Grid Connection Commissioning of 180

Transcription

Grid Connection Commissioning of 180
DEVON
.
OTTAWA
.
VARENNES
- .. - -GRID CONNECTION COMMISSIONING OF
180-KW BIOGAS GENERATOR AT
TERRYLAND FARM
CLEAN ENERGY TECHNOLOGIES
TECHNIQUES D'ÉNERGIE ÉCOLOGIQUE
---_. -- _._- ~~ - - - ---~ -- --~-~~ ~- --~ ------~
C TEe CENTRE DE LA TECHNOLOGIE DE L'ÉNERGIE DE CANMET
1+1
Natural Resources
Ressources naturelles
Canada
Canada
Canadã
Report – CETC-Varennes 2007-161 (TR)
September 2007
GRID CONNECTION COMMISSIONING OF
180-KW BIOGAS GENERATOR AT
TERRYLAND FARM
Prepared by:
Aidan Foss
ANF Energy Solutions Inc.
4092 McBean Street, Richmond (Ottawa),
Ontario, K0A 2Z0.
Presented to:
Scientific Authority: Farid Katiraei
Natural Resources Canada (NRCan)
CETC Varennes – Energy Technology and Programs Sector
1615 Lionel-Boulet Blvd, P.O. Box 4800
Varennes, Québec, J3X 1S6
September 16, 2007
Report – CETC-Varennes 2007-161 (TR)
September 2007
CITATION
Foss, A, Grid Connection Commissioning of 180-KW Biogas Generator at Terryland Farm,
report # CETC 2007-161 (TR), CANMET Energy Technology Centre – Varennes, Natural
Resources Canada, September 2007, 21 pp.
DISCLAMER
This report is distributed for informational purposes and does not necessarily reflect the views of
the Government of Canada nor constitute an endorsement of any commercial product or person.
Neither Canada nor its ministers, officers, employees or agents makes any warranty in respect to
this report or assumes any liability arising out of this report.
ACKNOWLEDGEMENT
Financial support for this project was provided in part by the Technology and Innovation
Initiative as part of Canada’s climate change Program for Energy Research and Development.
The government of Canada contribution is truly acknowledged.
Report – CETC-Varennes 2007-161 (TR)
i
September 2007
TABLE OF CONTENT
1
SUMMARY ........................................................................................................................................... 1
1
SOMMAIRE .......................................................................................................................................... 2
2
Project Background ................................................................................................................................ 5
2.1
Biogas Generator Overview ......................................................................................................... 5
2.2
Anti-Islanding Protection ............................................................................................................. 5
3
Steady-State Performance Tests ............................................................................................................. 7
4
Protection Equipments Set-up ................................................................................................................ 9
5
4.1
ABB T5 Circuit Breakers ............................................................................................................. 9
4.2
Beckwith M3410A Multi-functional Relay................................................................................ 10
4.3
GENCON II Controller .............................................................................................................. 10
4.4
Crompton SPR Multi-functional Relay ...................................................................................... 10
Protection and Synchronization Tests .................................................................................................. 12
5.1
6
Post-Commissioning Performance ............................................................................................. 12
Protection Settings Summary ............................................................................................................... 13
LIST OF FIGURES
Figure 1 (ANF_TP008/R3): Terryland SLD (Outdoor).............................................................................. 12
Figure 2 (ANF_TP009/R4): Terryland SLD (Powerhouse)........................................................................ 13
Figure 3 (ANF_TP004/R2): Terryland Protection Diagram....................................................................... 14
Figure 4 (ANF_TP017/R2): Terryland – Protection Co-ordination at LV ................................................. 15
Report – CETC-Varennes 2007-161 (TR)
ii
September 2007
Report – CETC-Varennes 2007-161 (TR)
iii
September 2007
1
SUMMARY
The grid integration group of CANMET Energy Technology Centre - Varennes as part of the
R&D program on the Integration of renewable and distributed energy resources managed by
Natural Resources Canada supported development and testing of an innovative anti-islanding
protection scheme for a small distributed generation (DG) installed at Terryland farm. The
Terryland Anaerobic Digester was developed jointly by Genesys Biogas Inc. and Keller
Engineering, as a means of disposing of biowaste and producing on-site electricity at the owner’s
farm (Terryland). The objective of this report is to outline project commissioning, protection
system coordination, and some of the issues related to interconnection of small DG units on rural
feeders.
