Conclusion générale

Transcription

Conclusion générale
Conclusion générale
III - 435
Conclusion générale
Le travail de recherche consigné dans cette thèse a été développé selon deux axes: d'une part la
simulation par éléments finis 2D et 3D de transformateurs de puissance (l'accent étant mis en
particulier sur le calcul des pertes cuivre), d'autre part la modélisation de ces transformateurs au
moyen de schémas équivalents, en vue d'étudier –dans des simulations électriques cette fois– les
alimentations à découpage.
Pour chacun de ces axes, une synthèse a déjà été proposée, respectivement au chapitre IX et au
chapitre XIV. Rappelons-en les idées les plus marquantes.
Le premier but de notre recherche était, comme exprimé dans l'introduction, de faire
progresser la connaissance des transformateurs de puissance en allant "voir" dans ceux-ci
les champs électromagnétiques en deux et en trois dimensions au moyen de simulations par
éléments finis.
Pour répondre à cet objectif sans nous limiter aux traditionnelles études de cas, nous avons
choisi la démarche d'analyser des configurations d'abord simples puis de plus en plus
complexes des enroulements, en essayant de préserver autant que possible le caractère
général de notre étude.
y
Dans une première étape, nous avons abouti de cette manière à un inventaire inédit
des effets 2D dans les transformateurs en fonction du type de conducteurs utilisé.
Chacun de ces effets a été expliqué, de même que l'influence sur ceux-ci des
principaux paramètres géométriques de l'enroulement.
y
Nous avons ensuite envisagé le problème des effets 3D. Ceux-ci et les circonstances
où ils apparaissent ont été précisés. Une attention particulière a été portée à l'étude de
l'effet d'arc, typique des transformateurs planaires. Le degré de validité des études 2D
par rapport aux pièces réelles, tridimensionnelles par nature, a également été évalué.
y
Parallèlement à ces études de fond, un cas pratique d'optimisation des enroulements
d'un transformateur planaire multisorties a été traité. L'étude 2D a permis de
compléter l'inventaire déjà cité. En 3D, des solutions originales ont été proposées pour
réduire les pertes et le risque de point chaud liés à l'effet d'arc.
Conclusion générale
III - 436
Le second objectif était de cerner les limites de validité des théories classiques de calcul des
pertes cuivre, qui utilisent des modèles unidimensionnels, et éventuellement de proposer de
nouveaux moyens de calcul plus précis.
y
Les simulations par éléments finis ont confirmé le manque de fiabilité des méthodes
1D dans un certain nombre de cas. Ceux-ci ont été clairement identifiés et l'ordre de
grandeur des erreurs commises par le calcul 1D a été évalué.
y
Diverses méthodes de calcul 2D alternatives ont également été étudiées et discutées. Si
ces méthodes apportent d'un point de vue théorique de nombreuses idées
intéressantes, elles se révèlent néanmoins inapplicables –car trop lourdes à mettre en
œuvre– dans le contexte d'une utilisation industrielle systématique.
y
A l'intention du concepteur de pièces magnétiques, nous avons encore développé la
"formule semi-empirique", qui s'applique aux conducteurs en ruban monocouches
entre une valeur nulle et une valeur maximale de la force magnétomotrice. Cette
formule constitue un outil d'un type nouveau qui allie la précision des simulations 2D
à la rapidité des méthodes 1D, ce qui n'avait encore jamais été fait auparavant.
Outre son utilisation en tant qu'outil de calcul quantitatif dans le cas cité, la formule
semi-empirique donne des moyens nouveaux au concepteur tels la forme analytique
adaptée ou les nouvelles règles de conception intégrant les effets 2D, valables pour
tous les types d'enroulements.
La formule semi-empirique permet également de réaliser très rapidement des études
paramétriques. Celles-ci ont été utilisées avec succès dans cette thèse pour expliquer
les effets 2D mis en évidence grâce aux simulations.
Enfin ces recherches ont été l'occasion de discuter ou de rediscuter en profondeur de
nombreux points théoriques. La conclusion la plus marquante et la plus étonnante de ce
point de vue est certainement la démonstration de l'absence de justification théorique au
facteur de remplissage, une notion présente dans la plupart des formules de calcul des
pertes cuivre.
En ce qui concerne la modélisation, notre second axe de recherche, notre travail s'est
davantage basé sur des solutions existantes.
y
Nous avons d'abord examiné la structure des schémas les plus courants afin d'en
dégager les principes d'élaboration et les éléments constitutifs. La grande majorité
des schémas étudiés dans ce contexte se sont cependant révélés trop élémentaires
pour modéliser les transformateurs multisorties utilisés dans les alimentations à
découpage.
Conclusion générale
III - 437
y
A l'issue de notre étude bibliographique, seuls deux candidats ont finalement été
retenus pour la modélisation des transformateurs de puissance: le schéma CCS et le
schéma LEG. Le schéma CCS a été validé sur base d'un transformateur utilisé en
production, puis implémenté dans une application conviviale. Diverses améliorations
par rapport à la méthode originale ont été proposées.
y
De nombreux autres schémas, moins directement applicables au problème concerné
car basés sur une décomposition géométrique menant à des modèles très lourds, ont
également été étudiés et critiqués. Certaines idées apparues lors de cette étude peuvent
être mises à profit pour améliorer les schémas précédents.
Bien évidemment notre travail, s'il a résolu certaines questions, en a également fait naître beaucoup
d'autres. De nombreuses pistes peuvent donc être envisagées si l'on désire poursuivre dans cette
voie. Sans les reprendre toutes, indiquons simplement que l'étude des noyaux à entrefer et la prise
en compte des aspects thermiques dans la conception nous semblent être les pistes les plus
prioritaires selon le premier axe de recherche.
