Palaeobiogeography of Pinus nigra Arn. subsp. salzmannii (Dunal

Transcription

Palaeobiogeography of Pinus nigra Arn. subsp. salzmannii (Dunal
Review of Palaeobotany and Palynology 194 (2013) 1–11
Contents lists available at SciVerse ScienceDirect
Review of Palaeobotany and Palynology
journal homepage: www.elsevier.com/locate/revpalbo
Research paper
Palaeobiogeography of Pinus nigra Arn. subsp. salzmannii (Dunal) Franco in the northwestern Mediterranean Basin: A review based on macroremains
Paul Roiron a, Lucie Chabal a, Isabel Figueiral a, b, Jean- Frédéric Terral a, Adam A. Ali a,⁎
a
b
Centre de BioArchéologie et d'Écologie, UMR 5059, Institut de Botanique, 163 rue A. Broussonet, 34090 Montpellier, France
INRAP Méditerranée, 3 rue de l'Acropole, Lot. Actipolis, 34420 Villeneuve-les-Béziers, France
a r t i c l e
i n f o
Article history:
Received 9 July 2012
Received in revised form 21 February 2013
Accepted 6 March 2013
Available online 16 March 2013
Keywords:
travertine
cone imprints
charcoal
Salzmann pine
regional extinction
biological conservation
a b s t r a c t
The palaeobiogeography of Pinus nigra subsp. salzmannii is investigated in an attempt to understand the environmental mechanisms responsible for its present-day fragmented distribution. A synthesis of data based on
cone imprints from travertine deposits and wood charcoal from archaeological sites suggests that, in the past
(Holocene), P. nigra subsp. salzmannii had a larger distribution in the north-western Mediterranean Basin. This
species has disappeared from eastern France probably as a result of the competition with other ligneous species,
such as Quercus ilex and Pinus halepensis, which were favoured by anthropogenic disturbances during the Late
Holocene. Current environmental changes, including increasing drought and fire events, will further contribute
to the regression of P. nigra subsp. salzmannii populations. The safeguard of this pine in the Mediterranean landscapes relies on sustained national and European conservation programs.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction
Recent international proposals on biodiversity conservation enabled us to recognise the mechanisms responsible for the loss of biodiversity in space and time (International conferences of Rio, 1992;
Johannesburg, 2002; Copenhagen, 2009). As a result, the development
of studies allowing the setting up of conservation strategies has become a clear priority.
Ongoing climate changes coupled with increasing human disturbance imply that constructive decisions must be taken based on data
obtained via interdisciplinary research. Palaeoecological investigations
identify historical and ecological processes involved in the evolution
dynamics of plant and animal communities in relation to climate
change and human disturbance. The potential of palaeoecological
records as providers of key information on habitat fragmentation,
changing disturbance regimes and species resilience has been given
growing consideration in terms of biological conservation purposes
(Willis and Birks, 2006).
Pinus nigra subsp. salzmannii (Salzmann pine) belongs to the
Sylvestres subsection (Richardson, 1998). In the Mediterranean
Basin, it presents a fragmented distribution in Spain and France
(Figs. 1 and 2) mainly on dolomitic or calcareous substrates and also
on siliceous substrates. Its natural habitat is frequently destroyed by
⁎ Corresponding author. Tel.: +33 4 99 23 21 80; fax: +33 4 67 54 35 37.
E-mail address: [email protected] (A.A. Ali).
0034-6667/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.revpalbo.2013.03.002
natural or human induced fires (Trabaud and Campant, 1991). Burnt
areas are rapidly colonised by competitive species such as Pinus
pinaster, Pinus halepensis, Quercus ilex and/or Quercus coccifera, while
the Salzmann pine regenerates with difficulty (Trabaud and Campant,
1991; Escudero et al., 1997; Rodrigo et al., 2004). In Southern Spain,
the regeneration of P. nigra subsp. salzmannii is also limited by the density of the herbaceous cover, the severity of the summer drought and
seed predation (Tiscar Oliver, 2003; Tiscar and Linares, 2011). The survival of this pine species is also genetically endangered due to natural
hybridization with P. nigra subsp. nigra, abundantly planted during
the last century for soil restoration purposes and for wood exploitation
(Vautrin and Royer, 1998; Fady, 2007). Consequently, the Salzmann
pine represents a major European priority in terms of habitat conservation. Its forests are included in the EU listing of natural habitats requiring specific conservation measures (Council Directive 92/43/EEC, 1992;
Leone and Lovreglio, 2004; Fady et al., 2010).
The past dynamics of Pinus nigra subsp. salzmannii and consequently
its palaeobiogeography, are poorly documented because, for the
moment, only cone fossils and imprints allow its identification. As
explained below, wood-charcoal identification discriminates the subsection Sylvestres but not the species included under this nomenclature.
Pollen proxy is often restricted to the distinction between Haploxylon
and Diploxylon pines (e.g. Reille, 1992; Nakagawa et al., 2000; Pini,
2002; Schmidt et al., 2002; Finsinger and Tinner, 2006; Muller et al.,
2006), and generic identifications (Pinus) are favoured by the majority
of specialists (Willis et al., 1998). This is why we seldom refer to the
pollen data in our synthesis. We assemble data gathered from the analysis of macroremains uncovered in Spain and Southern France, i.e. cone
2
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Fig. 1. Present day distribution area of Pinus nigra subsp. salzmannii and location of the studied sites in Spain.
imprints of P. nigra subsp. salzmannii preserved in travertine or peat bog
deposits. These findings are compared with archaeobotanical data, as
charcoal specimens identified as Pinus type sylvestris can potentially
belong to P. nigra subsp. salzmannii, especially when charcoal specimens
were recovered in sites located in coastal areas. Our palaeoecological
survey aims to retrace the past biogeography of P. nigra subsp.
salzmannii and to pinpoint the processes responsible for its reduced
present-day distribution in the north-western Mediterranean Basin.
Data presented could be integrated in biological conservation strategies
centred on the preservation of woodlands dominated by this pine
species.
2. Classification, biogeography and ecology of pines from
subsection Sylvestres
In the Mediterranean Basin pines belonging to the subsection
Sylvestres occupy mainly mountainous areas with Pinus mugo and
Pinus uncinata growing in the highest elevations. We will focus our
attention on the distribution of Pinus sylvestris and Pinus nigra, as
we believe that these are the two pine species which most likely
grew in the areas under study (plains and coastal areas), during the
late Holocene and recent periods (since the Roman period).
Pinus sylvestris, the most widespread species, occurs from Spain to
the Urals, and from the Arctic Ocean to northern Greece (Richardson,
1998; Quézel and Médail, 2003). In the Mediterranean zone, it occurs
mostly in the oromediterranean level above 800 m a.s.l. (Quézel and
Médail, 2003). However, in Provence (Southern France), relict woodlands still survive at low altitudes (down to 200 m a.s.l.), mostly in
the northern slopes (Quézel and Médail, 2003). This pine species is
indifferent to the substrate but grows mainly on marl, limestone
and dolomite.
Pinus nigra represents a group of pine species, which occupies a vast
and fragmented area in the mountains around the Mediterranean Basin.
Their current distribution has fostered the development of diverse
‘forms’ identified differently according to the authors (Debazac, 1971).
Quézel (1980) and Richardson (1998) recognise six subspecies of
P. nigra: salzmanni, mauritanica, laricio, nigra, dalmatica and pallasiana.
According to the present day biogeographical distribution of the
Pinus nigra subspecies in Europe (Quézel and Médail, 2003), P. nigra
subsp. salzmannii is likely to be the only native subspecies in Southern
France and Spain.
Pinus nigra subsp. salzmannii and P. nigra subsp. nigra can be easily
distinguished based on cone morphology. Those of P. nigra subsp. nigra
do not present a stalk and the apophysis is flatter than in P. nigra subsp.
salzmannii. It is more difficult to distinguish the cones of P. nigra subsp.
salzmannii and P. nigra subsp. laricio, but the apophysis of the last subspecies is generally more convex (Farizier, 1980; Otto, 1987).
Pinus nigra subsp. salzmannii (Salzmann pine) presents a fragmented distribution in the western Mediterranean Basin. Surviving
populations are located in Spain and in southern France (Figs. 1
and 2). Stands of P. nigra subsp. mauritanica Heywood from Northern
Africa (Marocco and Algeria) are sometimes linked with the Southern
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
3
Fig. 2. Present day distribution area of Pinus nigra subsp. salzmannii and location of the studied sites in Southern France. The reference numbers for charcoal sites are in Fig. 4 and the
reference letters corresponding to cone sites are in Table 1.
Iberia population of P. nigra subsp. salzmannii (Quézel and Médail,
2003).
In France, Pinus nigra subsp. salzmannii is only present west of the
Rhône River. It grows on limestone, dolomite (Saint Guilhem-leDésert and Carlencas, Hérault) and schist (schist substrates of the
Conflent valley, Pyrénées Orientales or on the Cévennes foothills,
Gard and Ardèche) between 270 and 1000 m a.s.l. (Braun-Blanquet,
1955; Debazac, 1963; Barbero et al., 1998; Quézel and Médail, 2003;
Rameau et al., 2008). All these locations have a humid climate with
more than 1000 mm of annual rainfall, but draining soils limit edaphic
moisture (Quézel and Barbero, 1988). It is important to underline
that not all the populations referred to above can be considered as
natural. Some were planted during reforestation programs (RTM =
Restauration des terrains en montagne), such as those in the Hérault
area (Tanghe, 1991; Vautrin and Royer, 1998).
