Electrical stimulation electrode - European Patent Office

Transcription

Electrical stimulation electrode - European Patent Office
Europaisches P a t e n t a m t
J
European Patent Office
Publication number:
PATENT
Date of publication of patent specification: 05.09.90
0 9 6
B1
Office europeen des brevets
EUROPEAN
0 2 1 2
SPECIFICATION
mtci.5: A 61 N 1 / 0 4
Application number: 86107529.9
Date of filing: 03.06.86
Electrical stimulation electrode.
Priority: 14.06.85 US 745018
(43) Date of publication of application:
04.03.87 Bulletin 87/10
Publication of the grant of the patent:
05.09.90 Bulletin 90/36
Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE
m
O)
o
CM
CM
Q.
UJ
References cited:
EP-A-0 002 059
EP-A-0 029245
AT-B- 51 031
AT-B- 372 002
DE-A-2552197
DE-B-2 023 919
DE-B-2 209 430
FR-A- 750 222
US-A-4239 046
US-A-4300575
Proprietor: Axelgaard, Jens
104 West Elder Street
Fallbrook, California 92028 (US)
Inventor: Axelgaard, Jens
104 West Elder Street
Fallbrook, California 92028 (US)
Inventor: Grussing, Theodore
21332 Compass Lane
Huntington Beach, California 92646 (US)
Representative: Lehmann, Klaus, Dipl.-lng. et al
Patentanwalte Schroeter & Lehmann Postfach
71 03 50 Wonratshauser Strasse 145
D-8000 Munchen 71 (DE)
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may
give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall
be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been
paid (Art. 99(1 ) European patent convention).
Courier Press, Leamington Spa, England.
EP
0 212 096
Description
The present invention generally relates to electrodes and, more particularly, to electrodes suitable for transcutaneous nerve and/or muscle
stimulation.
Continued development of electrical medical
devices has produced a need for a variety of
electrodes.
Although many of these electrodes have, as a
design objective, good electrical signal transmission between a patient's skin surface and
electrical leads interconnected with a device, each
has specific requirements dependent upon the
type of apparatus for which it is to be used.
As an example, electrocardiograph (EKG) and
electroencephalograph (EEG) machines are
primarily monitoring type devices which require
small contact surfaces, or area, with the patient's
skin.
On the other hand, transcutaneous electric
nerve stimulation, (TENS) and muscle stimulation
devices require relatively large skin surface contact to effect such nerve and muscle stimulation.
Transcutaneous electrical nerve stimulation is
useful, for example, in post-operative and chronic
pain control, while muscle stimulation is useful,
for example, in maintaining and development of
muscle tissue. Electrodes suitable for use in nerve
and muscte stimulation preferably provide a uniform electrical coupling across the skin electrode
interface.
As hereinbefore noted, electrodes suitable for
nerve and/or muscle stimulation may be relatively
large having dimensions of several inches or
more.
Because nerve and/or muscle stimulation
causes muscle contraction, a considerable amount
of skin movement is associated therewith.
Additionally, perspiration from the skin is more
likely to loosen or disrupt the electrode because of
its large size. As should be apparent, the largerthe
electrode, the longer the evaporation path, or
distance, the perspiration occurring at the center
regions of the electrode must travel in order to
evaporate, or be released to the atmosphere.
It has been found that prior art electrodes which
have been secured to the surface of a patient's skin
with medical adhesive tape, or the like, have a
tendency to lift off from the skin because of
perspiration and movement of the patient's skin
during treatment.
Because an electrode suitable for nerve and/or
muscle stimulation must provide for an electrical
signal to be distributed over the entire surface of
the electrode, the electrode must necessarily be
conductive.
Prior art electrodes have utilized a number of
conductive elements, such as carbon impregnated
rubber and vinyl, as well as metallic foils.
However, a useful electrode must be flexible in
order to accommodate relative movement of the
patient's skin therebeneath, as hereinabovedescribed.
Because nerve and muscle stimulation elec-
5
10
15
20
25
30
35
40
45
so
55
eo
65
B1
trodes may be utilized over a long period of time,
as may be necessary in connection with sports
injuries, the electrode must be compatible with the
skin and flex therewith.
