Radiolarian record of the last 40000 years in the

Transcription

Radiolarian record of the last 40000 years in the
-_N_o_1_~-------
___________________________________o_c_E_A_N_O_L_O_G_I_C_A_A_C_T_A_1_9_8_9_-_v_o_L_._12__
Radiolarian record
of the last 40,000 years
in the Western equatorial Pacifie
Radiolaria
Glacial age
Western equatorial Pacifie
Sediments
Paleoecology
Radiolaire
Age glaciaire
Pacifique équatorial Ouest
Sédiments
Paléoécologie
Demetrio BOLTOVSKOY
Departamento de Ciencias Biol6gicas, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, 1428 Buenos Aires, and CONICET, Argentina.
Received 26/4/88, in revised form 12/9/88, accepted 20/9/88.
ABSTRACT
Polycystine radiolarians were studied in two box cores (ERDC 123 Bx and ERDC
129Bx) from the Western equatorial Pacifie Ocean (approx. l 0 S, 161°E), sampled at
3 cm intervals from top (ca. 0 to 4,000-6,000 YBP) to bottom (approx. 16,000 and
40,000 YBP, respectively). A total of 141 taxa were identified. Radiolarian assemblages
were qualitatively and quantitatively (relative abundances) very similar, both between
cores and between samples; Octopyle stenozona/Tetrapyle octacantha was by far the
most abundant form at alllevels, followed in decreasing proportions by Tholospyris
spp., Stylodictya multispina, Botryocyrtis scutum, and Didymocyrtis tetrathalamus. No
significant changes in the specifie composition of relative proportions of the taxa were
found in association with the 18,000 YBP Ievel. Slight evidence of an environmental
change ca. 25,000 YBP was suggested by peaks of two radiolarians which presently
characterize the more fertile Eastern equatorial Pacifie waters (0. stenozona/T. octacantha and Euchitonia/Dictyocoryne spp.), and by an increase in the relative contribution
of two colder- and deeper-water species below this level.
Oceanol. Acta, 1989, 12, 1, 79-86.
RÉSUMÉ
Radiolaires des derniers 40 000 ans dans les sédiments du Pacifique
équatorial Ouest
Les radiolaires polycystines ont été étudiés dans les sédiments prélevés au carottier
boîte (ERDC 123Bx et ERDC 129Bx) dans l'Océan Pacifique occidental (l 0 S, 161°E,
environ), échantillonnés à intervalles de 3 cm de la surface (ca. 0 à 4 000-6 000 ans)
jusqu'au fond (16000 et 40000 ans environ, respectivement). En tout, 141 taxa ont
été identifiés. Les assemblages de radiolaires sont qualitativement et quantitativement
(abondances relatives) très semblables, pour les carottes et les échantillons; Octopyle
stenozonafTetrapyle octacantha est de loin l'espèce la plus abondante à tous les niveaux,
suivie en proportions décroissantes par Tholospyris spp., Stylodictya multispina, Botryocyrtis scutum, et Didymocyrtis tetrathalamus. Les changements faunistiques (composition spécifique et proportions relatives des taxa) liés au niveau de 18 000 années sont
peu significatifs. Une faible évidence d'un changement écologique autour du niveau
de 25 000 années est suggérée par la fréquence de deux radiolaires qui caractérisent
au présent les eaux les plus fertiles du Pacifique équatorial Est (0. stenozona/T.
octacantha et Euchitonia/Dictyocoryne spp.), et par l'accroissement dans des contributions relatives de deux espèces d'eaux plus chaudes et plus profondes au-dessous ce
niveau.
Oceanol. Acta, 1989, 12, 1, 79-86.
sils and isotopie information have been used for these
reconstructions (e.g., CLIMAP, 1976; 1981; Moore et
al., 1980; 1981; Molfino et al., 1982; Mix, 1987), as a
result of which several general features of the climatic
pattern of this period have been defined: the onset of
the last glacial stage at approx. 30,000 years before the
present (YBP): cold (glacial) conditions between ca.
INTRODUCTION
During the past 20 years, a great deal of effort has
been devoted to the investigation of the climatic fluctuations that took place on the worldwide scale in the
Holocene-latest Pleistocene period. In the oceanic
realm, distributional data on most planktonic microfos0399-1784/89/01 79 8/$ 2.80/<0 Gauthier-Villars
79
D. BOLTOVSKOY
24,000 and 15,000 YBP, with a glacial maximum at
18,000 YBP; and a period of deglaciation between
15,000 and 8,000 YBP, centering at about 11,000 YBP.
Strongest and most consistent microplanktonic evidence of the glaciation maximum at 18,000 YBP has
been retrieved from subpolar to transitional sediments
where conspicuous shifts in the position of the polar
fronts are indicative of the variable influence of the cold
waters and ice-coverage (Lozano, Hays, 1976; Morley,
1977; Dow, 1978; Moore, 1978). Comprehensive
reports based on several microfossil groups and covering all major oceans (e.g., CLIMAP, 1976; 1981;
Moore et al., 1980; 1981; Molfino et al., 1982) have
concluded that evidences of lower temperatures, increased zonal wind-stress, upwelling and divergence
(mainly in eastern boundary currents and eastern equatorial areas) are present worldwide. In the Pacifie
Ocean, in addition to sorne large-scale surveys (e.g.,
Moore, 1978), detailed analyses of surface sediment
and downcore microfossil distributions have been carried out on materials from the eastern and northern
areas (Nigrini, 1970; Luz, 1973; Molina-Cruz, 1977;
1984; Pisias, 1978; Morley, Hays, 1979; Romine,
Moore, 1981; Sancetta, Silvestri, 1984; Boltovskoy,
Watanabe, 1986) where evidence of climatic changes
consistent with the above outline is readly detected
in the fossil record. On the other band, microfossil
Holocene-latest Pleistocene assemblages from the western part of the Pacifie have not been studied in detail.
The present work constitutes a preliminary attempt at
assessing the radiolarian responses to Holocene-latest
Pleistocene climatic changes in this area, and their
comparison with the events described for other regions.
torial Pacifie were used: ERDC 123 Bx (1 °3'S,
160°24.9'E, water depth: 2946m), and ERDC 129Bx
(0°3'S, 161°58.5'E, 4169m; see Fig. 1). Samples were
obtained at 3 cm intervals throughout both cores, treated with hydrogen peroxide and hydrochloric acid,
sieved through a 0.044 mm screen, and mounted on
permanent slides for microscopie examination. Between
400 and 600 radiolarian specimens were identified and
counted in each preparation, and the remainder of the
slide (or slides) was scanned in search of additional
taxa. Radiolarian preservation ranged from good to
excellent in all samples, and the assemblages were practically barren of non-Recent species. Ail data were
transformed into percentages for subsequent analyses
(original data of counts of taxa per sample are available
from the author on request).
