Ä#Äï‰ÓšÞ³.·syMóÛ¼èQO¸¹.uc÷í
£hÆ^ÂïùÛ±ÍÒF»¥¬Ê!Æ‹<ê#úPg–YãQ¸³Œž&³r[|ßG﮽“þô|C½ÑoWtŠ^õêkèÊù£ýÆÉô¥‡½î…õúÝûþR¿¾q/üâ?ÍøÈwÝ—Ïüæ;ÿùоô§’ä[6Ä¿þï{¯ýîGÎûàW÷ÃO~5—ÿü¬fF¿ú—ýõç}üî÷>üã¯ýÅOìô?ý
Øn"xRHa%8‚ç~ñTa´àtjôçTý$z —€í‡O4¨O6h;“¤eñ·ƒ=µ$¶‡x9ØNB¨ƒ!˜ Iˆ„K8ƒB—N'(ƒAXY<'s>W€Öu]ÿ3…b§~[¨u^G‚`h…W‡qIÇ„fxt=W†7udˆ~pxqr8m‡ZPi÷m{†€Bu„êT‡Dw‡;Em@Æ‚k¨vH·g÷ׂø
ƒâ¶Šñq,’Ù‘ e—˜eé’xŠg6¹‹É’æ¸59a'‘ÏèÙDY”ÉÃck¶’(—’L÷qŸrÚ(Žédìÿ¢g½ˆ’99Že7•gG“Pù‘iŠ·ãL3é`Â(”éX–`)’bÙ•WÙa¡q hr槊k‰”Y•Ù“ÿ}ø8÷õò#3SÆBøÈ•^¨‡5)˜Öè”ôH•i•ƒ
X…ù”yˆyA9ŠVf@xlùŽn9™a©–/éNâx¸Td“YÜd&?ù™Q—܆‹žx™:÷—é—¼i”™‰È‘%Z¹—v)€F¨”?áqi™‘)™¦ —I‚ÆEègÁÉ“½Ùœîx“8)—ºÉ‰#UœÂ™–VÓù˜Î)R-‰š¹ùœð)X¤á@áF¸9–0yÚ
œ•Ù:ÿ‰•˜QŸTE€ßI‹ñÉžþù–ï)žÉ JRb ÇÈ•ª’·¹žº¡•4¥%|a’œ—)s?þU?*„?÷•—[iœ ˜ó™¡ Ú 1º¹#¢ñƒœüa›yy
„_™ˆà)Ÿ;éž2:£4J–<¦£€HW‰y3ö#{UŠ¢È3›í¤G*¡ú›Ié›£é ©9?f¡jž¬hMÚŸÐIaÌÉê•zhš¦l¦œŠ§:§sYšJŠ£Ói–²3_Ž~žE tõ(§`Ú—>yûã™Ò„Téɦê¤6ʨ”é¨c: иŽ“ãF
‰¡™ê¦‡Ê—Cy”ÿf¦#™h¢Ix$FDÃIŒŠš ‰Š¤I¨Ê4ÏE¤Á„ˆ\ª ü©š¡Iʤ§j¬¤¦LƪFڦ̺¥pš¬}š«^Ú0ª¬ú)WBýhkÚ¥jŒxš§Ùy£½zŸJ§¸ŠåÿšŠzš®Ãº¬ßº©ÕÚ©Üú¨«©µˆ®¦ ¯5šª
©Ú®ZO¨ž«©o®úÊ®{«¡ª—ƒZ°ýê©Û–€Ê©§‰4y©ûI®»›««‹ê±Ò ²‹©
‹ª&«ª¼êª¾êSFô?ˆº³'›»š¯;®Þú%ÍÊL#VªÛª²Z§$ë°±A»z8¥ø¬ÄÚ´0û³P»²Bk¯D“#¬©™Cûeú†²ïʯ3ë¯Íȳ2Kš4´\Ë´X;~x¡I+·KËŒÅz¯øª·Kʲ¯è¶·bZ¸d·€+¨‚Û¶ŽÙ·_û·È±]û²v»vø–·[±»·e
¹¶ ñªŽË°jk¸‹¸ Ú±‹»®›¹«®6+±¨ë®ª»¹{4!K¶”šš~K°°k°;» ˶®Kº=ºµ»œâJ·ekP¢q;²ÍÛto›¸‡+¼K‘9TØ°¥k½Á[³À»¯Ç[²æzˆ8¯A§•[¾N뻿›±7ë-$J¸ÑêµfË»‘+¹“µE“»÷Ûø{¬ÊK¹Ì;ÀEÛŠÒ‹ÀàÚ¿sË·žÿë¼
|Ã-œÃ?<¼¯Z¼ü—¿B̺.LÂ@l¼À:¼¿L¼º±+»Ø‹¶ÚËvéK¯MœÅ¢)²ì½Ñ[Áwû¼m¥¾.¾c¬»Eœ½ö[¯U<‘8¤Œ÷Å"sÇll§vWz|œ‚cË9,ÈÀ†ÌTˆœÈ*ÈÈŽ,¤«wÆ'Ìq‘xxTÈM…ÉßÇVµywFÄceiÒÉ¢¬€y‘˜
9}Ñ•Ñ]ƒÝÑ„ÃÑ
ƒ;postn©G,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
