affichage (extrait du système : distributeur de boisson)

Transcription

affichage (extrait du système : distributeur de boisson)
Étude d’une fonction : affichage (extrait du système : distributeur
de boisson)
Présentation :
Le distributeur de boissons automatique permet d’obtenir 4 types de boissons :
eau pure
eau + menthe
eau + anis
eau + menthe + anis
Le choix des boissons se fait par l’utilisateur qui sélectionne sa boisson en appuyant
sur un des 4 boutons poussoirs (BPE, BPM, BPA, BPMA).
On matérialise l’écoulement des produits (eau, menthe et anis) par l’éclairage de 3
DEL de couleurs (respectivement : rouge, verte et jaune). Lorsque la DEL jaune s’allume, il y
a du sirop d’anis qui coule dans le gobelet.
On donne le schéma de commande des 3 DEL (c’est le même pour chaque DEL) :
G BERTHOME
Page 1/4
Étude d’une fonction : affichage (extrait du système : distributeur
de boisson)
TRAVAIL DEMANDÉ
Définition de la différence de potentiel VE1
La différence de potentiel VE1 est fournie par une porte logique 74LS00.
On se réfère aux chronogrammes de la feuille réponse 1 (page 4/4).
A l’instant t=0s, l’utilisateur fait une demande d’eau pure en appuyant sur BPE
pendant 1s.
Ensuite, l’eau s’écoule dans le gobelet pendant 5s. C’est à dire que VE1 passe à l’état
haut pendant 5s tout au long de l’écoulement d’eau.
Analyse qualitative :
Question1
D’après la documentation technique du circuit intégré 74LS00 donner les valeurs de
VOHmin et VOLmax.
Question2
Compléter alors le chronogramme de VE1 sur la feuille réponse 1 (page 4/4).
Question3
Quel est l’état du transistor Q1 lorsque VE1=VOLmax ? Justifier votre réponse.
Question4
En déduire la valeur de la différence de potentiel VCE ainsi que l’état de D2 (éclairée
ou éteinte).
Question5
Quel est l’état du transistor Q1 lorsque VE1=VOHmin ? Justifier votre réponse.
Question6
En déduire la valeur de la différence de potentiel VCE ainsi que l’état de D2 (éclairée
ou éteinte).
Question7
Compléter les chronogrammes de D2 et VCE sur la feuille réponse 1 (page 4/4).
Question8
Conclure si le tracé des chronogrammes respecte la description du fonctionnement.
G BERTHOME
Page 2/4
Étude d’une fonction : affichage (extrait du système : distributeur
de boisson)
Analyse quantitative :
Question9
D’après la documentation constructeur des diodes électroluminescentes, déterminer
les valeurs de IF et VF (cas d’une diode électroluminescente rouge).
Question10
Calculer la valeur réelle de IF.
Question11
Justifier alors que la résistance R12 est correctement dimensionnée.
Question12
D’après la documentation constructeur du transistor BC337-40, trouver la valeur de
min.
Question13
Calculer alors la valeur de IBsat.
Question14
Justifier alors que la résistance R9 est correctement dimensionnée.
Question15
Compte tenu des caractéristiques de la porte 74L00, expliquer pourquoi la structure
suivante n’a pas été retenue pour réaliser la commande des LED.
R12
&
74L00
75
VE1
D2
Question16
En vous aidant de la question 13 et la documentation constructeur de Q1, justifier
l’emploi de la structure réelle avec un transistor en montrant que Q1 peut remédier au
problème de la structure ci-dessus.