Insufficient flexing of the electrode can result in
severe irritation of the patient's skin and electrical
"hot spots" due to uneven electrode-skin contact,
which manifests itself in a rash and a burning
sensation.
The sensation of burning may be sensed by the
patient within a few minutes after application of
electrical signals during nerve and/or muscle
stimulation, while the rash conditions generally
take a longer period of time to develop.
It has been found that the use of prior art
electrodes in nerve and/or muscle stimulation
results in a skin rash in up to 25% to 35% of the
people undergoing treatment.
An additional problem associated with the
necessary stretchability of electrodes utilized in
nerve and/or muscle stimulation procedures is
that while the electrode must be able to flex, or
stretch, in order to accommodate skin movement
during treatment, the conductivity of the electrode
should not be interrupted, or distorted, due to the
stretching of the electrode.
Prior art electrodes have compromised the
flexibility of the electrode in an effort to provide
uniform current densities over the entire contact
area of the electrode. These electrodes typically
utilise a metallic mesh, orfoil, to provide contactivity of the electrode and utilize a conductive gel
between the electrode and the patient's skin in
order to accommodate movement therebetween.
There is, however, relative movement between
the relatively rigid electrode and the skin, which is
accommodated for by the gel. This relative movement oftentimes causes the gel to move from
beneath the conductive portion of the electrode,
thereby limiting the useful life of the electrode on
the skin.
In addition, this relative motion between the skin
and the electrode does not provide for the maintenance of the position of the electrode relative to
the nerve and/or muscle being stimulated.
Precision positioning of the electrode is, of
course, performed by a physician, or the like,
knowledgeable in the treatment method. Inaccurate placement of the electrode, or slippoing of the
electrode from its intended position, may significantly reduce the beneficial effects of the treatment.
Hence, there is a need for a flexible electrode for
use with electrical stimulation devices which
adheres well to the patient's skin, is easily
removed therefrom, and is able to move with the
patient's skin in order to ensure proper continuous
placement of the electrode relative to nerve or
muscle tissue being sitmulated, as well as providing long-term continuous electrical connection
therewith without irritation of the skin or discomfort to the patient under treatment. The electrode
of the present invention fulfills these needs.
A flexible transcutaneous electrical nerve and/or
muscle stimulation electrode having knitted con-
EP
0 212 096
4
and fraying an end portion thereof to thereby
provide greater contact area between the electrical lead and the conductive fabric.
ductive fibers, an electrical lead wire and an
adhesive to attach the electrode to a patient's skin
is shown in US Patent 4,239,046.
Summary of the Invention
A flexdible transcutaneous electrical nerve and/
or muscle stimulation electrode in accordance
with the present invention and a method for
producing such electrode are characterized by the
claims 1 and 9 with sub claims dependent therefrom. Thus the electrode includes a conductive
fabric comprising a knit of conductive fiber, the
conductive fabric being knit in a fashion which
allows for the fabric to be stretched at least up to
about 20 percent greater than the original conductive dimension in the direction of the stretch.
Flexible conductive adhesive means are provided and disposed on one side of the conductive
fabric for adhering the flexible transcutaneous
electrical nerve and/or muscle stimulation electrode to the skin of the patient and providing an
electrical conducting contact therebetween.
Interconnection with an electrical stimulation
device is provided by means of an electrical lead
wire, which is interconnected with the conductive
fiber and adapted for interconnection with the
electrical stimulation device.
A non-conductive sheet is disposed on the
other side of the conductive fabric for preventing
undesired electrical contact therewith.
More particularly, the conductive fabric comprises a honeycomb latch needle knit which is
capable of being stretched up to about 100 percent greater than a first original conductive fabric
dimension and capable of being stretched up to
about 20 percent greater than a second original
conductive fabric dimension.
Utilization of this knit enables significant
stretching of the electrode without a decrease in
the conductivity of the fabric. The resulting flexible transcutaneous electrical nerve and/or
muscle stimulation electrode has more stretch in
one direction than in an opposite orthogonal
direction, however, during use, the primary
motion of the skin beneath the electrode as a
result of a nerve and/or muscle stimulation is, in
one direction, along which the primary stretch
direction of the electrode is aligned.