Terryland Farms Biogas consists of a 3-phase, 180kW, 277/480V generator connecting via three
100kVA transformers to a 4.8/8.3kV utility feeder. A novel aspect of the grid interconnection
was an innovative anti-islanding protection strategy involving a directional reactive power relay.
Commission of the generator grid connection took place on 13/14th August 2007.
During commissioning, significant unbalance was noted. Phase A voltage from the utility was
higher, and the current/power export on phase C was higher. This was attributed primarily to
zero sequence voltage from the utility passing through the alternator to the alternator neutral.
Significant negative sequence currents were also measured. This impacted on some of the
protection settings associated with phase currents and powers. The generator supplier advised
that the imbalance was within the capability of the alternator.
The new anti-islanding protection was implemented as a logical AND of an active power export
limit and a reactive power export limit. The active power export limit was set to 25kW on any
phase, which, in view of the imbalance, became true for generation levels above 50kW. The
purpose of the active power export limit was to avoid tripping during synchronization. The
reactive power export limit was set to 10kVAr on any phase, with the generator automatic
voltage regulator (AVR) set for 15kVAr importing (total for three phases). Correct tripping of
the new protection was demonstrated at 50kW and 150kW. Switching on of the agitator motor
(15-20kW) at these power levels was demonstrated not to cause nuisance trips. However,
subsequent to the commissioning tests, a nuisance trip did occur and the AVR set-point was
changed to 20kVAr importing.
This report describes:
ƒ
Project Background (section 2)
ƒ
Steady-state Performance Tests (section 3)
Report – CETC-Varennes 2007-161 (TR)
1
September 2007
ƒ
Inter-tie Protection Equipments and Settings (section 4)
ƒ
Inter-tie Protections Tests (section 5)
Arising from these tests and post-commissioning experience, it is recommended that further
consideration be given to:
1
ƒ
Establishing the level of unbalance over a typical working week, and confirming that the
magnitudes of current imbalance are consistent with the voltage imbalance and machine
impedances.
ƒ
Removing the sensitivity of the directional reactive power protection to unbalance by
basing it on the total reactive power, instead of the worst individual phase reactive power.
ƒ
Monitoring of the reactive power flows to quantify and further understand apparent
nuisance trips of the directional reactive power protection.
ƒ
Obtaining further information on the feeder load characteristic, and particularly the
inductive load over a seven-day period.
SOMMAIRE
Dans le cadre du programme de recherche et développement sur l'intégration des ressources
énergétiques renouvelables et distribuées administré par Ressources naturelles Canada, le groupe
d'intégration au réseau du Centre de la technologie de l'énergie CANMET – Varennes a appuyé
le développement et la mise à l'essai d'un plan novateur de protection contre l’îlotage destiné à
un petit dispositif de génération décentralisée installé à Terryland Farms. Le digesteur anaérobie
dont s'est doté Terryland Farms a été développé conjointement par Genesys Biogas Inc. et Keller
Engineering comme moyen d'élimination de déchets biologiques et de production d'électricité sur
place à la ferme du propriétaire, Terryland Farms. Le présent rapport vise à donner un aperçu de
la mise en service du projet, de la coordination du système de protection et de certaines questions
rattachées à l'interconnexion de petits dispositifs de génération décentralisée à des lignes
d'alimentation rurales.