En ce qui concerne la modélisation, de nombreuses améliorations des méthodes existantes peuvent
être envisagées suite à la synthèse effectuée dans ce travail. La validation des schémas étudiés sur
un plus grand nombre de transformateurs ainsi qu'au sein de l'alimentation est également une voie
à privilégier, de même que l'étude approfondie des méthodes de mesure elles-mêmes.
En guise de conclusion finale, nous voudrions exprimer notre fascination devant la puissance et la
précision des outils que nous avons eu la chance d'utiliser. L'essentiel de notre travail a en effet été
réalisé sur ordinateur ou sur station de travail. Pourtant, nous avons acquis de cette manière une
connaissance détaillée des transformateurs de puissance, confirmée par les mesures que nous
avons réalisées sur des pièces réelles. Les simulations par éléments finis se sont avéré un outil
remarquablement fiable, au-delà des espérances qui étaient les nôtres au départ.
De nombreux développements peuvent encore être attendus dans ce domaine, de même que dans
celui de la modélisation. Nous invitons le lecteur à y rester attentif, convaincus aujourd'hui de
l'importance de la simulation comme outil d'apprentissage, de recherche et de conception.
Conclusion générale
III - 438
Bibliographie
B-1
Bibliographie
[1]
M. ALBACH, J. LAUTER, "The winding capacitance of solid and Litz wires", EPE '97 Conference
[2]
BILL ANDREYCAK, "Design review: 500 Watt, 40W/in3 phase shifted ZVT power converter", Unitrode
Corporation seminar, march 1993
[3]
R. ASENSI, J.A. COBOS, O. GARCIA, R. PRIETO AND J. UCEDA, "A full procedure to model high frequency
transformer windings", IEEE PESC Record, 1994
[4]
R. ASENSI, R. PRIETO, J.A. COBOS, O. GARCIA, J. UCEDA, "Integrating a model for high frequency
magnetic components in a power electronics CAD system", IEEE 1995
[5]
K.H. AUGLA, "Losses in high frequency power inductors and transformers", PhD thesis, School of
Electrical Engineering, University of Bath, 1985
[6]
Z. AZZOUZ, A. FOGGIA, L. PIERRAT, G. MEUNIER, "3D Finite element computation of the high
frequency parameters of power transformer windings", IEEE Transactions on Magnetics, march 1993
[7]
A. BALAKRISHNAN, W.T. JOINES, T.G. WILSON, "Air-gap reluctance and inductance calculations for
magnetic circuits using a Schwarz-Christoffel transformation", IEEE Transactions on Power
Electronics, Vol 12, N°4, July 1997
[8]
P.G. BARNWELL, T.J. JACKSON, "Low profile high frequency power supplies using thick film planar
transformers", EPE '93 Conference
[9]
P. BAUDOUX, "Précis d'électricité fondamentale", Presses Universitaires de Bruxelles, 1970
[10]
P. BAUDOUX, "Electricité (Tome II)", Presses académiques européennes, 1960
[11]
PROF. SAM BEN YAAKOV, "Planar magnetics in HF power conversion", PCIM Europe, jan/feb 1996
[12]
F. BLACHE, J.P. KERADEC, B. COGITORE, "Stray capacitances of two winding transformers: equivalent
circuit, measurements, calculation and lowering", IEEE Industrial Application Society, Denver (USA), 26 oct 1994, Proc. pp 1211-1217
[13]
P. BONNET, X. FERRIERES, F. ISSAC, F. PALADIAN, J. GRANDO, J.C. ALLIOT AND J. FONTAINE, "Numerical
modelling of scattering problems using a time-domain finite volume method", Journal of
Electromagnetic Waves Applications, vol 11, 1997, pp. 1165-1189
[14]
L.P.M. BRACKE, "High-frequency ferrite power transformer and choke design - Part 2: Switched-mode
power supply magnetic considerations and core selection", Philips
[15]
L.P.M. BRACKE AND F.C. GEERLINGS, "High-frequency ferrite power transformer and choke design Part 1: Switched-mode power supply magnetic component requirements", Philips
[16]
B. BRAKUS, J. HESS, "Planar multilayer technology for telecom DC/DC modules: maximum power in a
minimum of space", Siemens Components XXXI, n° 4, 1996
[17]
PH. BRISSAUD, "Implantation de microcontrôleurs dans les alimentations à découpage", Université
Libre de Bruxelles, 1995
[18]
A. BROCKMEYER, L. SCHULTING, "Modelling of dynamic losses in magnetic material", EPE'93
Conference
[19]
A. BROCKMEYER, M. ALBACH, T. DUERBAUM, "Remagnetization losses of ferrite materials used in
power electronic applications", PCIM '96 Conference
Bibliographie
B-2
[20]
A. BROCKMEYER, R.W. DE DONCKER, "Improved thermal modeling of magnetic components used in
power electronics applications", PCIM '97 Conference
[21]
A. BROCKMEYER, J. REINERT AND R.W. DE DONCKER, "A novel method for the prediction of
remagnetization losses in ferro- and ferrimagnetic material", EPE'99 Conference, Lausanne
[22]
B. CARSTEN, "High frequency conductor losses in switchmode magnetics", HFPC Proceedings, may
1986
[23]
B. CARSTEN, "Calculating skin and proximity effect conductor losses in switchmode magnetics",
PCIM '95 Conference
[24]
B. CARSTEN, "Calculating the high frequency resistance of single and double layer toroidal windings",
PCIM '97 Conference
[25]
L.F. CASEY, A.F. GOLDBERG, M.F. SCHLECHT, "Issues regarding the capacitance of 1-10 Mhz
