4.4 Le génie génétique et la biotechnologie (5heures)

Transcription

4.4 Le génie génétique et la biotechnologie (5heures)
Annexe 14
4.4 Le génie génétique et la biotechnologie (5heures)
4.4.1 Résumer l’utilisation de l’amplification en chaîne par polymérase (ACP) pour copier et
amplifier de minuscules quantités d’ADN(2)
L’ACP (amplification en chaîne par polymérase) *ou PCR (polymerase chain reaction)] est une technique
qui a mérité un prix Nobel de chimie en 1993 à son découvreur, Dr. Kary Mullis (voir figure 1), un
scientifique américain.
L’ACP est utilisé lorsque les chercheurs veulent étudier une section en particulier de l’ADN, car ils ont
besoin de plusieurs copies identiques de cette séquence. La méthode traditionnelle demandait
beaucoup de temps et de travail (et impliquait de faire reproduire l’ADN par des plasmides, alors que
l’ACP est très facile et très rapide à condition d’avoir l’appareil.
Figure 1
L’appareil ACP (voir figure 2) va, à l’aide d’enzymes, ouvrir l’ADN pour cibler le brin
codant et ensuite sélectionner les séquences désirées et les photocopier. Chaque
étape se fait à des températures précises que contrôlent aussi l’appareil ACP.
**Écouter les chansons du PCR par Bio-RAD**
Faire l’activité interactive suivante : http://learn.genetics.utah.edu/content/labs/pcr/
Figure 2
4.4.2 Exprimer que, dans l’électrophorèse sur gel, des fragments d’ADN se déplacent dans un
champ électrique et qu’ils sont séparés en fonction de leur taille (1)
L’électrophorèse est un processus auquel la biochimie a souvent recours; il sert à séparer les grosses et les petites
molécules (acides nucléiques et protéines). Plus précisément, ont fait passer un courant électrique dans un gel et les
molécules réagissent différemment en fonction de leur taille et de leur charge.
Une mince couche de gel préparé est disposée dans un petit contenant. Ce gel est fait de plusieurs petits trous qui lui
donnent une microstructure semblable à une éponge et de quelques trous plus grand qui serviront de lieu de dépôt de
l’ADN testé. Le gel et l’ADN sont teintés pour permettre de mieux voir les segments d’ADN à l’issu du test. En faisant
passer un courant électrique dans le gel, les segments contenant des bases azotées sont déplacés (les plus petits iront
plus loin que les gros), et c’est en analysant les déplacements qu’on peut faire concorder l’ADN par exemple d’un lieu de
crime avec celui d’une personne.
Faire l’animation à l’adresse suivante : http://learn.genetics.utah.edu/content/labs/gel/
On utilise l’ACP (PCR) pour faire multiplier la quantité de segments d’ADN afin d’augmenter la taille de l’échantillon.
4.4.3 Exprimer que l’électrophorèse sur gel de l’ADN est utilisée dans le profilage d’ADN (1)
Chaque personne a un ADN unique qui résulte de la combinaison de ses bases azotées (A-C-G-T) et donc on peut
retracer chaque individu grâce au profilage de l’ADN (sauf les jumeaux identiques ou monozygotes, ie issus de la
séparation d’un embryon).
4.4.4 Décrire l’application du profilage de l’ADN pour déterminer la paternité ou dans les
investigations criminelles(2)
On l’utilise l’électrophorèse pour faire du profilage d’ADN afin de déterminer qui est le père d’un enfant lorsqu’il y a des
doutes, ou encore pour identifier lequel parmi plusieurs suspects est le coupable.
Par exemple, sachant qu’un enfant hérite de la moitié des gènes de son père et l’autre moitié de sa mère, son génome
résulte en la combinaison du génome de ces 2 parents (voir figures 3 et 4).
4.4.5 Analyser les profils d’ADN pour tirer des conclusions au sujet de la paternité ou
d’investigations criminelles(3)
Figures 3.1 et 3.2
Figures 4.1 et 4.2
4.4.6 Résumer trois conséquences du séquençage du génome humain complet(2)
Le Projet génome humain a été entrepris en 1990 par plusieurs scientifiques à travers le monde dans le but de
déterminer le locus et la structure de tous les gènes de tous les chromosomes humains. Toutes ces informations ont
ensuite été mises en commun et c’est en l’an 2000 qu’un «brouillon» a été publié. En 2003, soit 50 ans après que la
structure de l’ADN fut décrite par Watson et Crick (en 1953), l’humain avait décodé 99.9% de son génome.