Le projet de production de biogaz de Terryland Farms consiste en un groupe électrogène triphasé
de 180 kW, 277/480 V raccordé à une ligne d'alimentation de service de 4,8/8,3 kV au moyen de
trois transformateurs de 100 kVA. Un aspect inédit de l'interconnexion au réseau était la stratégie
novatrice de protection contre l’îlotage faisant appel à un relais directionnel de puissance
réactive. La mise en service de la connexion du groupe électrogène au réseau a eu lieu les
13 et 14 août 2007.
Report – CETC-Varennes 2007-161 (TR)
2
September 2007
Durant la mise en service, un déséquilibre significatif a été noté. La tension de la phase A fournie
par la société d'électricité était plus élevée et l'exportation de courant/puissance à la phase C était
plus élevée, ce qui a été attribué principalement au passage de tension homopolaire fournie par la
société d'électricité dans l'alternateur en direction du point neutre de l'alternateur. Des courants
inverses significatifs ont aussi été mesurés, ce qui a influé sur certains réglages de protection
associés aux puissances et aux courants de phase. Le fournisseur du groupe électrogène a signalé
que l'alternateur peut prendre en charge le déséquilibre.
La nouvelle protection contre l’îlotage a été installée comme porte ET logique d'une limite
d'exportation de puissance active et d'une limite d'exportation de puissance réactive. La limite
d'exportation de puissance active a été fixée à 25 kW pour n'importe quelle phase, ce qui, compte
tenu du déséquilibre, s'est avéré exact pour des niveaux de génération au-dessus de 50 kW. La
limite d'exportation de puissance active permet d'éviter le déclenchement durant la
synchronisation. La limite d’exportation de puissance réactive a été fixée à 10 kvar pour
n'importe quelle phase, le régulateur automatique de tension du groupe électrogène étant réglé
pour l'importation de 15 kvar (en tout pour les trois phases). Le déclenchement correct de la
nouvelle détection a été vérifié à 50 kW et à 150 kW. On a démontré que la mise sous tension du
moteur d'agitation (15-20 kW) à ces niveaux de puissance ne cause pas de déclenchement
intempestif. Toutefois, après les essais de mise en service, un déclenchement intempestif s'est
produit, et le point de réglage du régulateur automatique de tension a été modifié en fonction de
l'importation de 20 kvar.
Le présent rapport décrit :
ƒ
le contexte du projet (section 2)
ƒ
les essais de rendement à un régime établi (section 3)
ƒ
les équipements de protection entre attaches et leurs réglages (section 4)
ƒ
les essais de protection entre attaches (section 5)
À partir des résultats des essais et compte tenu de l'expérience acquise après la mise en service, il
est recommandé de tenir également compte de ce qui suit :
ƒ
établissement du niveau de déséquilibre dans une semaine de travail normale, et
confirmation de la conformité des amplitudes du déséquilibre de l'intensité au
déséquilibre de la tension et aux impédances des machines;
ƒ
élimination de la sensibilité au déséquilibre de la détection directionnelle de la puissance
réactive en la fondant sur la puissance réactive totale, plutôt que sur la pire puissance
réactive de phase individuelle;
Report – CETC-Varennes 2007-161 (TR)
3
September 2007
ƒ
surveillance des flux de puissance réactive en vue de la quantification et d'une meilleure
compréhension des déclenchements intempestifs apparents de la détection directionnelle
de la puissance réactive;
ƒ
obtention de plus amples renseignements sur les caractéristiques de la charge des lignes
d’alimentation, en particulier la charge inductive sur une période de sept jours.
Report – CETC-Varennes 2007-161 (TR)
4
September 2007
2
Project Background
2.1
Biogas Generator Overview
The biogas generator at Terryland farms is rated 180 kW, 225 kVA, 480/277V, 271A, p.f.=0.8,
60Hz, 1800 rpm, and employs a Stamford “HCI 434C” Alternator rated at 312.5 kVA. The
generator is equipped with a “GENCON II” generator control unit, which augments governor
and AVR controls and provides several generator protections. The main inter-tie protection
consists of a Beckwith “M3410A” multi-functional protection unit controlling the inter-tie
breaker.