transformers", IEEE CH2504-9/88/0000-0352, 1988
[26]
P. CATTERMOLE AND Z. COHN, "New high frequency power ferrites for operation up to 2 Mhz", HFPC
Proceedings, 1988
[27]
ZOLTAN J. CENDES, "Unlocking the magic of Maxwell's equations", IEEE Spectrum, april 1989
[28]
J.H. CHAN, A. VLADIMIRESCU, XIAN-CHUN GAO, P. LIEBMANN, J. VALAINIS, "Nonlinear transformer
model for circuit simulation", IEEE Transactions on Computer-Aided Design Vol 10 N° 4, April 1991
[29]
D.Y. CHEN, "Comparison of high frequency magnetic core losses under two different driving
conditions: a sinusoidal voltage and a square-wave voltage", IEEE PESC '78 Conference, 1978
[30]
W.M. CHEW, "Optimum electromagnetic design for wound components in SMPS applications", PhD
thesis, School of Electrical Engineering, University of Bath, 1989
[31]
W.M. CHEW, P.D. EVANS, "Minimising conductor eddy current losses in high-frequency toroidal
inductors using low permeability cores", School of Electronics and Electrical Engineering, Birmingham
[32]
G.C. CHRYSSIS, "High-frequency switching power supplies - Theory & design", McGraw-Hill, 1989
[33]
B. COGITORE, J.P. KERADEC ET J. BARBAROUX, "The two-winding transformer: an experimental method
to obtain a wide frequency range equivalent circuit", IEEE Trans. on Instrum. and Measurement, vol 43,
n°2, april 1994
[34]
N.R. COONROD, "Transformer computer design aid for higher frequency switching power supplies",
IEEE PESC 1984, pp. 257-267
[35]
S. CUK, L. STEVANOVIC, E. SANTI, "Integrated magnetics design with flat, low profile cores", Power
Electronics Group, California Institute of Technology
[36]
N. DAI, "Low-profile transformer winding configurations", Current, summer 94
[37]
N. DAI AND F.C. LEE, "Edge effect analysis in a high-frequency transformer", IEEE, 1994
[38]
N. DAI AND F.C. LEE, "Design of a High Power Density Low-Profile Transformer", in VPEC
Publication Series, Volume VI: "Power Electronics Components and Circuit Modeling and Analysis", 1995
[39]
N. DAI, A.W. LOTFI, G. SKUTT, W. TABISZ AND F.C. LEE, "A comparative study of high-frequency, lowprofile planar transformer technologies", in VPEC Publication Series, Volume VI: "Power Electronics
Components and Circuit Modeling and Analysis", 1995
[40]
E. DALLAGO, G. SASSONE, G. VENCHI, "High-frequency power transformer model for circuit
simulation", IEEE Trans. On Power Electronics, Vol 12, N°4, July 1997
Bibliographie
B-3
[41]
M. DELCOUR, "Simulation et modélisation de transformateurs pour alimentations à découpage",
Université Libre de Bruxelles, 1999
[42]
R.K. DHAWAN, P. DAVIS AND A.W. LOTFI, "High frequency loss evaluation in high frequency multiwinding power transformers", IEEE, 1995
[43]
LLOYD DIXON, "Coupled inductor design", Unitrode Corporation seminar, may 1993
[44]
LLOYD DIXON, "An electrical circuit model for magnetic cores", Unitrode Corporation seminar, Oct 94
[45]
LLOYD DIXON, "Deriving the equivalent electrical circuit from the magnetic device physical
properties", Unitrode Corporation seminar, Oct 94
[46]
LLOYD H. DIXON JR, "The effects of leakage inductance on switching power supply performance",
Unitrode Corporation
[47]
LLOYD H. DIXON, JR., "The effects of leakage inductance on multi-output flyback circuits", Unitrode
Corporation
[48]
P.L. DOWELL, "Effects of eddy currents in transformer windings", Proc. IEE, Vol. 113, N° 8, Aug. 1966
[49]
T. DUERBAUM, "Layer based capacitance model for magnetic devices", IEEE APEC'99 Conference,
Lausanne
[50]
M.M. EL MISSIRY, "Calculations of current distribution and optimum dimensions of foil-wound aircored reactors", Proc. IEE, vol 124, n°11, pp. 1073-1077, Nov 1977
[51]
M.M. EL-MISSIRY, "Current distribution and leakage impedance of various types of foil-wound
transformer", Proc. IEE, vol 125, n°10, pp. 978-992, Oct 1978
[52]
M. ESGUERRA (SIEMENS+MATSUSHITA, MUNICH), "Calculation of magnetic losses in ferrites from
measured major loops", 1st international workshop on simulation of magnetization processes, Wien, 1995
[53]
M. ESGUERRA (SIEMENS+MATSUSHITA, MUNICH), "Computation of minor hysteresis loops from
measured major loops", Journal of M.M.M. 157/158, pp. 366-368, 1996
[54]
M. ESGUERRA (SIEMENS+MATSUSHITA, MUNICH), "Waveform dependent AC-losses of power ferrites by
hysteresis loop modelling", J. Phys IV France, n° 7, 1997
[55]
A. ESTROV, "Planar magnetics for power converters", Power Electronics N°31
[56]
P.D. EVANS, B.M. SAIED, "Calculation of effective inductance of gapped core assemblies", IEE Proc. B,
Vol 133, N°1, January 1986
[57]
P.D. EVANS, K.H. AL-SHARA, "Losses in foil-wound secondaries in high-frequency transformers",
IEEE Trans. on Magn., vol 25, N° 4, july 1989
[58]
P.D. EVANS, K.H. AUGLA, "High frequency losses in multi-turn foil-wound air-cored inductors", Proc.
IEE, vol 134, n°1, pp. 31-36, Jan 1987
[59]
P.D. EVANS, W.J.B. HEFFERNAN, "Transformer for multimegahertz power applications", IEE Proc.