Avoir une carte de l’endroit où l’on retrouve les différents nucléotides a ensuite conduit à faire une carte semblable des
différents gènes, finalement à faire une liste et une carte du locus de chacun de ces gènes. Il était essentiel de se rendre
jusqu’au locus car le fait de connaitre les bases azotées ne nous dit pas s’il s’agit de molécules codant pour la couleur
des yeux ou pour la forme des oreilles.
Voici les conséquences du séquençage du génome humain complet :
- une meilleure compréhension des maladies génétiques (nous
connaissons beaucoup plus de gènes responsables depuis le
séquençage);
- la production de nouveaux médicaments (basés sur des
séquences d’ADN) pour guérir des maladies ou un avancement du
génie génétique pour enlever des gènes causant des maladies;
- déterminer les maladies génétiques pouvant affecter certains
individus et donc faire de la prévention;
- la recherche sur des maladies précises est facilitée par la capacité
à cibler seulement les gènes pertinents;
- nous procurer plus d’information sur l’évolution en comparant
les gènes de différentes espèces.
Figure 5. Watson et Crick en 1953 avec leur modèle de la
double hélice d’ADN
Autant cette information est très utile, autant elle peut être la cause d’abus ou de problèmes éthiques que la société
devra adresser. Par exemple une compagnie d’assurance pourrait refuser d’assurer les personnes ayant certains gènes
programmant certaines maladies, ou encore des employeurs pourraient refuser d’employer quelqu’un sous prétexte
qu’il porte des gènes qui le feront devenir moins rentable pour l’entreprise (par arrêt de travail)…
4.4.7 Exprimer que, quand des gènes sont transférés d’une espèce à une autre, la séquence des
acides aminés des polypeptides traduite à partir de ces derniers reste inchangée parce que le code
génétique est universel(1)
Le terme «génie génétique» fait référence à la manipulation délibérée de
matériel génétique. Parce que le code génétique est universel, il est
possible de transférer une section d’ADN d’une espèce dans une autre
espèce. Cela signifie aussi qu’un codon (triplet de bases azotées sur un
ARN messager, voir section 3.5) code pour le même acide aminé, peut
importe que ce soit dans une tomate ou dans une pieuvre.
Figure 6. Tomate transgénique vs
contrôle après 5 semaines.
Cela signifie aussi qu’on peut introduire un gène humain dans une
bactérie pour lui faire produire de l’insuline (une hormone (les hormones
sont toutes des protéines) responsable de faire baisser le taux de glucose
sanguin). En France depuis 10 ans, les diabétiques insulinodépendants
reçoivent donc des injections d’insuline venant de bactéries
génétiquement modifiées1.
Figure 7. Insuline
«Jusque dans les années 80, l’insuline destinée aux malades était d’origine
animale : on abattait des porcs ou des bœufs avant de leur retirer le
pancréas et d’en extraire cette hormone, qu’on tentait de purifier le
mieux possible.»1
4.4.8 Résumer une technique fondamentale pour le transfert de gènes qui implique les plasmides,
une cellule hôte (bactérie, levure ou autre cellule), des enzymes de restrictions (endonucléases) et
l’ADN-ligase(2)
Le transfert de gènes d’un individu à un autre nécessite les éléments suivants :
- vecteur
- cellule hôte
- enzymes de restriction
- ADN ligase
Le «vecteur» sert à transporter le gène dans la cellule hôte, les plasmides sont souvent les vecteurs.
Les bactéries transportent tout leur matériel génétique dans un ADN circulaire, par contre, plusieurs bactéries
possèdent aussi des copies supplémentaires de leur ADN dans la forme de plasmides (voir figure 8). Les plasmides sont
des fragments qui comportent entre 2 et 30 gènes. Lorsque le chromosome de multiplie, les plasmides aussi peuvent se
multiplier (elles peuvent aussi se multiplier à d’autres moments). Une cellule peut donc contenir plusieurs plasmides
identiques.
1. http://www.transfert.net/Des-bacteries-genetiquement [En ligne], 7 mars 2010.
Ce sont les plasmides qui sont utilisées pour cloner un gène. Voici les étapes (la figure 9 les résume) :
1. Premièrement, on introduit le gène désiré dans le plasmide
2. On implante ce plasmide dans la cellule (ie la bactérie
car les bactéries sont des procaryotes unicellulaires).