Both cores used have been previously dated by means
of 14 C, and subjected to isotopie, radiometrie, accumulation rates, and mixing studies (Berger, 1977; Berger,
Killingley, 1982; Berger et al., 1977; 1978; Krishnamurthy et al., 1979; Vincent et al., 1981 a; b).
RESULTS
Faunal overview and comparison between cores
In total, 141 radiolarian taxa were identified (see
Appendix). Of these, 114 were recorded in both cores,
while 19 species were restricted to 129 Bx, and 8 to
123 Bx. None of these 27 taxa, however, reached abundances over 0.1% in any of the sampies; the 19 radio larians restricted to 129 Bx comprised, on the average,
0.04% of the entire radiolarian assemblage of each
sample, while the 8 restricted to 123 Bx-0.02%. Fourteen of these 27 species were recorded only once. Core
129 Bx reached considerably older sediments than
123 Bx (Fig. 1); only 7 (of the 19) radiolarians present
in 129 Bx only were restricted to these older samples
(n 08 7-14). Thus, there is a great similarity in the specifie
make up of each core, including the lower section of
129Bx.
MATERIALS
Two box cores retrieved during the Eurydice (ERDC)
expedition (Scripps Institution of Oceanography, University of California, San Diego) to the Western equa)(
...f
ro
,.,
~;l
~
u
0
0:
w
0
6
S!.
10
u
3
•.s
u
4.
x
0
IJ
0:
A
-
---------!:!J~oe.J.orw.-------
,..,...--
- - Ecu.!!...,Souf!lt"urr. -
--
.::;:=--.h·-~
o.s
•U
l.S
2U
'·'
..
lU ll.S
10S
JU 1'U
)6.\
---- ~-
:;
~/ ~
10"
-
---J-29
~ -----~~·l..O~·~----==----/'
_ 123 B.!--J '/
----- s
.. ____________
S Equat. turr.
2
14..\
~-----==-- N (QYat Curr.
w
u
7
10
Il
12
t:.
w
<!)
IJ.S
.~.s
•
~
0
0
~
"
Il
9
0...
ID
M
z
...5
)(
ID
en
0"
10"
#
J
.5
Il
11.!t
7
21.!t
8
Jl.'5o
9
J7.i
10
JO.S
Il
JH
12
JB
IJ
l9.!t
14
zo
0:
0...
0...
4.
u
:!; 30
o•
10"
40
M.O•l
....
llO"
160"W
. 80
Figure 1
Location of cores, vertical distribution and approximate
ages of the samples studied; shaded areas represent depth
of the mixed layer (ages and depths of mixed layers are
according to Krishnamurthy et al., 1979). A: surface currents and fronts in the Western equatorial Pacifie; B: areas
of dominance of modern microplanktonic fauna; C: areas
of dominance of microplanktonic fauna at 18,000 YBP (B
and Cafter Moore et al., 1981).
HOLOCENE-PLEISTOCENE PACIFIC RADIOLARIA
.i
Figure 2
Cumulative percentage distributions of the ten most abundant species.
.f
~
K
::
i
Il
!
~
c
.':i
i
i
~
In agreement with many previous reports (e.g., Takahashi, Honjo, 1981; Boltovskoy, Jankilevich, 1985; Boltovskoy, 1987), specifie diversities were very high (see
below), and "fauna-making" forms were relatively few:
only 43 radiolarians reached ~ 1% of the entire assem-
5
~
!
!ti
Il
!0
;
ô
.
,,...
i
c &~
,;
!
'
:
r
!~'
~
~
i
~
!:J'
,;
..'
~
i!i
.l [i.
......
·l·
~
•
ci
blage in one or more samples. Abundant species were
still fewer: between 11 and 18 species comprised > 80%
of the entire assemblage of each sample (Fig. 2). A few
forms were absolutely dominant in the entire collection:
Octopyle stenozonafTetrapyle octacantha ranged first in
Table
Comparison of average radiolarian abundance ranks in the two cores studied (included are species which comprise 90% of the entire assemblages;
refer to Appendix for species 10 numbers).
123 Bx
129 Bx
Ali samples
Ali samples
Rank
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Samples 7-14
Av.
Cumul.
Av.
Cumul.
Av.
Cumul.
ID No.
%
%
ID No.
%
%
ID No.
%
%
53***
73***
49***
139***
50***
46***
38**
116**
56**
42**
58
55***
39**
76**
36***
40**
59**
75**
66*
86**
61**
83**
37*
52**
91**
79**
45*
113
62*
118**
47
115
24.6
12.4
10.0
5.6
4.2
3.4
2.8
2.6
2.4
2.3
1.9
1.5
1.5
1.4
1.4
1.4
1.3
24.6
37.0
47.0
52.6
56.8
60.2
63.0
65.5
67.9
70.3
72.2
73.7
75.2
76.6
78.0
79.4
80.7
81.8
82.8
83.9
84.9
85.9
86.8
87.7
88.5
89.3
89.9
90.4
90.8
91.2
91.5
91.9
53***
73***
49***
139***
50***
46***
56**
39**
42**
116**
38**
55***
76**
40**
36***
59**
37*
86**
45*
113*
75**
58
61**
83**
52**
66*
131*
48
91**
2
79**
118**
25.6
12.3
10.3
5.2
3.7
3.1
2.9
2.5
2.5
2.4
2.4
1.9
1.7
1.4
25.6
37.9
48.2
53.3
57.0
60.1
63.0
65.4
67.9
70.4
72.7
74.6
76.2
77.6
78.7
79.8
80.9
81.7
82.5
83.3
84.1
84.9
85.6
86.3
86.9
87.5
88.2
88.8
89.3
89.8
90.2
90.6
53
73
49
139
50
56
39
38
46
27.8
12.7
9.9
4.1
3.9
2.6
2.6
2.5
2.4
2.2
2.2
1.6
1.4
1.3
1.3
1.0
0.9
0.9
0.8
0.8
0.7
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.5
0.5
0.4
27.8
40.5
50.4
54.5
58.4
61.0
63.6
66.1
68.5
70.7
72.9
74.5
75.9
77.2
78.5
79.5
80.4
81.3
82.1
82.9
83.6
84.4
85.1
85.8
86.5
87.2
87.8
88.4
89.0
89.5
89.9
90.4
1.1
1.1
1.0
1.0
1.0
0.9
0.9
0.9
0.7
0.7
0.4
0.4
0.4
0.4
0.4
1.1
1.1
1.0
0.9
0.8
0.8
0.8
0.8
0.7
0.7
0.6
0.6
0.6
0.6
0.5
0.5
0.5
0.4
55
42
116
40
37
76
36
48
113
86
45
61
83
2
131
58
75
66
59
118
41
91
79
Asterisks: species ranks in 123 Bx and in 129 Bx: ••• equal abundance ranks in both cores; •• average abundances within
abundances within ± 8 ranks.