Electr. Power Applications Vol 142, N° 6, nov 1995
[60]
P.D. EVANS, W.M. CHEW, "Reduction of proximity losses in coupled inductors", IEE Proceedings B, Vol
138, march 1991
[61]
P.D. EVANS, W.M. CHEW, W.J.B. HEFFERNAN, "Tensor analysis of eddy current losses in multiple
winding transformers", IEEE PESC Record, 1993, pp. 1105-1110
[62]
S. FARHANGI, "A simple and efficient optimization routine for design of high frequency power
transformers ", EPE'99, Lausanne
Bibliographie
B-4
[63]
J. FERREIRA, "Analytical computation of ac resistance of round and rectangular Litz wire winding",
IEE Proc B, Jan 1992, n°1, pp. 21-25
[64]
J.P. FERRIEUX ET F. FOREST, "Alimentations à découpage, convertisseurs à résonance: principes,
modélisation, composants - 2e édition", Masson
[65]
T. FUJIWARA (MATSUSHITA ELECTRIC WORKS), "Planar integrated magnetic component with transformer
and inductor using multilayer printer wiring board", 7th Joint MMM-Intermag Conference, IEEE, 1997
[66]
J. GILMORE (ANSOFT) AND R. PRIETO, "Transformer modeling: Combining finite elements and Spice
provide accurate results", PCIM Revue, feb. 1999
[67]
D. GILON, "Application de la transition résonnante dans les alimentations à découpage", Université
Libre de Bruxelles, 1997
[68]
A.F. GOLDBERG, "High field properties of nickel-zinc ferrites at 1-10 Mhz", IEEE CH2504-9/88/00000311, 1988
[69]
A.F. GOLDBERG AND M.F. SCHLECHT, "The relationship between size and power dissipation in a 110Mhz transformer", IEEE Transactions on Power Electronics Vol 7 N° 1, Jan 1992
[70]
A.F. GOLDBERG, J.G. KASSAKIAN, M.F. SCHLECHT, "Issues related to 1-10MHz transformer design",
IEEE Transactions on Power Electronics Vol 4 N° 1, Jan 1989
[71]
A.F. GOLDBERG, J.G. KASSAKIAN, M.F. SCHLECHT, "Finite element analysis of copper loss in 1-10MHz
Transformers", IEEE Transactions on Power Electronics Vol 4 N° 2, April 1989
[72]
P. GRADZKI, F.C. LEE, "Design of high-frequency hybrid power transformer", IEEE APEC '88
Conference
[73]
P.M. GRADZKI, F.C. LEE, "High-frequency core loss characterization technique based on impedance
measurement", HFPC Proceedings 1991
[74]
P.M. GRADZKI, M.M. JOVANOVIC ET F.C. LEE; W.A. TABISZ
tutorials", Virginia Power Electronics Center, 1990
[75]
P.M. GRADZKI, M.M. JOVANOVIC, F.C. LEE, "Computer-aided design for high-frequency power
transformers", IEEE APEC Record, 1990
[76]
P. HAMMOND, "Roth's method for the solution of boundary value problems in electrical engineering",
Proc. IEE, n°114, (2), p. 1969, 1967
[77]
C.E. HAWKES, T.G. WILSON; R.C. WONG, "Magnetic field intensity and current density distributions in
transformer windings", IEEE PESC 1989, pp. 1021-1230
[78]
P. HERNANDEZ, F. MONTERDE, J.M. BURDIO, J.R. GARCIA, A. MARTINEZ, "About the power losses
distribution in inductors for induction cooking appliances", EPE'99, Lausanne
[79]
J. HESS, "Advantages and limitations of planar technologies in comparison to standard wire winding
for inductive components", PCIM '96 Conference
[80]
JÜRGEN HESS, "Planar inductive components of multilayer design", Siemens Components XXXI, N° 1,
1996
[81]
JÜRGEN HESS, "Quasi-Resonant RF DC/DC converters: Fast switching with planar transformers",
Siemens Components XXXI, N°5, 1996
[82]
N. HEYNEN, "Etude de la faisabilité d’une alimentation à découpage multi-sortie à fréquence fixe de
400kHz", Université Libre de Bruxelles, 1995-1996
Bibliographie
ET
M.M. JOVANOVIC, "1990 VPEC Seminar
B-5
[83]
T. O. HOWARD, K.H. CARPENTER, "A numerical study of the coupling coefficients for pot core
transformers", IEEE Trans. on Magn., vol 31, N° 3, may 1995
[84]
JIA-TZER HSU, K.D.T. NGO, "A Hammerstein-based dymanic model for hysteresis phenomenon",
IEEE Transactions on Power Electronics, Vol 12, N°3, may 1997
[85]
J. HU, CH. R. SULLIVAN, "The quasi-distributed gap technique for planar inductors: design guidelines",
IEEE IAS, New Orleans, 1997
[86]
J. HU, CH. R. SULLIVAN, "Optimization of shapes for round-wire high-frequency gapped-inductor
windings", IEEE IAS, St Louis, 1998
[87]
G. HUA AND F.C. LEE, "Soft-switching PWM techniques and their applications", EPE '93 Conference
[88]
S.Y.R. HUI, H. CHUNG, S.C. TANG, "An accurate circuit model for coreless PCB-based transformers",
EPE '97 Conference
[89]
S.Y.R. HUI, S.C. TANG AND H. CHUNG, "Optimal operation of coreless PCB transformer-isolated gate
drive circuits with wide switching frequency range", IEEE APEC '99 Conference, Dallas
[90]
W.G. HURLEY, W.H. WÖLFLE, J.G. BRESLIN, "Optimized transformer design: inclusive of highfrequency effects", IEEE Trans. on Power Electronics, vol 13, n°4, July 1998
[91]
D.C. JILES, D.L. ATHERTON, "Theory of ferromagnetic hysteresis", Journal of Magnetism and Magnetic
Materials 61, Amsterdam
[92]
JIANNING JIN, "The finite element method in electromagnetics", Wiley & Sons, New York, 1993
[93]
IONEL DAN JITARU, "High frequency and high efficiency design techniques", PCIM '92 Conference
[94]
IONEL DAN JITARU, "Constant frequency Zero Voltage PWM converters", PCIM '92 Conference
[95]
IONEL D. JITARU, "Planar magnetic for high density-high efficiency power converters", PCIM '97
Conference
[96]
J. JONGSMA, "High-frequency ferrite power transformer and choke design - Part 3: Transformer
winding design", Philips
[97]