3. On fait reproduire ces bactéries; plusieurs auront le
plasmide désiré.
4. On introduit des nucléotides complémentaires
radioactifs au gène désiré pour savoir quelles bactéries
portent les plasmides que nous avons implantés.
5. On met en contact les bactéries aux bons plasmides
avec des enzymes de restriction pour couper le gène
désiré
6. On purifie l’échantillon par électrophorèse (voir 4.4.2).
7. On introduit l’échantillon dans la cellule hôte.
8. L’ADN ligase vient attacher la nouvelle section de l’ADN
à l’ADN d’origine.
Figure 9
Figure 8
La cellule hôte est celle qui recevra le matériel génétique.
l’insuline en 4.4.7.
Par exemple elle est la cellule hôte pour l’exemple avec
Les enzymes de restriction (endonucléases) sont responsables de couper certaines sections de l’ADN. Elles sont
naturellement présentes chez les bactéries et leur sont utiles en cas d’infection virale (les virus
peuvent aussi affecter les bactéries). L’enzyme de restriction la plus connue reconnait la
section GAATTC et coupe les 2 brins de l’ADN entre G et A (voir figure 10). On utilise la même
enzyme de restriction pour le donneur et le receveur, ce qui garanti l’espace suffisant dans
l’ADN de l’hôte pour le nouveau gène à introduire.
Figure 10. Enzyme de restriction
Figure 11
4.4.9 Exprimer deux exemples d’usages actuels de cultures ou d’animaux génétiquement modifiés(1)
Le terme OGM fait référence aux «organismes génétiquement
modifiés», qui peuvent être des végétaux ou des animaux. On les
appelle aussi parfois des organismes «transgéniques». C’est en
1994 que le premier OGM a été mis en marché, il s’agit de la
tomate «Flavr Savr» qui était génétiquement modifiée pour rester
fraîche plus longtemps.
À cause de divers problèmes
commerciaux, elle n’est plus sur le marché.
Figure 12
Le «maïs Bt» qui est très répandu aux États-Unis, est une
variété de maïs génétiquement modifié. Il contient des gènes
de la bactérie Bacillus thuringiensis (Bt). Le résultat donne des
plants qui produisent une toxine qui les rendent résistants aux
insectes.
Figure 13
Il existe des exemples de souris génétiquement modifiées. Normalement elles n’attraperaient pas la poliomyélite car
elles n’ont pas les récepteurs du virus en surface de leurs cellules. Nous avons donc créé de telles souris pour qu’on
puisse les infecter avec le virus et faire de la recherche sur le développement d’un traitement pour les cas humains de
polio.
Plusieurs personnes à travers le monde, qui se nourrissent presqu’exclusivement de riz, souffrent de carence en
vitamine A qui peut causer la cécité. Les pays les plus atteints sont en Afrique et en Amérique du Sud (voir la carte cidessous).
Figure 14. Carte du monde des carences en vitamines A chez les enfants (2007, UNICEF)
*Écouter la vidéo de l’UNICEF sur la poliomyélite.
Du riz appelé «Golden Rice», une variété contenant des gènes de jonquilles (figure 15) et de bactérie
(ils permettent une plus grande production de béta-carotène, un précurseur de la vitamine A), est un
OGM qui fournit de la vitamine A. Plusieurs environnementalistes et militant anti-mondialisation ont
tenté durement de s’opposer à la distribution ce des plants de riz.
4.4.10 Discuter des avantages et des effets nocifs éventuels d’un exemple de
modification génétique(3)
Figure 15
Le maïs Bt contient des gènes de la bactérie Bacillus thuringiensis (Bt); le résultat est que ces plants produisent une
toxine qui les rend résistants aux insectes, particulièrement à la «pyrale du maïs» (figure 16). Cet insecte appelé
«european corn borer», contrairement à ce que son nom laisse
penser, est aussi présent en Amérique.
Cet insecte ronge les tiges et les feuilles des plants de mais, détruisant
ainsi le système vasculaire de la plante et donc lui coupant sa
circulation d’eau et de nutriments. Le plant devient aussi plus faible
et sa tige ou ses feuilles peuvent casser. (voir figure 17) Les feuilles
sont essentielles à la photosynthèse. Une petite partie des
dommages sont dus au fait qu’il peut aussi manger le maïs en tant
que tel. Le maïs Bt est déjà en usage aux États-Unis et ce depuis
plusieurs années.
