Dust Model Intercomparison for Summer 2012 in the Western

Transcription

Dust Model Intercomparison for Summer 2012 in the Western
Dust Model Intercomparison
for Summer 2012 in the Western Mediterranean and comparison to
the Pre-ChArMEx/TRAQA Campaign Observations
S. Basarta([email protected]), F. Dulacb, J.M. Baldasanoa,c, P. Nabatd, M. Mallete, L. Robloue, F. Solmonf, B. Laurentg, J. Vincentg, L.
Menuth, L. El Amraouid, B. Sicd, J.-P. Chaboureaue, J.-F. Léone, B. Vogeli, J.-B.Renardj, F. Ravettak, J. Pelonk, C. Di Biagiog, P. Formentig, I.
Chiapellol, J.-L. Roujeand, X. Ceamanosd, D. Carrerd, M. Sicardm,H. Delbarren, and J.-L. Attiéd,e
Background
•
Model configuration:
The project ChArMEx (Chemistry-Aerosol Mediterranean Experiment,
http://charmex.lsce.ipsl.fr) aims at a scientific assessment of the present and future
state of the atmospheric environment and of its impacts in the Mediterranean basin.
The present analysis focuses on the model capability to properly simulate longrange Saharan dust transport for summer 2012 in the Western Mediterranean by a
set of 6 regional European models:
Model
ALADIN‐Dust
CHIMERE‐Dust
MESO‐NH
MOCAGE
NMMB/BSC‐Dust
RegCM‐Dust
– Simulated period: from 01-Jun-2012 to 31-Aug-2012
• 24h diagnostic simulations at 3-hourly resolution
– Simulated region: North Africa and Europe (spatial horizontal resolution
between 40km for MOCAGE and 15km for MESO-NH)
•
Available observations:
– Meteorological variables (radars, radiosoundings,…)
– Air quality (Ground-surface PM10 and PM2.5 concentrations) and
chemical composition
– Optical properties from ground-based (AERONET, EARLINET) and
satellite-platforms observations (MODIS, MISR, MSG and CALIPSO)
– 2 soundings with the OPC LOAC (particle size distribution along the
vertical SE France)
Institution
CNRM‐GAME
LISA, LMD and INERIS
Laboratorie d’Aerologie
CNRM‐GAME, Météo‐France and CNRS
BSC‐CNS
Laboratorie d’Aerologie
Results: Model comparison Summer 2012
Results: Pre‐ChArMEx/TRAQA Campaign on late June 2012
(see poster Nabat et al.)
(see poster Dulac et al.)
During the intensive experimental campaign on 29th June 2012 a intense dust event was observed:
Summer 2012, it was an exceptional summer period in relation to the number of desert
dust outbreaks in the Western Mediterranean. The comparison with the set of models
shows maximum contributions in Western Mediterranean and large differences over
desert dust sources in North Africa. • The desert dust sources was located in Morocco
• High aerosol concentrations were observed between 1 and 5km MODIS/Terra
MODIS/Terra
MSG/SEVIRI Dailly AOD
LOAC results
CALIPSO VFM
• AVI
• BCN
• PDM
• LAM
AOD at 550nm summer average for 2012: Observed (MISR and MODIS Aqua and Terra
AOD and Deep Blue) and modelled (ALADIN-Dust, CHIMERE-Dust, MESO-NH,
MOCAGE, NMMB/BSC-Dust and RegCM-Dust).
Modelled AOD at 550nm on 29th June 2012 at 12UTC.
The preliminar comparison with Charmex observations shows the capability of the dust models to reproduce the AOD field of the long‐range transport to over Western Mediterranean on 29th
June. The AERONET comparison shows that the set of models are capable
to reproduce the most important
events in the Mediterranean, with
a large range of AOD at 550nm values associated to the maximum
concentrations.
The intensity and the spread of the intrusion over Europe reproduced by the models present large differences. However, the models (except RegCM) underestimated the maximum AOD as shown in the comparison with AERONET.
The AERONET statistical comparison show that in general the set of models are capable to
reproduce the seasonal variability with correlation > 0.6 (except for RegCM).