In Spain, this pine is present between 500 and 2200 m a.s.l. (Costa
et al., 2001). Some of the forests were develop in the supramediterranean belt, mostly on the southern slopes of the Spanish Pyrenees between 500 and 1400 m a.s.l. (Gamisans and Gruber, 1988; Gamisans
et al., 1991; Costa et al., 2001). In the Iberian and Eastern Betic ranges,
from Catalonia to Andalusia, it grows from 500 to 2200 m a.s.l.
(Regato et al., 1995; Regato-Pajares and Elena-Rossello, 1995; Costa
et al., 2001). It can grow associated with both the Scots pine (Pinus
sylvestris) and the cluster pine (Pinus pinaster) (Costa et al., 2001).
These massifs have a complex lithological composition, mainly with
calcareous or crystalline substrates.
3. Materials and methods
3.1. Fossil cones dataset
Identification of cones is based on morphological characters of the
fossil specimens. Female cones of Pinus nigra subsp. salzmannii are
ovoid shaped and symmetrical (Farizier, 1980; Otto, 1987). The polygonal umbo is centred on the apophysis (external part of the scale). Compared with others subspecies of P. nigra, cones of the subsp. salzmannii
have thin apophysis with a rounded upper part. Sites mentioned in
this synthesis will be presented according to a south–north gradient,
i.e. Spain first, France next.
In Spain, the travertine formations located at the beside river
Matarraña, near Beceite (in the Teruel province, Fig. 1), were deposited
in a valley sculpted in limestone (dolomitic and brechic facies). They are
surrounded by reliefs reaching up to 1450 m (Martinez-Tuleda, 1986;
Martinez-Tuleda et al., 1986). Present day climatic conditions are
summarised in Table 1. In the valley, the mesomediterranean type
vegetation includes Quercus ilex, Pinus halepensis, Pistacia lentiscus,
Viburnum tinus, and Erica multiflora. In the highlands, the supramediterranean type vegetation comprises Pinus nigra subsp. salzmannii,
4
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Table 1
Studied sites with cone imprints: location, deposits, ecological conditions and
234
U/230Th or14C ages of the travertine formations.
Country
Spain
Sites
Beceite
Cevico Navero
Lomilla
Tubilla del Agua
Tubilla del Lago
Location
Latitude/Longitude
Altitude
Mean annual precipitation
Mean annual temperature
Vegetation
Main deposit type
Archive type
Teruel region, Aragon
N 40° 48' W 0° 11'
610 m
685 mm (1)
13.3 °C (1)
Meso/supramediterranean
Travertines
Cones and plants imprints
Palencia, Castilla y Leon
N 45° 51' W 4° 10'
840 m
395 mm (1)
12.4 °C (1)
Supramediterranean
Peat bog
Trunks, charcoals, cones
Burgos
N 42° 45′ W 4° 18′
919 m
Burgos, 536 mm (1)
Burgos, 10.2 °C (1)
Supramediterranean
Peat bog
Woods, cones
Burgos
N 42° 42′ W 3° 48′
765 m
Burgos, 536 mm (1)
10.2 °C (1)
Supramediterranean
Travertines
Cones
Burgos
N 41° 48′ W 3° 34′
900 m
Burgos, 536 mm (1)
10.2 °C (1)
Supramediterranean
Peat bog
Cones, trunks
Laboratory
U/Th kyr dates
Inst. Geol. Univ. Köln
84.8 (+32, −34)
111.7 (+35, −36)
Unavailable
Beta Analytic (USA)
Beta Analytic (USA)
Beta Analytic (USA)
Beta Analytic (USA)
4650 ± 60
5082–5582
Roig et al. (1997)
8650 ± 80
9498–9890
Alcade Olivares et al.
(2001)
1570 ± 40
1370–1540
Garcia-Amorena et al.
(2011)
3160 ± 50
3260–3480
Garcia-Amorena et al.
(2011)
230
Th/230Th
C ages BP
Calibrated BP (2σ)
Studies references
14
Martinez-Tuleda (1986)
Pinus sylvestris, Fagus sylvatica, Corylus avellana, Taxus baccata, and
Sorbus aria (Martinez-Tuleda, 1986).
Further north in the Meseta, near Palencia (Castilla y Leon), macroremains were recovered from a peat bog (Cevico Navero) (Roig et al.,
1997). The extant vegetation is composed mainly of Quercus ilex and
Juniperus thurifera which withstand the rigours of the local climate
with cold winters and long dry summers (Esteban Parra et al., 1998).
One hundred kilometres further north, the peat bog of Lomilla, near
Aguilar de Campo (Palencia), has yielded numerous wood specimens,
cones and other macrofossils (Alcade Olivares et al., 2001). At present
the very open landscape comprises extensive cereal fields interspersed
with shrubby areas with Calluna vulgaris, Erica cinerea, Genista scorpius
and Quercus faginea. The climate is Continental-Mediterranean with
two months of summer drought.
Fossil cones identified as Pinus nigra subsp. salzmannii have been
recently recovered from three new localities situated in the northern
Iberian Meseta (Garcia-Amorena et al., 2011): the travertines of
Fuentetoba (province of Soria) and Tubilla del Agua (province of
Burgos) and a peat area from Tubilla del Lago (province of Burgos). In
these areas, the present-day vegetation is dominated by Quercus
ilex and Quercus pyrenaica. Associated species comprise: (1) Pinus
sylvestris and Pinus pinaster at Fuentetoba, (2) shrubs and low-forest
stands of Quercus faginea and Fagus sylvatica, with reforested populations of P. nigra subsp. salzmannii and P. sylvestris at Tubilla
del Agua, and (3) Q. faginea and Juniperus thurifera near Tubilla del
Lago (Garcia-Amorena et al., 2011). The climate is ContinentalMediterranean with cold winters and three months of summer drought.
In the Languedoc region (Southern France), two travertine formations located at Saint-Guilhem-le-Désert (Hérault) and Castelnau-leLez (near Montpellier, Hérault) were studied (Fig. 2). The formations
of Saint-Guilhem-le-Désert are situated in the Verdus valley. The substratum is mainly composed of calcareous and dolomite lithofacies.
The present-day Mediterranean vegetation includes Pinus nigra subsp.
salzmannii, spreading on the north-facing slopes, while the southfacing slopes are covered by garrigue comprising Quercus ilex, Juniperus
oxycedrus, Pistacia terebinthus, Viburnum tinus and Spartium junceum.
Above 400 m, the vegetation of both slopes is dominated by P. nigra
subsp. salzmannii, in association with Quercus pubescens, Buxus
sempervirens, Sorbus aria, Amelanchier ovalis and Acer monspessulanum
(Braun-Blanquet, 1955; Ali et al., 2008). The present-day climate in
the area is characterised by important seasonal contrasts: the summers
are dry and hot, the other seasons are humid.
At Castelnau-le-Lez, near Montpellier (Hérault), different travertine
sequences developed at 30–35 m a.s.l. (Ambert et al., 1995). The vegetation surrounding the studied travertine (cemetery deposit) is
dominated by Quercus ilex and Pinus halepensis woodlands. The climate
is also characterised by its dry summer.
Further east, in the Bouches-du-Rhône region (Provence), several
Quaternary travertine formations were also considered: Aygalades
(north of Marseille), Meyrargues (Papeterie Vasino) and Roquevaire
(Fig. 2). Aygalades is located in a rocky, intensively urbanised area
devoid of vegetation. Meyrargues is situated near the Durance Canal
and Roquevaire in the Huveaune valley. Pinus halepensis and Quercus
ilex woodlands dominate the current vegetation.
3.2. Charcoal data set
Charcoal data was assembled from 75 sites, mostly archaeological
sites, located in Spain and Southern France, ranging from 2 m to
1200 m a.s.l. (Figs. 1, 2 and 4). Very diverse vegetation covers this
vast area, from the thermomediterranean level to the mountain belt.
Specific identification of pines based on wood anatomical features
can be a tricky affair. While pines of the Sylvestres subsection are easily
distinguishable from those of other pine sections (Greguss, 1955;
Jacquiot, 1955; Grosser, 1977; Schweingruber, 1990), problems arise
when attempting to distinguish the different species of the Sylvestres
subsection. Up to present, no consensus has been reached concerning
the discrimination of these four species, based on wood anatomy
alone. When working at low altitudes and dealing with recent deposits,
Pinus mugo and Pinus uncinata can be discarded, based on ecology and
biogeography, as these two mountain pines are limited to altitudes
above 1900–2000 m a.s.l. Also, prevailing climatic conditions tend
to prevent the normal growth of latewood, which can often be detected
in the wood anatomy, thus providing clues to an approximate identification. When trying to distinguish Pinus sylvestris from Pinus nigra,
some author take into account the distribution of resin ducts in the
growth rings and the characteristics of ray tracheid walls in mature
specimens only (Bazile-Robert, 1979; Garcia and Guindeo, 1988;
Alcade Olivares et al., 2001; Badal Garcia and Carrión, 2001;
Carrión-Marco, 2003; Vernet et al., 2005; Rubiales et al., 2007). Other
authors, including us, believe that the current state of research does
not allow the unequivocal distinction of these species (Schweingruber,
1990; Ali et al., 2008). As far as we know, no systematic anatomical
work has been carried out (or at least published) based on a large
sampling of modern specimens, representative of species variability
(age, population, location). Furthermore, preliminary work (Tabard,
2005) has shown that the position of resin canals in the annual growth
ring depends on age and cannot be used as a diagnostic character. This is
why, the nomenclature Pinus type sylvestris is favoured by many authors
and will be used here when referring to charcoal identifications
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Table 1
Studied sites with cone imprints: location, deposits, ecological conditions and
234
5
U/230Th or14C ages of the travertine formations.