Speed/frequency governing is achieved through a “GAC ESD5330” Generator Speed Control
(GAC) unit, which is a Proportional + Integral + Derivative (PID) type variable speed governor
with adjustable droop. When on-line, the “GENCON II” sends a frequency set-point correction
to the GAC unit proportional to the active power mismatch.
Voltage control is achieved through the AVR. When on-line, the “GENCON II” sends a voltage
set-point correction to the AVR proportional to the reactive power mismatch.
The biogas generator is connected to the utility via three 100-kVA transformers to a 4.8/8.3kV
utility feeder; see Figure 1 (ANF_TP008) and Figure 2 (ANF_TP009). Disconnecting on fault is
facilitated by four interrupting devices: (1) High voltage (HV) fuses, (2) Low voltage (LV) fuses,
(3) Inter-tie circuit-breaker (52L), and (4) Generator circuit-breaker (52G).
2.2
Anti-Islanding Protection
Initial efforts to grid connect the generator highlighted a particular barrier to the connection of
small-scale embedded generation. For embedded generation, one of the key concerns is the
detection of loss of the grid leading to unplanned islanding of the embedded generation on the
feeder. In such situations, it is important that the embedded generator is rapidly disconnected
from the utility feeder.
When the generation size is small in comparison with the feeder load, conventional antiislanding protections based on under-frequency and under/over-voltage relays are routinely used.
When the generation size to feeder load ratio is higher (typically above 50%), utilities generally
require a transfer trip communications system to be installed. However, the cost of utilityapproved transfer trip systems (typically around C$125k-C$250k) will render most small
generation systems (<500kW) uneconomic. Accordingly, it is being recognized by many as a
matter of priority to establish a safe method for small synchronous generation (<500kW) to gridconnect without incurring the high cost of a transfer trip system.
Report – CETC-Varennes 2007-161 (TR)
5
September 2007
For this project, an innovative anti-islanding protection strategy was proposed and accepted,
which utilized reactive power export protection. The strategy is based on the rural feeder having
a resistive and inductive load characteristic at all times. With the generator set-up so that it is
always a sink for reactive power when the grid is present, the loss of the grid will force the
generator to begin supplying reactive power, which can then be used to detect an islanding
condition.
Simulation studies of the protection concept were performed in early 2007 1 , and were followed
Field tests at Terryland Farms on 27th and 28th March 2007. Analysis of the results showed
successful demonstration of concept, with all tests showing relay trip times of less than 0.25
seconds with no nuisance tripping 2 .
As an additional precaution, conventional anti-islanding protections were implemented with
tighter-than-normal settings. It is envisaged that these settings will be relaxed from their initial
conservative values as experience with the reactive power protection concept is obtained.
The implementation and commissioning of the various protections is included in this report.
1
Reference: F. Katiraei, “Computer Simulation modeling and analysis of the dynamic behaviour for a reciprocating
engine base distributed generation unit during islanding transition”, CANMET Energy Technology Centre,
Varennes, Natural Resources Canada, QC-Canada, Tech. Rep. 2007.
2
Reference: Katiraei, Foss, Abbey, Strehler, “Dynamic analysis and field verification of an innovative antiislanding protection scheme based on directional reactive power detection”, in the proceeding of the IEEE
EPC2007, Montreal, Oct 2007. Also available [online]:
http://cetc-varennes.nrcan.gc.ca/en/er_re/inter_red/p_p.html?2007-160
Report – CETC-Varennes 2007-161 (TR)
6
September 2007
3
Steady-State Performance Tests
Steady-state measurements were taken at conditions of:
ƒ
50kW, 100kW & 150kW generation,
ƒ
generator at unity power factor & 15kVAr importing.