81
± 5 ranks;
• average
D. BOLTOVSKOY
>C
·~
IZJ J
IZJ 1
12J 6
12J 8
129 6
129 1
12J Il
/2J 12
/2J /J
/2J'2
129 2
129 J
129 4 .
123 7
...
)(
(l)
(l)
~
"'
~
Figure 3
Cluster of samples based on the 43 radio/arian species
present at the ~ 1% leve! of relative abundance in one or
more samp/es; percent similarity index (PSI, see Venrick,
1983) and average, weighted linkage (WPGMA, see Sneath,
Sokal, 1973).
0
.
,123 /0
123 4
12J 9
129 5
129 7
12J 5
129 8
1291/
12912
12914
129 12
129 9
129 10
v.
0
<D
PSI
"'<D
Il
g
...."'
1:§
a:
0..
0..
<(
30
u
~
40
0
"'
Downcore trends
ali the samples, followed by Tholospyris spp., Stylodictya multispina, Botryocyrtis scutum, Didymocyrtis tetrathalamus, Spongurus spp., etc. (see Table and Fig. 2).
The Table lists, for both cores, the taxa needed to
reach 90% of the individuals (averaged data for ali
the samples within each core), in order of decreasing
abundance. Over half (approximately 60%) of the radiolarians are represented by taxa whose relative abundances are idcntical in 123 Bx and in 129 Bx; the
remaining 30%, comprising species of moderate to very
low abundance (approximately 3 to 0.3%), also follow
a remarkably similar trend. Pairwise t-test analyses
for the 43 radiolarians which reached the 1% (relative
abundance) level indicate that only 4 (out of these 43)
have significantly (P<0.05) different mean abundances
in 123 Bx and in 129 Bx: Acrosphaera spinosa (average
relative abundance in 123 Bx: 0.15%, and in 129 Bx:
0.48%), Euchitonia/Dictyocoryne spp. (1.47 and 2.49%),
Centrobotrys thermophila (0.01 and 0.32%), and
Lithelius spp. (1.91 and 0.76%). For comparative
purposes, Table 1 also includes a species ranking for
the older section of core 129Bx (samples 7-14). Again,
the similarity with 123 Bx and with 129 Bx as a whole
is very high. The data illustrated in Figure 2 also
support this assessment: the percentage contributions
of the 10 dominant taxa included are very even
throughout both cores; only samples 9-10 of 129 Bx
show a noticeable fluctuation (increase) in the relative
abundances of O. stenozona/T. octacantha and
Euchitoniaf Dictyocoryne spp.
Most of the dominant taxa recorded comprise equatorial to subtropical radiolarians (cf Boltovskoy, Jankilevich, 1985; Boltovskoy, 1987), and a few have been
reported as cosmopolitan or quasi cosmopolitan (e.g.,
Stylodictya multispina, Larcopyle buetschlii, Spongodiscus resurgens; cf Boltovskoy, 1987). Spongurus spp.,
Arachnocorallium calvata group, Lithelius spp. and
?Pylospyra octopyle are most probably heterogeneous
counting groups including several morphologically
similar forms (see App~ndix), and are therefore of
limited use for paleoecological analyses.
Figure 3 illustrates the faunal affinities between ali the
samples investigated. Clearly, chronological coherence
is lacking throughout 123 Bx, and in 129 Bx down to
sample no. 8; geographical differences in the provenance of the samples are poorly reflected by the fauna.
Although their similarities with the overlying deposits
are very high and their internai coherence low, samples
9 through 14 of 129 Bx cluster in two isolated groups.
A few species have somewhat higher relative abundances in this interval than in the rest of the collection,
and vice versa (Fig. 4). Among the former, Spongocore
cylindrica is a subsurface radiolarian (and, therefore,
somewhat more cold-tolerant than the upper-layer
forms), while Stylodictya aculeata characterizes the
subantarctic and Antarctic waters (Petrushevskaya,
1967; Boltovskoy, Vrba, 1989). The uppermost part of
this section (samples 9-10) is also characterized by
~
it
~
~
~
~
i
~
t
~
~
~
1
J
~
Figure 4
Percentage distributions of the five species with noticeably different
abundances in samples younger and aider than approximately 23,000
YBP.
82
HOLOCENE-PLEISTOCENE PACIFIC RADIOLARIA
relatively noticeable peaks of two forms characteristic
of the more productive eastern tropical Pacifie area:
O. stenozonajT. octacantha and Euchitonia/Dictyocoryne spp. (cf. Boltovskoy, Jankilevich, 1985; see below
and Fig. SA).
40
A
JO
'/, 20
10
DISCUSSION
0
5
Moore et al. (1980), on the basis of a comprehensive
study of the Recent vs. 18,000 YBP distribution patterns of several microfossil groups, concluded that the
glacial-age equatorial Pacifie was 0-4°C colder than at
present and that greatest cooling occurred in the
extreme eastern and western reaches of this zone; in
August the area of cores ERDC 123 Bx and ERDC
129 Bx was approx. 2-4°C cooler than toda y (in February, however, temperatures were allegedly somewhat
warmer). Samples 7 and 8 of 129 Bx are located just
above and below the 18,000 YBP leve! (Fig. 1); our
results suggest that these assemblages are not significantly different from the rest of the collection. This
conclusion is further supported by the data plotted in
Figure 5, including the relative abundances of severa!
radiolarian taxa bearing clear ecological affinities. The
8 cold-water taxa are very rare throughout both
sequences, barely reaching 1% of the entire radiolarian
assemblage; oscillations in these extremely low values
are most probably negligible.