France
Fuentetoba
St-Guilhem-le-Désert
Castelnau-le-Lez
Aygalades
Soria
N 41° 47′ W 2° 34′
1120 m
Soria, 547 mm (1)
10.6 °C (1)
Supramediterranean
Travertines
Cone
Hérault, Languedoc
N 43° 44′ E 3° 32′
150 m
800 mm (2)
11.8 °C (2)
Meso/supramediterranean
Travertines
Cones, charcoals and plant
imprints
Louvain (Belgium)
Hérault, Languedoc
N 43° 37′ E 3°53′
30–35 m
Montpellier, 750 mm (2)
Montpellier, 13.9 °C (2)
Mesomediterranean
Travertines
Cones, charcoals and plant
imprints
Mons (Belgium)
44.7 (+2.1, −2.0)
22
Bouches-du-Rhône, Provence
N 43° 21′ E 5° 21′
N 43° 38′ E 5° 31′
45 m
230 m
Marseille, 630 mm (2)
Marseille, 14.9 °C (2)
Mesomediterranean
Mesomediterranean
Travertines
Travertines
Cones and plant
Cones, charcoals and plant
imprints
imprints
–
Mons (Belgium)
unavailable
144.7 (+66, −42)
172.9 (+20, −17)
41 and 37
Ambert et al. (1995)
Saporta (1867)
Beta Analytic (USA)
8220 ± 50
9020–9400
Garcia-Amorena
et al. (2011)
7710 ± 60
8404–8593
Ali et al. (2008)
regardless of the nomenclature first used by individual authors; in our
case specific identification assumptions are therefore based on ecological arguments related to spatial and temporal distribution of the
findings.
3.3. Dating and geochronology
Dating is based on 234U/230Th and 14C measurements of travertine
facies and charcoal fragments. 234U/230Th dating validation depends
on the value of the 232Th/230Th ratio. High values (up to 20) indicate
that detrital contamination by Th is negligible (Ivanovich and Harmon,
1992), thus validating dates obtained. In our case, this information is
not always available; the chronology must therefore be considered
with caution, even if low values of this ratio do not systematically invalidate the dates. In fact, in certain cases, reliable dates were obtained
even when the 232Th/230Th ratio was very low (Quinif, 1989; Ambert
et al., 1995; Mlakar et al., 1999). Dates based on U/Th measurements
can be compared to the calendar chronology without calibration.
Dates obtained, U/Th and 14C dating, are shown in Table 1. Archaeological charcoal or wood has been dated either by 14C dating or based on
archaeological well-dated artefacts.
4. Results and interpretations
4.1. Chronological setting of cone remains
Data are presented according to the chronology of findings. High
values of the 232Th/230Th ratio for Meyrargues and Castelnau-le-Lez deposits seem to validate the dates obtained by U/Th (Table 1). Other
plant species identified alongside the pine cones are mentioned in
Table 2, as they are important for the identification of past ecological
conditions.
The travertine of Papeterie Vasino, at Meyrargues (Durance valley,
France), has provided the earliest dates of our data set. It is composed
of two carbonated units alternating with detrital facies. These two levels
are dated (U/Th) 170,000 and 145,000 BP (Magnin et al., 1990). The
flora of the earliest level provides evidence of a mesomediterranean
mixed forest (Table 2). The flora of the most recent level corresponds
to a mixed forest with supramediterranean affinities, including cones
of Pinus nigra salzmannii. The results show that the Papeterie Vasino
sequence was formed during two temperate periods of the Riss (marine
isotopic stage 6), the first one under similar conditions to the present,
the other under a cooler setting (Magnin et al., 1990).
Three deposits from the travertine of Beceite (Teruel region) were
dated; the oldest level goes back to ca. 267,000 BP; the second level
Meyrargues
Roiron (1988); Magnin
et al. (1990)
Roquevaire
N 43° 21′ E 5°36′
172 m
Mesomediterranean
Travertines
Cones, charcoals and plant
imprints
Mons (Belgium)
47.4 (+9.1, −8.2)
Unavailable
Otto (1987); D'Anna
et al. (1988)
was formed around 111,700–84,000 BP and the most recent layer was
during the Holocene, between 8000 and 2000 BP. Only the Eemian deposits contain plant imprints, which indicate a supramediterranean
vegetation, consisting of a riparian vegetation (Table 2). The upper
slopes would be colonised by Pinus nigra subsp. salzmannii, identifiable
by its cones. This vegetation is quite similar to the vegetation, which
covers this valley nowadays; P. nigra subsp. salzmannii is still present
on the slopes. In this same region, cones of P. nigra subsp. salzmannii
were found in the undated Quaternary travertine of Cañizar del Olivar
(alt. 1000 m a.s.l.) (Rubio Millán, 2002).
Near Marseille in France, the travertine of Aygalades (Bouches-duRhône, Provence) contains a fossil flora associated with teeth of Elephas
antiquus (Saporta, 1867). The presence of these faunal remains was
recently confirmed by the cast of a tooth deposited in the “Museum
d'Histoire Naturelle de Marseille” identified as Palaeoloxodon antiquus
(Rousselières, 2004). Cones of Pinus nigra subsp. salzmannii are associated with a wide assemblage of leaf imprints (Table 2) which suggests
that climatic conditions were more humid and warmer than today,
allowing the local development of lauraceous species. Elephas
(Palaeoloxodon) antiquus lived in Europe during the Middle and Upper
Pleistocene. Present during the Eemian interglacial, it disappears during
the last glacial period (Rousselières, 2004). Unfortunately isotopic data
are not available.
The travertine of Roquevaire is located in the Huveaune valley
(Bouches-du-Rhône, Provence). The stratigraphy reveals alternating
carbonated levels with plant imprints and detrital zones with charcoal and gastropod shells (D'Anna et al., 1988). Cones of Salzmann
pine are present in the travertine levels along with needle imprints
(Otto, 1987). The flora (Table 2) and the malacofauna assemblages
suggest climatic conditions similar to those characterising the
present-day supramediterranean belt. A U/Th dating on a travertine
fragment, 47,400 (+ 9100, − 8200) BP, corresponds to the last glacial
period.
The travertine of Castelnau-le-Lez (Hérault, Languedoc) was deposited during isotopic stages 5 and 3, as testified by U/Th dating (Ambert
et al., 1995). The cones of Pinus nigra subsp. salzmannii described initially by Planchon (1864) and later by Farizier (1980) come from the cemetery travertine deposit (Figs. 2 and 3: 3), which corresponds to the
Würmian period [44,700 (+ 2100–2000) BP]. This pine species is associated with a rich flora assemblage (Table 2) composed of mesoand supramediterranean species (Planchon, 1864; Farizier, 1980;
Ambert et al., 1995), which suggests local colder conditions than
nowadays.
At Lomilla near Aguilar de Campo (Palencia), the basal part of the
8 m marshy deposits contained wood fragments and numerous cones
6
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Table 2
Fossil macrofloras composition of the studied sites.
Site
Meyrargues
Lower level
Upper level
Fossil floras
Magnin et al. (1990)
Quercus deciduous, Laurus nobilis,
Vitis vinifera subsp. sylvestris, Hedera
helix, Smilax aspera
Quercus cf. pubescens, Acer campestre,
Fraxinus cf. angustifolia, Salix viminalis,
cf. Evonymus europaeus, Pinus nigra cf.
salzmannii (cones)
Beceite
Eemian level
Martinez-Tuleda
et al. (1986)
Tubilla del Lago
Salix purpurea, S.eleagnos, Populus
alba, Alnus glutinosa, Quercus faginea,
Fraxinus excelsior, F. angustifolia,
Corylus avellana, Sorbus aria, Acer
opalus, Vitis vinifera, Pistacia
terebinthus, Buxus sempervirens,
Pinus nigra subsp. salzmannii
Pinus nigra subsp. salzmannii, Celtis
australis, Ficus carica, Laurus nobilis,
Laurus canariensis, Phoebe barbusana,
Corylus avellana, Populus alba, Salix
viminalis, Quercus pubescens, Tilia
europaea, Viburnum tinus, Hedera
helix, Acer monspessulanum, Pyrus
acerba, Crataegus oxyacantha, Rubus
idaeus, Cercis siliquastrum, Cornus
sanguinea
Pinus nigra subsp. salzmannii, Acer
opalus, Fraxinus ornus, Cornus
sanguinea, Hedera helix
Pinus nigra subsp. salzmannii, Acer
opulifolium, Fraxinus ornus, Laurus
nobilis, Viburnum tinus, Cornus
sanguinea or C. mas, Celtis australis,
Clematis vitalba, Smilax aspera, Vitis
sp., Salix sp., Phillyrea media, Phillyrea
angustifolia, Hedera helix, Buxus
sempervirens, Ficus carica, Ulmus
campestris
Cones of Pinus sylvestris, Pinus nigra
subsp. salzmannii, woods of Fraxinus
sp., Salix sp., bark of Betula sp., fruits
of Corylus sp.