Conductivity of the conductive fabric is provided by the conductive fiber which may include a
blend of stainless steel and polyester, with the
stainless comprising about 20 percent by weight
of the result in fiber and the polyester comprising
about 80 percent by weight of the conductive
fiber.
The non-conductive sheet may be any suitable
stretchable plastic, which is held against the
conductive fabric by means of a pressure sensitive adhesive.
The non-conductive sheet and the pressure
sensitive adhesive are also operative for holding
the electrical wire lead against the conductive
fabric to provide electrical contact therebetween.
This contact is enhanced by utilizing a stranded
electrical lead wire, which may be stainless steel,
B1
5
10
15
20
25
30
35
40
45
so
55
60
65
Description of the Drawings
The advantages and features of the present
invention will be better understood by the following description and drawings in which:
Figure 1 is a perspective view of a flexible
transcutaneous electrical nerve and/or muscle
stimulation electrode in accordance with the
present invention showing its disposition on a
patient's skin;
Figure 2 is a perspective view of the stimulation
electrode with a portion of a non-conductive
sheet thereof peeled back to show an electrical
lead wire therein;
Figure 3 is a cross-sectional view of the transcutaneous electrical nerve and/or muscle stimulation electrode generally showing conductive fabric, a flexible conductive adhesive, electrical lead
wire, non-conductive sheet and a pressure sensitive adhesive;
Figure 4 is an enlarged view of the conductive
fabric utilized in the present invention generally
showing a honeycomb latch needle knit;
Figure 5 is an illustration of the conductive
fabric utilized in the present invention stretched in
a transverse direction; and
Figure 6 is an illustration of the conductive
fabric utilized in the present invention stretched in
a longitudinal direction.
Detailed Description
Turning now to Figures 1 and 2, there is shown,
in perspective view, a flexible transcutaneous
electrical nerve and/or muscle stimulation electrode 10 in accordance with the present invention.
As shown in Figure 1 and hereinafter described
in greater detail, the electrode 10 is flexible in two
directions, as indicated by arrows 14, 16, while in
place on a patient's limb 20, or body, not shown.
As more clearly shown in Figure 3, the electrode
10 includes a stretchable conductive fabric 22,
flexible conductive adhesive 24, which is disposed on one side 28 of the conductive fabric 22
for adhereing the flexible transcutaneous electrical nerve and/or muscle stimulation electrode 10
to the skin of a patient (not shown in Figure 3) and
electrical lead wire 30 interconnected with the
conductive fabric 22 as hereinafter described, for
providing electrical signals to the conductive fabric 22 when interconnected with an electrical
stimulation device, not shown, by means of a
connector 34, or the like.
In addition, a non-conductive sheet, such as a
flexible plastic 32 disposed on another side 36 of
the conductive fabric 22 by means of a pressure
sensitive adhesive 38, provides means for preventing undesired electrical contact with the conductive fabric 22, as may occur during wearing of
the device.
It should be appreciated that the conductive
fabric 22 must be isolated from outside objects
and other areas of the patient's skin in order to
EP
0 212 096
preferentially couple electrical signals into the
patient's body where prescribed by an attending
physician.
It has been found that a knit fabric, preferably a
latch
6 mm (one-quarter-inch)
honeycomb
needle knit fabric, as depicted in Figure 4, provides for a fabric which may be stretched up to
about 100 percent greater than a first original
conductive fiber dimension in the direction of
stretch, see arrow 40 and Figure 5, and up to
about 20 percent greater than a second original
fabric dimension in a second direction of stretch,
see arrow 42 and Figure 6, without loss of
conductivity of the fabric. Knits of this nature are
commercially available from knitters, such as, for
example, Paragon West Knitting Mill in Anaheim
Hills, California.
The conductivity of the fabric is provided by
the individual conductive fibers 46. It has been
found that a conductive fiber manufactured by
Bakaert of West Germany, which includes a
blend of 20 percent 316 stainless steel and 80
percent of polyester when latch needle honeycomb knitted to a density of about 1,356 Kg/m2
(2.5 pounds per square yard) produces a conductive double-stretch knit which is particularly suitable for transcutaneous nerve and/or muscle
stimulation electrodes.
The double-stretch nature of this fabric, when
incorporated into the electrode of the present
invention, as hereindescribed, provides for an
electrode which is contourable to the shape of a
patient's body or limb.