Lower glacial-age temperatures at the equator have
been attributed not only to the advection of colder
waters, but also to more active divergence (Moore,
1978; Moore et al., 1980); thus, in the 18,000 YBP
sediments studied, one should not only expect higher
numbers of cool-water radiolarians, but also an increase in the species associated with higher production and
a shallower thermocline. Boltovskoy and Jankilevich
(1985) found that O. stenozonajT. octacantha is associated with the more productive divergent waters of the
South Equatorial Current, as compared with those of
the less fertile Equatorial Countercurrent and the North
Equatorial Current; this result is in good agreement
with the findings of Moore ( 1978), who reported that
a single species, O. stenozona/T. octacantha (Tetrapyle
octacantha, in Moore, op. cit.) dominates the tropical
"factor", which distribution clearly defines the eastern,
more productive areas of the tropical Pacifie. In his
comparative 18,000 YBP data set, Moore (1978) found
that this taxon increased dramatically covering the
entire tropical Pacifie belt (see Eastern tropical region
in Fig. 1 C). This increased relative abundance of 0.
stenozonajT. octacantha at 18,000 YBP declined at the
expense of an increase in the contribution of six Western Pacifie "factor" species. Our results show that
the expected peak of the relative abundance of 0.
stenozonajT. octacantha at 18,000 YBP, and the decrease of the six members of the Western Pacifie "factor"
are absent from the sequences analyzed (Fig. 5 A).
Molina-Cruz (1984) reported that Acrosphaera ( =Polysolenia) myrrayana characterizes upwelling areas fed by
equatorial waters; this species was recorded in only
three of the 27 samples studied (123 Bx: no. 10; 129 Bx:
n08 6 and 11), and never exceeded 0.3% of the total
fauna.
~
B
'1.
0
l
'/,
c
1
0
8
'/,
D
''
.
\.,/
l
0
O.i
0.5
E
0.4
---J29Bx
Figure 5
Plots of severa/ radiolarian assemblage parameters. Data for samples
encompassed by the mixed layer (samples 1-3 in 123 Bx, and 1-2 in
129 Bx) have been averaged. A: Moores's (1978) Eastern tropical
Pacifie (Octopyle stenozona/Tetrapyle octacantha, upper curves), and
Western tropical Pacifie species (Euchitonia elegans/E. furcata, Acrosphaera ( = Polysolenia) spinosa, Didymocyrtis tetrathalamus, Stylochlamydium asteriscus, Dictyocoryne profunda, and Spongaster
tetras, /ower curves); B: EuchitoniajDictyocoryne spp.; C: Boltovskoy's (1987) cold-water radiolarians (? Cladoscenium ancoratum,
Pseudocubus obeliscus, Trisulcus sp. aff. T. testudus, Dictyophimus
spp., Botryostrobus aquilonaris, Phormostichoartus corbula, Siphocampe arachnaea, and S. lineata); D: Ali Plagoniidae; E: NassellariajSpumellaria ratio; F: Specifie diversity (Shannon, Weaver, 1949;
notice differences in sca/es).
Higher relative contributions of Nassellaria in general,
and of the Plagoniidae in particular, have been reported
to reflect colder (in sorne cases deeper) waters and/or
shallower mixed layer conditions (Kling, 1979; Boltovskoy, Jankilevich, 1985; Boltovskoy, 1987; Dworetzky,
Morley, 1987); the corresponding fluctuations recorded
in cores 123 Bx and 129 Bx are of very low magnitude
and do not show definable trends; expected peaks
around 18,000 YBP are also absent (Fig. 5 D, E).
Radiolarian indicator groups of the Pacifie tropical,
Western Pacifie, subantarctic and transitional "factors"
have been defined by Moore (1978); and of equatorial,
Peru current-oxygen minimum, and subtropical conditions-by Romine and Moore (1981); plots of the relative abundances of these radiolarian groups (not
shown) vary within rather narrow margins and strongly
suggest random sample-to-sample variations, rather
than a more or less structured cycle.
83
D. BOLTOVSKOY
The above-discussed conclusions concerning cooling of
the Western equatorial Pacifie waters during the last
glacial age are based on a wide spectrum of data and
on ample geographie coverage. Furtherrnore, isotopie
evidence seems to also support these findings (e.g.,
Berger et al., 1978; Vincent et al., 1981 a; it should be
noted, however, that in extrapolar assemblages, very
significant offsets have been observed between ô 18 0
maxima and abundance peaks of radiolarian taxa characteristic of the last glacial maximum: Labeyrie et al.,
1987). Our restricted data base, on the other band,
casts sorne doubt on the influence of a 2-4°C shift in
the surficial waters of this area on the corresponding
sedimentary radiolarian record. Our present understanding of fertility-related changes in radiolarian
faunas is considerably poorer than that of their temperature-induced modifications; it is conceivable that
subtle variations associated with increased production
at 18,000 YBP went unnoticed in our analyses. Our
more detailed downcore resolution (i.e., a 0 to
40,000 YBP sequence, rather than only two points in
time: 0 and 18,000 YBP), a more thorough faunal
inventory (most of the radiolarian investigations used
for the paleoclimatic reconstructions surveyed dealt
with approximately 40 selected taxa), and, probably,
sorne differences in the interpretation of the radiolarian
taxa might be partly responsible for the disagreements
noticed. This result, however, is in accordance with the
conclusion of Moore et al. (1981) despite the Recent
vs. glacial-age climatic differences in the Western
equatorial Pacifie, faunal differences between the
corresponding microfossil assemblages are minimal.
One interesting feature of our results is the (not entirely
consistent) evidence of environmental changes around
26,000 to 24,000 YBP: samples 9 through 14 of 129 Bx,
which host somewhat enhanced percentages of two
cold- and deeper-water taxa (Fig. 4) cluster separately
from the rest of the collection (Fig. 3), and two radiolarians typical for the more productive east equatorial
waters peak at approximately 30,000 to 24,000 YBP
(0. stenozona/T. octacantha and Euchitonia/Dictyocoryne spp., Fig. 5 A, B). A plausible explanation for
this pattern is hard to envision. Recent reports have
questioned both the timing of the last glacial maximum
(e.g., Livingstone et al., 1987; Heine, 1987; Clapperton,
1987), and its synchronicity even in closely spaced
regions· (Livingstone et al., 1987); yet an offset of
almost 10,000 years is highly unlikely. According to
more conservative hypothesis, these results point to an
independent event, previous to the 18,000 YBP glacial
maximum. Further detailed downcore analyses in this
area are needed to confirrn these findings.
Acknowledgements
REFERENCES
Besnon R. N., 1966. Recent Radiolaria from the Gulf of California.
Ph. D. Dissert. Univ. Minnessota, Minneapolis, Minnessota, USA,
578 p.
Berger W. H., 1977. Deep-sea carbonate and the deglaciation preservation spike in pteropods and Foraminifera, Nature, 269, 301-303.
Berger W. H., Killingley J. S., 1982. Box cores from the equatorial
Pacifie: 14C sedimentation rates and benthic mixing. Mar. Geol., 45,
93-125.