Figure 16
Bénéfices du maïs Bt :
- les dommages causés par la pyrale du maïs sont moindres
- le maïs Bt est plus cher, mais la différence de prix est moindre que celui d’une application supplémentaire d’insecticide
- l’agriculteur n’a pas besoin de vérifier aussi souvent ses pousses pour des signes de la pyrale du maïs
- moins d’insecticide signifie moins de risques pour la santé des travailleurs et moins d’impact sur l’environnement
- il semble qu’il y ait moins d’infections fongiques (champignons) donc les taux de mycotoxine (toxine libérée par les
champignons qui se développent sur les plants) sont plus faibles. Les mycotoxines sont difficiles à éliminer, même avec
la cuisson ou la congélation des aliments, et peuvent être dangereuse pour la santé des humains et de tous les animaux.
Effets nuisibles du maïs Bt :
- tue aussi beaucoup d’insectes (mais pas tous)
- les insectes développent une résistance à la toxine Bt car ils y sont exposés tout le temps
- les insectes qui résistent à la toxine Bt rendent inutile l’épandage de l’insecticide Bt (on considérait cet insecticide
comme «relativement» sans danger pour les humains et l’environnement)
- il est difficile de prévenir la pollinisation d’un champ Bt avec un champ biologique
- cela empêchera le producteur de maïs biologique (organic) de vendre ses cultures comme biologiques
- ils peuvent contaminer les espèces sauvages de plantes et les rendre résistants aussi à certains insectes
et donc leur donner un très grand avantage de développement dans leur niche écologique (ils pourraient
se développer beaucoup plus que les autres espèces de l’environnement). Cela résulterait en une perte
de biodiversité.
Figure 17
4.4.11 Définir le terme clone(1)
Un clone est un groupe d’organismes génétiquement identiques ou un groupe de cellules dérivées d’une seule cellulemère.
4.4.12 Résumer une technique de clonage faisant appel à des cellules animales différenciées (2)
Le clonage est au centre de la controverse depuis déjà plusieurs années. La technique de clonage à partir de cellules
animales différenciées consiste en la SCNT «somatic cell nuclear transfert» ce qui signifie le transfert de noyau à partir
d’une cellule somatique. Les usages de ces cellules peuvent être divers.
Il existe 2 types de clonage : le clonage reproductif et le clonage thérapeutique.
Clonage reproductif
Il crée un nouvel individu; l’exemple le plus connu est la brebis Dolly, créée par la technique du SCNT. Voici les étapes
pour effectuer un clonage reproductif (voir figure 18):
1.
2.
3.
4.
Prendre le noyau d’une cellule somatique (par exemple de la future mère)
Retirer le noyau d’un ovule
Implanter le noyau du #1 dans l’ovule
Donner un petit choc électrique au zygote nouvellement formé pour réactiver son hétérochromatine et
provoquer la division de cette cellule
5. Une fois qu’un amas de cellules est créé, l’implanter dans l’utérus de la mère porteuse
Il est donc théoriquement possible de cloner d’autres espèces. On arrive à cloner avec succès les chevaux, mais les
tentatives avec d’autres espèces donnent de moins bons résultats.
Clonage thérapeutique
Ce type de clonage fait appel à la recherche sur les cellules souches. On fait développer des embryons humains jusqu’à
ce qu’ils deviennent de petites balles de cellules. Alors que les cellules ne sont encore différenciées (pluripotentes ou
totipotentes), la technique du SCNT est utilisée, et de petites quantités de cellules peuvent se diviser et se différencier
en un grand nombre de tissus spécialisés. On utilise souvent des cellules souches de cordons ombilicaux ou des fœtus
issus d’avortements.
Le but du clonage thérapeutique est de faire la «thérapie cellulaire», c’est-à-dire qu’elle vise à remplacer les cellules
malades par des cellules saines.
La transplantation de moelle osseuse pour les patients atteints de leucémie, des nouvelles cellules d’épiderme pour les
grands brûlés, une nouvelle cornée pour certains types de problèmes de vision sont des exemples où le clonage
thérapeutique est utilisé.