Measurements were taken using:
ƒ
Fluke Power Quality recorder at the generator current transformers (CTs),
ƒ
GENCON II at the generator CTs,
ƒ
Beckwith M3410A at the inter-tie CTs.
For all tests, the agitator motor was running. The measurements are shown in Table 3.1. The
following comments are made:
1. Phase A voltage was consistently higher. With the generator off and the generator breaker
open, the following phase voltages were measured:
ƒ
Phase A: 284V
ƒ
Phase B: 280V
ƒ
Phase C: 270V
2. Measured generator neutral current (peak) was 90-128 A (which is well within the neutral
current capacity of 400A). The generator neutral was not grounded at the powerhouse, but
connected to the utility neutral at the transformer pole. The ground current down this pole
was measured to be 0.1 A, indicating no issues with stray ground currents. The neutral
current was attributed to zero sequence voltage on the utility feeder passing through the
alternator windings.
3. Phase C current was consistently higher than the phase A and B currents by 24-39 A (rms).
The imbalance was attributed to negative and zero sequence voltage on the utility feeder
passing through the alternator windings. The generator supplier advised that the imbalance
was within the capability of the generator.
4. The difference in active powers across the inter-tie (by the Beckwith M3410A) and from the
generator was 40-45kW. Approximately half of this was attributed to the agitator motor.
Report – CETC-Varennes 2007-161 (TR)
7
September 2007
Table 3.1: Steady-State Performance Measurements
3
kW Setpoint
KVAr Setpoint
50
0
100
0
150
0
50
-15
100
-15
150
-15
Fluke
Phase A Ipeak
Fluke
Phase B Ipeak
Fluke
Phase C Ipeak
Fluke
Neut Ipeak
Fluke
Phase A kW
Fluke
Phase B kW
Fluke
Phase C kW
Fluke
Total KW
Fluke
Phase A kVA
Fluke
Phase B kVA
Fluke
Phase C kVA
Fluke
Total kVA
GENCON Phase A Vrms
GENCON Phase B Vrms
GENCON Phase C Vrms
GENCON Phase A Irms
GENCON Phase B Irms
GENCON Phase C Irms
GENCON
Phase A kW
GENCON
Phase B kW
GENCON
Phase C kW
GENCON Phase A kVAr
GENCON Phase B kVAr
GENCON Phase C kVAr
Beckwith Phase AB Vrms
Beckwith Phase BC Vrms
Beckwith Phase CA Vrms
Beckwith PosSeq Vrms 3
Beckwith
NegSeq Vrms
Beckwith
Phase A Irms
Beckwith
Phase B Irms
Beckwith
Phase C Irms
Beckwith
PosSeq Irms
Beckwith
NegSeq Irms
Beckwith ZeroSeq I rms
Beckwith
Total kW
Beckwith
Total kVAr
80
110
141
90
13
18
24
55
14
19
24
59
288
283
282
49
58
83
13
16
23
-7
3
0.5
150
187
225
105
29.5
34
41
105
29.5
34
41
105
289
284
281
104
108
140
28.5
31
40
-6.5
4
3
496
491
492
492
3.0
80
89
120
90
8
23
60
-25
240
270
305
100
45
50
56
151
45
50
57
152
290
284
281
152
170
194
44
48
54.4
-8
3
3
494
491
491
492
1.8
135
141
166
145
8
16
111
-17
100
100
140
100
14
15
24
55
18
16
24
61
290
282
278
56
52
80
12
13
22
-11
-2
-2
499
488.5
487
489
2.8
56
40
63
50
7
17
15
-38
170
176
230
128
29
30
41
101
32
31
40
102
286
281
276
109
105
143
29
30
40
-12
-3
-1
490
485
485
486
3.0
100
90
120
100
7
23
58
-33
230
253
305
119
45
48
56
149
47.5
48
56
152
291
287
283
162
168
201
45
48
57
-12
-3
0
501
496
496
498
2.6
144
137
178
148
10
22
109
-38
The line voltages are used as inputs to the Bechwith
Report – CETC-Varennes 2007-161 (TR)
8
September 2007
4
Protection Equipments Set-up
The protection equipments are (see Figure 3 - ANF_TP004):
Device
Description
HV fuses (3-phases)
Positrol 25A K-speed
LV fuses (3-phases & neutral)
600V 400A RK5 speed
52L and 52G Circuit Breakers
ABB T-max T5N400BW; 3-phase; 6ms opening
30kA normal break rating at 440kV;
52L and 52G Releases
ABB T-max PR221DS electronic release;
Short-circuit (Instantaneous or I2t);
Overload (I2t)
Inter-tie multi-functional relay
Beckwith M3410A with 3x 300A CT inputs and 3
voltage inputs (480V), with facility to trip 52L.