Berger W. H., Johnson R. F., Killingley J. S., 1977. "Unmixing" of
the deep-sea record and the deglacial meltwater spike. Nature, 269,
661-663.
Berger W. H., Killingley J. S., Vincent E., 1978. Stable isotopes in
deep-sea carbonates: box core ERDC-92, west equatorial Pacifie,
Oceanol. Acta., 1, 2, 203-216.
Boltovskoy D., 1987. Sedimentary record of radiolarian biogeography
in the equatorial to antarctic western Pacifie Ocean. Micropaleontology, 33, 267-281.
Boltovskoy D., Jankilevicb S. S., 1985. Radiolarian distribution in
east equatorial Pacifie plankton, Oceanol. Acta, 8, 1, 101-123.
Boltovskoy D., Riedel W. R., 1980. Polycystine Radiolaria from the
Southwestern Atlantic ocean plankton, Rev. Esp. Micropaleontol.,
12, 99-146.
Boltovskoy D., Riedel W. R., 1987. Polycystine Radiolaria from the
California Current region: seasonal and geographie patterns. Mar.
Micropaleontol., 12, 65-104.
Boltovskoy D., Vrba A., 1989. Classification and geographie distribution of Stylodictya-type radiolarians, Micropaleontology, 34, 362-370.
Boltovskoy E., Watanabe S., 1986. Quaternary stratigraphy of two
cores off the coast of Peru, in: Quaternary of South America and
Antarctic Peninsula, Selected Papers of the International Symposium
on Sea-Level Changes and Quaternary Shore/ines, edited by
J. Rabassa, 4, Balkema, Rotterdam, 27-44.
Clapperton C. M., 1987. Maximal extent of "Wisconsin" glaciation
in the Equadorian Andes, Abstracts XII INQUA Congress, Ottawa,
Canada.
CLIMAP Project Members Oeader Mclntire A.), 1976. The surface
of the ice-age earth, Science, 191, 1131-1137.
CLIMAP Project Members Oeader Mclntire A.), 1981. Seasonal
reconstructions of the earth's surface at the last glacial maximum,
Geol. Soc. Am. Map. Chart Ser., MC-36.
Dow R. L., 1978. Radiolarian distribution and the late Pleistocene
history of the southeastern Indian Ocean, Mar. Micropaleontol., 3,
203-227.
Dworetzky B. A., Morley J. J., 1987. Vertical distribution of Radialaria in the eastern equatorial Atlantic: analysis of a multiple series
of closely-spaced plankton tows, Mar. Micropaleontol., 12, 1-19.
Haeckel E., 1987. Report on the Radiolaria collected by H.M.S.
"Challenger" during the years 1873-1876, Rep. Sei. Res. Voyage
H.M.S. Challenger, 1873-1876, Zoo/., 18, 1-1803.
Heine K., 1987. Late Quaternary climatic changes of the southern
hemisphere, Abstracts XII INQUA Congress, Ottawa, Canada.
Hollande A., Enjumet M., 1960. Cytologie, évolution et systématique
des Sphaeroidés (radiolaires). Arch. Mus. Nat!. Ilist. Nat. Paris, 1,
1-134.
Kling S. A., 1979. Vertical distribution of po1ycystine radiolarians in
the central north Pacifie, Mar. Micropaleonto/., 4, 295-318.
Krisbnamurtby R. V., Lai D., Somayajulu B. L. K., Berger W. H.,
1979. Radiometrie studies of box cores from the Ontong-Java plateau, Proc. Ind. Acad. Sei., 88A, II, 273-283.
Labeyrie L D., Fairbanks R., Duplessy J.-C., Shackleton N., Labracberie M., Pichon J.-J., Charles C., Hays J. D., Burckle L. H., 1987.
The foraminifera1 isotopie record in the Southern Ocean for the last
climatic cycle, Abstracts XII INQUA Congress, Ottawa, Canada.
Livingstone D. A., Maley J., Sowunmi N. A., Burney D., Bailey P.,
Burney L, Tucker A., Maitima J. M., 1987. New pollen diagrams
for tropical Africa, Abstracts XII INQUA Congress, Ottawa, Canada.
Lozano J. A., Hays J. D., 1976. Relationship of radiolarian assemblages to sediment types and physical oceanography in the Atlantic and
western Indian Ocean sectors of the Antarctic Ocean, Mem. Geol.
Soc. Am., 145, 303-336.
Luz B., 1973. Stratigraphie and paleoclimatic analysis of late Pleistocene tropical southeast Pacifie cores (with an appendix by N. J.
Shackleton), Quat. Res., 3, 56-72.
MixA. C., 1987. The oxygen-isotope record of glaciation, in: North
America and adjacent oceans during the last deglaciation, edited by
W. F. Ruddiman and H. E. Wright, Geol. Soc. Am. The Geology
of North America, K-3, 111-135.
The author is grateful to Drs. C. A. Nigrini and
J. Caulet for critically reading the manuscript.
Drs. William R. Riedel and W. H. Berger kindly supplied the samples used in this study from the core
facility of the Scripps Institution of Oceanography,
which is supported by the University of California
and ONR Contract N00014-85-C-0104. The skillful
technical assistance of Adriana Perez is gratefully acknowledged.
84
HOLOCENE-PLEISTOCENE PACIFIC RADIOLARIA
Molfino B., Kipp N. G., Morley J. J., 1982. Comparison of foraminiferal, coccolithophorid and radiolarian paleotemperature equations:
assemblage coherency and estimate concordancy, Quat. Res., 17,
279-313.
APPENDIX
Systematic reference list
The higher-level systematics adopted follows the system proposed by
Riedel (1971) and Riedel and Sanfilippo (1977). Most of the taxa
recorded have been adequatley described and figured by previous
authors; this reference list gives the criteria followed for the identification of these forms (in order to save space, only the publication
where the corresponding species was mentioned is cited, omitting
page, plate and figure numbers). Each name is preceded by the
respective ID number. Codes for bibliographie references are as
follows:
Ben (1966): Benson (1966);
Bo (1987): Boltovskoy (1987);
Bo and Ja (1985): Boltovskoy and Jankilevich (1985);
Bo and Ri (1980): Boltovskoy and Riedel (1980);
Bo and Ri (1987): Boltovskoy and Riedel (1987);
Ha (1987): Haeckel (1987);
Ho and En (1960): Hollande and Enjumet (1960);
Ni (1967): Nigrini (1967);
Ni and Mo (1979): Nigrini and Moore (1979);
Pe (1967): Petrushevskaya (1967);
Pe (1971): Petrushevskaya (1971);
Re (1976): Renz (1976);
Stand Re (1971): Strelkov and Reshetnjak (1971).