©³‚rn©G,]<¹d[8ºH‚d€ntry(µ GNçFÖ™ ¼OŸZ‡DÛCÄźO\¥r³6ˆÓ1Óurl
@http://cogprints.ecs.soton.ac.uk/archive/00001223/00/Image2.gif bsrlFhttp://cogprints.ecs.soton.ac.uk/archive/00001223/00/cpl_zabalia2.htm mime
image/gifhntt"1ab3e8-12de-3d3eaab8"hvrsdataGIF87aÛ÷€ `ÿÿÿ!ù,Û@ÿH° Áƒ*\È°¡Ã‡#JœH±¢Å‹3jÜȱ£Ç…BŠI²¤É“(Sª\ɲ¥Ë—0cÊœI³¦Í›8sêÜɳçI>ƒ
J´¨Ñ£H“*]J(S“ŸJJµªÕ«X:ͪׯ`ÊKÖåV¥gCzíJsmN·eãbõ(·î[¸Rñ¦Ôkv'_»þ¶Õ/áÃ1ÓÎ:ЦàÀƒu>–;91â‘•_f¾|Y±L¯k7/Žü–³Zž¢Å¦^
¿µûöûA_vPaÕn£Ñ‡jë½õ€AEG €˜‘§ÞiB]†ö5`KÐYXX‚¥-¸ÝƒÜ}{( ŠSýžfªh‹-ãO¨åhÜŽ#:è£w>=gP‡%Á(#s‘(ØBIö(å”ùxå{‚'"ˆ<ØRPö¶%rYjy&•Õ©¹%›Šy߬^™÷É%Vê
ç…Q®g^†ÉžŽééZ¡úfšŽ^Éè YwdyH¶¥hŒê·i§nJJi~‚æ[$š©(¨¡JÉj¤®Ž5ÊŸ¥dfºØ§Â:䫪ú)+Z…r8a•©æ¹j®½
Ê'ŽÊþªÕ¤¶ÖÉì£ËN+jµÉRë¬Qÿ3¢¨‡…+î¸ä–kî¹ân››ºì¶ëî»ÏÂÛæi‚kª†êIØmŒôªÕ˜¾3VïÀ5BK,…÷V*0¾‡ÆWÂò6epÄWl1Wû^¬±»¡š0t ׈ðÈßn<§É(§¬2z¯ìòË0ÿÔrÌ4לrÆ6ç¬óÎ
ÙÙ^kôÛüŠýuƒ%Êmm¬Lã¤Õ+ö[¸eew6·ßºú¸4Ë€!º7ÝcRžè±ÓzßÕœƒ™8búñm¬¯™ŸÊ¦äkÑR¶¸âïÚeÏÞ”ÌjÓYdêl3~GÈ^NzO®v¶œŽÔÕ±ž{Ý€{ÛªëØŽÞìê.¹»’¸k†kôÒk›TÛß–†¼a¿ç{L2ÃìƒLüä•×§·¦˜;ߺã½þ
‰h‹£ãG¡…‰ƒŸÙ±ð¿yQ§Ž*äIH/òzìcY)F:ò‘d$$'IIùTò’˜V&7ÉÉñ±“ Ìá'CIÊI²”¨Dä)SÉÊ9®2„Œ¥Å^©H¬Éò–΢åípÉË\Ž2H½fœt)À<~N˜Èÿ\¨–HÆöå˜ÉtföIL&‚ˆëë ¹f²šÞ|¦6AG½Ã¯“àä¦ÕY—ÐY®–˜Dâx
ê_ûj1™ºT¨Ê•ŽFëå.Û&¬õù_×<Ÿ<ٺԪ²¦E%j;ëž•Ì}ìóãÇXØH§ü‘±\âUùúÐÈÒµ²Dtb7ª¼–›‹-dU»Æ¢xj§¶¥,„;LÐÊgž³—FÏêEû±µi¤ÿê×ê”J—÷Ông§ÛîœÐwµM¤öd>Î2̳Þ-X#»‹¡Žun±‹,«8‰‹Fã²7¡îÅîrû†Ñ’
W}?]/á;ã%KõÄ"N¡(µT'ÊQâå+e1f•·ÁÝ0ƒ3c 'wÁCîðse‡ãÇ 9Åd~ï“›Œâ«¹4+\’‘ášen™ËZæb™<Õ½™Äa~³}<èŸYÌiVqRi¹ãCõ8ÎVF.–•ÛežNšÅ!.â¢1
h?ZÎW¶1UÛÜ(꥙–ñŸëÜi£ZÓª®Ú…ZiÖ\ѱ6ó¦Ñ眥“µëlô‚¬èZSWÙ:BªiCÍé@øÇ„6¤‹m³cuÀn®ð˜ùœlh©ÅU.5ZÝ.o+¶s©¶ß%oªEóÞ…t7¾÷ /}gå^ÿò,c¦ßþúûx¦J¬ÁÍp€|+fcò
>‡ÇÎHz9ôÔ~•ü°K_ûÀrh‡‘±