Trunks of Pinus type sylvestris, cones
of Pinus nigra subsp. salzmannii
Cones of Pinus nigra subsp. salzmannii
Tubilla del Agua
Cones of Pinus nigra subsp. salzmannii
Fuentetoba
Cone of Pinus nigra subsp. salzmannii
Aygalades
Roquevaire
Castelnau le Lez
Lomilla
Cevico Navero
Reference
St Guilhem-le-désert Pinus nigra subsp. salzmannii, Salix
viminalis, Populus alba, P. nigra,
Sambucus nigra, Ulmus minor, Hedera
helix, Sorbus aucuparia, Vitis vinifera
subsp. sylvestris, Buxus sempervirens,
Phillyrea media, Rhamnus alaternus
subsp. salzmannii persisted until the beginning of the Middle Ages
(Garcia-Amorena et al., 2011). This pine may have disappeared from
the Northern Meseta as a result of the settling of drier conditions
along with anthropogenic disturbance (Franco Mugica et al., 2001).
The current relict forest of Salzmann pine at Saint-Guilhem-le-Désert
(Hérault, Languedoc, France) occupies an area of ca. 800 ha. Analysis of
cone imprints from the travertine system (comb of Verdus) indicates
that Pinus nigra subsp. salzmannii (Fig. 3: 4) was present locally at least
since ca. 8500 cal BP (Ali et al., 2008) in association with Mediterranean
riparian and woodland specie. Charcoal remains were also present
(infra).
4.2. Chronological setting of charcoal remains
Saporta (1867)
D'Anna et al. (1988)
Planchon (1864);
Farizier (1980);
Ambert et al. (1995)
Alcade Olivares
et al. (2001)
Roig et al. (1997)
Garcia-Amorena
et al. (2011)
Garcia-Amorena
et al. (2011)
Garcia-Amorena
et al. (2011)
Ali et al. (2008)
Charcoal and trunks identified as Pinus type sylvestris have been
recovered in the peat bog of Cevico Navero in Northern Meseta (Palencia,
Castilla y Leon, Atlantic — Subboreal) (Roig et al., 1997). Charcoal of this
pine is present in detrital levels included on travertine formations, such
as at Papeterie Vasino (Riss (isotopic stage 6)), La Plaine (Durance valley,
France) and Saint-Guilhem-le-Désert (Hérault, France) (Ali et al., 2008),
and from natural soil profiles such as those from plateau around comb of
Verdus (Vernet et al., 2005).
The most significant information comes from Saint-Guilhem-leDésert, where abundant charcoal related to local human occupation,
has been trapped in the travertine formation, close to the cone imprints
(Ali et al., 2008). Charcoal remains were also present in the upper levels
of the associated lacustrine filling together with archaeological artefacts. They may result either from wildfires or/and from human activities. Pinus type sylvestris predominates from the early Neolithic on.
The frequencies of other associated species, such as Quercus (deciduous), Taxus baccata and Quercus evergreen vary greatly. During phases
with peak frequencies of deciduous oak, the presence of yew
(T. baccata) points to the existence of a mature forest with few disturbances (Barbero and Quézel, 1994). Holm oak is sporadically recorded
during the Neolithic and the Bronze Age (3500 cal BP), becoming
more frequent from the Middle Ages on (8th–9th centuries) (Ali et al.,
2008).
Pine charcoal has also been recovered in 75 archaeological sites, located in Spain and Southern France (Figs. 1, 2 and 4). The large data set
assembled, based on the work of different authors (for complete references please see the legend of Fig. 4) also includes some natural deposits with wood or charcoal. This data set covers the period Last
Glacial Maximum — Middle Ages and a wide range of habitats from
the thermomediterranean level to the Mountain level, from 36°N to
45°N. Site chronology, latitude and altitude, in association with local
factors (exposure, soil properties, geology) determine the local climate
and environmental conditions. The plant assemblages revealed by charcoal for each of these sites, varied considerably in space and time and
cannot be listed in detail.
5. Discussion
5.1. A large past spatial distribution
of Pinus sylvestris and Pinus nigra associated with Fraxinus and Salix
wood remains, bark of Betula and hazelnuts (Corylus) (Alcade Olivares
et al., 2001). This plant assemblage points to a supramediterranean
vegetation around 9500–9890 cal BP.
A peat bog near Cevico Navero in Northern Meseta (Palencia, Castilla
y Leon) yielded cones of Pinus nigra subsp. salzmannii (and also charcoal
and trunks identified as Pinus type sylvestris) dating back to the Atlantic
and the Subboreal (Roig et al., 1997). An age of 4650 ± 60 BP
(5082–5582 cal BP) was obtained by 14C dating of fossil wood. In the
same region, the travertine of Fuentetoba records the presence of
P. nigra subsp. salzmannii at the beginning of the Holocene and
the sites of Tubilla del Lago and Tubilla del Agua show that P. nigra
The travertine studies clearly attest that Pinus nigra subsp.
salzmannii has had a significantly larger distribution than today, in the
north-western Mediterranean Basin. Cone remains belonging to this
pine species were even recorded in Provence (South-eastern France)
where it no longer grows. In Spain, 11 sites, most of them below 40°N,
yielded Late Glacial charcoal/wood identified as P. nigra, P. nigrasylvestris or Pinus type sylvestris. With the exception of Cova de la
Recambra, all fragments have been found in Upper Palaeolithic levels1
1
In the sites of the province of Valencia, charcoal fragments identified as Pinus type
nigra, initially attributed to the Holocene, proved to be Pleistocene, on the basis of
more than 40 radiocarbon datings (Badal Garcia, unpublished data).
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
7
Fig. 3. 1–2: Modern cones of Pinus nigra subsp. salzmannii from Saint-Guilhem-le-Désert; 3: Fossil cone of P. nigra subsp. salzmannii from Castelnau-le-Lez travertine; 4: Fossil cones
of P. nigra subsp. salzmannii from Saint-Guilhem-le-Désert travertine.
(Badal, 2006). Based on the data from the Alicante and Valencia provinces, Badal Garcia considers that P. nigra was the main tree in the
mediterranean regions during the Glacial maximum and Late Glacial,
from the sea level up to 1000 m a.s.l., in favourable thermal conditions.
The Salzmann pine could have declined rapidly during the beginning
of the Holocene, until reaching its present-day reduced distribution
(Badal Garcia and Carrión, 2001; Badal, 2006; Villaverde et al., 2010).
In the pollen diagram of Padul (Sierra Nevada, 785 m a.s.l.), Pinus
is strongly represented to be associated with steppic elements during
the Würm and the Early Dryas. Since 14,500 cal BP the climatic
warming leads to the rapid development of Quercus ilex, associated
with the decrease of Pinus and the steppic taxa (Pons and Reille,
1988). According to Martinez Garcia and Montero (2000) Pinus sylvestris
and/or P. nigra subsp. salzmannii could be the dominant species of
the highlands of the limestone massifs of the Betic province. The
Sierra Nevada could be considered as a potential residual glacial area
(Cheddadi et al., 2006).
We cannot exclude that both Pinus sylvestris and Pinus nigra subsp.
salzmannii might have been present in Andalusia during the end of
Pleistocene despite the fact that, in the coastal plains of Southern and
South-Eastern Spain, the development of P. nigra subsp. salzmannii
was more probable. Later, during the Mesolithic and the Neolithic, the
Salzmann pine could have been present in the Betic mountains
(Alejano and Martinez Montes, 2006), but identifications, based on
pollen, charcoal or wood are not conclusive. Nevertheless, the current
Salzmann pine area comprises some spots in this area, between 700
and 2200 m.
In Southern France (between 42 and 45.5°N), charcoal recorded
above 300 or 400 m could belong to Pinus sylvestris, especially in the
Alps and the Pyrenees foothills. In theory, charcoal identified as Pinus
type sylvestris at low altitudes and coastal areas, during the Last Glacial
and the Late Glacial, could belong to the four European pine species of
subsection Sylvestres. This includes sites such as Esquicho Grapaou, La
Salpétrière, and Bois des Brousses (Bazile-Robert and Bazile, 1978;
Bazile-Robert, 1981). We assume however that by the Holocene, mountain pines such as P. sylvestris, Pinus uncinata and/or Pinus mugo would
have migrated to higher ground, as a consequence of the warmer climatic conditions.
In Southern France, 36 out of 65 sites (Fig. 4) are located below
150 m a.s.l., of which 33 were dated back to the Holocene, i.e. developing under temperate climatic conditions. So, according to their spatial
and temporal distribution, charcoal fragments recovered in these sites
are likely to belong to Pinus nigra subsp. salzmannii; furthermore
cones of this species have been repeatedly identified in the area (Ali
et al., 2008).
We cannot rule out the hypothesis that relict populations of Pinus
sylvestris might have persisted in some valleys at low altitudes, in
north-facing exposures. Currently, the Scots pine can survive at
200 m a.s.l. in the Basse-Provence (Quézel and Médail, 2003) but its
common lower-limit is located at ca. 400 m a.s.l. (Rameau et al.,
2008). Moreover, the dataset includes archaeological sites located in
coastal zones, dating back to the Early Holocene and the Middle Ages.
It is quite difficult to consider that P. sylvestris or other mountain
pines might have been able to grow in coastal zones this recently. The
same applies to the rest of the lowlands.
This is why we consider that Holocene charcoal assigned to Pinus type
sylvestris might belong mostly or entirely to Pinus nigra subsp. salzmannii.