This is particularly important with relatively
large stimulation/electrodes in accordance with
the present invention. The electrode 10 may have
dimensions in the range of, for example, 50 by
75 mm (2 inches by 3 inches), hence, the electrode must be "fitted" by stretching of the electrode 10 to the skin 20 of a patient in order to
provide a uniform contact therebetween.
It is particularly important that the electrode 10
and, of course, the conductive fabric 22, do not
degrade during constant and repetitious movement and stretching thereof, as the electrical
signals activate muscles and nerves within the
patient's body which result in continued movement, or contraction, of the skin. Because the
conductive fabric is a loose knit, stretching
thereof does not deteriorate any of the conductive fibers therein to any substantial degree, thus
causing loss of conductivity of the electrode.
In order to be effective in transmitting electrical signals to the patient's skin 20, the electrode
10 utilizes a conductive adhesive 24, such as one
manufactured by Valley Lab, Inc., of Boulder,
Colorado, under the name Polyhesive, this
proprietary product is useful in a number of
electrode applications and has the advantage of
being flexible so that it will move with the conductive fabric without losing contact with the
patient's skin, or interrupting the electrical
signals transmitted therethrough.
In the manufacture of the electrode 10, the
conductive adhesive 24 is poured onto the sur-
5
10
15
20
25
30
35
40
45
so
55
B1
face 28 in a liquid form, whereupon it fills the
interstitial areas 50 of the conductive fabric 22.
Thereafter, the adhesive is set into a gel-like
material, which has good adhesion to the
patient's skin, and is releasable therefrom without the annoyance of hair-pulling and the like.
The conductive adhesive 24 is commercially
available and is compatible with the skin in that it
produces no irritation thereof.
Because the Polyhesive conductive adhesive
24 is in itself flexible, it does stretch with the
conductive fabric between the interstitial areas
50 defined by the fibers 46.
Turning to Figure 2 and 3, the non-conductive
plastic, or backing layer, 32 is adhered to the
other side 36 of the conductive fabric 22, and
both the backing layer and the pressure sensitive
adhesive 38 hold the lead wire 30 in physical and
electrical contact with the conductive fabric. In
order to enhance contact therebetween, the conductive lead 30, which may be stranded stainless
steel, has an end portion 54 which is frayed and
spread apart slightly.
In manufacture, the conductive lead is placed
on the conductive fabric 22 for a distance of
about one-third the length thereof. Thereafter,
the backing layer 32, with adhesive 36 applied
thereto, may be firmly placed over the frayed
portion 54 and bonded by pressure applied
thereto.
This relatively simple method of contacting the
lead wire 30 with the conductive fabric 22
enables some movement therebetween as the
conductive fiber and electrode stretch.
It should be appreciated that stretch along the
direction 40, the major direction of stretch, may
stretch the frayed strands 58 apart from one
another, thus reducing the relative motion
between the frayed end of 54 and the conductive
fiber 22.
Because the conductive adhesive 24 is subject
to drying, a release liner 60 may be provided for
storage of the electrode before and after use.
This liner may be of any suitable plastic, or
silicon-coated paper, which is strippable from the
conductive adhesive 24 without disturbing the
integrity of the conductive adhesive.
Although there has been hereinabovedescribed a specific arrangmeent of a flexible
transcutaneous electrical nerve and/or muscle
stimulation electrode in accordance with the
invention for the purpose of illustrating the
manner in which the invention may be used to
advantage, it will be appreciated that the invention is not limited thereto.
Claims
eo
65
1. A flexible transcutaneous electrical nerve
and/or muscle stimulation electrode (10) having
conductive fibers, an electrical lead wire and an
adhesive, the conductive fibers (46) being knitted
into a conductive fabric (22) having an array of
interknit conductive fibers with interstitial areas
(50) therebetween, and said flexible trans-
EP
0 212 096
cutaneous electrical nerve and/or muscle stimulation electrode having a non-conductive sheet (32)
disposed on another side (36) of the conductive
fabric (22) for preventing undesired electrical
contact with the conductive fabric (22), characterised by said conductive fabric (22) being able to
be stretched up to at least 20 percent greater than
the original conductive fabric (22) dimension in
the direction of stretch, and said adhesive being a
solid flexible conductive adhesive (24) disposed
within the interstitial areas (50) and on one side
(28) of the conductive fabric (22) for adhering the
flexible transcutaneous electrical nerve and/or
muscle stimulation electrode to the skin of a
patient and providing an electrical conductive
contact therebetween.
2. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 1 further characterized by the fact that the
conductive fabric (22) is a honeycomb latch
needle knit and the flexible solid adhesive (24) is
of a material having sufficient flexibility to stretch
within the interstitial areas and along the one side
of the conductive fabric (22) to enable the conductive fabric to be stretched up to at least 20 percent
greater than the original conductive fabric dimension in the direction of stretch without the flexible
solid adhesive (24) separating from the conductive fibers.
3. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 2 further characterized by the fact that the
conductive fiber (46) comprises a blend of stainless steel and polyester.
4. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 3 further characterized by the fact that the
conductive fiber comprises about 20 percent by
weight stainless steel and about 80 percent by
weight polyester.
5. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 2 further characterized by the fact that a
pressure sensitive adhesive (38) is provided for
holding said non-conductive sheet (32) to the
conductive fabric (22) and for contacting the
electrical lead wire (30) with the conductive fabric
(22).
6. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 5 further characterized by the fact that the
electrical lead wire portion (54) in contact with the
conductive fabric (22) is frayed into individual
strands (58) and disposed so that stretching of the
conductive fabric (22) causes the frayed individual
strands (58) to separate and move with the conductive fabric.
7. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 1 further characterized by the fact conductive fabric (22) is a 6 mm honeycomb latch needle
knit and able to be stretched up to at least 100
percent greater than the original conductive fabric
dimension in the direction of stretch and up to 20
percent greater than a second original conductive
5
io
15
20
25
30
35
40
45
50
55
60
65
B1
8
fabric dimension in a second direction of stretch,
said second original conductive fabric dimension
being orthogonal to said first original conductive
fabric dimension in the plane of the conductive
fabric (22).
8. The flexible transcutaneous electrical nerve
and/or muscle stimulation electrode according to
Claim 1 further characterized by the fact that the
flexible solid adhesive (24) comprises a gel
material.
9. A method for producing a flexible transcutaneous electrical nerve and/or muscle stimulation electrode including the steps of:
knitting a conductive fiber into a conductive
fabric so that the conductive fabric can be
stretched up to at least about 20 percent greater
than the original conductive fabric dimension in
the direction of stretch, said conductive fabric
comprising an array of interknit conductive fibers
with interstitial areas therebetween;
disposing a flexible conductive adhesive within
said interstitial areas and on one side of the
conductive fabric;
interconnecting an electrical lead wire with said
conductive fabric; and
disposing a non-conductive sheet on an opposite side of said conductive fabric.
10. The method of Claim 9 further characterized
by the fact that the flexible conductive adhesive is
a gellable liquid conductive adhesive and the step
of disposing the adhesive within said interstitial
areas includes pouring the gellable liquid conductive adhesive within said interstitial areas and
causing said gellable liquid conductive adhesive
to form into a gel-like conductive adhesive.
11. The method of claim 9 further characterized
by the fact that said conductive fiber comprises a
blend of stainless steel and polyester and said
knitting step forms said conductive fiber with a
6 mm honeycomb pattern so that the conductive
fibers can be stretched up to at least about 100
percent greater than the original conductive fabric
dimension in the direction of stretch, and up to
about 20 percent greater than a second original
conductive fabric dimension in a second direction
of stretch, said second original conductive fabric
dimension being orthogonal to said first original
conductive fabric dimension in the plane of the
conductive fabric.