MODELS
ALADIN‐Dust
CHIMERE‐Dust
MESO‐NH
MOCAGE
NMMB_BSC‐Dust
RegCM‐Dust
MEDIAN
r
0,76 0,85 0,81 0,70 0,84 0,17 0,83 Barcelona
RMSE
0,15 0,13 0,13 0,18 0,16 0,26 0,15 MB
‐0,02 ‐0,04 ‐0,03 ‐0,05 ‐0,07 0,05 ‐0,04 Palma de Mallorca
r
RMSE
MB
0,83 0,16 ‐0,08 0,77 0,18 ‐0,11 0,86 0,13 ‐0,06 0,69 0,20 ‐0,12 0,79 0,19 ‐0,12 0,44 0,21 ‐0,00 0,89 0,17 ‐0,10 r
0,76 0,63 0,78 0,76 0,85 0,38 0,87 Lampedusa
RMSE
MB
0,13 ‐0,03 0,18 ‐0,11 0,12 ‐0,03 0,16 ‐0,09 0,15 ‐0,10 0,20 ‐0,01 0,14 ‐0,08 r
0,83 0,87 0,83 0,72 0,83 0,48 0,90 Avignon
RMSE
0,09 0,09 0,09 0,11 0,11 0,14 0,09 MB
‐0,01 ‐0,04 ‐0,03 ‐0,03 ‐0,05 0,02 ‐0,04 NOTE: The statistics are calculated apliying a dust filter to the AERONET observations observations: Angstrom Exponent 440‐870nm < 0.75 is
considered dust, meanwhile Angstrom Exponent 440‐870nm > 1.2 is a non‐dust situation and the corresponding observed AOD = 0. The rest of the cases are not considered.
Conclusions
Desert dust models are essential to complement dust‐related observations, understand the dust processes and predict the impact of dust on surface level particulate matter concentrations. Regional models, in particular, are well suited for simulations of individual
dust outbreaks.
This is a preliminary analysis of a set of 6 dust regional European models. Ongoing analysis includes the vertical and size distributions as well as meteorology, ground‐surface (PM10 and PM2.5 concentrations) concentrations.
The preliminar comparison of NMMB/BSC‐Dust and the LOAC observations shows good
agreement.
•
•
•
Maximum concentrations around 2km and a second maximum at 4km at midday Temporal displacement in the ocurrence of the high
concentrations at 4km in comparison with the LOAC observations
The model shows larger contributions of particles between
1.8 and 10 m in radii
Acknowlegments
Acknowledgements are addressed to OMP/SEDOO for the ChArMEx data portal and to CNES
for balloon operations. The main sponsors of the campaign were ADEME and INSU. LOAC was
developed with funding from ANR. We thank the ICARE, AERONET, EARLINET and MODIS community
for their valuable data.
Affiliations
a(Earth Sciences Department, Barcelona Supercomputing Center-Centro Nacional de Supercomputación, BSC-CNS, Barcelona, Spain); b(Laboratoire des Sciences du Climat
et de l'Environnement (LSCE), CEA-CNRS-USVQ, Gif-sur-Yvette, France); c(Environmental Modelling Laboratory, Technical University of Catalonia, Barcelona, Spain);
d(Centre National de Recherches Météorologiques (CNRM), Météo-France-CNRS, Toulouse,France); e(Laboratoire d’Aérologie, CNRS-Univ. Paul Sabatier, OMP, Toulouse,
France); f(Earth System Physics, Int. Centre for Theoretical Physics (ICTP), UNESCO-IAEA, Trieste, Italy); g(LISA,UPEC-UDDP7-CNRS, IPSL, Créteil, France); h(Laboratoire
de Météorologie Dynamique, IPSL, CNRS/INSU, Ecole Polytechnique, Ecole Normale Supérieure, Université Paris 6, Ecole Nationale des Ponts t Chaussées, Palaiseau,;
France); i(KIT, IMK-IFU,Garmisch-Partenkirchen, Germany); j(Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), CNRS-Univ.Orléans, France) ;
k(Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), CNRS-UPMC-UVSQ, Paris, France); l(Laboratoire d’Optique Atmosphérique (LOA), USTL-CNRS,
Villeneuve d’Ascq, France); m(Remote Sensing Laboratory (RSLab) / IEEC-CRAE, Univ. Politècnica de Catalunya, Barcelona, Spain)
n(Laboratoire de Physico-Chimie de l’Atmosphère (LPCA), Univ. du Littoral Côte d’Opale-CNRS,Dunkerque, France)