™È¯¨>†|å†-¬´ùMóq¼æ8¿k½sþ›Ãž|³@W¹wwNG¢ó¼Nø®ÁÛÙ¦+}öݸÑN‘õŽO½êX'TÖ·N³›sý몹:ØÇîI²›=Þb?»Ú‹·ö¶s,ín{ÏäN÷Qy½îx÷ÜóÎ÷ñöýïûÜ;àé~÷ÁþPcŒøáå^ø‘.þïŸé‡ßöÆË\š”7{äËùµo~´WûçÇ
¿[Éï_=øõ/~F.vaÊÔ~¤·é7eq|ßSö—5anåw~Ø7Wæ&¨wK3yÞ‡ýwS’%·&k^@Hm½6€ß—lÙ–k††y(€ì6î}}¶n!¸PÏFm:XȃH>ªa{F€&¸a1ƒNEkÖFdõj=oFHr8•‚êöbSÖT ƒœw‚QØsØæhA˜WC(,LéåƒI¶l…&‚†“
I~èY±·‹Öç†ñi¤VƒVØ‘ÊX¬gˆSF@™$ÿ¿fU ’§—xå[–äÔ÷”n){•‰+X”Riƒøˆ•´|W™dIŠsI—@Hg‹éŒf‰’ŠÉMIi³ø–é˜Ä8oâ&–¤±]2‰“WqßU‘9Y0%§!"é\Q9‡ŸÉm›9”©&˜Ä6j¡
„"të“_C÷›‰—ºˆ‘y†Ív”+I›¸f›Û†›N¢›ÀÉY×j)u©q–*ÓÑ‹í8˜eym1É)`ék~™‘ɇٙ–ÑjmYš™˜ä šp銄و\˜•Bu°–² Ÿ]ñž/iiåYœôx™÷Ôž˜ “¹ Z˜ñÙŸ1ƒŸ9H Ä1 Z`=ê ÿ™¡.c ÉI‰Þɘà
˜xÈœÇ9•w¶jJ™F‰¢+Ú¢õ9¡Ê ‚° æ •0úTÉ™ÿh¢±éœ5ÿã¡cÉ¢!*™#Ê££é™ü ¤]×)kyÔ˜£"º£3ª‰>º¤Ú¨3Bj‚q˜™Š”?š¥v)¥FÊ„öI|lé¥ò9›ô©£2Ú¦Sš¢^a|éž_ªaŠœCZ¤Dyƒ¥‚z›b:ŸpZ¦o™Z£sš…,©¨µÙ˜U˜’
©Ë ¨ÉŽPJ¨|:¦dº¨Tj©4j¦*Ú§›Úœ…ʦ¢j¥•ú©‘ʨôH¤œê¢¦:«1ú¢¶ê¦’Vª`uªy¢·Z«¨Ú©†êª— «£Á•šŠ 㓧-Y¡kêŸÊ@¬v£J
º}©G£€læ«š:¬´ê©~úª¡Îj¬£*§-¸ˆ-©Sàz¦XJ¬ªš®ÇJªT…«û™Ýª¡:¯`ê¯LZôª§]¹ª”z¤“Z¢Š¯íº«ê¨“È®¬Ê°‡ ª‰j±«¯F蓲w§ ê¬Õ(šëx*°`¬†YýZ™{±ëʱ‹±4‹‹Ï(h{X®¿º§çZ¬7k•WJ°©Ú¤Õ‚Yˇz²Ë $+²Íª²7Ãr
¬ºª¥ÜµjÑ »´Ek£û¯ÿº¶ÝY¶ˆz¶hk¶Âê³cÛmv«´sË´o;¸q‹²#+µ(cyiʶá¶K´ö*ÜJ¸+øߨ¦t{’=ë·iû²h´rY±ò‚¹UMû+¨[¸²yvj2«Ëº»¸±[{GÇ~¶‹w¸›»„W»¼[s»K;ûŸ•°¢cœëä»8K«Ù¼&9r^8‘¼‰r3½%)¼ÎK^ÖkXL)u³Ô
|ÜÀìÀlIüšŸˆ˜þ¿”÷/û«0Ç¿6¦©p¼æ„Ál8Q0ür¿‰–9;ÁŽˆÂ0çp"ÃÈkl$ì·$Â8¼u:¼ÃX×Ã>Lu#@Ä<7ÄDŒsF|Ä4—ÄJÌ{7ÜÄ¡ÄÄPMR<ÅÈ;post‡DÛXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
µ G‡DÛs¹d[8ºH‚1Þ€cat SLvœÍ%NL¹d[8ºHPDO9Ÿ~Wèê™[Pü¹d[8ºH‚Ô ‚€©³‚rn©G,]<¹d[8ºH‚d€µ G‡DÛs¹d[8ºH‚1Þ€ÿÿþaux
MSURLEhttp://cogprints.ecs.soton.ac.uk/archive/00001223/00/cpl_zabalia2.htm
05/12/2004 20:48