Figure 18
4.4.13 Discuter des questions d’ordre éthique du clonage thérapeutique chez l’être humain (3)
Beaucoup de sites Internet existent sur les questions éthiques liées au clonage.
Arguments en faveur du clonage thérapeutique
- la possibilité de guérir des maladies graves grâce à la thérapie cellulaire (leucémie, cancer, diabète)
Arguments en opposition au clonage thérapeutique
- la peur que les recherches mènent au clonage reproductif
- l’utilisation de cellules souches embryonnaires implique la création et la destruction d’embryons humains (même s’il
est possible d’utiliser les embryons venant des OVG qui seraient détruits sinon).
- les cellules souches embryonnaires sont capables de faire beaucoup de divisions cellulaires et peuvent se transformer
en tumeurs.
Une discussion sur les aspects éthique de ce type de clonage n’est pas évidente car les bénéfices désirés par les
scientifiques ne sont pas encore tous réalisés, les bénéfices sont donc potentiels. D’un autre côté, certains désavantages
sont aussi potentiels car nous ne pratiquons pas le clonage thérapeutique à grande échelle. Le débat pourrait consister
plutôt sur une discussion sur l’importance d’évaluer régulièrement les résultats et les impacts des avancées
technologiques.
Plusieurs personnes ont des opinions très arrêtées sur ce sujet, comme tu pourras le voir sur plusieurs sites Internet. Il
n’est pas utile que les gens d’opinions divergentes s’accusent mutuellement de mauvaise représentation de la vérité, ou
d’exclure /inclure sélectivement certaines informations. Il n’est pas non plus très utile pour les gens qui ne connaissent
pas bien la question du clonage et qui cherchent à avoir une opinion fondée lorsque cette personne sait que
l’information est partiale ou partielle. Par exemple un scientifique pourrait être très positif, sans se justifier; tandis
qu’une critique serait très négative.
Au final, tu dois arriver à tes propres conclusions. Souviens toit toutefois que pour le BI, tu dois «comprendre que les
autres, en étant différents, puissent aussi être dans le vrai» (déclaration de mission du BI,
http://www.ibo.org/fr/mission/)
1. http://www.transfert.net/Des-bacteries-genetiquement
Figure 1 : Kary Mullis : http://www.cmu.edu/bio/siss/nominations/images/kary.jpg
Figure 2 : station d’ACP : http://www.bio-rad.com/evportal/evolutionPortal.portal?_nfpb=true&_pageLabel=productsPage&catID=2d11dcf8-2dbe-47a5-a1de-8315abd3c17e
Figure 3.1 : http://www.home-dna-test-expert.com/images/Paternity%20Testing.gif
Figure 3.2 : http://www.paternite.com/images/test.gif
Figure 4.1 : http://oreilly.com/catalog/dbnationtp/chapter/dn_0302.gif
Figure 4.2 : http://www.scq.ubc.ca/wp-content/DNAfingerprintassault.gif
Figure 5 : http://www.chem.ucsb.edu/~kalju/chem110L/public/tutorial/images/WatsonCrick.jpg
Figure 6 : http://www.chimie-sup.fr/OGM_fichiers/image042.jpg
Figure 7 : http://www.scientificamerican.com/media/inline/blog/Image/syringe-diabetes-exenatide.jpg
Figure 8 : http://www.gnis-pedagogie.org/img/doc2/plasmide.gif
Figure 9 : http://www.ag.ndsu.edu/pubs/plantsci/crops/a1219-2.gif
Figure 10 : http://www.bio.davidson.edu/COURSES/genomics/method/RFLP1.gif
Figure 11 : http://www.eng.auburn.edu/~yylee/che595/Reading%20Assignments/Recombinant%20DNA_files/Making_rDNA.gif
Figure 12 : http://i.onmeda.de/tomatenschema.gif
Figure 13 : http://www.scq.ubc.ca/quarterly023/GM-crop.gif
Figure 14 : http://www.unicef.org/french/progressforchildren/2007n6/images/pfc6_vitamin_a_supplementation_coverage_levels_two_doses.gif
Figure 15 : http://crdp.ac-dijon.fr/cddp71/lettre/images_lettre_cd71/jonquille2.png
Figure 16 : http://www.sciencesetnature.org/photos_articles/pyrale.jpg
Figure 17 : http://www.expertfoncieragricole77.fr/cereales.htm
Figure 18 : http://www.planetegene.com/media/illustrations/Clonage-reproductif.JPG