In the Languedoc region, Pinus type sylvestris is found from the Early
Neolithic up to the Late Antiquity, both near the coast and in the inland
valleys (Figueiral, 1990; Chabal, 1997; Fabre, 2004, 2005, 2006); during
8
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Fig. 4. Chronological position of Pinus type sylvestris charcoal and wood findings in archaeological (and some natural deposits) in Southern France and Spain, referenced to the
altitudes of the sites (after Badal, 2006; Badal Garcia, 1997, 1998, 2009; Badal Garcia and Carrión, 2001; Bazile-Robert, 1979, 1981, 1983; Bazile-Robert and Bazile, 1978; Brochier
et al., 1998; Chabal, 1997, 2005, 2007; Dubar et al., 1986; Durand, 1998; Fabre, 2004, 2005, 2006; Figueiral, 1990; Grau-Almero, 1984; Heinz, 1990, 1991; Heinz and Thiébault, 1998;
Krauss-Marguet, 1981; Mauné et al., 1998; Pomaredes et al., 2005; Postigo-Mijarra et al., 2010; Ramil-Rego et al., 1998; Solari and Vernet, 1992; Théry et al., 1996; Thiébault, 1994,
1997, 2001; Uzquiano and Arnanz, 1997; Vernet, 1973, 1980, 1997, 2006; Vernet and Thiébault, 1987).
the Middle Ages, Pinus type sylvestris is also found in the Rhône valley
and according to A. Durand (1998) P. nigra subsp. salzmannii may
have grown in the Rhône delta; Pinus type sylvestris is still found in
the modern deposits (Fig. 4) from Port Ariane-Lattes (Chabal, 2007)
and St Côme et Damien — Montpellier (Fabre, unpublished data), at
very low altitudes. Although sporadic transport of wood/charcoal of
Pinus sylvestris cannot be totally ruled out findings at low and middle altitudes suggest a larger distribution of the Salzmann pine and highlight
its adaptation to meso-xeric climatic conditions around the Mediterranean Basin.
5.2. The fragmentation of Pinus nigra subsp. salzmannii formations:
human or climatic agency?
Data indicate that between the Late Pleistocene and the Holocene,
Pinus nigra subsp. salzmannii had a large distribution (altitude and latitude) in the north-western Mediterranean Basin. Fossil and subfossil remains suggest that this pine species also grew at very low altitude,
down to the coastal areas. In its present-day fragmented distribution,
this pine colonises areas located between 270 and 2200 m a.s.l.,
according to the latitude. Data suggest that ecological processes may
have induced its disappearance from the lowlands.
Based on the ecological requirements of this species, Holocene climatic changes (Davis et al., 2003) alone cannot explain this situation.
Several biotic parameters could therefore be involved in the decline of
the Salzmann pine populations, including inter-specific competition
and anthropogenic disturbance.
In Southern France and Spain, important vegetation changes have
been recorded by charcoal analysis since the beginning of the Holocene,
including other tree species, such as Pinus halepensis, deciduous Quercus
and Quercus type ilex (Vernet, 1973; Chabal, 1997; Vernet, 1997; Badal
Garcia et al., 1994; Badal Garcia, 1998, 2009; Ali et al., 2003). These trees
are more competitive than Pinus nigra subsp. salzmannii when faced
with natural or human-induced disturbances (Trabaud and Campant,
1991; Rodrigo et al., 2004). The decrease of the Salzmann pine from
the Iron Age onwards and the concomitant development of Holm oak
and other Mediterranean pines (such as the Aleppo pine) may be related to fire events, wood cutting and agro-pastoral activities. In fact the
Salzmann pine is more vulnerable to fire and cutting than the other species mentioned. The difficulty of the Salzmann pine to regenerate after a
fire perturbation could eventually be attributed to very low seedling
density after fire (Rodrigo et al., 2004). However, its thick bark could
eventually protect the trees from low-intensity fires (Vernet et al.,
2005).
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
An overview of vegetation changes recorded in southern France
may provide clues to the understanding of the history of Pinus nigra
subsp. salzmannii in this area, from the beginning of the Holocene
up to its current distribution.
In the lowlands and foothill areas, the beginning of the Holocene
was characterised by the decline of Pinus type sylvestris (including
Pinus nigra subsp. salzmannii) triggering the establishment, then the
development of formations dominated by Quercus deciduous (certainly
Quercus pubescens) in the Languedoc (Vernet and Thiébault, 1987;
Chabal, 1997; Heinz and Thiébault, 1998; Vernet, 2006), Quercus deciduous (certainly Q. pubescens) or Pinus halepensis in Provence (Thiébault,
1997, 2001), and Quercus ilex (and/or Quercus coccifera), Olea europaea
or P.halepensis in south-eastern Spain (Badal Garcia et al., 1994; Carrión
et al., 2010).
Since the middle-Holocene (ca. 6000 cal BP), the settlement and
development of farming communities led to the transformation and
gradual replacement of deciduous woodlands. In the Languedoc the
expansion of Quercus type ilex was associated with mediterranean
shrubs such as Arbutus unedo, Buxus sempervirens, and Phillyrea sp.
(Thiébault and Vernet, 1992; Chabal, 1997). In Provence, this picture
can be somewhat different as the early spread and later dominance of
Pinus halepensis are recorded by different authors (Thiébault, 1997,
2001; Vernet, 1997; Ali et al., 2003). In both regions, these species
are more competitive than the Salzmann pine in response to natural
and/or anthropogenic disturbances.
In the Languedoc, as long as the deciduous oaks (Quercus pubescens)
were dominant, the Salzmann pine could have found free space in the
dry areas, as deciduous oaks require deep soils and/or humidity
(Quézel and Médail, 2003). During the Neolithic, human activity could
have had two effects: the cutting down of the vegetation and land clearing by fire created open spaces which could be colonised by pines.
But this also favoured Quercus ilex, which progressively replaced the
deciduous oak, less resistant to repeated cutting. The holm oak is also
a drought resistant species and, for this reason, a powerful competitor
to the Salzmann pine. Q. ilex gradually invaded the dry or open spaces,
from where the pine was expelled, as its seedlings could no longer
sprout under cover.
In Provence, which may represent the eastern limit of the Holocene distribution of the Salzmann pine, Pinus halepensis, more
drought resistant, could have easily replaced the first species.
According to the charcoal record, the decline and local extinction of
the Salzmann pine may have occurred in Provence since the Neolithic,
as a result of increasing of aridity and anthropogenic activities (Jalut
et al., 2009).
Vegetation changes related with anthropogenic disturbance may
have induced the extinction of Pinus nigra subsp. salzmannii east of
the Rhône, its fragmentation in the other areas of Southern France,
and in its retreat to the highlands in Spain. What was the precise timing
of these events? As far as we know, no cones of P. nigra subsp.
salzmannii have been found in the Holocene travertine deposits from
Provence. In this region, very few low altitude sites yielded Holocene
charcoal fragments of Pinus type sylvestris. At Fontbregoua, Pinus type
sylvestris is present only in the lowermost Epipaleolithic layer
(Thiébault, 1997). The altitude of the site (400 m a.s.l.) and the chronology rather suggest the presence of Pinus sylvestris; the same can be said
of the Holocene charcoal fragments from the French Alps (Thiébault,
1994). Only the Upper Palaeolithic–Neolithic specimens found near
Nice suggest the presence of P. nigra subsp. salzmannii in lowProvence (Dubar et al., 1986; Thiébault, 2001). It is possible that the decline and local extinction of the Salzmann pine might have occurred
after the Neolithic, as a result of anthropogenic activities.
Concerning the Languedoc, why does the Salzmann pine still occupy
a relatively important place in the landscape? One explanation could be
related to its initial abundance in addition to favourable local climatic
and edaphic conditions (800 mm annual precipitation, draining soils).
According to Quézel and Barbero (1988), the Salzmann pine is well
9
adapted to high precipitation rates and very dry soils, conditions
under which the pine could be competitive. The slopes surrounding
Saint-Guilhem-le-Désert, as well as the plateau, could have been a
refuge area for this pine. Written documents lack information on the possible involvement of the Gellone monastery (founded at Saint-Guilhemle-Désert in the early 9th century) in the history of this forest. In Southern
France, forests were often protected by monks, against grazing and wood
cutting (at least after the 13–14th centuries) (Durand, 1998). It seems
possible that this forest might have been protected by the monks, thus
ensuring its survival up to now.
6. Conclusion
During the Late Pleistocene and the Holocene, Pinus nigra subsp.
salzmannii seems to have enjoyed a large distribution in the northwestern Mediterranean Basin. Its current fragmented and reduced
distribution may result from inter-specific competition induced by climatic and anthropogenic disturbances, i.e. global climatic warming at
the beginning of the Holocene followed by the expansion and spread
of human communities.
The present-day distribution of Pinus nigra subsp. salzmannii raises
questions concerning its survival in the Mediterranean landscape. Up
to now, few ecological restoration programs have been conducted in
its natural habitats (Fady et al., 2010). This may signify that this species
could disappear locally in the near future, as global warming is set to
amplify drought conditions and fire frequency (Gaucherel et al.,
2008). Genetic hybridization with Pinus sylvestris and/or other subspecies of black pine (P. nigra subsp. nigra and P. nigra subsp. laricio) may
also contribute to this potential disappearance.
Without sustained conservation programs (Leone and Lovreglio,
2004; Fady et al., 2010), the Salzmann pine may disappear from the
Mediterranean landscape, as it has little economical value for the forestry industry.
References
Alcade Olivares, C., Garcia-Amorena, I., Gomez Manzaneque, F., Maldonado Ruiz, J.,
Morla Juaristi, C., Postigo Mijarra, J.M., 2001. Estúdio de los macrorrestos vegetales
del yacimiento de Lomilla (Aguilar de Campoo, Palencia, España). Anales del Jardín
Botánico de Madrid 59 (1), 101–112.
Alejano, R., Martinez Montes, E., 2006. Aportaciones de la paleobotánica a la interpretación
del área natural de Pinus nigra Arn. ssp. salzmannii en las Sierras Béticas (sureste de
España). Invest Agrar, Sist Recur For, Fuera de serie, pp. 124–136.