Spumellaria
Collosphaeridae
1
Acrosphaera murrayana (Haeckel). Ni and Mo (1979; as Polysolenia murrayana); Bo and Ri 1987.
2
Acrosphaera spinosa (Haeckel). Bo and Ri (1987).
3
Collosphaera huxleyi Mueller. Bo and Ja (1985).
Collosphaera macropora Popofsky. Bo and Ja (1985).
4
5
Collosphaera polygona Haeckel. Stand Re (1971); Bo and Ri
(1987).
Collosphaera tuberosa Haeckel. Bo and Ja (1985).
6
7
Siphonosphaera martensi Brandt. Bo and Ri (1980).
8
Siphonosphaera polysiphonia Haeckel. Bo and Ri ( 1980).
9
Solenosphaera polymorpha (Haeckel). Bo and Ja (1985).
10
Solenosphaera quadrata Brandt. Bo and Ja (1985).
Actinommidae
11
Actinomma leptodermum (Joergensen). Bo and Ja (1985).
Actinomma sol Oeve. Bo and Ri (1980).
12
13
Actinommid sp. A. Bo and Ri (1987).
14
Axoprunum stauraxonium Haeckel. Ni and Mo (1979).
Carposphaera acanthophora (Popofsky). Ben (1966).
15
Cenosphaera spp.
16
17
Druppatractus irregularis Popofsky. Bo and Ri (1987).
18
Echinomma popofskii Petrushevskaya. Pe (1967).
19
Heliaster hexagonium Hollande et Enjumet. Ho and En
(1960); Bo and Ri (1987).
20
Heliosoma echinaster Haeckel. Ho and En (1960) (as Tetrape·
talon elegans); Bo and Ri (1987).
21
Hexacontium sp. aff. Hexalonche hystricina Haeckel. Bo and
Ri (1987).
22
Hexacontium armatum ClevefHexacontium hostile Cleve. Bo
and Ri (1980). Remarks: included are many spherical radiolarians with six main spines and usually three concentric shells;
the surface of the outer sphere is thorny, spiny or at !east
postulose, with or without hexagonal frames around the
pores.
23
Hexacontium entacanthum Joergensen. Bo and Ri (1980); Bo
and Ri (1987).
Hexacontium hystricina (Haeckel). Ha (1987) (as Hexalonche
24
hystricina sp. nov.); Bo (1987).
Hexacontium laevigatum Haeckel. Ben (1966); Bo and Ri
25
(1987).
26
?Prunulum coccymelium Haeckel. Bo (1987).
27
S aturnalis circularis Haeckel. Ni ( 1967).
?Spongoplegma sp. Bo and Ri (1987).
28
29
Spongosphaera streptacantha Haeckel. Bo and Ja (1985); Bo
and Ri ( 1987).
30
Stylosphaera melpomene Haeckel. Bo and Ja (1985).
31
Styptosphaera spumacea Haeckel 1987. Bo and Ri (1987).
32
Thecosphaera inermis (Haeckel). Bo and Ri (1980); Bo and
Ri (1987).
33
Thecosphaera phaenaxonia Haeckel. Bo and Ja ( 1985).
Xyphostylus trogon (Haeckel). Bo and Ja (1985).
34
Spongodiscidae
Amphirhopalum ypsilon Haeckel. Ni and Mo (1979); Bo and
35
Ri (1987).
36
Dictyocoryne profunda Ehrenberg. Bo and Ri (1980); Bo and
Ri (1970).
Dictyocoryne truncatum (Ehrenberg). Ni and Mo (1979); Bo
37
and Ri ( 1987).
Molina-Cruz A., 1977. Radiolarian assemblages and their relationship
to the oceanography of the subtropical southeastern Pacifie, Mar.
Micropaleontol., 2, 315-352.
Molina Cruz A., 1984. Radiolaria as indicators of upwelling processes: the Peruvian connection, Mar. Micropaleontol., 9, 53-75.
Moore T. C., 1978. The distribution of radiolarian assemblages in
the modern and ice-age Pacifie, Mar. Micropaleontol., 3, 229-266.
Moore T. C., Burckle L. H., Geitzenauer K., Luz B., Molina-Cruz
A., Robertson J. H., Sacbs H., Sancetta C., Thiede J., Thompson P.,
Wenkam C., 1980. The reconstruction of sea surface temperatures
in the Pacifie Ocean of 18,000 B.P., Mar. Micropaleontol., 5, 215247.
Moore T. C., Hutson W. H., Kipp N., Hays J. D., Prell W., Thompson
P., Bodeo G., 1981. The biological record of the ice-age ocean,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 35, 357-370.
Morley J. J., 1977. Upper Pleistocene variations in the South Atlantic derived from a quantitative radiolarian analysis: accent on the
last 18,000 years, Ph. D. Dissert. Columbia Univ. NY, USA, 344p.
Morley J. J., Hays J. D., 1979. Cycladophora davisiana: a stratigraphie tool for Pleistocene north Atlantic and interhemispheric
correlation, Earth Planetary Sei. Lett., 44, 383-389.
Nigrini C.A., 1967. Radiolaria in pelagie sediments from the Indian
and Atlantic oceans. Bull. Scripps lnst. Oceanogr., 11, 1-125.
Nigrini C. A., 1970. Radiolarian assemblages in the North Pacifie
and their application to a study of Quaternary sediments in core
V20-130, Mem. Geol. Soc. Am., 126, 139-183.
Nigrini C. A., Moore T. C., 1979. A guide to Modern Radiolaria,
Spec. Pub!. 16, Cushman Found. Foram. Res., S1-S142+N1-N106.
Petrushevskaya M. G., 1967. Radiolyarii otryadov Spumellaria i
Nassellaria Antarkticheskoi oblasti (po materialam Sovetskoi
Antarkticheskoi Ekspeditsii), Issled. Fauny Morei, IV (XII), Rez.
Biol. Issled. Sov. Ant. Eksped., 1955-1958, 3, 5-186.
Petrushevskaya M. G., 1971. Radiolyarii Nassellaria v planktone
Mirovogo Okeana. Radiolyarii Mirovogo Okeana po Materialam
Sovetskikh Ekspeditsii, Issled. Fauny Morei IX (XVII), Rez. Biol.
Issled. Sov. Ant. Eksped. 1955-1958, 5-294.
Pisias N., 1978. Paleoceanography of the Santa Barbara basin during
the last 8000 years, Quat. Res., 10, 366-384.
Renz G. W., 1976. The distribution and ecology of Radiolaria in the
central Pacifie: plankton and surface sediments, Bull. Scripps Inst.