J. JONGSMA, "Minimum loss transformer windings for ultrasonic frequencies", Philips Electron. Appl.
Bull. Vol 35, pp. 146-163 and 211-226, 1978
[98]
J. JONGSMA AND L.P.M. BRACKE, "High-frequency ferrite power transformer and choke design - Part 4:
Improved methods of power-choke design", Philips
[99]
R. KACZMAREK, "Modélisation des pertes magnétiques à haute fréquence - état de l'art, critique", in
"Les transformateurs et inductances de l'électronique de puissance", journée d'études SEE, 29 sept 1998
[100] R. KACZMAREK, D. SADARNAC, "Pertes dans les cicuits magnétiques de transformateurs soumis à des
tensions trapézoïdales", in "Les transformateurs et inductances de l'électronique de puissance", journée
d'études SEE, 29 sept 1998
[101] J.P. KERADEC, "La modélisation des transformateurs", Exposé, séminaire "Les transformateurs et
inductances de l'électronique de puissance" (SEE), 1998
[102] J.P. KERADEC, B. COGITORE AND F. BLACHE, "Power transfer in a two-winding transformer: from 1-D
propagation to an equivalent circuit", IEEE Transactions on Magnetics, vol 32, n°1, Jan 1996
[103] J.P. KERADEC, B. COGITORE, E. LAVEUVE ET M. BENSOAM, "Des schémas équivalents pour les circuits
couplés multienroulements", J. Phys. III France, 4 (1994) 751-773
Bibliographie
B-6
[104] J.P. KÉRADEC, R. FEUILLET, J. PERARD, "Eddy current losses and high frequency modelling of switching
power supply transformer", Proc. EPE '89, Aachen, pp. 963-965
[105] J. LAEUFFER, "La propagation de l'énergie dans les transformateurs et leurs schémas équivalents", in
"Les transformateurs et inductances de l'électronique de puissance", journée d'études SEE, 29 sept 1998
[106] E. LAVEUVE, J.P. KÉRADEC ET M. BENSOAM , "Electrostatic of wound components: analytical results,
simulation and experimental validation of the parasitic capacitance", IEEE Industrial Application
Society, Dearborn (USA), 28 sept.-4 oct 1991, Proc. pp 1469-1475
[107] F.C. LEE, "High-frequency quasi-resonant and multi-resonant converter technologies", IEEE,
Proceedings of the International Conference on Industrial Electronics, Singapore, Oct 1988, pp. 509-521
[108] P.J. LEONARD AND D. RODGER, "Modelling external energy sources in massive conductor using the
AΨ formulation with a “re-modified” vector potential", IEEE Trans. on Magn. Vol 26, N° 5, sept 1990
[109] P.J. LEONARD, D. RODGER, "Finite element scheme for transient 3D eddy currents", IEEE Trans. on
Magn. Vol 24, N° 1, jan 1988
[110] P.J. LEONARD, D. RODGER, "Some aspects of two- and three-dimensional transient-eddy-current
modelling using finite elements and single-step time-marching algorithms", IEE Proceedings A,
135(2):159-166, March 1988
[111] P.J. LEONARD, D. RODGER, "Voltage forced coils for 3D finite element electromagnetic models", IEEE
Trans. on Magn. Vol 24, N° 6, nov 1988
[112] P.J. LEONARD, D. RODGER, "A new method for cutting the magnetic scalar potential in multiply
connected eddy current problems", IEEE Trans. on Magn. Vol 25, N° 5, sept 1989
[113] P.J. LEONARD, D. RODGER, "Modelling voltage forced coils using the reduced scalar potential
method", IEEE Trans. on Magn. Vol 28, N° 2, march 1992
[114] P.J. LEONARD, D. RODGER, R.J. HILL-COTTINGHAM, "Calculation of AC losses in current forced
conductors using 3D finite element and the AΨV method", IEEE Trans. on Magn. Vol 26, N° 2, march
1990
[115] P.J. LEONARD, H.C. LAI, R.J. HILL-COTTINGHAM, D. RODGER, "Automatic implementation of cuts in
multiply connected magnetic scalar regions for 3D eddy current models", IEEE Transactions on
Magnetics, vol 29, n° 2, march 1993
[116] P.J. LEONARD, R.J. HILL-COTTINGHAM, D. RODGER, "3D finite element models and external circuits
using the AΨ scheme with cuts", University of Bath, Claverton Down, 1993
[117] D. LINDE, C.A.M. BOON, J.B. KLAASSENS, "Design of a high-frequency planar power transformer in
multilayer technology", EPE '89, pp. 1501-1506
[118] J.M. LOPERA, M. PERNIA, J. DIAZ, J.M. ALONSO, F. NUNO, "A complete transformer electric model,
including frequency and geometry effects", IEEE PESC '92, Toledo
[119] A.M. LOPERA, M.J. PRIETO, F. NUNO, "Analysis and Design of a New Constant frequency control for
QRC and MRC based on magnetic elements modification", IEEE Trans. on Power Electronics, vol 13,
N°2, march 1998
[120] A.W. LOTFI, F.C. LEE, "Two dimensional fields solution for high-frequency transformer windings",
IEEE PESC 1993, pp. 1098-1104
[121] A.W. LOTFI, F.C. LEE, "Two Dimensional Solution of the AC resistance of power foils", VPEC
[122] A.W. LOTFI, F.C. LEE, "A High-Frequency Model for Litz Wire for Switch-Mode Magnetics", in VPEC
Publication Series, Volume VI: "Power Electronics Components and Circuit Modeling and Analysis", 1995
Bibliographie
B-7
[123] A.W. LOTFI, F.C. LEE, "Proximity Losses in Short Coils of Circular Cylindrical Windings", in VPEC
Publication Series, Volume VI: "Power Electronics Components and Circuit Modeling and Analysis", 1995
[124] A.W. LOTFI, F.C.LEE, "Two-Dimensional Skin Effect in Power Foils for High-Frequency
Applications", IEEE Trans. on Magnetics, Vol 31, N°2, march 1995, pp. 1003-1006
[125] A.W. LOTFI, P.M. GRADZKI AND F.C. LEE, "Proximity effects in coils for high frequency power
applications", Virginia Power Electronics Center, Blacksburg, Virginia.