Ali, A.A., Terral, J.F., Guendon, J.L., Roiron, P., 2003. Holocene palaeoenvironmental
changes in Southern France: a palaeobotanical study of travertine at SaintAntonin, Bouches-du-Rhône. The Holocene 13 (2), 293–298.
Ali, A.A., Roiron, P., Chabal, L., Ambert, P., Gasco, J., André, J., Terral, J.F., 2008. Holocene
hydrological and vegetation changes in Southern France inferred by the study of an
alluvial travertine system (Saint-Guilhem-le-Désert, Hérault). Comptes Rendus
Geoscience 340, 356–366.
Ambert, P., Quinif, Y., Roiron, P., Arthuis, R., 1995. Les travertins de la vallée du Lez
(Montpellier, Sud de la France). Datations 230Th/234U et environnements pléistocènes. Comptes Rendus Académie des Sciences 321, 667–674.
Badal, E., 2006. Carbones y cenizas, ?Qué nos cuentan del pasado? In: Carrión, J.S.,
Fernández, S., Fuentes, N. (Eds.), Paleoambiantes y cambio climático, pp. 103–116
(Múrcia).
Badal Garcia, E., 1997. El paisatge vegetal de la Marina, a partir dels carbons prehistòrics. Aguaits 13–14, 23–37.
Badal Garcia, E., 1998. Interés economico del pino piñonero para los habitantes
de la Cueva de Nerja. In: Sanchidrian, J.L., Simon, M.D. (Eds.), Las culturas
del Pleistoceno Superior en Andalucia. Patronato de la Cueva de Nerja, Malaga,
pp. 287–300.
Badal Garcia, E., 2009. Estudio antracológico de la secuencia holocena de la Cova de les
Cendres. In: Bernabeu Aubán, J., Molina Balaguer, L. (Eds.), La Cova de les Cendres
(Moraira-Teulada, Alicante): Museo Arqueológico de Alicante, 6, pp. 125–134.
Badal Garcia, E., Carrión, Y., 2001. Del glaciar al interglaciar: los paysages vegetales a
partir de los restos carbonizados hallados en las cuevas de Alicante. In:
Villaverde, V. (Ed.), De Neandertales a cromañones. El inicio del poblamiento
humano en las tierras valencianas. Universitat de Valencia, Valencia, pp. 21–44.
Badal Garcia, E., Bernabeu, J., Vernet, J.L., 1994. Vegetation changes and human action
from the Neolithic to the Bronze Age (7000–4000 BP) in Alicante, Spain, based
on charcoal analysis. Vegetation History and Archaeobotany 3, 155–166.
Barbero, M., Quézel, P., 1994. Place, rôle et valeur historique des éléments laurifoliés
dans les végétations préforestières et forestières ouest-méditerranéennes. Annali
di Botanica 52, 81–133.
10
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Barbero, M., Loisel, R., Quézel, P., Richardson, D.M., Romane, F., 1998. Pines of the Mediterranean Basin. In: Richardson, D.M. (Ed.), Ecology and Biogeography of Pinus.
Cambridge University Press, pp. 153–170.
Bazile-Robert, E., 1979. Flore et végétation du sud de la France, pendant la dernière glaciation, d'après l'analyse anthracologique. Thèse 3ème cycle Université Montpellier II,
France.
Bazile-Robert, E., 1981. Flore et végétation des gorges du Gardon à la moyenne vallée de
l'Hérault, de 40000 à 9500 BP d'après l'anthracoanalyse. Paléobiologie continentale
12, 79–90.
Bazile-Robert, E., 1983. La baume de Montclus (Gard): étude anthracologique. Etudes
Quaternaires Languedociennes 3, 25–32.
Bazile-Robert, E., Bazile, F., 1978. Evolution des climats au Würm récent en Languedoc
méditerranéen, d'après les résultats de l'analyse anthracologique essentiellement.
Geobios 11 (6), 933–935.
Braun-Blanquet, J., 1955. Contribution à la connaissance des forêts méditerranéomontagnardes: la forêt de Pinus salzmanni de Saint-Guilhem-le-Désert. SIGMA.
Collectanea Botanica 4 (3), 435–489.
Brochier, J.E., Claustre, F., Heinz, C., 1998. Environmental impact of Neolithic and
Bronze age farming in the eastern Pyrenees forelands, based on multidisciplinary
investigations at La Caune de Bélesta (Bélesta Cave), near Perpignan, France.
Vegetation History and Archaeobotany 7, 1–9.
Carrión, Y., Ntinou, M., Badal, E., 2010. Olea europaea L. in the North Mediterranean
Basin during the Pleniglacial and the Early-Middle Holocene. Quaternary Science
Reviews 29, 952–968.
Carrión-Marco, Y., 2003. Affinidades y diferencias en las secuencias antracológicas en
las vertientes mediterránea y atlántica de la Península Ibérica. Ph.D. Thesis,
Universitat de Valencia, Spain.
Chabal, L., 1997. Forêts et sociétés en Languedoc (Néolithique final, Antiquité tardive).
L'anthracologie, méthode et paléoécologie. Documents d'Archéologie Française 63,
3–188.
Chabal, L., 2005. Charbons de bois et bois gorgé d'eau des puits antiques: des jardins de
Lattara aux forêts du delta du Lez. In: Piqués, G., Buxó, R. (Eds.), Onze puits galloromains de Lattara, (Ier s. av. n. è. - IIe s. de n. è.), (Fouilles programmées
1986–2000): Lattara, 18, pp. 221–234.
Chabal, L., 2007. Étude anthracologique de Lattes Port Ariane: forêts littorales en Bas
Languedoc depuis le Néolithique moyen. In: Daveau, I. (Ed.), Port Ariane (Lattes,
Hérault), construction deltaïque et utilisation d'une zone humide lors des six
derniers millénaires: Lattara, 20, pp. 183–198.
Cheddadi, R., Vendramin, G.G., Litt, T., François, L., Kageyama, M., Lorentz, S., Laurent,
J.M., de Beaulieu, J.L., Sadori, L., Jost, A., Lunt, D., 2006. Imprints of glacial refugia
in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography
15, 271–282.
Costa, M., Morla, C., Sainz, H., 2001. Los bosques ibéricos. Una interpretacion
geobotanica.Planeta, Barcelona.
Council Directive 92/43/EEC, 1992. On the conservation of natural habitats and of wild
fauna and flora. Official Journal Lebanon 206, 7–50 (22/07/1992).
D'Anna, A., Evin, J., Guendon, J.L., Jaubert, J., Magnin, F., Otto, T., Quinif, Y., Roiron, P.,
Thinon, M., Vernet, J.L., Vaudour, J., 1988. Les édifices travertineux d'Auriol (Pontde-Joux) et de Roquevaire (St-Vincent). Révision stratigraphique. Contribution à
l'histoire de l'environnement dans la vallée de l'Huveaune (B-du-R) depuis 50000
ans. Les édifices travertineux et l'histoire de l'environnement dans le Midi de la
France, Travaux n° XVII, U.A. 903 CNRS et A.T.P.-PIREN, Aix-en-Provence, pp. 17–36.
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe
during the Holocene reconstructed from pollen data. Quaternary Science Reviews
22, 1701–1716.
Debazac, E.F., 1963. L'aire spontanée du pin de Salzmann en France. Revue forestière
française 10, 768–784.
Debazac, E.F., 1971. Contribution à la connaissance de la répartition et de l'écologie de
Pinus nigra Arn. dans le sud-est de l'Europe. Annales des Sciences Forestières 28,
91–139.
Dubar, M., Damblon, F., Nicol-Pichard, S., Vernet, J.L., Chaix, L., Cataliotti, J., Irr, F.,
Babinot, J.F., 1986. L'environnement côtier des Alpes-Maritimes à la fin de la transgression versilienne d'après l'étude biostratigraphique du site de l'Etoile à Nice
(France). Revue de Paleobiologie 5 (2), 289–310.
Durand, A., 1998. Les paysages médiévaux du Languedoc (Xe-XIIe siècles). Presses
Universitaires du Mirail, Toulouse.
Escudero, A., Barrero, S., Pita, J.M., 1997. Effects of high temperatures and ash on seed
germination of two Iberian pines (Pinus nigra ssp. salzmannii, P. sylvestris var
iberica). Annales des Sciences Forestières 54 (6), 553–562.
Esteban Parra, M.J., Rodrigo, F.S., Castro-Diez, Y., 1998. Spatial and temporal patterns of
precipitation in Spain for the period 1880–1992. International Journal of Climatology 18, 1557–1574.
Fabre, L., 2004. L'exploitation des ressources en matériaux ligneux; les restes de bois de
l'ensemble funéraire. In: Thernot, R., Bel, V., Maune, S. (Eds.), L'établissement rural
antique de Soumaltre (Aspiran, Hérault). : Ferme, auberge, nécropole et atelier de
potier en bordure de la voie Cesseron-Condatomagus (Ier-IIe s.). Monique Mergoil,
Montagnac, pp. 205–209.
Fabre, L., 2005. Charbons de bois et chrono-écologie des occupations du Puech Haut. In:
Carozza, L. (Ed.), La fin du Néolithique et les débuts de la métallurgie en Languedoc
oriental. : Les habitats de la colline du Puech Haut à Paulhan. Hérault, Recherches
en Archéologie Préventive 3, Toulouse, pp. 533–543.
Fabre, L., 2006. Écologie des forêts et exploitation des bois: l'apport de l'anthracologie.