Oceanogr., 22, 1-267.
Riedel W. R., 1971. Systematic classification of polycystine Radiolaria, in: The micropaleontology of oceans, edited by B. M. Funnell
and W. R. Riedel, Cambridge University Press, London, 649-661.
Riedel W. R., Sanfilippo A., 1977. Cainozoic Radiolaria. in: Oceanic
micropaleontology, edited by A. T. S. Ramsay, Academie Press,
London, 847-912.
Romine K., Moore T. C., 1981. Radiolarian assemblage distributions
and paleoceanography of the eastern equatorial Pacifie Ocean during
the last 127,000 years, Palaeogeogr. Palaeoclimatol., Palaeoecol., 35,
281-314.
Sancetta C., Silvestri S., 1984. Diatom stratigraphy of the late Pleistocene (Bruhnes) subarctic Pacifie, Mar. Micropaleontol., 9, 263-274.
Shannon C. E., Weaver W., 1949. The mathematical theory of communication, University Illinois Press, Urbana, 125 p.
Sneath P. H. A., Sokal R. R., 1973. Numerical taxonomy, Freeman
and Co., San Francisco, 573 p.
Strelkov A. A., Reshetnjak V. V., 1971. Kolonialnye radiolyarii
Spumellaria mirovogo okeana. Radiolyarii Mirovogo Okeana po
Materialam Sovetskikh Ekspeditsii, Issled. Fauny Morei IX (XVII),
Rez. Biol. Issled. Sov. Ant. Eksped. 1955-1958, 295-418.
Takahashi K., Honjo S., 1981. Vertical flux of Radiolaria: a taxonquantitative sediment trap study from the western tropical Atlantic,
Micropaleontology, 27, 140-190.
Venrick E., 1983. Percent similarity: the prediction of bias, Fish.
Bull., 81, 375-387.
Vincent E., Killingley J. S., Berger W. H., 1981 a. Stable isotopes in
benthic Foraminifera from the Ontong-Java plateau, box cores
ERDC 112 and 123, Palaeogeogr., Palaeoclimatol. Palaeoecol., 33,
221-230.
Vincent E., Killingley J. S., Berger W. H., 1981 b. Stable isotope
composition of benthic Foraminifera from the equatorial Pacifie,
Nature, 289, 639-642.
85
D. BDLTOVSKOY
Euchitonia elegans (Ehrenberg)/Euchitoniafurcata Ehrenberg.
Ni and Mo (1979); Bo and Ri (1987) (specimens included
under both names).
39
Euchitonia/Dictyocoryne spp. Bo and Ja (1985) (as Spongodiscus sp. A), Bo and Ri (1987) (as "Euchitonia" spp.).
Remarks: juvenile and incomplete forms resembling species
of Dictyocoryne and Euchitonia.
40
Spongaster tetras tetras Ehrenberg. Ni and Mo (1979).
41
Spongocore cylindrica (Haeckel). Bo and Ri (1980); Bo and
Ri (1987).
42
Spongodiscus resurgens Ehrenberg. Bo and Ri (1980); Bo and
Ri (1987).
43
Spongolena sp. Re (1976); Bo and Ri (1987).
44
Spongopyle osculosa Dreyer. Ben (1966).
45
Spongotrochus glacialis Popofsky. Bo and Ri (1980); Bo and
Ri (1987).
46
Spongurus spp. Remarks: most of these specimens conform
weil the illustration of Spongurus sp. aff. S. elliptica of Boltovskoy and Riedel (1987) (pl. 2, fig. 27); a few others, however,
seem to resemble Spongurus sp. of Petrushevskaya, 1967
(p. 33, pl. 16, fig. 3; pl. 26, fig. 1).
47
Stylochlamydium asteriscus Haeckel. Bo and Ri (1980).
48
Stylodictya aculeata Joergensen. Pe (1967).
Stylodictya multispina Haeckel. Bo and Ri (1980).
49
l.:OCC0<1Jscu1ae
50
Didymocyrtis tetrathalamus (Haeckel). Bo and Ja (1985); Bo
and Ri (1987).
51
?Lithocyclia heteropora Haeckel. Bo (1987).
Phacodiscidae
52
Heliodiscus asteriscus Haeckel. Bo and Ri (1987).
Pyloniidae
53
Octopyle stenozona Haeckel/Tetrapyle octacantha Mueller. Bo
and Ja (1985); Bo and Ri (1987).
54
Phorticium clevei (Joergensen), group. Bo and Ri (1980).
55
Pylolena armata Haeckel. Bo and Ja (1985).
Litheliidae
56
Larcopyle buetschlii Dreyer. Ni and Mo (1979); Bo and Ri
(1987).
Larcospira quadrangu/a Haeckel. Bo and Ja (1985); Bo and
57
Ri (1987).
Lithelius spp. Remarks: this group combines many spiral
58
and/or irregular forms similar to Tholospyra cervicornis,
Lithelius minor (cf. Boltovskoy and Jankilevich, 1985),
Lithelius spiralis (cf. Boltovskoy and Riedel, 1980), etc.
?Py/ospyra octopyle Haeckel. Ni and Mo (1979). Remarks:
59
specimens included under this name have a highly variable
aspect and probably do not constitute a natural group.
Tholoniidae
60
Cubotholus spp. Remarks: probably closely related to the
species described by Benson (1966) as Cubotholus sp. aff. C.
octoceras Haeckel (p. 260, pl. 17, fig. 8).
Nassellaria
Spyrida
61
Acanthodesmia vinculata (Mueller). Bo and Ri (1987).
Amphispyris reticulata (Ehrenberg). Bo and Ri (1987).
62
Cephalospyris canee/lata Haeckel. Bo and Ri (1987).
63
64
Giraffospyris circumjlexa Goll. Bo and Ri (1987).
65
Lophospyris pentagona pentagona (Ehrenberg). Ni and Mo
(1979); Bo and Ri (1987).
LophospyrisfPhormospyris spp. Bo and Ri (1987).
66
Neosemantis distephanus (Haeckel). Bo and Ri (1987).
67
Nephrospyris reni/la Haeckel. Bo and Ri (1987).
68
Phormospyris stabilis scaphipes Haeckel. Bo and Ri (1987).
69
Phormospyris stabilis stabilis (Go!!). Bo and Ri (1987).
70
Sethophormis rotula Haeckel. Ha (1987).
71
Tholospyris sp. aff. T. stabilis antarctica Ni and Mo (1979).
72
Tholospyris spp. Remarks: Severa! D-shaped sagittal rings
73
(with the exception of Zygocircus productus, see below), and
the species referred to as Tholospyris sp. 2 in Boltovskoy and
Riedel, 1987, p. 99, pl. 3, fig. 21.