G BERTHOME
Page 3/4
Étude d’une fonction : affichage (extrait du système : distributeur
de boisson)
Feuille réponse n°1
BPE
appuyé
relâché
0
0,5
1
1,5
2
2,5
3
3.5
4
4,5
5
5,5
6
6,5
7
7,5
8
t(s)
0
0,5
1
1,5
2
2,5
3
3.5
4
4,5
5
5,5
6
6,5
7
7,5
8
t(s)
0
0,5
1
1,5
2
2,5
3
3.5
4
4,5
5
5,5
6
6,5
7
7,5
8
t(s)
0,5
1
1,5
2
2,5
3
3.5
4
4,5
5
5,5
6
6,5
7
7,5
8
t(s)
VE1
5V
4V
3V
2V
1V
0V
VCE
5V
4V
3V
2V
1V
0V
Etat de D2
allumée
éteinte
0
G BERTHOME
Page 4/4
Order this document
by BC337/D
SEMICONDUCTOR TECHNICAL DATA
NPN Silicon
COLLECTOR
1
2
BASE
3
EMITTER
1
MAXIMUM RATINGS
2
Rating
Symbol
BC337
BC338
Unit
Collector – Emitter Voltage
VCEO
45
25
Vdc
Collector – Base Voltage
VCBO
50
30
Vdc
Emitter – Base Voltage
VEBO
5.0
Vdc
Collector Current — Continuous
IC
800
mAdc
Total Device Dissipation @ TA = 25°C
Derate above 25°C
PD
625
5.0
mW
mW/°C
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
1.5
12
Watt
mW/°C
TJ, Tstg
– 55 to +150
°C
Symbol
Max
Unit
Operating and Storage Junction
Temperature Range
3
CASE 29–04, STYLE 17
TO–92 (TO–226AA)
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
RqJA
200
°C/W
Thermal Resistance, Junction to Case
RqJC
83.3
°C/W
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
45
25
—
—
—
—
50
30
—
—
—
—
5.0
—
—
—
—
—
—
100
100
—
—
—
—
100
100
—
—
100
Unit
OFF CHARACTERISTICS
Collector – Emitter Breakdown Voltage
(IC = 10 mA, IB = 0)
Collector – Emitter Breakdown Voltage
(IC = 100 µA, IE = 0)
V(BR)CEO
BC337
BC338
Vdc
V(BR)CES
BC337
BC338
Emitter – Base Breakdown Voltage
(IE = 10 mA, IC = 0)
V(BR)EBO
Collector Cutoff Current
(VCB = 30 V, IE = 0)
(VCB = 20 V, IE = 0)
BC337
BC338
Collector Cutoff Current
(VCE = 45 V, VBE = 0)
(VCE = 25 V, VBE = 0)
BC337
BC338
Vdc
ICBO
nAdc
ICES
Emitter Cutoff Current
(VEB = 4.0 V, IC = 0)
Motorola Small–Signal Transistors, FETs and Diodes Device Data
 Motorola, Inc. 1996
IEBO
Vdc
nAdc
nAdc
1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Symbol
Characteristic
Min
Typ
Max
100
100
160
250
60
—
—
—
—
—
630
250
400
630
—
Unit
ON CHARACTERISTICS
DC Current Gain
(IC = 100 mA, VCE = 1.0 V)
hFE
—
BC337/BC338
BC337–16/BC338–16
BC337–25/BC338–25
BC337–40/BC338–40
(IC = 300 mA, VCE = 1.0 V)
Base–Emitter On Voltage
(IC = 300 mA, VCE = 1.0 V)
VBE(on)
—
—
1.2
Vdc
Collector – Emitter Saturation Voltage
(IC = 500 mA, IB = 50 mA)
VCE(sat)
—
—
0.7
Vdc
Cob
—
15
—
pF
fT
—
210
—
MHz
SMALL–SIGNAL CHARACTERISTICS
Output Capacitance
(VCB = 10 V, IE = 0, f = 1.0 MHz)
r(t), NORMALIZED EFFECTIVE TRANSIENT
THERMAL RESISTANCE
Current – Gain — Bandwidth Product
(IC = 10 mA, VCE = 5.0 V, f = 100 MHz)
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1 0.05
0.07 0.02
0.05
SINGLE PULSE
0.01
0.03
t1
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.02
0.01
0.001
θJC(t) = (t) θJC
θJC = 100°C/W MAX
θJA(t) = r(t) θJA
θJA = 375°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) θJC(t)
P(pk)
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
t, TIME (SECONDS)
1.0
2.0
5.0
10
20
50
100
Figure 1. Thermal Response
1.0 s
1.0 ms
1000
TJ = 135°C
100 µs
hFE, DC CURRENT GAIN
IC, COLLECTOR CURRENT (mA)
1000
dc
TC = 25°C
dc
TA = 25°C
100
10
1.0
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
(APPLIES BELOW RATED VCEO)
3.0
10
30
VCE, COLLECTOR–EMITTER VOLTAGE
100
Figure 2. Active Region — Safe Operating Area
2
VCE = 1 V
TJ = 25°C
100
10
0.1
1.0
10
100
IC, COLLECTOR CURRENT (AMP)
1000
Figure 3. DC Current Gain
Motorola Small–Signal Transistors, FETs and Diodes Device Data
1.0
1.0
TJ = 25°C
TA = 25°C
0.6
IC = 10 mA
0.4
100 mA
300 mA
500 mA
VBE(on) @ VCE = 1 V
0.6
0.4
0.2
0.2
VCE(sat) @ IC/IB = 10
0
0.01
0
0.1
1
IB, BASE CURRENT (mA)
10
100
1
Figure 4. Saturation Region
10
100
IC, COLLECTOR CURRENT (mA)
1000
Figure 5. “On” Voltages
100
+1
θVC for VCE(sat)
C, CAPACITANCE (pF)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
VBE(sat) @ IC/IB = 10
0.8
0.8
V, VOLTAGE (VOLTS)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
0
–1
θVB for VBE
–2
1
10
100
IC, COLLECTOR CURRENT (mA)
1000
Figure 6. Temperature Coefficients
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Cib
10
Cob
1
0.1
1
10
VR, REVERSE VOLTAGE (VOLTS)
100
Figure 7. Capacitances
3
PACKAGE DIMENSIONS
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSION D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
B
R
P
L
F
SEATING
PLANE
K
D
J
X X
G
H
V
C
1
SECTION X–X
N
N
CASE 029–04
(TO–226AA)
ISSUE AD
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.022
0.016
0.019
0.045
0.055
0.095
0.105
0.015
0.020
0.500
–––
0.250
–––
0.080
0.105
–––
0.100
0.115
–––
0.135
–––
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.41
0.55
0.41
0.48
1.15
1.39
2.42
2.66
0.39
0.50
12.70
–––
6.35
–––
2.04
2.66
–––
2.54
2.93
–––
3.43
–––
STYLE 17:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
4
◊
Motorola Small–Signal Transistors, FETs and Diodes Device
Data
BC337/D
54LS00/DM54LS00/DM74LS00
Quad 2-Input NAND Gates
General Description
Features
This device contains four independent gates each of which
performs the logic NAND function.