Relay for reactive power export
limit protection
Crompton SPR (PR-014W-PQLS-C6-BD-12-MB)
with 3x 300A CT inputs and 3 voltage inputs
(120V), with facility to trip 52L.
Generator multi-functional relay
GENCON II with 3x 300A CT inputs and 4 voltage
inputs (277V), with facility to trip 52G.
Note: Except for synchronization, the protections provided by the GENCON II do not form
part of the inter-tie protection strategy. They are primarily for generator protection
and their settings are not included in this report. The GENCON II can also shut down
the generator and close the main fuel valve.
4.1
ABB T5 Circuit Breakers
Owing to concerns with transient associated with synchronization, an I2t characteristic involving
400A x8 at 0.1s was used instead of fast instantaneous. See the co-ordination chart in Figure 4.
(For the purposes of chart curve completion, it was assumed that 150% of 400A can be achieved
for 1000s.)
Owing to concerns with the significant level of imbalance, the overload setting was increased
from 240A to 256A per phase. An I2t characteristic involving x6 at 3.0s was used. See the coordination chart. (For the purpose of chart curve completion, it was assumed that 150% of 256A
can be achieved for 1000s.)
Report – CETC-Varennes 2007-161 (TR)
9
September 2007
4.2
Beckwith M3410A Multi-functional Relay
100% current was defined to be 216A, which corresponds to 180kW at unity power factor.
The following changes were made to the proposed settings:
ƒ
The under-frequency set-point was changed from 59.7Hz for 3 cycles to 59.6Hz for 4
cycles. This was done following an under-frequency trip during commissioning (at 21.41
hours on 14th August 2007). This is still significantly tighter than the normal settings
required by the utility.
ƒ
Added residual current protection. This was initially set to 108A (50% of 216A), but was
later reset to 162A (75% of 216A) following nuisance trips. This was attributed to high
levels of zero sequence current imbalance.
ƒ
Added voltage-constrained phase over-current protection. This was initially set to 120%
(259A at 100% voltage), but was later reset to 130% (281A at 100% voltage) following
reports of nuisance trips. This was attributed to high levels of current imbalance.
ƒ
Current Imbalance Protection: Owing to concerns with transients from synchronization,
an I2t characteristic based on 15% (of 216A) imbalance was used instead of instantaneous
based on 20% imbalance.
ƒ
Synchronization parameters were set to a window of 5% voltage and 10 degrees phase for
30 cycles.
4.3
GENCON II Controller
When grid-connected, the GENCON II is used to set the active and reactive power levels. The
GENCON software included a modification that provided a reactive power set-point range of 025kVAr importing.
GENCON II synchronization parameters were set to a window of 2.5% voltage and 10 degrees
phase for 30 cycles.
4.4
Crompton SPR Multi-functional Relay
For reasons of availability, the purchased Crompton SPR unit required three 120V phase voltage
inputs. Three 75VA 277/120V PT transformers connected in Yg:Yg were used to step down the
voltages from 277V. The CTs were connected with the reverse polarity in order to utilize the
reactive power import protection (40Q) for reactive power export protection. Thus the displayed
powers on the Crompton are flows into the generator.