Patentanspruche
1. Flexible transkutane elektrische Nerven- und/
oder Muskel-Stimulations-elektrode (10) mit leitenden Fasern, einem elektrischen Leutungsdraht
und einem Kleber, wobei die leitenden Fasern (46)
zu einem leitenden Gewebe (22) verstrickt oder
verwirkt sind, das eine Anordnung von mit einander verstricken oder verwirkten leitenden Fasern
mit dazwischen Zwischenraume bildenden Bereichen (50) aufweist, und wobei die flexible transkutane elektrische Nerven- und/oder Muskel-Stimulationselektrode ein nicht-leitendes Blatt (32) aufweist, das auf einer anderen Seite (36) des leitenden Gewebes (22) angeordnet ist, um einen uner-
EP
0 212 096
wiinschten elektrischen Kontakt mit dem leitenden Gewebe (22) zu verhindern, dadurch gekennzeichnet, dalS das leitende Gewebe (22) in der
Lage ist, bis zu wenigstens 20 Prozent grafter als
die ursprungliche Abmessung des leitenden
Gewebes (22) in einer Streckrichtung gestreckt zu
werden, und daft der Kleber ein fester, flexibler,
leitfahiger Kleber (24) ist, der in den Zwischenraumen (50) und auf einer Seite (28) des leitenden
Gewebes (22) angeordnet ist, um die flexible
transkutane elektrische Nerven- und/oder MuskelStimulationselektrode an die Haut eines Patienten
zu heften und dazwischen einen elektrisch leitenden Kontakt herzustellen.
2. Flexible transkutane elektrische Nerven- und/
oder
nach
Muskel-Stimulations-elektrode
Anspruch 1, dadurch gekennzeichnet, daft das
leitende Gewebe (22) eine wabenformiges
Zungennadelgestrick ist und daft der flexible feste
Kleber (24) aus einem Material besteht, das eine
ausreichende Flexibilitat hat, un sich innerhalb
der Zwischenraume und langs der einen Seite des
leitenden Gewebes (22) zu strecken, um zu
ermoglichen, daft das leitende Gewebe bis zu
wenigstens 20 Prozent grafter als die ursprungliche Abmessung des leitenden Gewebes in der
Streckrichtung gestreckt werden kann, ohne daft
der flexible feste Kleber (24) sich von dem leitenden Fasern ablost.
3. Flexible transkutane elektrische Nerven- und/
Muskel-Stimulations-elektrode
nach
oder
Anspruch 2, dadurch gekennzeichnet, daft das
leitende Faser (46) ein Mischung aus rostfreiem
Stahl und Polyester aufweist.
4. Flexible transkutane elektrische Nerven- und/
Muskel-Stimulations-elektrode
nach
oder
Anspruch 3, dadurch gekennzeichnet, daft das
leitende Faser etwa 20 Gewichtsprozent rostfreien
Stahl und etwa 80 Gewichtsprozent Polyester
aufweist.
5. Flexible transkutane elektrische Nerven- und/
nach
Muskel-Stimulations-elektrode
oder
Anspruch 2, dadurch gekennzeichnet, daft ein auf
Druck ansprechender Kleber (38) vorgesehen ist,
um das nicht leitende Blatt (32) an dem leitenden
Gewebe (22) zu halten und um einen Kontakt des
elektrischen Leitungsdrahtes (30) mit dem leitenden Gewebe (22) herzustellen.
6. Flexible transkutane elektrische Nerven- und/
nach
Muskel-Stimulations-elektrode
oder
Anspruch 5, dadurch gekennzeichnet, daft der in
Kontakt mit dem leitenden Gewebe (22) stehende
Abschnitt (54) des elektrischen Leitungsdrahtes in
einzelne Adern (58) aufgefasert und so angeordnet ist, dalS ein Strecken des leitenden Gewebes (22) die aufgefaserten einzelnen Adern (58)
veranlaftt, sich voneinander zu trennen und mit
dem leitenden Gewebe zu bewegen.
7. Flexible transkutane elektrische Nerven- und/
nach
Muskel-Stimulations-elektrode
oder
Anspruch 1, dadurch gekennzeichnet, daft das
leitende Gewebe (22) ein wabenformiges 6 mmZungennadelgestrick ist, das bis wenigstens 100
Prozent grober als die ursprungliche Abmessung
des leitenden Gewebes in der Streckrichtung und
5
10
15
20
25
30
35
40
45
so
55
B1
10
bis zu 20 Prozent groer als eine zweite ursprungliche Abmessung des leitenden Gewebes in einer
zweiten Streckrichtung gestreckt werden kann,
wobei die zweite urspriingliche Abmessung des
leitenden Gewebes rechtwicklig zu der ersten
urspriinglichen Abmessung des leitenden Gewebes in der Ebene des leitenden Gewebes (22) ist.