[126] D. MAKSIMOVIC AND R. ERICKSON, "Modeling of cross-regulation in multiple-output flyback
converters", IEEE APEC'99 Conference, Dallas
[127] T. MCDERMOTT, P. ZHOU, J. GILMORE & Z. CENDES, "Simulation models magnets that move", Machine
Design (Ansoft), Dec 95
[128] M. MEINHARDT, T. O'DONNELL, H. SCHNEIDER, J. FLANNERY, C. O'MATHUNA, P. ZACHARIAS AND T.
KRIEGER, "Miniaturised "low-profile" module integrated converter for photovoltaic applications with
integrated magnetic components", IEEE APEC '99, Dallas
[129] N.L. MI, R. ORUGANTI, S.X. CHEN, "Modeling of hysteresis loops of the ferrite cores excited by
transient magnetic field", IEEE Joint MMM-Intermag Conference 1998
[130] M. MILLER, "Les alimentations à découpage modernes à faible distorsion de courant d’alimentation",
Revue E., n°1/96
[131] B.A. MIWA, L.F. CASEY, M.F. SCHLECHT, "Copper-based hybrid fabrication of a 50W, 5Mhz, 40V-5V
DC/DC converter", IEEE APEC Record, 1989, pp. 256-264
[132] NED MOHAN, "Power electronics: computer simulation, analysis, and education using Pspice",
Minnesota Power Electronics Research & Education, 1992
[133] M.A. MORRILL, V.A. CALISKAN, C.Q. LEE, "High-frequency planar power transformers", IEEE Trans. on
Power Electronics, vol 7, n°3, July 1992
[134] S. MULDER, "High-frequency power transformer and choke design - Part 5: Design example", Philips
[135] S.A. MULDER, "Loss formulas for power ferrites and their use in transformer design", Philips
Components, 1994
[136] S. A. MULDER, "On the design of low profile high frequency transformers", Proceedings HFPC, 1990
[137] M. NEMETH-CSOKA, "Transient model of a squirrel cage induction machine including the skin effect
using rotor-fixed reference frame", EPE '97 Conference
[138] K.D.T. NGO, R.P. ALLEY, A.J. YERMAN, R.J. CHARLES AND MING H. KUO, "Design issues for the
transformer in a low voltage power supply with high efficiency and high power density", IEEE Trans.
Power Electronics, Vol 7, n°3, pp. 592-600, July 1992
[139] K.D.T. NGO, R.S. LAI, "Effect of height on power density in spiral-wound power-pot-core
transformers", IEEE Trans. on Power Electronics, vol 7, n°3, July 1992
[140] A. NICOLET, "Magnetic field computation in devices including non linear material", Revue E, Janvier
1995
[141] V.A. NIEMELA, G.R. SKUTT, A.M. URLING, Y.N. CHANG, T.G. WILSON, H.A. OWEN JR, R.C. WONG,
"Calculating the short-circuit impedances of a multiwinding transformer from its geometry", IEEE
PESC Record, 1989, pp. 607-616
[142] V.A. NIEMELA, H.A. OWEN JR, T.G. WILSON, "Cross-coupled-secondaries model for multiwinding
transformers with parameter values calculated from short-circuit impedances", IEEE PESC 1990, pp.
822-830
Bibliographie
B-8
[143] V.A. NIEMELA, H.A. OWEN JR, T.G. WILSON, "Frequency-independent-element cross-coupledsecondaries model for multiwinding transformers", IEEE, 1992
[144] J. NUNS, J.C. VANNIER, B. BONAFOS, "Etude magnétique du transformateur de puissance à 200 kHz", in
"Les transformateurs et inductances de l'électronique de puissance", journée d'études SEE, 29 sept 1998
[145] A. NYSVEEN, M. HERNES, "Minimum loss design of a 100 kHz inductor with foil windings", EPE '93
Conference
[146] H.A. OWEN JR, V.A. NIEMELA, T.G. WILSON, "Enhanced cross-coupled-secondaries model for
multiwinding transformers", IEEE PESC 1992
[147] GORAN PERICA, "Elimination of leakage effects related to the use of windings with fractions of turns",
IEEE PESC '84, pp. 268-278, 1984
[148] A.M PERNIA, F. NUNO, E.L. COROMINAS, J.M. LOPERA, "Resonant converter controlled by variable
leakage inductance in the transformer (L.I.C.)", EPE '93 Conference
[149] A.M. PERNIA, F. NUNO, J.M. LOPERA, "1D/2D transformer electric model for simulation in power
converters", IEEE 1995
[150] M.P. PERRY, "Multiple layer series connected winding design for minimum losses", IEEE Transactions
on Power Apparatus and Systems, Vol PAS-98, N°1, pp. 116-123, Jan/Feb 1979
[151] R. PETKOV, "Optimum design of a high-power, high-frequency transformer", IEEE Transactions on
Power Electronics, Vol 11, N°1, january 1996
[152] H. PFUTZNER, C. BENGTSSON, T. BOOTH, F. LOFFLER, K. GRAMM, "Three-dimensional flux distributions
in transformer cores as a function of package design", IEEE Trans. on Magnetics, sept 94
[153] L. PIERRAT, T. TRAN-QUOC, M. MARCHESONI, "Characteristics of magnetizing current and core losses of
transformer under distorted supply voltage generating from electronic converters", EPE '97
Conference
[154] W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, W.T. VETTERLING, "Numerical Recipes - The art of
scientific computing", Cambridge University Press, 1987
[155] M.J. PRIETO, A. FERNANDEZ, J.M. DIAZ, J.M. LOPERA AND J. SEBASTIAN, "Influence of transformer
parasitics in low-power applications", IEEE APEC '99 Conference