Report – CETC-Varennes 2007-161 (TR)
10
September 2007
The output from relay 1 only was wired to the trip coil of the inter-tie breaker. The following
protection were set up on the Crompton SPR (with all delays set to 0.0s):
1.
Logical AND of relays 6 and 7.
2.
Under-voltage (90%) – informative only.
3.
Over-voltage (110%) – informative only.
4.
Under-frequency (57Hz) – informative only.
5.
Over-frequency (63Hz) – informative only.
6.
Reactive power export > 10 kVAr on any phase (Input to Relay 1)
7.
Active power export > 25 kW on any phase (Input to Relay 1).
The active power export limit was used to avoid unwanted tripping associated with
synchronization. In view of the unbalance, the active power export limit corresponded to
approximately 50kW export total.
Report – CETC-Varennes 2007-161 (TR)
11
September 2007
5
Protection and Synchronization Tests
For all these tests, the generator was set to 15kVAr importing. The following were demonstrated:
5.1
1.
Generator start-up and synchronization across the generator breaker.
2.
Momentary loss of one phase voltage input to the Beckwith M3410A unit. This
resulted in the Beckwith tripping on under-voltage and voltage imbalance, followed
by stable islanded operation of the generator. After 5 minutes, the generator resynchronized across the inter-tie breaker
3.
Voltage under-frequency based on system occurrence at 21.41 hours on 14th August
2007. This resulted in the Beckwith tripping on under-frequency, followed by stable
islanded operation of the generator. After 5 minutes, the generator re-synchronized
across the inter-tie breaker
4.
Tripping of the reactive power export protection. The set-point of the AVR was
manually increased until the reactive power export on one phase exceeded 10kVAr,
causing the inter-tie breaker to trip. This was performed at 50kW and 150kW,
5.
Non-tripping of the reactive power export protection to agitator switching. Switching
on of the agitator was noted to draw reactive power from the generator. Switching at
50kW and 150kW did not trip the generator.
Post-Commissioning Performance
Subsequent to commissioning, a number of nuisance trips were reported:
ƒ
Residual Current Protection: The trip point for this was increased from 108A to 162A on
15th September 2007.
ƒ
Voltage-Constrained Phase Over-current Protection: The trip setting for this was
increased from 120% to 130% on 15th September 2007.
ƒ
Reactive Power Export Protection: Shortly after commissioning, the generator owner
advised of trips occurring during agitator activation. It was surmised that this was likely
caused by increased levels of voltage imbalance at certain times of day, and the
GENCON II set-point was changed to 20kVAr importing to provide additional margin.
Following examination of the Crompton relay on 15th September 2007, it was noted that
nuisance trips of this protection were continuing to occur, and this matter requires further
attention.