8. Flexible transkutane elektrische Nerven- und/
Muskel-Stimulations-elektrode
nach
oder
Anspruch 1, dadurch gekennzeichnet, dalS der
flexible feste Kleber (24) ein gelformiges Material
aufweist.
9. Verfahren zum Herstellen einer flexiblen
elektrischen
Nerven-und/oder
transkutanen
Muskel-Stimulationselektrode mit den folgenden
Schritten:
— Stricken oder Wirken einer leitenden Faser in
ein leitendes Gewebe, so daft das leitende
Gewebe urn wenigstens etwa 20 Prozent grofcer
als die urspriingliche Abmessung des leitenden
Gewebes in einer Streckrichtung gestreckt
werden kann, wobei das leitende Gewebe eine
Anordnung von miteinander verstrickten oder
verwobenen leitenden Fasern mit dazwischen
Zwischenraume bildenden Bereichen aufweist;
— Anordnen eines flexiblen leitfahigen Klebers
innerhalb der Zwischenraume und auf einer Seite
des leitenden Gewebes;
— Verbinden eines elektrischen Leitungsdrahtes mit dem leitenden Gewebe; und
— Anordnen eines nicht-leitenden Blattes an
einer entgegengesetzten Seite des leitenden
Gewebes.
10. Verfahren nach Anspruch 8, dadurch
gekennzeichnet, daft der flexible leitende Kleber
ein gelierfahigerflussiger leitender Kleber ist, daft
der Schritt des Anordnens des Klebers innerhalb
der Zwischenraume ein Gieften des glierfahigen
flussigen leitenden Klebers in die Zwischenraume
hinein aufweist und daft der gelierfahige fliissige
leitende Kleber veranlaftt wird, sich in einen
gelartigen leitenden Kleber umzuformen.
11. Verfahren nach Anspruch 9, dadurch
gekennzeichnet, daft die leitende Faser eine
Mischung aus rostfreiem Stahl und Polyester
aufweist und daft der Schritt des Strickens oder
Wirkens die leitende Faser in ein 6 mm-Wabenmuster formt, so daft die leitenden Fasern bis zu
wenigstens etwa 100 Prozent grafter als die
ursprungliche Abmessung des leitenden Gewebes in einer Streckrichtung und bis zu etwa 20
Prozent grdfter als eine zweite ursprungliche
Abmessung des leitenden Gewebes in einer zweiten Streckrichtung gestreckt werden konnen,
wobei die zweite ursprungliche Abmessung des
leitenden Gewebes rechtwinklig zu der ersten
urspriinglichen Abemssung des leitenden Gewebes in der Ebene des leitenden Gewebes ist.
eo
Revendications
65
1. Electrode flexible (10) pour la stimulation
electrique transcutanee de nerfs et/ou de muscles, ayant des fibres conductrices, un fil electrique d'alimentation et un adhesif, les fibres
11
EP
0 212 096
conductrices (46) etant tricotees en formant un
tissu conducteur (22) ayant un reseau de fibres
conductrices tricotees ensemble avec des zones
interstitielles (50) entre elles, et ladite electrode
flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscle ayant une feuille
non-conductrice (32) disposee sur une autre
face (36) du tissue conducteur (22) pour empecher un contact electrique non desire avec le
tissu conducteur (22), caracterisee en ce que
ledit tissu conducteur (22) est apte a etre etire
jusqua au moins 20 pour cent de plus que la
dimension initiale du tissu conducteur (22) dans
le sens d'etirement, et en ce que ledit adhesif
est un adhesif conducteur solide et souple (24)
dispose dans les zones interstitielles (50) et sur
une face (28) du tissu conducteur (22) pour
faire adherer I'electrode flexible de stimulation
electrique transcutanee de nerfs et/ou de muscles a la peau d'un patient et pour realiser un
contact electrique conducteur entre elles.
2. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon la revendication 1, caracterisee en outre
par le fait que le tissu conducteur (22) est un
tricot en nid d'abeille tricote au moyen d'aiguilles a crochet et que I'adhesif souple solide
(24) est en une matiere ayant assez de souplesse pour s'etirer dans les zones interstitielles
et le long de ladite face (28) du tissu cnducteur
(22) pour permettre au tissu conducteur d'etre
etire jusqu'a au moins 20 pour cent de plus
que la dimension initiale du tissu conducteur
dans le sens d'etirement, sans que I'adhesif
souple solide (24) se separe des fibres conductrices.
3. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon la revendication 2, caracterisee en outre
par le fait que la fibre conductrice (46) comprend un melange d'acier inoxydable et de
polyester.
4. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon la revendication 3, caracterisee en outre
par le fait que la fibre conductrice comprend
environ 20 pour cent en poids d'acier inoxydable et environ 80 pour cent en poids de polyester.
5. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon la revendication 2, caracterisee en outre
par le fait qu'un adhesif (38) sensible a la pression est prevu pour retenir ladite feuille nonconductrice (32) sur le tissu conducteur (22) et
pour mettre le fil electrique d'alimentation (30)
en contact avec le tissu conducteur (22).
6. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon ia revendication 5, caracterisee en outre
par le fait que la partie (54) du fil electrique
d'alimentation en contact avec le tissu conducteur (22) est effilochee en brins individuels (58)
et disposee de telle sorte que retirement du
tissu conducteur (22) fait que les brins indivi-
5
10
15
20
25
30
35
40
45
so
55
60
65
B1
12
duels effiloches (58) se separent et accompagnent le mouvement du tissu conducteur.
7. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon la revendication 1, caracterisee en outre
par le fait que le tissu conducteur (22) est un
tricot en nid d'abeille a maille de 6 mm tricote
au crochet et apte a etre etire jusqu'a au moins
100 pour cent de plus que la dimension initiale
de tissu conducteur dans le sens d'etirement et
jusqu'a 20 pour cent de plus d'une deuxieme
dimension initiale du tissu conducteur dans un
deuxieme sens d'etirement, ladite deuxieme
dimension initiale du tissu conducteur etant
orthogonale a iadite premiere dimension initiale
du tissu conducteur dans le plan du tissu
conducteur (22).
8. Electrode flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles
selon la revendication 1, caracterisee en outre
par le fait que le adhesif flexible solide (24)
comprend un colloTde.
9. Procede de fabrication d'une electrode
flexible pour la stimulation electrique transcutanee de nerfs et/ou de muscles, comprenant les
operations de:
tricoter une fibre conductrice en un tissu
conducteur de telle sorte que le tissu conducteur puisse etre etire jusqu'a au moins 20 pour
cent de plus que la dimension initiale du tissu
conducteur dans le sens d'etirement, ledit tissu
conducteur comprenant un reseau de fibres
conductrices entremelees par tricotage avec des
zones interstitielles entre elles;
disposer un adhesif conducteur flexible dans
lesdites zones interstitielles et sur une face du
tissu conducteur;
interconnecter un fil electrique d'alimentation
avec ledit tissu conducteur; et
disposer une feuille non-conductrice sur une
face opposee dudit tissu conducteur.
10. Procede selon la revendication 9, caracterise en outre par la fait que I'adhesif conducteur flexible est un adhesif conducteur liquide
capable de former un gel, et par I'operation
consistant a disposer I'adhesif dans lesdites
zones interstitielles et a provoquer la transformation dudit adhesif conducteur liquide en un
adhesif conducteur analogue a un gel.
11. Procede selon la revendication 9, caracterise en outre par la fait que ladite fibre conductrice comprend un melange d'acier inoxydable
et de polyester et que ladite operation de tricotage forme ladite fibre conductrice avec une
maille en nid d'abeille de 6 mm, de telle sorte
que les fibres conductrices puissent etre etirees
jusqu'a au moins 100 pour cent de plus que la
dimension initiale du tissu dans le sens d'etirement, et jusqu'a environ 20 pour cent de plus
qu'une deuxieme dimension initiale du tissu
conducteur dans un deuxieme sens d'etirement,
ladite deuxieme dimension initiale du tissu
conducteur etant orthogonale a ladite premiere
dimension initiale du tissu conducteur dans le
plan du tissu conducteur.
EP
0 212 096
B1
- J ^ T G i J .
..jFtrG-.Z.
- $ & £ .
40}
r4Z
^■40
m
_ j p i r & : 4 .
__j7ir<s-.
&.

Documents pareils