Y
Alternate Military/Aerospace device (54LS00) is available. Contact a National Semiconductor Sales Office/
Distributor for specifications.
Connection Diagram
Dual-In-Line Package
TL/F/6439 – 1
Order Number 54LS00DMQB, 54LS00FMQB, 54LS00LMQB, DM54LS00J, DM54LS00W, DM74LS00M or DM74LS00N
See NS Package Number E20A, J14A, M14A, N14A or W14B
Function Table
Y e AB
Inputs
Output
A
B
Y
L
L
H
H
L
H
L
H
H
H
H
L
H e High Logic Level
L e Low Logic Level
C1995 National Semiconductor Corporation
TL/F/6439
RRD-B30M105/Printed in U. S. A.
54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates
June 1989
Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Note: The ‘‘Absolute Maximum Ratings’’ are those values
beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The
parametric values defined in the ‘‘Electrical Characteristics’’
table are not guaranteed at the absolute maximum ratings.
The ‘‘Recommended Operating Conditions’’ table will define
the conditions for actual device operation.
Supply Voltage
7V
Input Voltage
7V
Operating Free Air Temperature Range
b 55§ C to a 125§ C
DM54LS and 54LS
DM74LS
0§ C to a 70§ C
Storage Temperature Range
b 65§ C to a 150§ C
Recommended Operating Conditions
Symbol
DM54LS00
Parameter
VCC
Supply Voltage
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
IOH
High Level Output Current
IOL
Low Level Output Current
TA
Free Air Operating Temperature
DM74LS00
Units
Min
Nom
Max
Min
Nom
Max
4.5
5
5.5
4.75
5
5.25
2
2
V
V
0.7
0.8
V
b 0.4
b 0.4
mA
8
mA
70
§C
4
b 55
125
0
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
Symbol
Parameter
Min
Typ
(Note 1)
DM54
2.5
3.4
DM74
2.7
3.4
Conditions
Max
Units
b 1.5
V
VI
Input Clamp Voltage
VCC e Min, II e b18 mA
VOH
High Level Output
Voltage
VCC e Min, IOH e Max,
VIL e Max
Low Level Output
Voltage
VCC e Min, IOL e Max,
VIH e Min
DM54
0.25
DM74
0.35
0.5
IOL e 4 mA, VCC e Min
DM74
0.25
0.4
VOL
V
0.4
V
II
Input Current @ Max
Input Voltage
VCC e Max, VI e 7V
IIH
High Level Input Current
VCC e Max, VI e 2.7V
20
mA
IIL
Low Level Input Current
VCC e Max, VI e 0.4V
b 0.36
mA
IOS
Short Circuit
Output Current
VCC e Max
(Note 2)
ICCH
Supply Current with
Outputs High
VCC e Max
0.8
1.6
mA
ICCL
Supply Current with
Outputs Low
VCC e Max
2.4
4.4
mA
0.1
DM54
b 20
b 100
DM74
b 20
b 100
mA
mA
Switching Characteristics at VCC e 5V and TA e 25§ C (See Section 1 for Test Waveforms and Output Load)
RL e 2 kX
Symbol
Parameter
CL e 15 pF
CL e 50 pF
Units
Min
Max
Min
Max
tPLH
Propagation Delay Time
Low to High Level Output
3
10
4
15
ns
tPHL
Propagation Delay Time
High to Low Level Output
3
10
4
15
ns
Note 1: All typicals are at VCC e 5V, TA e 25§ C.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
2

Documents pareils