Report – CETC-Varennes 2007-161 (TR)
12
September 2007
6
Protection Settings Summary
Table 2 below summarizes the protection settings as of 15th September:
Table 2: Protection Settings Summary
Unit
Protection
HV fuses
Over-current
LV fuses
Over-current
52L breaker
Over-current
52L breaker
Overload
Beckwith M-3410A
Sync Check
Beckwith M-3410A
Under-voltage 1
Beckwith M-3410A
Under-voltage 2
Beckwith M-3410A
Active Power Export
Beckwith M-3410A
Neg. Seq. Current
Beckwith M-3410A
Neg. Seq. Voltage
Beckwith M-3410A
Residual over-current
Beckwith M-3410A Over-current & Voltage Restraint
Beckwith M-3410A
Over-voltage 1
Beckwith M-3410A
Over-voltage 2
Beckwith M-3410A
Reconnect enable
Beckwith M-3410A
Over-frequency
Beckwith M-3410A
Under-frequency 1
Reactive/Active power export
Crompton SPR
logical AND
52G breaker
Over-current
52G breaker
Overload
GENCON II
Sync Check
Report – CETC-Varennes 2007-161 (TR)
13
#
Setting
Time
51
51
50
51
25
27
27
32
46
47
51N
51V
59
59
79
81O
81U
32Q
32O
50
51
25
25 A
400 A
400 A
256 A
5%V, 10deg
88%
80%
200kW
15% of 216A
6%
75% of 216A
130% of 216A
110%
115%
60.3 Hz
59.6 Hz
10 kVAr / phase
25 kW / phase
400 A
256 A
2.5%V, 10deg
K speed
RK5 speed
I2t (x8 @ 0.1s)
I2t (x6 at 3 sec)
30 cyc
1.5 sec
3 cyc
3 cyc
I2t Def Time: Dial 1.0
0.5 s
I2t Def Time: Dial 1.0
I2t Def Time: Dial 1.0
0.8 sec
3 cyc
18000 cyc
3 cyc
4 cyc
Delay=0.0s
I2t (x8 @ 0.1s)
I2t (x6 at 3 sec)
30 cyc
September 2007
4.8/8.3kV (Hydro One)
Pigeon Conductor
3/0 ACSR 6/1 (300A)
X - Disconnect
… - Circuit Breaker
Hydro pole
Hydro One
Terryland Farms
Pole 1
Load Break Switch (TFB1) 900A
Pigeon Conductor
3/0 ACSR 6/1 (300A)
3 x 100kVA
4.8kV/277V
Yg:Yg
Underground Cable
480V, 400A
Powerhouse
(Sheet 2)
Fault Level = 1516A
Pole 2
Fault Level = 11716A
25A Fuse with
200A cutout
Figure 1 - Terryland Farms Biogas SLD
Sheet 1 (Outdoor)
Report – CETC-Varennes 2007-161 (TR)
14
ANF-TP008 Issue 3
17-Aug-07
September 2007
Telephone
Connection
Excitation
& Governor
Control
Generator
Breaker
Cabinet
Inter-tie
Breaker
Cabinet
Metering
Cabinet
Fault Level
= 11716A
480V
400A
52G
Neutral grounding
at transformer pole
52L
Fuses
400A
600V
RK5
Underground
Cable
480V, 400A
Outdoor
(Sheet 1)
480V Splitter
For
Digester
Mixer
X - Disconnect
… - Circuit Breaker
For
Powerhouse
Figure 2 - Terryland Farms Biogas SLD
Sheet 2 (Powerhouse)
Report – CETC-Varennes 2007-161 (TR)
15
ANF-TP009 Issue 4
17-Aug-07
September 2007
Utility 4.8/8.3kV
HV disconnect
with 25A Fuses (51)
Figure 3 - Terryland Farm Biogas
Protection Diagram
3 x 100kVA
8.3kV/480V
Yg:Yg 2.3%
400A underground cable
LV disconnect
with 400A Fuses (51)
CT 4-6
V 4-6
V 1-2
400A service
Beckwith M3410A
25, 27, 32, 46, 47, 59, 79, 81
52L (50/51)
Crompton SPR
32Q
75kVA
480V/240V
Δ :Yg
277/120V
Yg:Yg
Power-house Loads
Soft Start
V4
GENCON II
25
52G (50/51)
Agitator
30kVA
480V/380V
Δ: Δ
V 1-3
CT 1-3
Report – CETC-Varennes 2007-161 (TR)
180kW 271A
277/480V
20% on 312.5kVA
16
Figure ANF_TP 004
Rev 2, 31-July-07
Aidan Foss
September 2007
Figure 4 - Terryland - Protection Co-ordination at LV
Figure ANF_TP017, Rev 2, 19-Aug-07
HV Fuse Max
HV Fuse Min
Brk Fast
Tx
LV Fuse
Brk Overload
1000
secs
100
10
1
100
1000
10000
100000
0.1
0.01
amps
Report – CETC-Varennes 2007-161 (TR)
17
September 2007

Documents pareils