In: Maufras, O. (Ed.), Habitats, nécropoles et paysages dans la moyenne et la basse
vallée du Rhône (VIIe-XVe s.): contribution des travaux du TGV-Méditerranée à
l'étude des sociétés rurales médiévales: Documents d'Archéologie Française, 98,
pp. 210–216.
Fady, B., 2007. Introduced forest tree species; some genetic and ecological consequences. 4th EUFORGEN Conifers Network Meeting, Pitlochry, 18–20oct. 2003.
Biodiversity International, Roma, pp. 41–52.
Fady, B., Brahic, P., Cambon, D., Gilg, O., Rei, F., Roig, A., Royer, J., Thévenet, J., Turion, R.,
2010. Valoriser et conserver le Pin de Salzmann en France. Forêt méditerranéenne
31 (1), 3–14.
Farizier, M., 1980. Recherches sur les macroflores des tufs quaternaires du sud de la
France. Diplôme E.P.H.E., Univ. Montpellier II.
Figueiral, I., 1990. Le paysage végétal du Chalcolithique languedocien: étude
anthracologique des gisements de Boussargues et Richemont. In: Hackens, T.,
Munaut, A.V., Till, C. (Eds.), Wood and Archaeology, First European Conference,
Louvain-la-Neuve, October 2nd–3rd 1987, PACT 22. Louvain-la-Neuve, pp. 259–269.
Finsinger, W., Tinner, W., 2006. Holocene vegetation and land-use changes in response
to climatic changes in the forelands of the southwestern Alps, Italy. Journal of Quaternary Science 21, 243–258.
Franco Mugica, F., Garcia Anton, M., Maldonado Ruiz, J., Morla Juaristi, C., Sainz Ollero,
H., 2001. The Holocene history of Pinus forests in the Spanish Northern Meseta. The
Holocene 11 (3), 343–358.
Gamisans, J., Gruber, M., 1988. Els boscos de pinassa (Pinus nigra subsp. salzmanni) als
Pireneus catalans. I Est-Aragonesos: estudi fitosociologic. Inst. Est. Pyrenaicos,
Homenaje a Pedro Montserrat, Jaca y Huesca, pp. 543–552.
Gamisans, J., Gruber, M., Regato, P., 1991. Les forêts de Pinus nigra subsp. salzmannii des
Pyrénées aragonaises. Lazaroa 12, 147–151.
Garcia, L., Guindeo, A., 1988. Anatomía e identificación de las maderas de coníferas
españolas. AITIM, Madrid.
Garcia-Amorena, I., Rubiales, J.M., Moreno Amat, E., Iglesias Gonzalez, R., GomezManzaneque, F., 2011. New macrofossil evidence of Pinus nigra Arnold on the
Northern Iberian Meseta during the Holocene. Review of Palaeobotany and Palynology 163, 281–288.
Gaucherel, C., Guiot, J., Misson, L., 2008. Changes of the potential distribution area of
French mediterranean forest under global warming. Biogeosciences 5, 1493–1504.
Grau-Almero, E., 1984. El hombre y la vegetación del Neolítico a la edad del Bronce
valenciano en la Safor (Provincia de Valencia) según el análisis antracológico de
la Cova de la Recambra. Tesis de Licenciatura, Universidad de Valencia, Spain.
Greguss, P., 1955. Identification of Living Gymnosperms on the Basis of Xylotomy.
Akadémiai Kiadó, Budapest.
Grosser, D., 1977. Die Hölzer Mitteleuropas. Ein mikrophotographisher Lehratlas.Springer,
Berlin.
Heinz, C., 1990. Dynamique des végétations holocènes en Méditerranée nordoccidentale d'après l'anthracoanalyse de sites préhistoriques: méthodologie et
paléo-écologie. Paléobiologie Continentale XVI (2) (Montpellier).
Heinz, C., 1991. Upper pleistocene and holocene vegetation in the South of France and
Andorra. Adaptations and first ruptures: new charcoal analysis data. Review of
Palaeobotany and Palynology 69 (4), 299–324.
Heinz, C., Thiébault, S., 1998. Characterization and palaeoecological significance of
archaeological charcoal assemblages during late and post-glacial phases in Southern
France. Quaternary Research 50, 56–68.
Ivanovich, M., Harmon, R.S., 1992. Uranium Series Disequilibrium: Applications to
Earth, Marine and Environmental Sciences. Clarendon Press, Oxford.
Jacquiot, C., 1955. Atlas d'anatomie des bois de Conifères. Centre Technique du Bois, Paris.
Jalut, G., Dedoubat, J.J., Fontugne, M., Otto, T., 2009. Holocene circum-mediterranean
vegetation changes: climate forcing and human impact. Quaternary International
200, 4–18.
Krauss-Marguet, I., 1981. Analyse anthracologique du gisement postglaciaire de la
Poujade (Millau, Aveyron). Paléobiologie Continentale XII (1), 93–110.
Leone, V., Lovreglio, R., 2004. Conservation of the mediterranean pine woodlands:
scenarios and legislative tools. Plant Ecology 171, 221–235.
Magnin, F., Guendon, J.L., Quinif, Y., Roiron, P., Thinon, M., 1990. Datations isotopiques
et étude des paléoenvironnements de la formation à travertins de la Papeterie
Vasino (Meyrargues, Bouches-du-Rhône, France). Mise en évidence de deux
périodes de réchauffement durant le Riss. Comptes Rendus Académie des Sciences
310, 1285–1292.
Martinez Garcia, F., Montero, G., 2000. Typology of Pinus sylvestris L. forests in Spain.
Investigación Agraria. Sistemas y Recursos Forestales: Fuera de Serie, n°1, pp. 41–65.
Martinez-Tuleda, A., 1986. Los travertinos del rio Matarraña, Beceite (Teruel). Estudio
paleobotanico.Memoria de Licenciado, Universitad Valencia.
Martinez-Tuleda, A., Robles Cuenca, F., Santisteban Bové, C., Grün, R., Hentzsch, B.,
1986. Los travertinos del rio Matarraña, Beceite (Teruel), como indicadores
paleoclimaticos del Cuaternario. In: Lopez-Vera, F. (Ed.), Quaternary climate in
Western Mediterranean, Madrid, pp. 307–324.
Mauné, S., Sanchez, C., Forest, V., Chabal, L., Bouchette, A., 1998. L'établissement rural
des Jurièires Basses à Puissalicon (Hérault) Ier s. - VIe s. ap. J.-C.: contribution à
l'histoire des campagnes de la Cité de Béziers dans l'Antiquité. In: ClavelLévêque, M., Vignot, A. (Eds.), Cité et Territoire, IIe Colloque Européen Béziers,
24–26 octobre 1997. Presses Universitaires Franc-Comtoises, Diffusion Les Belles
Lettres, pp. 73–121.
Mlakar, J.-L., Degaugue, F., Leroy, S., Guendon, J.-L., Ambert, P., 1999. Les travertins de la
Guisane (col du Lautaret, Hautes-Alpes, France): caractères, datations et
paléoenvironnement alpin holocène. Etude de Géographie Physique, pp. 75–80.
Muller, S.D., Nakagawa, T., de Beaulieu, J.L., Court-Picon, M., Fauquette, S., Genries, A.,
2006. Paléostructures de végétation à la limite supérieure des forêts dans les
Alpes françaises internes. Comptes Rendus Biologies 329, 502–511.
Nakagawa, T., Edouard, J.L., de Beaulieu, J.L., 2000. A scanning electron microscopy
(SEM) study of sediments from Lake Cristol, southern French Alps, with special reference to the identification of Pinus cembra and other Alpine Pinus species based on
SEM pollen morphology. Review of Palaeobotany and Palynology 108, 1–15.
P. Roiron et al. / Review of Palaeobotany and Palynology 194 (2013) 1–11
Otto, T., 1987. Les travertins de Roquevaire: étude paléoécologique et stratigraphique.
DEA, Université Aix-Marseille II, France.
Pini, R., 2002. A high-resolution late-glacial-Holocene pollen diagram from Pian di
Gembro (Central Alps, Northern Italy). Veget. Hist. Archaeobot. 11, 251–262.
Planchon, G., 1864. Etude sur les tufs de Montpellier au point de vue géologique et
paléontologique. Thèse doctorat, Faculté des Sciences, Savy Ed., Paris, France.
Pomaredes, H., Barberan, S., Fabre, L., Rigoir, Y., 2005. La Quintarié (Clermont-L'Hérault,
34). Etablissement agricole et viticulture, atelier de céramiques paléochrétiennes
(DS.P) (Ier-Ve s. ap. J.C.).Monique Mergoil, Montagnac.
Pons, A., Reille, M., 1988. The Holocene and Upper Pleistocene pollen recard from Padul
(Granada, Spain): a new study. The Holocene 66, 243–263.
Postigo-Mijarra, J.M., Gómez Manzanequea, F., Morla Juaristia, C., Zazo, C., 2010.
Palaeoecological significance of Late Pleistocene pine macrofossils in the lower
Guadalquivir Basin (Doñana natural park, southwestern Spain). Palaeogeography,
Palaeoclimatology, Palaeoecology 295 (1–2), 332–343.
Quézel, P., 1980. Biogéographie et écologie des conifères sur le pourtour méditerranéen. In:
Pesson, P. (Ed.), Actualités d'écologie forestière. Gauthier-Villars, Ed, Paris, pp. 205–255.
Quézel, P., Barbero, M., 1988. Signification phytoécologique et phytosociologique des
peuplements naturels de Pin de Salzmann en France. Ecologia Mediterranea 14, 41–63.