[156] R. PRIETO, J.A. COBOS, O. GARCIA, J. UCEDA, "Influence of the winding strategy on the parasitics of
magnetic components", EPE '97 Conference
[157] R. PRIETO, J.A. COBOS, O. GARCIA, P. ALOU AND J. UCEDA, "Model of integrated magnetics by means of
"double 2D" finite element analysis techniques", Universidad Polytecnica de Madrid, ETSII, Spain
[158] R. PRIETO, J.A. COBOS, V. BATALLER, O. GARCIA AND J. UCEDA, "Study of toroidal transformers by means
of 2D approaches", IEEE PESC '97 Conference
[159] R. PRIETO, L. OSTERGAARD, J.A. COBOS, J. UCEDA, "Axisymmetric modeling of 3D magnetic
components", IEEE APEC '99 Conference
[160] R. PRIETO, R. ASENSI, J.A. COBOS, O. GARCIA AND J. UCEDA, "Model of the capacitive effects in magnetic
components", IEEE 1995
[161] R. PRIETO, V. BATALLER, J.A. COBOS AND J. UCEDA, "Influence of the winding strategy in toroidal
transformers", Universidad Polytecnica de Madrid, ETSII, Spain
[162] R. PRIETO, J.A. OLIVER, J.A. COBOS, J. UCEDA AND M. CHRISTINI, "Errors obtained when 1D magnetic
component model are not properly applied", IEEE APEC '99 Conference, Dallas
Bibliographie
B-9
[163] R. RADYS, J. HALL, J. HAYES AND G. SKUTT, "Optimizing AC and DC winding losses in ultra-compact,
high-frequency, high-power transformers", IEEE APEC'99 Conference, Dallas
[164] R. RESNICK, D. HALLIDAY, "Electricité et magnétisme – physique 2", Montréal 1979
[165] F. ROBERT, "Utilisation d'un système d'exploitation temps réel pour la supervision d'armoires
d'alimentation", Université Libre de Bruxelles, 1995
[166] F. ROBERT, P. MATHYS, J.P. SCHAUWERS, "Ohmic losses calculation in SMPS transformers: numerical
study of Dowell’s approach accuracy", 7th Joint MMM-Intermag Conference, San Francisco and IEEE
Transaction on Magnetics, Vol 34, N°4, July 1998
[167] F. ROBERT, P. MATHYS, J.P. SCHAUWERS, "A closed-form formula for 2D ohmic losses calculation in
SMPS transformer foils", IEEE APEC'99 Conference, Dallas
[168] F. ROBERT, P. MATHYS, J.P. SCHAUWERS, "Advanced guidelines and optimization tools for foil
conductors design in SMPS transformer", EPE'99 Conference, Lausanne
[169] D. RODGER, "Finite-element method for calculating power frequency 3D electromagnetic field
distributions", IEE Proc. A, 130(5), July 1983
[170] JOHN ROSA, "Calculation of flux linkages in multiwinding transformers", IEEE Power Electronics
Specialists Conference Record, 1986, pp. 639-644
[171] W. ROSHEN, "Ferrite core loss for power magnetic components design", IEEE Transactions on
magnetics, nov 1991
[172] D. SADARNAC, "L'évolution des bobinages", in "Les transformateurs et inductances de l'électronique de
puissance", journée d'études SEE, 29 sept 1998
[173] D. SADARNAC, S.A. D’ALMEIDA, "Accordion windings reduce copper losses", Power Electronics, N°36
[174] K. SAKAKIBARA, "Analysis of the characteristics of planar power magnetics for high-frequency
DC/DC converters", Electronics and communications in Japan, No 2, 1994
[175] K. SAKAKIBARA, N. MURAKAMI, "Analysis of high-frequency resistance in transformers", IEEE PESC
Record, pp. 618-624, 1989
[176]
SANDLER, "SMPS Simulation with SPICE 3 (chap. 2: SPICE Modeling of magnetic components)"
[177] J.P. SCHAUWERS, C. NUNES, B. VELAERTS, F. ROBERT AND P. MATHYS, "Planar transformer technology
applied to AC/DC conversion", Intelec Conference, Copenhagen, june 1999
[178] A. SCHELLMANNS, P. FOUASSIER, J.P. KERADEC AND J.L. SCHANEN, "1D-propagation based equivalent
circuits for transformers: accounting for multi-layer structure of windings and ferrite losses", IEEE
Industrial Application Society, New Orleans (USA), 5-9 oct 1997
[179] A. SCHELLMANNS, J.L. .SCHANEN AND J.P. KERADEC, "Three-winding transformer model suitable for
power electronics simulation", EPE'99 Conference, Lausanne
[180] M.R. SCHLENK, "Design of a resonant transformer", Power Conversion Magazine, June 1993
[181] ADOLF J. SCHWAB, "Field theory concepts", Springer-Verlag, 1988
[182] R. SEVERNS, "Additional losses in high-frequency magnetics due to non ideal field distributions",
Springtime Enterprises
[183] R. SEVERNS, "HF core losses for non-sinusoidal waveforms", HFPC Proceedings 1991
[184] R. SEVERNS, "A simple, general method for calculating HF winding losses for arbitrary current
waveforms", HFPC Proceedings 1991
Bibliographie
B - 10
[185] GLENN R. SKUTT, "Modeling multiwinding transformers for high-frequency applications", M.S. Thesis,
Duke university, 1988
[186] G. SKUTT, "Visualization of Magnetic Flux Density in Ferrite Core Structures", in VPEC Seminar
Proceedings, 1994
[187] G.R. SKUTT, P.S. VENKATRAMAN, "Analysis and measurement of high-frequency effects in high-current
transformers - a comparison between analytical and numerical solutions", APEC '90, Los Angeles,
California, 1990
[188] G. SKUTT; F.C. LEE, R. RIDLEY, D. NICOL, "Leakage inductance and termination effects in a high-power