Tholospyris tripodiscus Haeckel. Bo and Ri (1987).
74
Zygocircus productus (Hertwig). Bo and Ri (1987).
75
Plagonüdae
76
Arachnocorallium calvata (Haeckel) group. Remarks: most of
the specimens included in this category are in good conformity with Boltovskoy and Riedel's (1987) illustration (pl. 3,
fig. 24), but morphologie variability within this counting
group is very high.
Callimitra carolotae Haeckel. Bo and Ri (1987).
77
?Cladoscenium ancoratum Haeckel. Pe (1971).
78
Clathrocanium coarctatum (Ehrenberg). Bo and Ri (1987).
79
80
Helotholus histricosa Joergensen. Bo and Ri (1987).
Lampromitra coronata Haeckel. Bo and Ri (1987).
81
Lampromitra quadricuspis Haeckel. Bo and Ri (1987).
82
,, 83
?Lithomellssa thoracites (Ehrenberg). Bo and Ri (1987).
84
Lophophaena sp. aff. L. capito Ehrenberg. Bo and Ri (1987);
Bo and Ja (1985) (highly variable group).
38
85
Lophophaena buetschlii (Haeckel). Bo and Ri (1987) (highly
variable group).
86
87
88
89
Lophophaena hispida (Ehrenberg). Bo and Ri (1987).
Peromelissa phalacra (Haeckel). Bo and Ri (1987).
Pseudocubus obeliscus Haeckel. Bo and Ri (1987).
Trisulcus sp. aff. T. testudus Petrushevskaya. Bo and Ri
(1987) (highly variable group).
Theoperidae
90
Cornutella profunda Ehrenberg. Bo and Ri ( 1980).
91
Coroca/yptra columba (Haeckel). Bo and Ja (19~5); Bo and
Ri (1987).
Cyrtopera laguncula Haeckel. Ha (1987).
92
93
Dictyocephalus papillosus (Ehrenberg). Bo and Ja (1985) [as
Carpocanarium papil/osum (Ehrenberg)).
94
Dictyophimus gracilipes Bailey. Bo and Ri (1980).
95
Dictyophimus hirundo (Haeckel). Bo and Ri (1980); Bo and
Ja (1985).
Dictyophimus sp. Bo and Ri (1987).
96
97
Eucecryphalus sp. Bo and Ri (1987).
Eucyrtidium acuminatum (Ehrenberg). Bo and Ri (1987).
98
Eucyrtidium anomalum (Haeckel). Bo and Ja (1985); Bo and
99
Ri (1987).
100
Eucyrtidium hexagonatum Haeckel. Bo and Ja (1985); Bo and
Ri (1987).
101
Eucyrtidium hexastichum (Haeckel). Bo and Ja (1985); Bo
and Ri (1987).
102
Eucyrtidium spp. Remarks: severa! closely related forms of
Eucyrtidium (including Eucyrtidium spp. in Boltovskoy and
Riedel, 1987, pl. S, fig. 4).
103
Lipmanella bombus (Haeckel). Bo and Ja (1985); Bo and Ri
(1987).
104
Lipmanella sp. Bo and Ri (1987).
105
Lipmanella virchowii (Haeckel). Bo and Ja (1985); Bo and Ri
(1987).
106
Litharachnium tentorium Haeckel. Bo and Ri (1987).
107
Lithopera bacca Ehrenberg. Bo and Ri (1987).
108
Peripyramis circumtexta Haeckel. Bo and Ja (1985).
109
Pterocanium praetextum praetextum (Ehrenberg). Bo and Ri
(1987).
110
Pterocanium trilobum (Haeckel). Bo and Ri (1987).
111
Sethoconus tabulatus (Ehrenberg). Bo and Ri (1987). .
Sethophormis aurelia Haeckel. Bo and Ja (1985); Bo and Ri
112
(1987).
113
Theocalyptra davisiana (Ehrenberg). Bo and Ri (1987).
Theocorys veneris Haeckel. Bo and Ja (1985).
114
Theopilium tricostatum (Haeckel). Bo and Ja (1985); Bo and
115
Ri (1987).
Carpocaniidae
116
Carpocanistrum sp. A. Bo and Ri (1987).
Carpocanistrum sp. B. Bo and Ri ( 1987).
117
Pterocorythidae
118
Anthocyrtidium ophirense (Ehrenberg). Bo and Ri (1987).
119
Lamprocyrtys (?) hannai (Campbell et Oark). Ni and Mo
(1979).
120
Lamprocyclas maritalis maritalis Haeckel. Ni and Mo (1979).
121
Lamprocyclas maritalis Haeckel polypora Nigrini. Ni and Mo
(1979).
Lamprocyrtis nigriniae (Caulet). Ni and Mo (1979).
122
Pterocorys hertwigii (Haeckel). Bo and Ja (1985); Bo and Ri
123
(1987).
Pterocorys minythorax (Nigrini). Bo and Ri (1987).
124
Pterocorys zancleus (Mueller). Bo and Ri (1987).
125
Stichopilium bicorne Haeckel. Bo and Ri (1987).
126
Theocorythium trachelium (Ehrenberg). Bo and Ja (1985)
127
(Remarks: included are T. t. trachelium and T. t. dianae, cf.
Nigrin~ 1967).
Artostrobiidae
128
Artostrobus joergenseni Petrushevskaya. Pe (1967).
Artostrobus spp. (unidentified artostrobüds).
129
130
Botryostrobus aquilonaris (Bailey). Ni and Mo (1979).
131
Botryostrobus auritusfaustralis (Ehrenberg). Ni and Mo
(1979); Bo and Ri (1987).
Phormostichoartus corbula (Harting). Ni and Mo (1979).
132
133
Siphocampe arachnaea (Ehrenberg). Pe (1967).
Siphocampe lineata (Ehrenberg). Pe (1967).
134
Spirocyrtis scalarisfcornutella Haeckel. Bo and Ja (1985); Bo
135
and Ri (1987).
Tricolocampe cylindrica Haeckel. Bo and Ri (1987).
136
Cannobotryidae
137
Acrobotrys sp. A. Bo and Ri (1987).
Acrobotrys sp. B. Bo and Ri (1987).
138
Botryocyrtis scutum (Harting). Ni and Mo (1979); Bo and Ri
139
(1987).
140
Botryopyle dictyocephalus Haeckel, group? Bo and Ri (1987).
141
Centrobotrys thermophila Petrushevskaya. Bo and Ja (1985);
Bo and Ri (1987).
86

Documents pareils