Quézel, P., Médail, F., 2003. Ecologie et biogéographie des forêts du bassin méditerranéen.
Elsevier, Paris.
Quinif, Y., 1989. La datation uranium-thorium. Speleochronos 1, 3–22.
Rameau, J.C., Mansion, D., Dumé, G., Gauberville, C., Bardat, J., Bruno, E., Keller, R., 2008.
Flore forestière française, guide écologique illustré, t.3, Région méditerranéenne.
Inventaire forestier national.Institut pour le développement forestier, CNPPF, Paris.
Ramil-Rego, P., Muñoz-Sobrino, C., Rodríguez-Guitián, M., Gómez-Orellana, L., 1998.
Differences in the vegetation of the North Iberian Peninsula during the last
16,000 years. Plant Ecology 138, 41–62.
Regato, P., Gamisans, J., Gruber, M., 1995. A syntaxonomical study of Pinus nigra subsp.
salzmannii forests in the Iberian peninsula. Phytocoenologia 25 (4), 561–578.
Regato-Pajares, P., Elena-Rossello, R., 1995. Natural black pine (Pinus nigra subsp. salzmannii)
forests of the Iberian eastern mountains: development of the phytoecological basis for
their site evaluation. Annales des Sciences Forestières 52, 589–606.
Reille, M., 1992. Pollen et spores d'Europe et d'Afrique du Nord. Laboratoire de
Botanique historique et Palynologie, Marseille, pp. 1–543.
Richardson, D.M. (Ed.), 1998. Ecology and Biogeography of Pinus. Cambridge University Press.
Rodrigo, A., Retana, J., Pico, X., 2004. Direct regeneration is not the only response of
mediterranean forests to largest fires. Ecology 85 (3), 716–729.
Roig, S., Gomez Manzaneque, F., Masedo, F., Morla, C., Sanchez Hernando, L.J., 1997.
Estudio paleobotanico de estrobilos y madera subfosiles holocenas en el yacimiento
de Cevico Navero (Palencia, España). Anales Jard. Bot. Madrid 55 (1), 111–123.
Roiron, P., 1988. La flore des tufs quaternaires de Meyrargues. Les édifices travertineux
et l'histoire de l'environnement dans le Midi de la France, Travaux n° XVII, U.A. 903
CNRS et A.T.P.-PIREN, Aix-en-Provence, pp. 55–61.
Rousselières, F., 2004. Les proboscidiens du Bassin de Marseille (Bouches-du-Rhône,
France). Bulletin du Musée d'anthropologie préhistorique de Monaco 44, 39–48.
Rubiales, J.M., Garcia-Amorena, I., Génova, M., Gomez Manzaneque, F., Morla, C., 2007.
The Holocene history of highland pine forests in a submediterranean mountain:
the case of Gredos mountain range (Iberian Central range, Spain). Quaternary
Science Reviews 26, 1759–1770.
Rubio Millán, C., 2002. Estudio paleobotánico en tobas carbonatadas del Cuaternario de
la localidad de Cañizar del Olivar (Teruel). Teruel 88–89, 157–177.
Saporta, G. de, 1867. La flore des tufs quaternaires en Provence. C.R. 33ème session
Congr. Scient. de France, Aix-en-Provence.
Schmidt, R., Koinig, K.A., Thompson, R., Kamenik, C., 2002. A multi proxy core study of
the last 7000 years of climate and alpine land-use impacts on an Austrian mountain
lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeography, Palaeoclimatology,
Palaeoecology 187, 101–120.
Schweingruber, F.H., 1990. Anatomie europäischer Hölzer (Anatomy of European
woods). Haupt, Bern and Stuttgart.
Solari, M.E., Vernet, J.L., 1992. Late glacial and Holocene vegetation of the Corbières
based on charcoal analysis at the Cova de l'Espérit (Salses, Pyrénées orientales,
France). Review of Palaeobotany and Palynology 71, 111–120.
Tabard, E., 2005. Pin sylvestre, pin de Salzmann (Pinus sylvestris L., Pinus nigra Arnold
subsp salzmannii (Dunal) Franco): une approche comparative dendrologique et
éco-anatomique. Master BGAE.Université Montpellier II, France.
Tanghe, C., 1991. Ecologie et croissance du pin de Salzmann en France. Mémoire
ENITEF, CEMAGREF, Aix-en-Provence.
11
The world Summit on Sustainable Development (WSSD), Johannesburg, South Africa,
26 August to 04 September, 2002.
Théry, I., Gril, J., Vernet, J.L., Meignen, L., Maury, J., 1996. Coal used for fuel at two prehistoric sites in Southern France: Les Canalettes (Mousterian) and Les Usclades
(Mesolithic). Journal of Archeological Science 23, 509–512.
Thiébault, S., 1994. L'exploitation des Hautes Terres: l'exemple des Préalpes sudoccidentales françaises - l'apport de l'anthracologie. In: Biagi, P., Nandris, J.
(Eds.), Highland Zone Exploitation in Southern Europe: Monografie di “Natura
Bresciana”, 20, pp. 73–93.
Thiébault, S., 1997. Early-Holocene vegetation and the human impact in central Provence (Var, France): charcoal analysis of the Baume de Fontbrégoua. The Holocene
7 (3), 343–349.
Thiébault, S., 2001. Anthracoanalyse des établissements néolithiques de la région
liguro-provençale. Bulletin de la Societe Prehistorique Francaise 98 (3), 399–409.
Thiébault, S., Vernet, J.L., 1992. Végétations méditerranéennes et civilisations
préhistoriques: le cas de Font-Juvénal. In: Vernet, J.L. (Ed.), Les charbons de bois, les
anciens écosystèmes et le rôle de l'Homme: Coll. International, Montpellier 10–13
sept. 1991: Bull. de la Société botanique de France, 139 (2/3/4), pp. 441–450.
Tiscar Oliver, P.A., 2003. Conditionantes y limitaciones de la regeneracion natural en el
pinar oromediterraneo de Pinus nigra subsp. salzmannii. Investigación Agraria:
Sistemas y Recursos Forestales 12 (2), 55–64.
Tiscar, P.A., Linares, J.C., 2011. Pinus nigra subsp. salzmannii forests from southeast
Spain: using structure and process information to guide management. In:
Frisiras, C.T. (Ed.), Pine Forests: Types, Threats and Management, pp. 1–27.
Trabaud, L., Campant, C., 1991. Difficulté de recolonisation naturelle du Pin de
Salzmann Pinus nigra Arn. ssp. salzmannii (Dunal) Franco après incendie. Biological
Conservation 58 (3), 329–343.
United Nations Conference on Environment and Development (UNCED), Rio de Janeiro,
3–14 June 1992.
United Nations Framework Convention on Climate Change (UNFCCC), Copenhagen, 7–
18 December 2009.
Uzquiano, P., Arnanz, A.M., 1997. Consideraciones paleoambientales del Tardiglaciar y
Holoceno inicial en el Levante español: macrorrestos vegetales de El Tossal de la
Roca (Vall d'Alcalà, Alicante). Anales del Jardin Botánico de Madrid 55 (1), 125–133.
Vautrin, M.A., Royer, J., 1998. Le Pin de Salzmann (Pinus nigra Arn. ssp. clusiana Clem.):
étude préalable à la mise en place d'un réseau de conservation des ressources
génétiques et au classement de peuplements. Rapport CEMAGREF, Nogent sur
Vernisson, France.
Vernet, J.L., 1973. Etude sur l'histoire de la végétation du sud-est de la France au
Quaternaire d'après les charbons de bois principalement. Paléobiologie Continentale
4 (1), 1–90.
Vernet, J.L., 1980. La végétation du bassin de l'Aude, entre Pyrénées et Massif Central,
au Tardiglaciaire et au Postglaciaire, d'après l'analyse anthracologique. Review of
Paleobototany and Palynology 30, 33–55.
Vernet, J.L., 1997. L'homme et la forêt méditerranéenne de la Préhistoire à nos jours.
Errance, Paris.
Vernet, J.L., 2006. History of the Pinus sylvestris and Pinus nigra ssp. salzmanni forest in
the sub-mediterranean mountains (Grands Causses, Saint-Guilhem-le-Désert,
Southern Massif Central, France) based on charcoal from limestone and dolomitic
deposits. Vegetation History and Archaeobotany 16, 23–42.
Vernet, J.L., Thiébault, S., 1987. An approach to northwestern Mediterranean recent prehistoric vegetation and ecologic implication. Journal of Biogeography 14, 117–127.
Vernet, J.L., Meter, A., Zéraïa, L., 2005. Premières datations de feux holocènes dans les
Monts de Saint-Guilhem-le-Désert (Hérault, France), contribution à l'histoire de
la forêt relique de Pinus nigra Arnold ssp. salzmanni (Dun.) Franco. C.R. Geoscience
337, 533–537.
Villaverde, V., Roman, D., Martinez, R., Badal, E., Bergada, M.M., Guillem, P.M., Pérez Tormo,
C., 2010. El Paleolitico superior en el Pais Velenciano. Novedades y perspectivas. El
Paleolitico superior peninsular. Novedades del siglo XXI, Barcelona, pp. 85–113.
Willis, K.J., Birks, H.J.B., 2006. What is natural ? The need for a long-term perspective in
biodiversity conservation. Science 314, 1261–1265.
Willis, K.J., Bennett, K.D., Birks, J.B., 1998. The late Quaternary dynamics of pines in
Europe. In: Richardson, D.M. (Ed.), Ecology and Biogeography of Pinus. Cambridge
University Press, pp. 107–136.

Documents pareils