planar magnetic structure", Ansoft Corporation
[189] E.C. SNELLING, "Soft ferrites – Properties and applications", London Iliffe Books, 1969
[190] JAMES H. SPREEN, "Electrical terminal representation of conductor loss in transformer", IEEE
Transactions on Power Electronics, Vol 5, N°4, Oct. 1990
[191] DANIEL G. SWANSON JR., "Simulating EM fields", IEEE Spectrum, november 1991
[192] W.A. TABISZ, M.M. JOVANOVIC, "Practical design considerations for high-frequency transformers and
resonant inductors", in VPEC Seminar tutorials, 1990
[193] A. TAFLOVE, "Computational Electrodynamics - The finite-difference time-domain method", Artech
House, London, 1995
[194] E. TATAKIS, "Modélisation et simulation des convertisseurs statiques continu-continu mettant en
œuvre des transistors MOSFET de puissance", Université Libre de Bruxelles, 1989
[195] P. TENANT, J.J. ROUSSEAU, "Dynamic model of magnetic materials applied on soft ferrites", IEEE
Trans. on Power Electronics, vol 13, n°2, march 1998
[196] K. UMASHANKAR, A. TAFLOVE, "Computational electromagnetics", Artech House, 1993
[197] A.M. URLING, V.A. NIEMELA, G.R. SKUTT AND T.G. WILSON, "Characterizing high frequency effects in a
transformer windings - a guide to several significant articles", Duke University, IEEE 1989
[198] J. VAN BLADEL, "Electromagnetic fields", Springer-Verlag, Berlin, 1985
[199] J.P. VANDELAC, P.D. ZIOGAS, "A novel approach for minimizing high-frequency transformer copper
losses", IEEE Trans. on power elctronics, July 1988
[200] A. VANDER VORST, "Electromagnétisme - champs et circuits", De Boeck Université, 1994
[201] B. VELAERTS, "Study of push-pull and half-bridge Zero-Voltage-Switched multiresonant converters",
Philips Industrial and Telecommunications Systems
[202] B. VELAERTS, J.-P. SCHAUWERS, D. BOGAERTS, M. MILLER, P. MATHYS, J.-L. VAN ECK, "Multiresonant
techniques applied to a family of single-output DC-DC converters", Philips Power Systems
[203] P.S. VENKATRAMAN, "Winding eddy current losses in switch mode power transformers due to
rectangular wave currents", Proceedings of Powercon 11, 1984
[204] E.G. VISSER AND A. SHPILMAN, "New power ferrite operates from 1-3 Mhz", PCIM Europe Magazine, Jan
92
[205] W. WAANDERS & A. SHPILMAN, "High-efficiency magnetics for power conversion", Powertechnics
Magazine, 1991
Bibliographie
B - 11
[206] J. WANG, A.F.WITULSKI, J. L. VOLLIN, T.K. PHELPS AND G.I. CARDWELL, "Derivation, calculation and
measurement of parameters for a multi-winding transformer electrical model", IEEE APEC '99
Conference
[207] G. WARZEE, "Méthode des éléments finis", U.L.B., 4e édition, 1993
[208] ALAIN WAUTHIER, "Modélisation et simulation d'alimentations à découpage", Université Libre de
Bruxelles, 1998
[209] D.J. WILCOX, "Theory of transformer modelling using modal analysis", IEE Proc. C, Vol 138, N°2,
march 1991
[210] D.J. WILCOX, M. CONDON, D.J. LEONARD, T.P. MCHALE, "Time-domain modelling of power
transformers using modal analysis", IEE Proc. Electr. Power Appl., Vol 144, N°2, march 1997
[211] D.J. WILCOX, T.P. MCHALE, "Modified theory of modal analysis for the modelling of multiwinding
transformers", IEE Proc. C, Vol 139, N°6, nov. 1992
[212] D.J. WILCOX, W.G. HURLEY, T.P. MCHALE, M. CONLON, "Application of modified modal theory in the
modelling of practical transformers", IEE Proc. C, Vol 139, N°6, nov. 1992
[213] N. WILLIAMS AND C. POLLOCK, "Analysis of AC resistance in aluminium foils, air cored inductors",
EPE'99 Conference, Lausanne
[214] PETER WILSON, "Modelling and simulation techniques for magnetic components", PCIM Europe
Magazine, 5/97
[215] A.F. WITULSKI, "Introduction to modeling of transformers and coupled inductors", IEEE Transactions
on Power Electronics, Vol 10, N°3, May 1995
[216] M. ZHANG, F.C. LEE, M.M. JOVANOVIC AND J.C. LIN, "Analysis, Design and Evaluation of Forward
Converter with Distributed Magnetics – Interleaving and Transformer Paralleling", in VPEC Seminar
Proceedings, 1994
[217] "Design of planar power transformers – Application note", Philips Magnetic Products
[218] "Philips Magnetic Products - Application Note: Planar E cores", Philips Components, 1996
[219] "25Watt DC/DC converter using integrated planar magnetics", Philips Magnetic Products
[220]
"3F4 ferrite for Mhz power conversion", Philips Components
[221]
"Magnetic products - Soft ferrites: Data Handbook MA01", Philips Components (The Netherlands),
1996
[222] "Payton planar magnetics", Payton, 1996
[223] "Mega V6.00 – User manual", Applied Electromagnetic Research Center, Bath University, 1995
[224] Wayne-Kerr 6425B Precision Component Analyzer - Manuels d'utilisation
[225] Technical meeting with Siemens Matsushita Components (Ferrites Division), 18 mai 1998
Bibliographie
B - 12
20/07/05 - 17:02
13